Chapter 4

The Fourier Transform and Sobolev Spaces

4.1 The Fourier transform on L!'(R")

The Fourier transform is an extremely powerful tool across the full range of mathematics.
Loosely speaking, the idea is to consider a function on R™ as a superposition of plane waves
with different frequencies. For f € L'(R"), we define the Fourier transform f : R" — C
by:

FIE) = &) = (z)e” ™ Eda.

Rn

Sine | f(z)e™™¢| < |f(x)], the integral is absolutely convergent, and £(€) makes sense for
each £ € R™.

Example 16. i) Suppose f € L'(R) is the “top hat” function, defined by:

1 —-1l<z<l,
f(‘””)—{o 2] > 1.

We calculate:

Notice that f(€) is continuous (in fact smooth) on R. We also have f(€) — 0 as
& — o0.

ii) Suppose f € LY(R) is defined by:
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Then:

0 00
f() = / e*1=18) dy: + / (1718 gy
0

. 0 . [e%e)
 Jert-) . o(—1-i)
o 1-dE | —1-ig |,

1 1 2

=i 11 1+
Again, notice that f is smooth and decays for large &.

iii) Consider g € L'(R) given by

1
9(z) = 14 22
We have: ‘
. o) efz:vg J

We can consider this as a limit of contour integrals:

—iz€
§(6) = lim/ ¢  dr.
v

R—00 R1+Z2

Where vr = {S(z) = 0, |R(2)| < R}. For & > 0, we can close the contour with
a semi-circle in the lower half-plane, and we pick up a contribution from the pole
at z = —i. The contribution from the curved part of the contour tends to zero as
R — o0 by Jordan’s lemma, and we find:

g =met, £>0.

For £ < 0, we close the contour in the upper half-plane, picking up a contribution
from the pole at z =i and again discard the contribution from the curved part of the
contour in the limit. We find:

§(§) =met, £<0.

In conclusion, we have:
. mes £ <0,

iv) Consider now for x € R™ the Gaussian f(x) = e~21 . We calculate:
fo) = [ et

:/ o~ 3 (@=i€)-(2—i€) = 31€” 1,

= ¢ alel’ ( / eé(misl>2dx1> ( / e%@wfn)zdxn)
R R
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By shifting a contour in the complex plane, which is justified since e~ is entire and
rapidly decaying as z approaches infinity along any line parallel to the real axis, we

can show that:

/e_é(“_’fl)zdxl = / e_%”"%d:cl =/27.
R R

We deduce that:
A n 11¢12
f(&) = (2m)¥ 31
Notice that this is (as a function) equal to f up to a factor.

We will make some casual observations at this stage. In all of our examples, we saw
that the Fourier transformed function decays towards infinity. For examples iii), iv) we see
very rapid (exponential) decay of the Fourier transform, while in examples i), ii) the decay
is only polynomial. In all examples the transformed function is continuous. In examples
i), ii), iv) it is in fact smooth, while for iii) the Fourier transform has a discontinuous
first derivative. Reflecting on this, one sees that these two features appear to be dual to
one another: if f is smooth, then f has rapid decay towards infinity. If f decays rapidly
near infinity, then f is smooth. This is in fact a general feature of the Fourier transform
smoothness and decay are dual to one another under the transform.

We shall now make some of these observations more precise.

Lemma 4.1 (Riemann-Lebesgue Lemma). Suppose f € LY(R™). Then f € CO(R") with
the estimate:

sup
£eRn

G (4.1)

and moreover f(£) = 0 as |¢] — oo.

Proof. To establish the continuity of f , we use the continuity of the exponential, together
with the dominated convergence theorem. Let {¢; };";1 be any sequence with §; — & as
J — o00. Recalling the definition of the integral, we have:

fe) = | s,
R”
Now, clearly for x € R™ we have:
f(x)e ™% 5 f(x)e ¢, as j — 0o
so we have pointwise convergence of the integrand. We can also estimate:

F@)e 9] < | ()]

so the integrand is dominated by an integrable function, since f € L'(R"). Applying the
Dominated Convergence Theorem, we conclude:

A~ ~

f(&5) = f(8), as j — oo.
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This implies that f (£) is continuous. We can readily estimate:

(z)e @ dx
R™

f(&)| = sup

¢eRn

sup
¢eRn

<swp [ |f@)lde =[]

£eR™ JR
This establishes the first part of the Lemma. To establish the second part, we make use
of an approximation argument. Chapter 1 that if f € L'(R™), we can approximate f by
an element of C§°(R™). Given € > 0, there exists f. € Cg°(R"™) with
€
17 = Flp < 5.
Now, in the integral for fe we can integrate by parts::

f© = | flz)e ™
Rn

= fe(zx) div (gze_mf) dz
R iy

—il¢
= — ——— - Dfc(r)e dx
R —i [¢]
so that for each ¢ = 1,...,n we have, by the Cauchy-Schwarz inequality:
2 _ 5 —ix-€
f(©)| = —— - Dfc(z)e " da
n 1 [g]
< ¢ p —izg
< —— - Dfe(z)e dz (4.2)
n |7 |£|
1
</ — |Dfe(z)| dx
e [€]
2| ipr|
= —_— € €T
€l L
From this, we conclude that there exists R > 0 such that if |{| > R, we have fg(ﬁ)‘ < 5.

For [£| > R we calculate:

HG|

IGENAGESAG]
9|+ |f©) - f&)|

N

AGIE
fe(g)’ + Hf - f6”L1 < €.

<

In the last line, we have used (4.1), together with the linearity of the Fourier transform.

A~

f(é’)‘ — 0. O

Since € > 0 was arbitrary, we have shown that

Remark. The argument above is another example of an approrimation argument where
one first proves the result on a suitably nice dense subset then extends to the full space by
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continuity. In this case, we are using the fact that the Fourier transform is a bounded (hence
continuous) linear operator from LY(R™) to the Banach space of continuous functions
decaying at infinity equipped with the uniform norm. The dense set is C§°(R™) C L*(R™).

Another tactic which we used here was to use integration by parts to exploit the rapid
oscillations in the e™*¢ factor when |€| is large.

One might be tempted to infer from (4.2) that ‘f({)’ <O+ [¢])t. While this is

true for each f. approzimating f, in general the constant C will grow larger and larger as
e — 0, so we cannot quite come to this conclusion.

Exercise(x). For £ € R", define e¢(x) = . Show that T, € &', and that:
Te. — 0, as |§] — oo
in the weak-* topology of ..

We shall prove some important properties of the Fourier transform. Recall that
7, f(x) = f(z — y), and introduce the character e,(z) = "¥?.

Lemma 4.2 (Properties of the Fourier transform). i) Suppose f € L'(R"), z € R",
A >0 and fr(y) = A"f(A"Ly). Then

A~ A~

) = (e (eaf) () = T f (£) T f(€) = e~ (€)F(€)
ii) Suppose f,g € L'(R™). Then f*g € L*(R") and:

Frg(6) = f(©)3(e).

Proof. 1) Writing out the expression for fa (£), and changing the integration variable to
2z = A"lz, we see

WO = [ h@eFde= | [OTTe)e N e = | f(y)emPE dz = ().

Rn

Next, we calculate:

@he - [

Finally, we have:

n n

e fy)e EVdy = / Fly)e D vdy = 7, f(€).

l(©) = | fy-a)eTdy = | fz)en €z = T | f()eT Mz = ea(€)

where we have used the substitution z =y — x.

ii) First we show that f xg € L'(R™). To see this, we first estimate:

n

9@l =| [ sste - nas| < [ 1rata - ol ay
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Integrating and applying Fubini’s theorem, we have:

<ol < [ ([ 1rwata = nlay) ao
= [ s ([ lote - las) dy

= [ 15 gl dy = 1151 gl

Now, we can calculate the Fourier transform:

—

Frg(§) = A g(z)e “"dx

-/ ( i f(y)g(w—y)dy> T dy

= [ 1) ([ ata=weear) ay

- [tz
= | FWa(©e vy = f(©)a(©)
O
Exercise(x). Calculate the Fourier transform of the following functions f €
L'(R):
2) f() = T ros

1
b) f(z) = o for € > 0 a constant.

2
_oE=y)

c) f(x) = Ze ¢, where 0 > 0, t > 0 and y are constants.
t

1
coshz’

*d) f(z) =

We saw with the examples that there is a duality between the decay of a function
and the regularity of its Fourier transform and vice versa. To make this more precise we
prove the following result, which tells us, roughly speaking, that the Fourier transform
swaps coordinate functions x; multiplying f for derivatives ¢D; acting on f .

Theorem 4.3. i) Suppose f € CY(R™) and that f,D;f € L*(R") for allj =1,...n.
Then
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Suppose (1+ |z|)f € L*(R™). Then f € CY(R"), and:
D;f(§) = ~i;f(€)

Proof. i) We again appeal to an approximation result. For f € C1(R") with f, D;f €

i)

LY(R™), then for any € > 0 there exists f. € C}(R") such that ||f — fe||;: < € and
|Djf — Djfell ;1 < e Integrating by parts, we readily calculate:

Dif€)= [ Difew)e®*du

=— fe(x)Dj(e_ig'm)dx
RTL
=i fe(z)e &% dx
Rn
so that EE(@ = zfjfg(g). Now, we calculate:
Di1(€) = i€/ (€)| = |DiF (&) = Difele) + i€ fu(©) — i€ f )|
S D f = Difellpr + [ = fell e
< e(1+[€])
Since € > 0 is arbitrary, we must have that ‘Ej\f(f) — zfjf(f)‘ = 0, and the result
follows.

From the condition on f it is clear that z;f € L'(R"), so fi:?]-b\f is continuous. It
suffices to prove then that:

AMf(&) = =iz f(€),  ask — o0
for any sequence {h;}7°,; C R with hy — 0. We calculate:

A X ) A ‘ —izjhy _ 1
AP 7€) = - (FE+ hues) = f(©) = | Flape¢ (m) "

Now for x € R™ we have:
) —izjhE _ 1 )
f(z)e ¢ (€> — —ixjf(w)e_w'§
I
as k — oo. Noting that ‘eio — 1‘ =2 }Singl < 0 for any 0 € R, we have that:
—ixjhy

Flayei= (hk‘l)’ < Jajf (@)

where the right hand side is integrable. By the Dominated Convergence Theorem,
we have:

lim A% f(€) = / iy (e e dr = —ia f(©).

k—00

We deduce that f € C*(R").
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Exercise(*). Suppose f € C}(R") and that f, D;f € L'(R"). Fix € > 0. Show
that there exists f. € C§(R™) such that
€

1f = fellos +I1D; f = Difellp < 5

Corollary 4.4. i) Suppose f € C¥(R"™) and D*f € L*(R") for |a| < k. Then there is
some constant Cy, > 0 depending only on k such that:

(L4 IED*F@| < D2 1Dl

la|<k

sup
£eRn

i) Suppose (1+ |z|)*f € L*(R™). Then f € C*(R™) and for any |o| < k we have:

sup
EeR™

Dof()] < | +1abs|

i11) The Fourier transform is a continuous linear map from ./ into .7 :
F.: 77— 7.

Proof. 1) First we note the algebraic fact that for any k there is some constant C}, such
that!:

L+ED" < D 1e7

la|<k
holds for any £ € R™. Repeatedly applying the part i) of Theorem 4.3 we know that:
ile® f(€) = D (&).
We therefore have:

a+le)* o] < Y filefo| = a3 [Dore)|

la|<k || <k

taking the supremum over £ € R™ and applying the estimate (4.1) we conclude

L+ D" ()] < e D2 ID e

|a| <k

sup
£eRn

ii) By iterating part ii) of Theorem 4.3 we have that for |a| < k
D) = (=)l f(8).

Taking the supremum of the absolute value over £ € R™ and applying the estimate
(4.1) we have:

sup | DF()] < fla flpx < [[(1+ et f|

£€Rn
Irecall that £ := £21£52 ... £om
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iii) Note that if:

sup (1+ |z))V [ f(z)] < K,
zeR™

1
Il = [ 1@lde < 6 [ e < o

provided N > n. Thus in particular if f € .¥ then there exists some constant C,
such that:

we have:

|1+ [z D f[| ;1 < C Sup (1+ |z)) M+ [ D f ()]
TER™

for all M € N and all multi-indices o. Applying the previous two parts we conclude
that f € C*°(R") and:

sup (141§D |DPF©)] < Cxar_sup (14 [a) M D7 f(a)
E€Rn,|BI<M TER™, |a|<N

For some constant Cy ar,, depending only on N, M, n. Thus f € .. Moreover, if
{fi};21 € & is a sequence with f; — 0 in &, then f; — 0 in ., so that F is
continuous.

O

Notice that while the Fourier transform maps % to itself, the same is not true of
2(R™). Suppose f € C§°(R™), then provided supp f C K for K a compact set we have:

f() = /K f(@)e = Edu

By repeatedly differentiating, it is possible to show that f is in fact real analytic, and
hence f cannot vanish on any open set without vanishing everywhere. In particular, f
cannot vanish outside a compact set.

Exercise 3.8. Suppose f € L'(R"), with supp f C Br(0) for some R > 0.

a) Show that f € C°°(R") and for any multi-index:

sup | D F()] < B |1f] s

£ERP
b) (*)Show that f is real analytic, with an infinite radius of convergence, i.e.:
o

f(&)=>_Df(0)

«

al

holds for all £ € R™. Deduce that if f (&) vanishes on an open set, it must
vanish everywhere.
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You may assume the following form of Taylor’s theorem. Suppose g € C*+1(B,.(0)).
Then for x € B.(0):

(6% xa
o) = Y D)%+ Y Ryt
lal<k |Bl=k-+1
where the remainder Rg(x) satisfies the following estimate in B,(0):
1 «
[Rg(z)| < 27 max  max |[D%(y)|.
B! lal=I8| yeB,(0)

Exercise 3.9. Recall that L®(R) = L!(R)’. Consider the sequence (f,,),
where f, € L®(R) is given by f,,(x) = sin(nz). Show that f, = 0. Show that
f2 & g for some g € L>®°(R) which you should find.

To complete this section, we are going to establish the invertibility of the Fourier
transform, under some reasonable assumptions on f and f. In particular, this will permit
us to show that F : . — % is in fact a bijection.

Theorem 4.5 (Fourier inversion theorem). Suppose f € L'(R™), and assume f € L*(R"),
then for almost every x:
1 £ 1x-€
= — d€. 4.3

1@) = e [ TS (13)

Proof. We shall establish the result by looking at the limit e — 0 of
1 o 1242 5
_ —Lee? e

I42) = G /]R e e,

in two different ways. Firstly note that for £ € R" we have:
J(©e 2 e 5 fe)et™.

Moreover, we can estimate

gt

<|f©)]
so that the integrand is dominated by an integrable function. Thus by the Dominated
Convergence Theorem we have:
1
@2m)™ Jgn

On the other hand, we have, using Fubini’s thorem:

I€($) = (23[_)71 /n < - f(y)e_i§~ydy> 6_%62\$|2€ia&~§d£

= (271r)" /Rn fy) (/Rn e—§e2§|2€_i£.(y—w)d§> dy

1 _ly=a?
= | fW)———=ze 2 dy
Rn e (2m)

=f *'@De(x)

I(x) — f(&)e™4de, as € — 0.

w[3



84 Chapter 4 The Fourier Transform and Sobolev Spaces

where ¥ (x) = e (e 'x) for

_ b lp
P(x) (27‘()% e .

Note that ¢ € C*°(R"), ¢(z) > 0 and

Y(x)dr =1
R

so by Theorem 1.13, b) we have that:
fxtpe = f,
in LY(R™), thus we must have that

1
(2m)" Jrn

flz) = f&)e™tde

for almost every z. O

Note that by the Riemann Lebesgue Lemma the map

1
(2m)™ Jgn

f(&)e™4de

T —

is continuous. Thus under the conditions of the theorem, if f is additionally assumed to
be continuous, then we can upgrade the almost everywhere convergence to convergence
everywhere. Alternatively, our result shows that if both f € L*(R") and f € LY(R"),
then f must be almost everywhere equal to a continuous function.

We can summarise the inversion formula quite neatly by noting that (on a suitable f):

F2f = (2n)"f.

An immediate corollary of the above result is that F : . — . is a bijection, and that
F~1:.# = & is continuous.

Exercise(x). Counsider the following ODE problem. Given f: R — C, find ¢
such that:

—¢"+o=f. (4.4)

a) Show that if f € ., there is a unique ¢ € % solving (4.4), and give an
expression for ¢.

b) Show that

where
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Exercise(x). Suppose f € L'(R3) is a radial function, i.e. f(Rz) = f(z),
whenever R € SO(3) is a rotation.

a) Show that f is radial.

b) Suppose that £ = (0,0, (). By writing the Fourier integral in polar coordinates,
show that

e8] ™ 2m
= / / f(r)ereos 02 in 0dOdrdep.
r=0.J0=0J =0

¢) Making the substitution s = cos 6, and using the fact that f is radial, deduce:

) = 4n Slnr|£|
f 0%

for any & € R™.

4.2 The Fourier transform on L?(R")

Having defined the Fourier transform acting on functions in L'(R"), we are going to
extend it to act on more general functions (and eventually distributions). Firstly, we shall
see how the Fourier transform extends very nicely to act on functions in L?(R"). As we
have already seen, this is a particularly nice function space because is is a Hilbert space.
We recall the inner product:

(f,9)= [ [(z)g(x)dx
R’ﬂ

which induces the norm via:
1
1fllp2 = (f. f)2

and moreover it is complete, which means that all Cauchy sequences converge in L?(R™).

We shall first establish that the Fourier transform maps L'(R™) N L?(R") into L?(R"),
and moreover show that the L? inner product is preserved by the Fourier transform (up
to multiplication by a constant).

Theorem 4.6 (Parseval’s Formula). Suppose f,g € L*(R*)NL2(R"). Then f,§ € L2(R™)
and moreover:

L s
Proof. We will again use a density argument to prove this result. First suppose that
fyg € . Then using the Fourier Inversion Theorem (Theorem 4.5) and Fubini’s theorem



86 Chapter 4 The Fourier Transform and Sobolev Spaces

we can calculate:

Rn ) n

(271r)" /Rn < /Rn f(x)eix'%ﬂ) 9()de
N <2i)n /R ( /R f<ff>6”fdw>g<£>ds
— e L F00)d = G (7:9)

Now suppose that f,g € L*(R") N L2(R™). By Theorem 1.13 part b), there exists a
sequence {f;}72; C Cg°(R"™) C . such that:

1
1fi = Fllp + 115 = fll e <

and similarly for g. We know that:

F© = )| <1 = Ml < 5

sup
£eRn

so that fj — f uniformly on R™. We also have by the calculation above:

Hf] ka @m)2 || f; — fill 2 -

Now since f; — f in L*(R™), we have that {f;} is a Cauchy sequence in L?*(R™). Thus
fj is a Cauchy sequence in LZ(R”). By the completeness of L?(R™), we have that f]
converges in L2(R™) and hence f € L2(R"). Furthermore, we know that

1 P
(fir95) = W(fj,gj)

since each of the sequences {f;},{g;},{f;}, {d;} converge in L*(R"), we can take the
limit? j — oo to conclude:

..
(f.9)= (%)n(ﬁg) O

Thus we have shown that the Fourier transform F maps L'(R™)N L?(R") into L?(R™).
Moreover, we have that it is a bounded as an operator from L?(R") to itself, since

I41.

This means that F is a bounded linear map defined on a dense subset of a Banach space.
A general result tells us that the map extends uniquely to a bounded linear map on the
entire space. Rather than invoke an abstract result, we can show this directly.

(2m)% || £l 2

2You should check that you understand why this is valid.
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Corollary 4.7. There is a unique continuous linear operator F : L*>(R™) — L%(R") such
that:
Flfl=FIfl,  foral feL'(R")NL*R"). (4.5)

We say that F is the extension of the Fourier transform to L*(R™). It is sometimes known
as the Fourier-Plancherel transform.

Proof. For any f € L?(R"), we can take a sequence {fi}52, C LY(R™) N L2(R™) with
fi — fin L?(R™) (for example by approximating f with smooth functions of compact
support). By Theorem 4.6 we have that:

|5 = 24|, = @mF 18 = il (4.6)

L2

Now, since f; converges in L*(R"), it is in particular a Cauchy sequence in L?(R").
Equation (4.6) shows that fj is also a Cauchy sequence in L?(R™), hence has a limit,
say F € L?(R™) by the completeness of L?(R™). Suppose {fi}52, C LY(R™) N L2(R™) is
another sequence with f]’ — f, and suppose fj — F’. Then we have:

1P = Pl = tim £ = 7], = Jim @m)% £ = £ = 0

since both f; and f]’~ tend to f. Thus F' depends only f, and not on the sequence f;
which we chose to approximate f.

We define F[f] = F, i.e.
F[f] = lim F[fjl, where {fj °, C LI(R") N LQ(R”), fi— fin LQ(R”),

]-)OO
and the limit is to be understood to be in L?(R™). This certainly satisfies (4.5), since we
can take our approximating sequence to be the constant sequence f; = f for all j when
f € LYR™) N L*([R™). F is clearly linear and moreover, we have that

7151, = |
= Jim (5]l

= lim (2m)% £l = (2m)¥ |2,

lim F[f;]
J—0 2

so F is bounded and hence continuous®. It remains to show that F is unique. Suppose
that F is another continuous linear operator satisfying (4.5). For any f € L?(R"), take
a sequence {f;}32; C LYR™) N L*(R™) with f; — f in L*(R"). We have:

?/[f] lim ]:J[fj] = hm f[f]] Flf]

Jj—00
so that F = F. O
’If {f;}52, € L*(R™) is a sequence with f; — f in L*(R"), then
|FLfi1 = FLA 2 = |1 FLfi = £ 2 = Ef = fll2 =0

so F[f;] = Flf] in L2(R").
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Exercise(*). (*) Suppose that f, g € L%*(R™), and denote the Fourier-Plancherel

transform by F. You may assume any results already established for the Fourier
transform.

a) Show that
1

(2m)"

(f,9) = (F111, Flg)) -

b) Recall that f(y) = f(—y). Show that:
7 [FUf1] = 2o
Hence, or otherwise, deduce that F : L%(R") — L%(R") is a bijection, and
that 7 : L?(R™) — L?(R") is a bounded linear map.
¢) Show that:

FLA(€) = Jim flz)e ™ Edy
—°.JBR(0)

with convergence in the sense of L*(R").

d) Suppose that f € C1(R") and f,D;f € L*(R"). Show that &F[f](§) €
L?(R™) and:
F[D;f1(€) = i&;F[f1(E)

e) For x € R let:

i) Show that f € L%(R).

ii) Show that:
T -1<€&<,

nO={% st
f) i) Show that for all x € R™:
7% 9@ < 1fll 2 gl 2

ii) Show that fxg € C°(R") and:
fg=FFf- Fl
where:

1
(2m)™ Jgn

F A=) = f&)ecde.

[Hint for parts a), b), d), f): approximate by Schwartz functions/
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Exercise(x). Work in R?. For k > 0, define the function:

G eik“ﬂ
@) = T
a) Show that G € L1(R3).
b) Show that:
A 1
G(¢&) =
O e

[Hint: use Ezercise 4.1, part c)]
Exercise 3.10. Suppose f € #(R™). By observing that
1, ..
91 = [ (v ) £(e) o
RrRn T

or otherwise, show that:

n 2 N

@M% (1£1I72 < ~llel £@)]] ]l 16 £ 2

with equality if and only if f(x) = ae=21" for some a € C, A > 0. Deduce that
if zg, fo e R"™:

) IF1s < 2l — ol £ 16 — ol FE)

Explain how this shows that a function f € L?(R") cannot be sharply localised
in both physical and Fourier space simultaneously. This is the uncertainty
principle.

Usually one does not labour the distinction between the Fourier transform acting on
L'(R™) and the Fourier-Plancherel transform acting on L?(R"™). From now on we shall
use the same notation for both, so that for f € L*(R") we write F[f] = F[f] = f. Since
the two transforms agree wherever both are defined, there is no ambiguity in this. The
majority of the results that we have already established for the Fourier transform extend
to the Fourier-Plancherel transform in a straightforward way, see Exercise 4.2.

4.3 The Fourier transform on .’

We are now going to extend the Fourier transform in a slightly different way, such that it
acts on distributions. Suppose that f € L'(R"), and ¢ € .. Then since f € C°(R") and
f decays towards infinity, we have that Tf € .’. By Fubini we have:

1ol = [ fwots= [ ([ foeray) oo

- [ 1w ( L ¢<az>e—“'yd:c> dy

~

= [ [fx)¢(z)dz.

R
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Thus for f € L'(R"™) we have that:

Tsl¢] = Ty[9], for all ¢ € ..

Motivated by this, we define:

Definition 4.1. For a distribution v € ., we define the Fourier transform of u, written
€ . to be the distribution satisfying:

a¢] = uld)], forall g € 7.

Notice that the definition makes sense because the Fourier transform maps . to .
continuously. If we tried to use the above definition but with ¢ € Z(R") and u € Z'(R"),
we would run into difficulties because ¢ ¢ Z(R™).

Example 17. a) For £ € R™ we have:
8\5 = Te—g

To see this, we use the definition. For ¢ € & :

Selol = 0ld) = 6(6) = [ e 4o(a)dn =T, Jo
Since ¢ was arbitrary, the distributions are equal.

b) For x € R™ we have:

o~

Te, = (2m)"04.
To see this, we note for ¢ €

—~

T.[6) =Te.[¢] = / eTG(€)de = (2m)"¢(x) = (2)"dal¢].

Again, as ¢ is arbitrary the distributions are equal. Note that a particular case is
T1 = (27{')"(50.
c) For a a multi-index, denote by X< the map
Xz x™.

Then we have: -
Txa = (2m)"il* D5,

For ¢ € 7
Txeld] = Txe[d] = | €°0(6)dS
= (i)l [ Dog(e)de

Rn
= (2m)"(=) D¢ (0) = (2m)"il*l x (—1)l*l5y [D*¢]
= (2m)"il* D6 [g)]
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Most of the properties of the Fourier transform defined on . are inherited by the
transform defined on .’. We first need to define a couple of operations on .. Recall
that if ¢ € .7, then 7,¢ € . is the translate of ¢, given by 7,¢(y) = ¢(y — x), and
b € .7 is given by ¢(y) = ¢(—y). For u € .7, we define:

meuld] = ulto¢l, U] = uld]

Notice also that if f € C°°(R") is a function of tempered growth, i.e., if for each o and
there exists a constant C, and integer N, such that:

|DYf(2)] < Ca(l + |z,  Vz e R™
then ¢f € . when ¢ € . and we can define fu € .’ by
fuld] = ulf o]
Exercise(x). Verify that if f € L}, is such that Ty € .%”, then:
7T = Try, and Ty =Ty

Lemma 4.8. Suppose u € .7’ is a tempered distribution. Then:

et = T, T = e_y, Doy = ilol xog D% = (—i)l*l Xy
Moreover:
u = (2m)"u,

so that the Fourier transform on .’ is invertible.

Proof. These are all calculations using the corresponding results for .. Take ¢ € .. We
have:

~

eziilg) = exuld] = ulesd] = u [Tad| = ilr_se] = Toulg].
Since ¢ was arbitrary, we have e;u = 7,4. Similarly, we calculate:
7o) = Tould] = ulr—od] = u [e—6] = ile_sd] = e_sulg].
Next we have
Doulg] = Du 8] = (=)l [ Dg]
= (-Dlelu [(=i)I x| = dlelu [Xg)
= illa[xeg) = (i x"q) [¢]
similarly:
D%alg) = (-1)lla[D¢] = (~1)*lu[Dg)]
= (—~Dllufil X ) = (—i)eLxu[g]
= (=) Xu) [g].
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Finally, we have

af] = a[g] = ul] = u[(27)"¢] = (27)"u[g]
Since @ = u, we have that the Fourier transform is invertible. O
Importantly, the Fourier transform is also a continuous linear map %' — ..

Lemma 4.9. The map:

s a linear homeomorphism.

Proof. We already have that F is linear. From the definition of the weak-x topology, a
sequence {u;}32; C . converges to u if

;@] = ul¢]

for all ¢ € .. Suppose that we have such a convergent sequence in .. We calculate:

j]p] = ujl¢] = ul¢] = a[g].

Thus if u; — u we have F(uj) — F(u). Thus F is continuous. Since F* = (27)%"s, we
have that F is invertible and the inverse is also continuous. O

Remark. Strictly, we have only established that F is sequentially continuous with respect
to the weak-x topology induced on .’ by .. Establishing genuine continuity is not difficult,
but requires the full description of the weak-x topology, and we leave this as an exercise.

Exercise 3.11. Let f: R — R be the sign function

-1 <0

ro={ 5

and define fr(z) = f(2)1_g gr)(2).
a) Sketch fr(zx), and show that Ty, — T} in .#'(R) as R — oo.

b) Compute fr(€), and show that for ¢ € .7 (R):

o =21 [ HD ) gy [ (A=)

f T T

Deduce ’1/? = —2iP.V. (%), where we define the distribution P.V. (%) by:
1
PV <> [¢] = lim Md:z:, ¢ € .Z(R).
z =0 R\(_Ere) €z
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¢) Write down C//};, where H is the Heaviside function:

0 z <0
H(x):{l x>0

By considering e~ “* H(x), or otherwise, find an expression for the distribution
u which acts on ¢ € . (R) by:

u[¢] := lim (z) dx

e—0+ Jr T + 1€

Exercise 3.12. Suppose ¢ € C°(R™ x R™). For each y € R™ let ¢, : R" — C
be given by ¢, (z) = ¢(x,y). Let u € Z'(R").

a) Show that 1 : y — u[¢,] is smooth and find an expression for D). Deduce
that

Y(y)dy = u[¥], where ¥(r)= o(x,y)dy.
Rm R™

b) Show that there exists a sequence of smooth functions f,, € C2°(R™) such
that T, — u in the weak-* topology of 2'(R").

4.3.1 Convolutions

We have generalised almost all of the properties of the Fourier transform to distributions.
The final result that we shall establish concerns convolutions. Recall that if u € 2'(R")
and ¢ € 2(R") then u* ¢ € C>°(R"™) is given by:

uxo(xr) =u [ngiv)] .

Notice that this definition continues to make sense for each z, provided u € .’ and
¢ € ., although it is no longer clear that the resulting function is smooth. We have the
following results concerning this convolution.

Theorem 4.10. Suppose u € . and ¢ € ./ are given. Then the function:

ux¢p:R"— C

has the following properties

a) ux ¢ e C®(R") with

DY(u* @) = DU * ¢ = ux D%.

b) There exist constants N € N, K > 0 depending on u and ¢ such that:

Jux p(a)| < K(L+ o)™

¢) Tywp € " and moreover:

—

Tourg = .



94 Chapter 4 The Fourier Transform and Sobolev Spaces

d) For any ¢ € .7, we have:
(ux @)t =ux(g*)

e) We have:

Ty = (2m)"¢u

Proof. a) The smoothness of u * ¢ is proven exactly as in Lemma 3.10, i7). The only
modification to the argument required is to note that for ¢ € ., we have

Ahp - Di¢p in .7, as h—0.

b) First, we note the following simple inequality which holds for all z,y € R™:
Ltz 4yl <1+ fzf+ |yl < (L4 |z + Jy).
Next, recall from Lemma 3.15 that there exist N,k € N and C > 0 such that:

]| <C  sup |1+ |y)VDY(y)|, forallyp €.7.
yER™;|al<k

Applying this inequality with ¢ = T2, we calculate:

lux¢(z)| = |u[rd]| <C  sup |1+ ]y)¥D%(y — )|
yER™;|al<k

=C sup !(1+\z+x!)NDO‘¢(z)‘
z€R™;|a|<k

<|C sup (14 [2DVDY(2)|| (1 + |2V
2€R™;|a|<k

which gives the result on setting:

K=C sup |1+ |z))VD(2)|.
yeR™;|a|<k

c¢) Combining the above two results, we have that Ty € .7/, since ux ¢ € L} (R") and

loc.
u * ¢ grows at most polynomially. It therefore makes sense to consider the Fourier
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transform. Suppose that ¥ € Z(R™). We calculate:

Toro 9] = Tuss M = (2m)" T[] Fourier Inversion Thm
— (2n)" / kbl (~a)da Defun. of T
= (2m)" / u [726] ¥(—z)dx Defn. of u* ¢
— (27)" / u [p(~o)d) dr Linearity of u
— e[ wi-anéa] o
= (2m)"u [(é;w)] Defu. of ¢ * 1)
—u F*\\lp} —4 [@] Fourier Inversion Thm
= [¢0) = (da) [v] F.T. of convolution

Most of the manipulations here are relatively straightforward. We have used Theorems
4.2, 4.5 in addition to various definitions. The step marked (!!), in which we inter-
changed an integration and an application of u requires some justification. Crudely
this is true because we can replace the integration with an appropriately convergent
Riemann sum and use the linearity and continuity of u. We shall justify this step in
Lemma 4.11. The conclusion of this calculation is that:

Tosli] = (60) [0]

This holds for all ¢ € Z(R"). Now, since Z(R") is dense in . and F : ¥ — ./ is a
homeomorphism, we have that:

Flo®y) ={d: v e 7@}
is dense in .. Thus, by approximation,
Tunol] = () I
holds for any x € . and we’re done.

Note that in the process of proving the previous part, we established that for any

P e 2(R™):
[ uxdla)v-a)de = u (@5 v)]

which is equivalent to:

(uk @) xP(0) = ux (¢ x¢) (0). (4.7)
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Now, note that:

Ux Ty =Ty (u*x @), ¢xTyth =7y (p* )

as can be easily seen from the definitions. Applying (4.7) with ¢ replaced by 7,1, we
conclude that:

(ux @) xP(y) = ux (6 *9) ().
Since this holds for any ¢ € Z(R") and Z(R") is dense in .¥, we're done.

e) This result follows by applying part ¢) to @ * ¢ and repeatedly making use of the
Fourier inversion theorem. We calculate:
T,,5 = o0 = (21)*"du

= (2m)*"(¢u) = (2m)"(¢u)

Since the Fourier transform is a bijection on ./, the result follows.
O

In order to complete the proof of the above result, we need to justify the step marked
(") in which a tempered distribution and an integration were interchanged. We will first
prove a result concerning the convergence of Riemann sums, which will enable us to
establish that the (!!) step was justified. Let us suppose that Q C R™ and ' C R™ are
open and that f € C%(Q x ) is uniformly continuous. We will also assume that there is
some R > 0 such that:
supp f(,y) C [-R, R)" C Q

for each y € Q.
Next, we define a dyadic family of partitions of [ R, R)™ into cubes as follows:

R R, R R, .
Hk = {|:—2k_2172k(21 + 1)) X o+ X |:—2kln7 27(%” + 1)) 1 € [—2k72k — ].] ﬂZ}

where k = 0,1,.... The (k + 1)* partition is obtained by chopping each cube in the k"
partition into cubes with half the side length. Clearly for each fixed k:

U Iy, = [_R> R)n

For 7 € I, we define z, to be the point at the centre of the cube 7. We define the k"
Riemann sum with respect to this partition by:

Suw) = 3 Flany)lnl.

melly

Lemma 4.11. With the definitions as above,

Sk(y) — /Qf(ff,y)dfC

uniformly in y € Q.
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Proof. First note that = +— f(z,y) is continuous and of compact support, hence Riemann
integrable on ). Thus for each fixed y we have:

y) - /Q £ y)dz

Next consider ¥ > k. We have that II; is a refinement of II, i.e. if 7’ € II;/, then there
is a unique 7 € Il with 7’ C 7. We calculate:

Sk@W) = Sw) = > flamy)lnl = 3 > flaw,y) ||

welly melly o’ el
et s
g § f(@ay) — f(or,y) ’7[- ‘
melly EHk/
' Cm
here we have used that:
/
= > |
W’EHk/
m'Cn

Now, since f is uniformly continuous, we know that for any € > 0 there exists a 9,
independent of y, such that

‘f(xay) _f(xlvy)} <€

for all |z — 2’| < 0. Notice that for 7/ C 7 we have:

R
|$;r — $w‘ < W\/ﬁ

Thus given € > 0, there exists K such that for all k > K:

[f(@r,y) = (@2, y)] <

(2R)™

Now suppose k' > k > K. We estimate:

k) = S < Y > 1f(@ny) = flaw,y)l |7

welly er/
' Cmr
™| =«
WGHk s EHk/
' Cr

since the sum over the partition simply gives us back the volume of the large cube.
Sending &’ to infinity, we have the result we require. O

This result allows us to establish the result we require:

Corollary 4.12. Suppose u € /', ¢ € % and ¢y € P(R™). Then:

o [ oomii| = [ ulp-omnda
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Proof. Fix Q, R > 0 such that supp v C [-R, R)" C Q. Define the map:
f: OQxR* —» C
(z,y) = P(-z)d(y —x)

Notice that (14 |y[)"V Dy f is uniformly continuous on  x R™ for any a, N. Thus applying
Lemma 4.11 we deduce that:

Sk — Y(—2)Tp¢d, in ..
R

By the continuity of u, we deduce that:
u { w(—x)chgdm} =u [lim Sk} = lim u[Sy]
R” k—o0 k—o0

By the linearity of u, we calculate:

w(Skl=u | > e ) x| = D ulf@n ) nl= D wl[(—2x)7,d] |7l

WEHk FEHk WEHk

But x — u [w(—x)mq}] is smooth, hence Riemann integrable, and we have that

lim u W(—xw)mﬂgﬂ || = / u [Lb(—ZL‘)TzQ;] dz.

Rn

4.4 The Fourier—Laplace transform on &’'(R")

Recall that &'(R™) C &/(R"™) is a continuously embedded subspace, consisting of the
distributions of compact support. These distributions are precisely those which extend to
continuous linear maps from & (R™) to C (see Theorem 3.14). For these distributions, we
can express the Fourier transform in a very clean fashion.

Theorem 4.13. Suppose that u € &' (R™). Then 4 = Ty for some 0 € C°(R™) with:
0(€) = ule—].

Proof. Suppose that suppu C Bg(0). Pick ¢ € Z(R™) with ¢» = 1 on Bgry1(0), so that
Pu = u. We calculate:

L~ 1
u = '(/Ju = WT,&*,L&.
By Theorem 4.10 €). Thus we have @ = T}, with © = (27) @ 1) € C°(R™), by Theorem

4.10 a). )
Now let ¢ € . be such that ¢ = 1. We calculate:

BE) = Gyt * V() = 1 9(6)

— (
= [red] = u |7e6| = ule_ev] = (Wu)le_¢]
= ule_¢]. =
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In practice, one does not distinguish between the distribution 4 and the function ©
and one uses the same letter to denote both. Notice that for u € &’(R™), the expression
ule_,] makes sense for z € C". Moreover, this function is in fact holomorphic on C".
The analytic extension of a Fourier transform from R™ to C™ (or a subset thereof) is
sometimes called the Fourier-Laplace transform.

4.5 Periodic distributions and Poisson’s summation formula

Recall that the translate of a distribution v € 2'(R"™) is defined by:

Tuld] = u[T—.9], for all p € Z(R"),
Bearing this in mind, we can make a very natural definition of what it means to be
periodic:

Definition 4.2. We say that a distribution uw € 2'(R™) is periodic if for each g € Z™ we
have:
Tl = 1.

Example 18. a) The distribution u = T, , is periodic for any g € Z". Suppose g ez
Then:

Tg’Te2ﬂg [¢] = T327r9 [T*9/¢] = / 627ri9'3/¢(y + g/)dy

n

_ / e27rig~(z—g/)¢(z)dz _ e—27rig-g’ / e27rig-z¢(z)dz
n R

= T62Trg [(Z)]

b) Suppose v € &' (R™). Then

u = E TgU

gEL™

is periodic. It is straightforward to show that u defines a distribution (see Exercise
below). To check periodicity, we have, for g € Z":

Tg’“[@ﬂ = U[T—g’¢] = Z TgU [T—g’ﬁb] = Z v [T—g—g’ﬁb} = Z Tg+g'V [¢] = ul¢],
geEL™ geEL™ geEL™

where we shift the dummy variable in the sum for the last step.

Exercise(x). Suppose v € &’'(R™) and let:
u= Y .
geEL™
Show that if ¢ € Z(R"™) with supp ¢ C K for some compact K C R™ then
ulg] =Y mguldl,
geA

for some finite set A C Z" which depends only on K. Deduce that u defines a
distribution.
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When dealing with a periodic function f € C°°(R™), many quantities of interest are
averages over a fundamental cell of the periodic lattice:

1 1
q:{mER":—2<xi<2,i:1,...,n}

For example:
M = x)dx
(f) /qf (z)

is the mean value that f attains. We’d like to extend this notion to makes sense for
periodic functions, but we’re presented with a difficulty. The obvious definition would be
to set:

M(u) = ult]

but of course 1, ¢ Z(R") so we’re not able to do this. Instead we will ‘smear out’ the
function 1,. To do this, notice that a crucial property of 1, is the following identity:

Z T, =1,
geEL™

which tells us that 1, generates a partition of unity.

We shall construct a smooth ‘partition of unity’, which will allow us to localise various
objects, and thus render them easier to deal with, and will enable us to define the mean of
a periodic distribution. This is a slightly technical result, but the basic idea is important
and crops up in many areas of analysis.

Lemma 4.14. Let
Q={rzeR":|z;|<1l,i=1,...,n}

be the cube of side length 2 centred at the origin. There exists a function ¥ € C°(R™)
with ¢ > 0 and suppy C Q such that:

Z Tg = 1.

gEL™
Suppose that u € P'(R™) is periodic, and 1,1’ are both as above. Then:
uly)] = uly']

We then define:
M (u) := u[¢)]

Proof. Note
1
qg= {xGR":\xi < 2,@':1,...,71}.
S

By Lemma 1.14, there exists a function g
g = 0. Consider:

C5°(Q), with ¢o(z) = 1 for € g and

@) =3 to(z - g).

geEZ™
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For any bounded open set €2, we have that

A={geZ":(Q-g)NQ #0}

is finite. For z € (), we have:

geA

so S(z) is smooth. Moreover, for each x € R, there is at least one g € Z" with x — g € q.
Thus S(x) > 1. We can thus take:

Yo(x)

This is smooth, positive, supported in ) and moreover:

S () = 5(1) S ole—g) = 1.

geEZ™ geZ"

Now suppose u € 2'(R™) is periodic and 1,1’ are both partitions of unity as above.
We calculate:

ulg) =u | > | = > ur]

geEL™ geEL™

= gl =u @ Y | = ) =

geEL™ geEZLn

We thus have an acceptable definition of the mean of a periodic distribution. Notice
that if u = T’ for some locally integrable periodic function f, then by choosing a bounded
sequence of 1;’s such that 1); — 17 pointwise, we can show that:

M(Ty) = / f(@)d,

justifying calling M the mean of the distribution.

To see why this technical lemma is useful, let us apply it to show that a periodic
distribution is necessarily tempered, and in fact the periodic distributions we found by
translating a compact distribution are indeed all of the periodic distributions.

Lemma 4.15. Suppose v € &' (R™) is a compact distribution. Then:
u = Z TgU (4.8)
geEL™

converges in .. Conversely, suppose that u € 2'(R™) is a periodic distribution. Then
there exists v € &' (R™) such that (4.8) holds and thus u extends uniquely to a tempered
distribution u € ..
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Proof. Let K = suppwv. Since v € & (R™), by Lemma 3.13 there exists C' > 0, N such
that:

w[g]| <C  sup  |D%(x)], forall ¢ € &R").
zeK;|a|<N

Now suppose ¢ € . C &(R"™). We have:

ITgu[9]] = [v[r—g9]| < C  sup |D%@(z+g)|.
r€Ki|a|<N

Since K is bounded, we have that K C Bgr(0) for some R > 0. We calculate:
I+lgl=1+]z+g—2|<T+R+|z+g <A+ R)A+|z+g])

for all x € K, so that:
1+ |x+g|

1< (1+R) T+ 1d]

We conclude that for any M > 1:

C(1+R)M N
QT ;TP\<N(1+ @+ g™ D6 (z + g)|
TEK ||

C(1+R)M M
< ——>~ sup 1+ D~ .
TP yGR”;IaKN( )™ [D%¢(y)|

[Tgu[9]] <

Since ¢ € ., in particular we have:
Cl
70 [9]] € ————7
! (1+ g™

where C’ depends on v, ¢. Now, since:
1
ZZ: Arlgh™ =
(see Exercise below) we deduce that for each ¢ € . the sum:
Z 4 [¢)]
geL™

converges. This is precisely the statement that the sum in (4.8) converges in .&".
Now suppose u € 2'(R™) is periodic, and take ¢ as in Lemma 4.14. Suppose
¢ € 2(R") is arbitrary. We have:

ulg) = [ Y v | uldl = D> ulrgipe]. (4.9)
geEL™ geEL™

Now, since u is periodic,:

u [tgd] = Tou [Th¢] = u[PT_gd] = (Yu) [T_g¢] = T4(Yu)[¢]
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Now ¢u has compact support, so by Theorem 3.14 extends uniquely to v € &'(R™). Thus

we have:
u= Z TgU
gez”
which by the first part of the proof converges in ./, thus u € .. O

Exercise(x). Recall that for z € R™:

n
Izl = fail
i=1

For k € N set:

1 1
={sez g <ol <k+]
Show that:
BQi = (2k+1)" — (2K — 1)"
so that #Q < c¢(1 + k)" for some ¢ > 0.

By applying the Cauchy-Schwarz identity to estimate a - b for a = (1,...,1)
and b = (|g1|,-.-,|gn|), deduce that:

lgll, < vnlgl

Show that there exists a constant C > 0, depending only on n such that:

At gt S 70 2

geZ™ |9l <K

holds for all K € N. Deduce that:

1
—_— < Q.
n+1
2 TF g

We have shown that a periodic distribution is necessarily tempered. It is therefore
reasonable to ask what one can say about the Fourier transform of a periodic distribution.
In fact, it will turn out that the Fourier transform of a periodic distribution has a very
simple form: it consists of a sum over d-distributions with support on the points of an
integer lattice.

Before we establish this, we will first need a technical result regarding distributions.

Lemma 4.16. Suppose that u € . satisfies:

(e—g —)u=0 (4.10)

for all ¢ € Z". Then:

U= g Cg627rgv

geEL™
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where cq € C satisfy the bound
legl < K(1+1g)Y
for some K >0, N € Z, and the sum converges in .&".

Proof. First, we claim that suppu C A, with
A={2ng:g€Z"}.

Suppose ¢ € Z(R™) with supp ¢ C R™\A. Then for each ¢’ € Z™, we have (e,g/ — 1)71 ¢ €
&, since ¢ vanishes near any zeros of e_y — 1. Applying the condition (4.10), we deduce:

1

0= (e_g, — 1) U [(e_g/ — 1)7 ¢} = u[¢]

so u vanishes. Thus suppu C A. 3
Now, let us take ¢ as in Lemma 4.14, and define ¢ (z) = ¢ (%) It’s straightforward
to check that:

Z Torg? = 1, supp? C {z € R" : |z;| < 2w}
geEL™

For g € Z", let us consider v, = (Tgﬂgﬂ)u. This distribution is supported at 2wg, and by
multiplying (4.10) by T2r4¢ we have:
(e_g/ - 1) vg =0

In particular, we have, taking ¢’ = [; for j = 1,...n, where {l;} is the canonical basis for
R™:
(e—i(wj—%gj) — 1) vg = 0.

Now,
(67“’” ~2mes) — 1) = (z; — 2mg;)r(z;)
where k(x;) is non-zero on a neighbourhood of g;. Thus we conclude that:
(x; — 2mgj)vg =0, j=1,...n.

Now suppose ¢ € .. We can write:

n

¢(x) = $(2mg) + Y _(x; — 2mg;)¢;()

=1

where ¢;j(x) € C*°(R"). Since vy has compact support, it extends to smoothly to act on
&(R™) and we calculate:

Ug[¢] = Ug[¢(27rg)] +

J

(xj - 27793’)”9[‘15)'] = Ug[¢(2779)]
1

n
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Returning to the definition of v4, we have:

(TQTrgl/;)u[‘ZS] = (Tnglﬁ)UW(zﬁg)] = U[T%glz]‘s%g (9]
so that ) )
(7_27rg¢)u = U[T27rgw]627rg

Summing over g € Z", we recover:

Z (7'27rg"‘/~’>u = Z (Tng@ U=u= Z Cg02mg

geLZ™ geL” gez”
Where
cg = U[Torgt)].
To establish the estimate for ¢4, we recall from Lemma 3.15 that there exist N,k € N

and C > 0 such that:

lulg]] <C sup  |(1+]z))ND(x)

2ER™;| o<k

, forall ¢ € ..

Applying this to Tgﬂgz/?, we have:
el <C sup  |(1+ [2)N D (@ — 2g)|
2€R™; || <k

<C sup ’(1 + |z + 27Tg\)ND°‘1/~J(x)’
z€R™;|a|<k

<O sup
TER™;|a| <k

<KL+ |9

(14 )N D) x (1+gl)™

With this bound, it is a straightforward exercise to verify that the sum converges in
. O

Exercise(*). Show that if ¢, satisfy:
legl < K (1+ g™

for some K > 0 and N € N, then:

Z Cg527rg

gEL™
converges in ..

This now enables us to establish a result regarding the Fourier series of a periodic
distribution.
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Theorem 4.17. Suppose u € P'(R"™) is a periodic distribution. Then there exist constants

cq € C such that:
U = Z CgTleyny-
geEL™

with ¢4 are given by:
cg = M(e_argu).

and satisfy the bound:
gl < K(1+|g)™ (4.11)

for some K >0, N € Z.

Proof. Since u is periodic, it is tempered by Lemma 4.15. Thus we may take the Fourier
transform. Noting that:
TgU =1U

for all ¢’ € Z™, we have that
efg/’ll =1 — (efg/ — 1)'& = 0.

By Lemma 4.16, we deduce that:

i =(2m)" ) cglang,

geEL™

for some ¢, satisfying (4.11), where the sum converges in /. We can apply the inverse
Fourier transform, making use of the fact that it is continuous on .’ to deduce:

u = E chE%Q,

gEL™

with convergence again in /. To establish the formula for ¢,, we make use of the
comments after Lemma 4.14 to note that:

M(€—271'9T62ﬂ.g/) = /€2Wi(g_g/).xd$ = (Sggl
q
Since u +— M (e_arqu) is a continuous map from .’ to C, we deduce that:

M(e_orgu) = Z ch(e,gTrgTe%g,) =cg.
g'€zn

Remark. Usually one writes the Fourier series for u as:

u = E Cg€2rg,

geEZ™

ignoring the distinction between the function earq and the distribution it defines.
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As a simple example, let us consider the distribution:

By Lemma 4.15, this defines a periodic distribution, since d, = 740y and dy € &'(R").
Notice also that if v satisfies the conditions of Lemma 4.14, then since supp vy C {z € R™ :
|zj| <1}, we have that 741(0) = 0 for g € Z" with g # 0. Thus, since > cyn 799 = 1,
we must have ¢(0) = 1. We can then calculate:

Cg = M(672ﬂ'gu) = u[¢e,2ﬂg] = w(O)e_QWig'O - 1.

Thus we have established Poisson’s formula:

Z 59 = Z T627rg7

geEZL™ gEL™

where we understand both sums to converge in .’. This is sometimes written, with an

abuse of notation:
S da—g)= Y P
gEL™ geEL™

We can specialise various results concerning Fourier transforms to the case of Fourier
series.

Corollary 4.18. i) Suppose u € 2'(R"™) is periodic and may be written as:

u = E chEQM.

gEL™

Then Dju € 9'(R") is periodic and has Fourier series:

Dju = Z (2migjcg) Teyy,-
geEL™

ii) Suppose f € L} . (R™), then:

loc.

eol <111

and moreover, cg — 0 as |g| — oo.

iii) Suppose f € C"T1(R™) is periodic. Then:

F@) = 3 gt

geEL™

with the sum converging uniformly.
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) Suppose f,h € L2 (R™) are periodic with Fourier coefficients fg, hy respectively.

Then: e
/f(x)h(a:)da; = Z fohyg.

This is the Fourier series version of Parseval’s formula. Moreover,

f(ID) — Z 696271’1'9-:):

QGZ"
holds, with the sum converging in L*(q).

Proof. 1) Since the Fourier series for u converges in ./, we may differentiate term by
term (as differentiation is a continuous operation from .’ to itself). Since

DjTe = (27T’igj)T

27g €2mg)

the result follows.

ii) Note that if f € L}, . (R"™), then:

loc.

< / F@) dz = |l -

q

legl =

/ efzﬂig'xf(a:)da:

q

Now, given € > 0, we can approximate? f by a smooth periodic function f., with
Fourier coefficients ¢, such that

€
1f = fellrg < 5

Since D;D;f. € L}, (R"), we have that lg]? ‘c'g‘ < C, for each j =1,...,n so there

loc.

exists R > 0 such that }cg‘ < § for |g| > R. We have:
, €
‘Cg - Cg} S = fellprg < 3
so we conclude that for |g| > R:
‘ |—‘ f’+/’<E+E_
col =leg—cgteg <5+ 5=e

Thus ¢, — 0 as |g| — oo.

iii) Since f € C**1(R"), we have that D*f € L} _(R") for |a| < n+ 1. Applying the
previous two results we conclude that |c,| < K (1 + |g])~""! for some K > 0. Thus
the partial sums:

Fn(x) — Z cgeQﬂig-x

gEL™ |g|<n

4See Exercise 4.5
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converge uniformly to some continuous function F' by the Weierstrass M —test. We
have:
Tp=lim Y cTe,, = lim T, =Tp

n—oo
gEL™ |g|<n

since uniform convergence implies convergence in .’. By the injectivity of the
mapping between continuous functions and distributions we conclude f = F.

Suppose f,h € C*°(R") are periodic. Then:

— Z fge27rig-m’ h(ﬁ) _ Z hg€2m’g-x

gEL™ gEL™

with sup,ezn (14 |g]) | fg| < oo for all N € N, and similarly for hy. We calculate:

/f(l‘) d.f _/ Z fg e~ 2mig-w Z hg/e27rig’-z dr
q q

geL™ g'ezn
Z Z f h / 2mi(g )zdl'
geEL™ g'eL™
=Y > Fohgley =D Fohg
geEL™ g' €L geZn

In particular, we have that:

11220y = Ialliagary

where for a sequence {ay}4ezn, we define:

SIS

2
||ag”g2(zn) = Z |ag]

gEL™

Now suppose f € L2, (R"). Given k > 0, we can find f*) € C°°(R") with Fourier

coefficients fg Jsuch that:
1

Hf_f( k

Since by Cauchy-Schwarz we have:

s = [ s < ( \f(ac)\%wc)é (/ dm)% Sy

we have that:

1
fg_fggk)‘ < E)

= Su
Hfg 9 Heoo(zn) QGZ%

Now, f(*) is a Cauchy sequence in L?(q), so {fg(k)} is a Cauchy sequence in £2(Z").
We conclude that fg(k) converges in £2(Z"), however we also know that f*) — f
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in ¢>°(Z"), thus we must have f*) — f in (?(Z"). Taking a similar sequence of

hF) € C>(R™) approximating h with Fourier coefficients hgk), and recalling that:

( ), h(k)) _ ( Fh), h(k))

the result follows on sending & — oo. The convergence of the Fourier series in L?(q)
follows by showing that the partial sums form a Cauchy sequence in L?(q).

L2(q) e2(zn)’
m

Exercise(x). Suppose f € L? (R™) is a periodic function. Fix € > 0, and let:

loc.
1
Q={zeR":|zj|<1,j=1,...,n}, q:{$ER":|x]~|<2,j:17...,n}

a) Show that there exists h, € C*°(R") with:
supp he C @

such that:
||f]lq - he”Lp(Rn) <e

Define

fe = Z Tghe

g€Zn
b) Show that f. is smooth and periodic.

¢) Show that there exists a constant ¢, depending only on n such that:
Hf - fe”Lp(q) < CreE.
Exercise(x). Suppose that f: R — R is given by:

f@) =z for | <t fla+1)= (o)

2
Show that:
_ Z(_l)n 2mine __ S (_l)nJrl :
f(fl?) = Z WB = Z 7 sm(27rnx),
n€Z,n#0 n=1

with convergence in L} (R).

Exercise(x). Suppose f: R — R is given by:

_ _1
f@={ 71 L @) = o).
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a) Show that:

[e.e] o

1 2 orint1)e _ 4 .
_ 1 x _ 4 27(2n + 1
i@ m’nz 1 W§2n+1sm[w(n+ )7l

—00

With convergence in L? (R™).

loc.
Define the partial sum:

N—-1
SN@):8§:2ﬂ%;+Dsmpw@n+Uﬂ.

b) Show that:
2 N—1

Sn(z) = 8/0 Z cos [2m(2n + 1)t] dt.
n=0

c¢) Show that:

cos [2m(2n + 1)t] sin 27t = % (sin [27(2n + 2)t] — sin [47nt])

T sindnr Nt
&wmzs/'mlwa
0

And deduce:

2sin 27t

d) Show that the first local maximum of Sy occurs at « = ff, and:

1
1 iN sin4nw Nt 2 [Tsins
— > —dt = — ds ~1.179...
SN <4N> 8/0 4mt 71'/0 s O ™

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is
known as Gibbs Phenomenon.

Exercise(x). (*) Suppose that A = {\1,...\,} is a basis for R". We define the
lattice generated by A to be:

A= i Zj)\j 175 € Z
j=1
Define the fundamental cell:
- 1
= ;wa‘/\j gl <5

We say that u € 2'(R™) is A—periodic if:

TgU = U for all g € A.
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a) Show that there exists 1) € C§°(2¢a) such that ¢ > 0 and

ZTQ@D = 1.

geN

b) Show that if u € Z'(R™) is A—periodic and 9, 9" are both as in part a), then

1 1

mu[df] = m“[iﬁ/] =: M (u)

¢) Define the dual lattice by:
AN ={zeR":g-x€2nZ, Vg€ A}

Show that there exists a basis A* = {\},... A} } such that YRRV djk, and
A* is the lattice induced by A\*.

d) Show that if g € A* then e, is A—periodic.

e) Show that if u € 2'(R™) is A—periodic, then:

U= Z gy

geEN*
for some ¢, € C satisfying |c,| < K (1 + |g])" for some K >0, N € Z.

f) Show that if u € 2'(R™) is A—periodic, then:

u = Z dgTe,

gear
where |dy4| < K(1+ |g])"Y for some K > 0, N € Z are given by:

dg = M(e_qu)

4.6 Sobolev spaces

4.6.1 The spaces WFP(Q)

Suppose  C R™ is an open set. For k € Z>p and 1 < p < oo, we say that f € LP(Q)
belongs to the Sobolev space W*P(Q) if for any |a| < k there exists f* € LP(Q) with:

Dan — Tfa .

We call f* the weak, or distributional derivative of f and write D*f := f“. We can
equip W*P(Q) with the norm:

Hf”Wk»P(Q) = Z "Daf||Lp(Q) :

|la|<k
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With this norm, W¥*?(Q) is complete, and hence a Banach space. The Sobolev spaces
are particularly well suited to the study of PDE, and form the starting point for many
modern PDE investigations.

We can think of & as telling us how differentiable our function is, while p tells us
how integrable our function is. Roughly speaking spaces with larger k£ contain smoother
functions, while spaces with larger p contain less ‘spiky’ functions. We shall see that
(roughly speaking) one can trade smoothness for integrability: a function that belongs
to W*P(R") belongs to certain Wh4(R™) where I < k and p > ¢. If k and p are large
enough we can even conclude that the function must be classically differentiable.

We will frame the result as concerning the embedding of W*P?(R™) spaces. Recall that
a Banach space (X, ||| y) is said to embed continuously into the Banach space (Y, ||-|ly)
if X C Y and there exists a constant C' such that:

lz|ly < C x| , for all z € X.

Theorem 4.19 (Sobolev embedding theorem). Suppose k > 1 and 1 < p < g < 0o satisfy

(k—1U)p <n and:
1 1 k‘—l

qa p n
Then WEP(R™) embeds continuously into WH4(R™).

If kp > n, then WFP(R™) embeds continuously into the Holder space Cki[%}fl”y(R”),
where [x] is the largest integer less than or equal to z, and

n n n
y = HERE: p &L
any element of (0,1) e

Here we have introduced the Holder space C""(R"™) which consists of f € C"(R")
such that:

”f”Cm,N(Rn) = Z Sup ’Daf ‘_}_ Z Sup |D f( ) Daf(y)‘ < oo.

z€R z,yeR™ |$ - y|

as<m

We shan’t attempt to prove the general Sobolev embedding theorems, but will establish a
special case later on.

4.6.2 The space H*(R")

We shall immediately specialise to the case p = 2 and 2 = R™. This is an important
special case for two reasons. Firstly, W"?2(Q) is a Hilbert space (in addition to being
a Banach space), and so carries additional structure. Secondly, W#2(R") is very well
adapted to the Fourier transform. To see this, we recall that if f € L?(R"), then:

Ty =T;
where f € L2(R") is the Fourier-Plancherel transform of f. We immediately obtain an
alternative characterisation of the space W*2(R"). A function f € L?(R™) belongs to



114 Chapter 4 The Fourier Transform and Sobolev Spaces
WH2(R™) if and only if:

[ (i) [fof as < .

Notice that in this characterisation there is no need to restrict k£ to be an integer, nor in
fact for f to belong to L?(R™). This motivates the following definition. For s € R we say
that f € &' belongs to the space H*(R") provided f € L?  (R") and:

£l geny = ( /R 1+ 1) \f<£>\2d5)2 < .

H#*(R™) is complete, and moreover is a Hilbert space. We see that if kK € Z>( then
HF(R™) = Wk2(R"), where we make the canonical identification between a functions
f € L*(R™) and the distribution T} € .#”(R"). From now on, we shall use f to mean
both the function and the distribution.

Exercise 4.1. Let s € R.

a) Show that .7 is a dense subset of H*(R").

b) Find a condition on s such that 6, € H*(R"™).

c¢) Show that H!(R") is continuously embedded in H*(R") for s < t.

d) Show that the derivative D® is a bounded linear map from H***(R") into
H*(R"™), where k = |a|.

e) (*) Show that the pairing (,) : H *(R") x H*(R") — C, which acts on
f e H*R"),g € H(R") by

1
(2m)" Jgn
is well defined, and show that the map g — (f, g) is a bounded linear operator

on H*(R™). Deduce that H*(R™)" may be identified with H*(R™). How
does this relate to your answer to part b)?

(f,9) = F(&)g(&)de

4.6.3 Sobolev Embedding

An important feature of the Sobolev spaces H*(R"™) is that for s sufficiently large, they
embed into C*(R™). More previsely:

Theorem 4.20. Fiz k € Zxq. Suppose that f € H*(R") for some s > k + %, then
(possibly after redefinition on a set of measure zero) f € C*(R™). That is, we have:

H*(R™) c C*(R™).
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Proof. First suppose f € .#(R™). Then by the Fourier inversion theorem we have for
la] < k:
ilel

Do — wea f de.
@) = Gy [ e )i
We estimate with the Cauchy-Schwarz inequality:

e _ L eix{ af
D) = o | [ e

S (2717)71 /R

< s (L 1|0 ae)’ </R a Eéndf)

Now, since [£%)? < (1 4 |€]*)* for some ¢, > 0, we have that:

1 |§a‘2 : Cr < 1 )§
ST ) < S SA LR
(2m) </R” 1+ ‘§|2)S 5) < (2m)n /Rn (1+ |§‘2)S_k 3 ks < 00

where we have used s > k + 5 in order to ensure that the integral converges. We thus
have that:

£ f(¢)| de

sup |Df(x)| < Cn,k,s
|o| <k, x€R™

1l geny - (4.12)

Now suppose f € H®*(R™). We can approximate f by a sequence (fp,)5°_; with
fm € L(R™) and f,,, — f in H*(R™) and pointwise almost everywhere. In particular,
(fm) is Cauchy in H*(R™), so by the estimate (4.12) applied to f,, — f; we have that (f,,)
is Cauchy in C*(R"), thus there exists f* € C*(R") such that D*f,, — D f* uniformly
for all || < k. Since f,,, — f pointwise almost everywhere, we deduce that f = f* almost
everywhere. ]

Exercise 4.2. a) Suppose s = § + vy for some 0 < v < 1. Show that there
exists a constant Cy, , > 0 such that for all z,y € R™:

/ Wdé < qu ]x _ y|27

o gl

b) Show that if s = § 4 k + v for some k € Z>g, 0 <y < 1, then
H*(R™) C C*(R™).

Exercise 4.3. Fix s € R, and suppose that f € H*(R").

a) Show that there exists a unique u € H*+4(R™) which solves:

A*u+u=f.
b) Show further that there exists C' > 0 such that ||ul| ysra < C|| f]] -

c¢) For what values of s does the equation hold in the sense of classical derivatives
(possibly after redefining u, f on a set of measure zero)?
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4.6.4 The trace theorem

We are often interested in the restriction of a function defined on R™, or some open subset,
to some hypersurface ¥ C R™. For example, when studying a PDE problem posed in
some nice domain 2 we might wish to impose a boundary condition on 9€). If we work
with functions in H*(R") for s > 0, which are defined only almost everywhere, then this
is a problem, since for nice domains 92 will have Lebesgue measure zero. The trace
theorem allows us to make sense of the restriction of a function in H® to a hypersurface
¥, even when we don’t have f € C° by Sobolev embedding. We restrict to the problem
of defining f[(zn—oy when f € H*(R") is given, however by combining this result with
coordinate transformations it is fairly easy to see how to generalise to the case of smoothly
embedded submanifolds.

Theorem 4.21. Let s > 5. Then there is a bounded linear map T : H*(R") — Hs_%(R”)
such that

Tf = f‘{m":O}
for all f € H*(R™) N CO(R™).

Proof. See Exercise 4.4. O

Exercise 4.4. Assume s > 1 and suppose u € .(R"). Define Tu € .7/ (R""1)
by:
Tu(z") = u(z',0), ' e R"L

a) Show that if & € R*~ 1

—~ 1
Tu(E) = —= /R (e, €0)dEn.

b) Deduce that:

2 1 2\s
<o (La+ien

where £ = (€,&,).

Tu(@)

g6,
a(s’,sn)\2d5n> /R S

(1+1eP)’

¢) By changing variables in the second integral above to &, = t1/1+ |§’|2,
conclude that there exists a constant C(s) such that:

HTUHIEIS_%(R"*l) < C(S) ”uHH.s(Rn) .

d) Conclude that T extends to a bounded linear operator T : H*(R") —
Hsf%(Rn—l).
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e) (*) Suppose v € L(R"1) and let ¢ € C(R) satisfy [ ¢(t)dt = /2.
Define u through its Fourier transform by:

(&) 5 €n

ﬁ(faén): s o
1+ (€| 1+ (¢

Show that there exists a constant C' > 0 such that:

ey < C 10l ey g

and that Tu = v. Conclude that T': H*(R") — H“%(R”_l) is surjective.

4.6.5 The space H}(Q)

Suppose that € is an open subset of R™. For any function f € C°(Q), we can trivially
extend to an element of C2°(R™) by f(x) =0 for x € Q°, so can abuse notation slightly
to denote by C2°(2) the space of smooth functions f : R — C with support in some
compact K C 2. We define H{ () to be the completion of C2°(€2) with respect to the
H'(R™)-norm. HE(Q) is a Hilbert space, equipped with the inner product:

(u,v) g1 = /Q (W(a:) - Dv(x) —i—@v(m)) dx.

Let u € H(Q). Then by definition there exists a sequence (¢,,)%° 1, with ¢, € C°(Q)
and ¢, — ¢ in H'(R™). Since for any open U C R™ we have

1fn = Fllzey < Mfn = Fllzegny < 11fn = Fllaigny »

we deduce that f,|y — f|v in L2. If we choose U = Q¢, we conclude that if f € H} ()
then f|ge = 0 almost everywhere.

If we assume the boundary of €2 is smooth, i.e. is an embedded smooth (n—1)-manifold,
then we can make sense of the restriction of f to 02 in the trace sense, and since the
trace operator is a continuous map from H'(R"), we find that f vanishes on 0 in the
trace sense.

For many PDE problems, one wishes to solve some equation in an open set €2, subject
to the condition that the solution vanishes on the boundary of €. Seeking a solution in
HE(Q) is often a convenient way to encode this boundary condition.

4.6.6 Rellich—Kondrachov

The Rellich-Kondrachov theorem is an important result concerning Sobolev spaces, with
applications in PDE, calculus of variations and beyond. It concerns compact embedding
for Sobolev spaces defined on a bounded domain. We shall prove a version of the result
for the space H}(€2), where € is a bounded open set.

Theorem 4.22 (Rellich-Kondrachov). Suppose that Q is a bounded open set and that
(u;)22, is a bounded sequence in HE(Q). Then there exists u € Hi(Q) and a subsequence
(ui;)32, such that:
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i) ui; = w in H{(Q), and
i) ui, — u in L*(€2).
Proof. By assumption, we have that
[uill 2y < llwill ga o) < K

so (u;)22; is bounded in both H} (), and L?(2), and we immediately deduce from the
Banach—Alaoglu theorem that there exists u € H{ () and a subsequence (ui;)724 such
that u;; — u in H(), and u;; — u in L*(€2). For convenience, let us set w; = u;; so
that w; — w in H(Q), and w; — w in L?(£2). Thus our goal is to improve the weak-L?
convergence of (w;) to strong-L? convergence.

Fix e > 0. We make use of Parseval’s Formula (Theorem 4.6) to give:

1

(2m)"
= L Wi (€) — ()2 L D (E) — ()12
= G O O i [ o)~ ace) de

We deal with the two integrals on the final line separately. First we estimate:

2 ~ ~ 112
lwj = ullz2 = [ —allz

L W (€) — ()2 2 2 (s (612 = la(e) 2
o 8~ HOP A< s [ (i OF + fi(e)) e
2K?

S S5onpe <6
(2m)" R? =€

provided R > 0 is chosen sufficiently large.
Now consider the remaining integral that we need to bound. First, we note that

() = /Q wy(@)e "z = (15 ¢¢) oy s

where we recall e,(z) = Y. Noting that e_¢ € L?() since |[Q| < oo, and that w; — u
in L2(2), we deduce that for each £ € R™:

Wy (&) = (€).
We can also estimate, for || < R:
15 (€) — a(E)” < 21y (O + 21a(E)” < 2 (bl + 1l )
<2 (sl sy + NelFagqy ) < 209 (w320 + lulF2y)
<4K?|Q| € LY(BR(0))

So by the dominated convergence theorem we deduce that

1

- Wi (€) — ()2
el N COREGIRE
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as j — 00, so that for j sufficiently large we have established:

Jwj — |32 < 2e

O]

Corollary 4.23. Let Q0 C R" be open and bounded. Suppose that L : L*(Q) — H}(Q) is
a bounded linear operator, then L : L*(2) — L?(QQ) is compact.

Exercise 4.5. Suppose that QO C R” is open and bounded. For u € H}(Q),
define the Dirichlet energy:

a)

b)

)

Elu] = / \Dul? da.
Q
Suppose that (u;)22; is a sequence with u; € H} () such that u; — u. Show
that Efu] < liminf; Flu;].
Consider the set
&1 ={Blu] : u € Hy(Q), ||ull > = 1}

Let A\; := inf &. Show that there exists wy € H}(Q) with |Jwi| ;2 = 1 and
Elwi] = A1, and deduce A; > 0.

Deduce that:
Ml < [ 1Duf ds
Q

holds for all u € H}(Q), with equality for u = wy. This is Poincaré’s
nequality.

By considering u = wy + t¢ for t € R, ¢ € Z(Q), or otherwise, show that w;
satisfies
—Aw1 = )\111)1,

where we understand this equation as holding in 2'(2).

(*) Suppose x € C°(Q2), and let v = xyw;. Show that v satisfies —Av+v = f,
where we understand the equation as holding in .#’/(R"), where f € L?(R"™).
Deduce that v € H?(R"). By iterating this argument, deduce that w; €
H}(Q) N C>=(9Q).

(*) By considering
& = {Blu] : u € HY(Q), Jull 2 = 1, (u, w1)2 = O},

or otherwise, show that there exists Ao > A1 and we € H(Q) N C>(Q) with
wy # wi, ||wal|;2 = 1 solving

—Awy = Aqws.
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4.7 PDE Examples

4.7.1 Elliptic equations on R"

Consider the following equation on R", with k& > 0:
~Au+k*u = f,

where f is given and we wish to find u. Suppose that f € H*(R") for some s € R. We
claim that there is a unique solution v € H*+?(R™). Our assumptions on u, f permit us
to take the Fourier transform of the equation so that:

(1€ + K2 a) = £(&)

holds pointwise almost everywhere. Since |£]* 4+ k2 > C(1 + |¢]*) > 0 for some C, we can
divide through to find

A

_f©
€7 + k2

again using [¢]* + k2 > C(1 + [€]*) > 0 we deduce:

a(s)

[ull grs+z@ny < C 1 fll s @ny -

Thus we indeed have that u € H5"2(R"). Uniqueness follows from the injectivity of the
Fourier transform. Note that if s > % then f € C°(R") and u € C?(R"), so that we in
fact have a classical solution to the PDE. Note also that the solution is more reqular than
the data. This is an example of a phenomenon known as elliptic reqularity.

4.7.2 Elliptic boundary value problems

Suppose that Q C R" is open, assume f :  — R is given, and consider the equation:

{—Au+u:f in (4.13)

u=20 on 0f).

We wish to reformulate this so that we can solve it. In order to incorporate the boundary
condition, we shall seek a solution u € H}(£2). Since an element of H}(£2) only has weak
derivatives in L? up to first order, we need to recast the equation in a form that makes
sense. To do this, suppose we have a sufficiently regular solution, conjugate the equation
and multiply it by v € C2°(€2) to deduce, after integrating by parts:

/ (Du- Dv +uw) da = / fudz (4.14)
Q Q

holds for all v € C°(£2). We realise that, if f € L?(2), we are seeking u € H}(£2) such
that:

(u,v) i = (f, )2

for all v € C2°(). We also notice that since C2°(Q) is dense in H} (), this is equivalent
to requiring the condition holds for v € HZ(Q). We say that u € H}(f) is a weak solution
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of (4.13) if (4.14) holds for all v € H}(€2). Clearly, if u is a classical solution then it is a
weak solution.

Now, for f € L*(Q), the map F : H}(Q) — C given by v ~ (f,v)2 is a bounded
linear operator, hence we can apply Riesz representation theorem for the Hilbert space
HE(Q) to deduce that there exists a unique @ € Hg(Q) such that F(v) = (u,v)z for all
v € H} (). This is precisely the solution we seek! In conclusion, then, we have shown:

Lemma 4.24. Given f € L*(Q) there exists a unique u € H} () solving (4.13) in the
sense that (4.14) holds for all v € H} ().

We note that setting v = u in (4.14), and using Cauchy-Schwarz we have:

9 _
lullzn = (fsw)re < | fllp2 llull gz < N Fll g2 [lull g
so that
ull g < (1 fll 22 -

We will now show that we can improve the regularity of u, at least in the interior
of 2, provided we make some assumptions on f. For this, we introduce the space (here
k € Zzo)

HE () = {u L Q= C| yu € H¥R"), for all y € ogom)}

Fix a compact K C Q and suppose that the real function xy € C2°(Q) satisfies x(x) =1
for x € K. Let ¢ € #(R"), then since x¢ € C*°(Q), we can set v = y¢ in (4.15):

/ Du - D(x) + uxdda = / Fxode
Q Q

rearranging, we have:

/Q D{xu) - Dé + Du- (DX)é — Dé - (Dx)a + axdde = /Q Frode
and hence:
/Q W) AG + 2Du - (DX) + H(AX)T + axdda = /Q Froda

So that v = xu satisfies:

/nv(—A¢+ 1)dx = /ngqﬁdaj,

where
g = —2Du- (Dx) —ulAx + fx € L*(R").

We have deduced that v € H!(R") satisfies:

—Av+v=g
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in the sense of .#/(R™). Now, by the results of the previous section, we deduce v € H?(R")
with:
[0l g2 < Cllgll e

Further, v(z) = u(z) for all x € K. Suppose x € C°(Q2), then by applying the above
argument with the compact set K = supp Y we deduce that yu = yxu € H?(R"). Thus
ue H NHE.(Q).

Now suppose that f € L2 N H }OC.(Q). Repeating the above argument, we notice that
g € HY(R"), and so v € H3(R"™), and as a consequence we can conclude u € HiNH} (R™).

loc.
Iterating, we find:

Theorem 4.25. Suppose 2 C R" is open and f € L* N H[ZC(Q) Then there exists a

unique u € HY N HFP2(Q) solving (4.13) in the weak sense. In particular, by Sobolev

loc.

embedding if f € L* N C>®(), then u € HY N C*(Q).

Now, if u € C*°(2), then we can see that the equation —Au + u = f must hold in
in the classical sense. If we assume more regularity of the boundary (and f), then we can
also show that u extends to the boundary as a continuous function, and the boundary
condition holds classically also. Discussing boundary regularity would take us beyond the
remit of this course however.

We note, that our proof shows that the elliptic regularity phenomenon that we observed
above for an equation on R is in fact localisable: if (—Awu + u) is smooth in the interior
of some open set, then u is smooth in that set. This is certainly not true for (for example)
the wave operator —0? + A. It is straightforward (try it!) to find a function that satisfies
the wave equation in one dimension, hence uy — uz, = 0 € C*°(R?), but for which
u ¢ C(R?).

Spectral theory for elliptic boundary value problems

We now assume that 2 C R™ is both open and bounded. Let us represent by A the map
which takes f € L?(£2) to the unique solution u € Hg(£2) to (4.13). We can check that
A is linear, since if u = Af and w = Ag for some f,g € L?*(Q2) and a € C, then for any
v € H} () we have:

(u + aw,v)H1 - (va)Hl +a(w7U>H1 = (f,’l))LZ +a(gav)L2 = (f + a’Q?”)L2

so that Af + aAg = A(f + ag). Moreover, A : L?(Q) — L?(Q) is Hermitian. Suppose
u=Af and w = Ag for some f,g € L?(£2). Then

(f;Ag)r2 = (fyw)r2 = (v, w) g = (w,u) g1 = (g,u) 2 = (Af, 9) 2.

Finally, by Corollary 4.23 we have that A : L?(Q) — L?(Q) is compact. Thus by the
spectral theorem for compact operators (see Linear Analysis), the spectrum of A takes the
form o(A) = {0, p1, p2, - . .}, where pp € R, pup — 0. Further, there exists an orthonormal
basis for L?(§2) consisting of eigenvectors of A. An eigenvector of A satisfies Aw = pw
for 1 € R, and thus for v € H}(Q):

(w,v)2 = (Aw,v) g1 = p(w,v) g (4.15)
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Setting v = w we deduce p > 0, so in particular p # 0, and we deduce that w solves:

1
—-Aw+w=—w
I

in the weak sense. This means that we can test the equation against elements of
H} () (alternatively, we can understand the equation as holding in 2’(2)). Now, since
p~tw € HE(Q), we conclude from our previous work that w € Hi N H3(2). Hence
w € H} N H5(Q), etc. We conclude, after Sobolev embedding that w € C*(1).

Finally, noting that an eigenfunction of (—A + 1) is also an eigenfunction of —A, we
have shown:

Theorem 4.26. Let 2 C R™ be open and bounded. Then there exists an orthonormal
basis {wy}32, for L?(Q) such that wy, € Hi N C>®(Q) satisfy

—Awk = )\kwk m Q,

where A1 < Ay < A3 < -+, and \y — o0. (In fact, by Ezercise 4.5 we can show that
0< )\1)

Exercise 4.6. Let H be the completion of .(R™) with respect to the norm

1
2
fall = ([ (100l + b o)
R”

a) Show that H is a Hilbert space with the inner product:
(u,v)g = / (Du - Dv + |z*uv) d,

and show that if u € H,x € C>®(Bg(0)), then xu € H}(Bg(0)), with
lIxull g1 < Cr,y ||lul| 4 for some constant Cr, > 0.

b) Show that H embeds compactly into L?(R"), that is H C L?(R") and if
(un)$2; is a bounded sequence in H then it admits a subsequence which
converges in L?(R"™).

[Hint: take a subsequence converging weakly in both H and L*(R™), and write
Up = UnXR + Un(l — xR), where xp € C°(Br(0)) satisfies xr(x) =1 for
|z| < R — 1, where R is to be chosen.|

c) If f € L?(R"), we say that u € H is a weak solution of:
—Au+|zl*u = f (1)
if
(u,v)g = (f,v)2 for all v € H. (¢)

Show that if u, f € #(R"™) solve (1), then u satisfies (¢). Show that for any
f € L%(R"), there exists a unique solution u € H to (o).
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d) Denote by Lf the unique solution u € H to (o) for f € L?(R™). Show that the
map f + Lf is a compact, symmetric, linear operator L : L?(R") — L?(R").
Deduce that there exists an orthonormal basis (wg)5, for L*(R™) consisting
of wy € H satisfying;:

(W, v)g = M\p(wg, v) 2 for all v € H, ()
where 0 < A\ < Ao < A3 < -+, and A\ — oo.

e) Show that if wy € H satisfies (b), then in fact wy € C°°(R"). Show further
that wy will also solve (b) with the same A;. Deduce that there exists
an orthonormal basis for L?(R"), consisting of smooth functions, which
diagonalises the Fourier—Plancherel transform.

f) (**) Show that w € H N C*°(R") satisfies:
—Aw + |z]*w = \w
for some A € R if and only if:
w(x) = Hy, (21) -+ Hy,, (wa)e 21

where © = (z1,...,2,), Hi(t) are the Hermite polynomials, and A = n +
2k1 + ... 2ky,.

[Hint: treat the case n =1 first. You may wish to look up the simple harmonic
oscillator in a textbook on quantum mechanics./

4.7.3 Spaces involving time

For certain PDE problems it’s useful to separate out the time direction from the spatial
directions. To do this, it’s useful to introduce some new function spaces:

Definition 4.3. Given a Banach space (X,|-||y), and an interval I C R, the space
CO(I; X) is the space of continuous functions w: I — X.

If I is open, we define C¥(I; X) for k > 0 inductively as follows. We say u €
CF=1(I; X) belongs to C*(I,X) if there exists w' € C*~Y(I; X) such that for eacht € I:

€

H“(tm—"(ﬂ _u’(t)H 50, ase—0.

X

A typical example of X will be one of the space H%(R™) for s > 0.

4.7.4 The heat equation

Let us now give another example to show how powerful the Fourier transform can be for
solving PDE problems. Let us consider the heat equation on R™. The problem we shall
consider is, given ug : R" — R, determine u : R” x [0,7) — R, such that

{ut = Au in (0,7) x R™,

u = u on {0} xR" (4.16)
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We suppose that our solution is a continuous mapping from (0, T') into H?(R™), i.e. for each
fixed t we wish u(t,-) =: u(t) to be an element of H2(R"). In terms of the function spaces
above u € C°((0,T); H2(R"™)). We will also suppose that u is continuously differentiable
as a mapping from (0,7) into L?(R"™). In other words, u € C'((0,T); L?>(R™)). Finally,
we wish for the initial condition to make sense, so we also require w € C?([0, T); L*(R").

Exercise(x). Show that if u € C°((0,T); H*(R™)) N C1((0,T); L?(R™)), then
denoting by @ the Fourier transform of « in the spatial variables:

u(t,&) = lim u(t, z)e i dx,
R—o00 Br(0)

we have @ € C°((0,T); L*(R™)) N C*((0,T); L*(R™)).
Let us, then, seek a solution of (4.16) such that
w € CY([0,T); L*(R")) N CY((0, T); H*(R™)) N C((0, T); L*(R™))

Under this assumption we can take the Fourier transform of (4.16) for (¢,x) € (0,7) x R™
to get:
{ at(t7€) = - |£|2ﬂ(ta£) (tag) € (OaT) X Rn,
@(0,§) = o(§) §eR”

Now, the PDE has become an ODE for each fixed &! This ODE has a unique solution
given for almost every £ € R™ by:

i(t, €) = iig(&)e1e".

We note that if ug € L?(R"), then 4y € L*(R") and thus @ € C°([0,T); L?(R")) N
CY((0,T); LAR™)). In fact, for t > 0, we have that @(t,&) and (¢, €) are rapidly
decaying functions of £, in particular they belong to H*(R™) for any s > 0, so we have
that u(¢, x) is smooth in z. Since wu satisfies the equation (9;)"u = (A)™u, we have that
u is smooth in both ¢ and x. We can recover u(¢,x) via the inverse Fourier transform
formula:

u(t,x) = G

/R ) g (€)e P et e, (4.17)
Summarising, we have the following result:
Lemma 4.27. Suppose ug € L*(R™). Then (4.16) admits a unique solution u such that
w e C([0,T); LA(R™)) N CO((0, T); H(R™)) N C((0, T); L*(R™))

given by (4.17). In fact,
ue C=((0,T) x R™).

Even with very rough initial data, the heat equation instantaneously gives a smooth
solution. This is an example of what is known as parabolic reqularity.
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Exercise 4.7. Suppose that vy € L'(R") N L%(R") and that u(t,x) is the
solution of the heat equation with initial data ug. Explicitly, u is given by:

— 7 —tjg|? g
uta) = g [ (@ e
for t > 0.

a) Show that:
lult, Mgz < lluoll e

b) Show that:
u(t,x) = ug * Ki(x)

where the heat kernel is given by:

¢) Suppose that ug > 0. Show that « > 0, and:
[u(t, )1 = luoll -

Exercise 4.8. Consider the free Schrédinger equation:

uy = 1Au in (0,7) x R™, (%)
u = U on {0} xR"”

Suppose ug € H?(R™).
a) Show that (x) admits a unique solution u such that
u e C°([0,T); H*(R")) N CH((0,T); L*(R™)),
whose spatial Fourier-Plancherel transform is given by:
(t,€) = ig(¢)e ",

b) Show that:
[t ) g2 gny = lluoll 2@y
*c) For t > 0, let K; € Lj,. (R"™) be given by:

1 i'Z‘Q
e 4t
(4mit)2

Kt(ﬂf) =

)

where for n odgl we take the usual branch cut so that z% = ¢'1. For e > 0 set
Kf(z) = e~ Ky ().



4.7 PDE Examples

i) Show that Txe — Tk, in .7’ as e — 0.
ii) Show that if R(¢) > 0, then:

i T &
e I T gy — [ ZeT o,
R ag

_ 1 \2 e
Kte(f) = < ) e Ttdite

1 + 4ate

iii) Deduce that

iv) Conclude that:
Tk, =Tk,
where K; = e~ #él*,
*d) Suppose that v € . (R™). Show that for ¢ > 0:
u(t.o) = [ wolw)Kie ~y)dy,

and deduce that for ¢t > 0:

fu(t, )] < ——— [l
sup |u(t, = ||to]| 71 -
vern ' (4rt) O
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This type of estimate which shows us that (locally) solutions to the Schrodinger

equation decay in time is known as a dispersive estimate.

4.7.5 The wave equation

up = Au in (=7,7) xR,
u = U on {0} xR"”
u = u on {0} x R"

We will seek a solution in the space:

X, 1= CO((=T,T), H*F2(R™) N C2((=T, T) x H*(R™)).

Fourier transforming in the spatial variable, we have:

an(t,€) = —l¢fate) (L€ e (-T,T) x R™,
a(0,€) = (€) £ €R”
w@(0,6) = a1(€) £ € R”

Again, this is an ODE for each fixed &, and we deduce:

sin (|€] ?)

a(t, &) = to(§) cos (€] t) + @1(5)‘T

Now let us consider the wave equation on R”. The problem we shall consider is, given
ug, u1 : R — R, determine u : R" x (=7,7) — R, such that

(4.18)
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Notice that if ug € H¥72(R") and u; € H*"}(R"), then we conclude 4 € Xs. Thus (after
taking the inverse Fourier transform) we have found the unique solution of the wave
equation in Xj.

Let’s specialise to R?. We’d like to write this solution as some sort of convolution,
at least for initial data in the Schwarz class. For this we need to find the (inverse)

Fourier transform of cos (|¢|t) and %, where we have to understand these functions
as tempered distributions. Let us define, for £ > 0 the distribution:
1
Ul = 1 [ oo,
7t JaB,(0)

for all ¢ € ./, where doy is the surface measure on the sphere 0B;(0). This is a
distribution of compact support, so we can invoke Theorem 4.13 to find the Fourier
transform:

Us =T,
where:

. 1 _ie.
0¢(§) = Urle—¢] = 4“/83 o e “Vdo,
t

We can perform this integral by choosing spherical polar coordinates for y with the axis
aligned with the vector £. Doing so, the integral becomes:

1 ™ 2 .
N _ = 71\£|tcos9t2 in 6dod
e =g || e sin 09d

1 —ilelt ilelt
:t/ e*ilﬁltzdzzf el B etlél
2/, 2 \ S~ e
sin (|€] 2)
€l

Now, let us return to our expression for w:

(&) = to(§) cos (€] t) + ﬁl(é)sml(é‘“f't)

o [ _sin(El0) . sin(e])
:w(“()(f) € )*“1(5) g

Suppose ug, u1 € .. Then by Theorem 4.10, we have:

u(t,z) = QUt * ug(z) + Up % up ()
7l 7,
— ug(z —y)doy, | + — ui(z — y)do.
(47Tt B (0) 0( ) y> 47t 8B4 (0) 1( ) Y
1 / 1
— ug(y)doy, | + / u1(y)do
(47Tt B¢ (z) 0( ) y) 4t 9By (z) 1( ) Y

ot
_9
Ot
_9
Ot
0
= — 7[ uo(y)doy | + t7[ w1 (y)doy (4.19)
ot 9B(x) 9B(x)

~
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Where for a surface ¥ with surface measure o:

1
do = j{ do.
]é: 13| Js

Expression (4.19) is known as Kirchoff’s formula. While our derivation assumes
ug, u1 € %, this assumption can be relaxed. This expression tells us some interesting
facts about solutions to the wave equation. First note that the value of u(z,t) depends
only on the initial data on the sphere 0B;(z). This is known as the strong Huygens
principle. In particular this shows us that information is propagated at a finite speed by
the wave equation. Secondly, note that the value of u(z,t) depends on derivatives of wy.
This suggests that C*—regularity is not propagated in wave evolution, although we have
already seen that H®—regularity is propagated.

Exercise(x). Let R? :=R3\ {0}, Si.r:= (—T,T) x R? and |z| = r. You may
assume the result that if u = u(r,t) is radial, we have
0*u 20u

Au(|z],t) = Au(r,t) = w(r, t) + ;E(r, t)

a) Suppose u(z,t) = 1v(r,t) for some function v. Show that u solves the wave
equation on R3 x (0,7) if and only if v satisfies the one-dimensional wave
equation

v 0% ~0
T T e T
on (0,00) x (=T,T).

b) Suppose f,g € C%(R). Deduce that

fr+t) | gtr—1

u(x,t) =
is a solution of the wave equation on S, 7 which vanishes for large |z|.
c) Show that if f € C3(R) is an odd function (i.e. f(s) = —f(—s) for all s) then

fir+t)+ f(r—1)
2r

u(x,t) =

extends as a C? function which solves the wave equation on St := (=T, T) x
R3, with
u(0,t) = f'(t).

*d) By considering a suitable sequence of functions f, or otherwise, deduce that
there exists no constant C' independent of w such that the estimate

sup ([u] + [ug]) < Csup (fuf + Jue])
S o

T

holds for all solutions u € C?(St) of the wave equation which vanish for
large |z|.
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