
Chapter 4

The Fourier Transform and Sobolev Spaces

4.1 The Fourier transform on L1(Rn)

The Fourier transform is an extremely powerful tool across the full range of mathematics.
Loosely speaking, the idea is to consider a function on Rn as a superposition of plane waves
with different frequencies. For f ∈ L1(Rn), we define the Fourier transform f̂ : Rn → C
by:

F [f ](ξ) = f̂(ξ) :=

∫
Rn
f(x)e−ix·ξdx.

Sine
∣∣f(x)e−ix·ξ

∣∣ 6 |f(x)|, the integral is absolutely convergent, and f̂(ξ) makes sense for
each ξ ∈ Rn.

Example 16. i) Suppose f ∈ L1(R) is the “top hat” function, defined by:

f(x) =

{
1 −1 < x < 1,
0 |x| > 1.

We calculate:

f̂(ξ) =

∫ 1

−1
e−ixξdx =

[
e−ixξ

−iξ

]1

−1

= 2
sin ξ

ξ

Notice that f̂(ξ) is continuous (in fact smooth) on R. We also have f̂(ξ) → 0 as
ξ →∞.

ii) Suppose f ∈ L1(R) is defined by:

f(x) =

{
ex x < 0,
e−x x > 0.
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Then:

f̂(ξ) =

∫ 0

−∞
ex(1−iξ)dx+

∫ ∞
0

ex(−1−iξ)dx

=

[
ex(1−iξ)

1− iξ

]0

−∞

+

[
ex(−1−iξ)

−1− iξ

]∞
0

=
1

1− iξ
+

1

1 + iξ
=

2

1 + ξ2

Again, notice that f̂ is smooth and decays for large ξ.

iii) Consider g ∈ L1(R) given by

g(x) =
1

1 + x2
.

We have:

ĝ(ξ) =

∫ ∞
−∞

e−ixξ

1 + x2
dx

We can consider this as a limit of contour integrals:

ĝ(ξ) = lim
R→∞

∫
γR

e−izξ

1 + z2
dx.

Where γR = {=(z) = 0, |<(z)| < R}. For ξ > 0, we can close the contour with
a semi-circle in the lower half-plane, and we pick up a contribution from the pole
at z = −i. The contribution from the curved part of the contour tends to zero as
R→∞ by Jordan’s lemma, and we find:

ĝ(ξ) = πe−ξ, ξ > 0.

For ξ < 0, we close the contour in the upper half-plane, picking up a contribution
from the pole at z = i and again discard the contribution from the curved part of the
contour in the limit. We find:

ĝ(ξ) = πeξ, ξ < 0.

In conclusion, we have:

ĝ(ξ) =

{
πeξ ξ < 0,
πe−ξ ξ > 0.

iv) Consider now for x ∈ Rn the Gaussian f(x) = e−
1
2
|x|2. We calculate:

f̂(ξ) =

∫
Rn
e−

1
2
|x|2−iξ·xdx

=

∫
Rn
e−

1
2

(x−iξ)·(x−iξ)− 1
2
|ξ|2dx

= e−
1
2
|ξ|2
(∫

R
e−

1
2

(x1−iξ1)2dx1

)
· · ·
(∫

R
e−

1
2

(xn−iξn)2dxn

)
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By shifting a contour in the complex plane, which is justified since e−z2 is entire and
rapidly decaying as z approaches infinity along any line parallel to the real axis, we
can show that: ∫

R
e−

1
2

(x1−iξ1)2dx1 =

∫
R
e−

1
2
x21dx1 =

√
2π.

We deduce that:
f̂(ξ) = (2π)

n
2 e−

1
2
|ξ|2

Notice that this is (as a function) equal to f up to a factor.

We will make some casual observations at this stage. In all of our examples, we saw
that the Fourier transformed function decays towards infinity. For examples iii), iv) we see
very rapid (exponential) decay of the Fourier transform, while in examples i), ii) the decay
is only polynomial. In all examples the transformed function is continuous. In examples
i), ii), iv) it is in fact smooth, while for iii) the Fourier transform has a discontinuous
first derivative. Reflecting on this, one sees that these two features appear to be dual to
one another: if f is smooth, then f̂ has rapid decay towards infinity. If f decays rapidly
near infinity, then f̂ is smooth. This is in fact a general feature of the Fourier transform
smoothness and decay are dual to one another under the transform.

We shall now make some of these observations more precise.

Lemma 4.1 (Riemann-Lebesgue Lemma). Suppose f ∈ L1(Rn). Then f̂ ∈ C0(Rn) with
the estimate:

sup
ξ∈Rn

∣∣∣f̂(ξ)
∣∣∣ 6 ‖f‖L1 (4.1)

and moreover f̂(ξ)→ 0 as |ξ| → ∞.

Proof. To establish the continuity of f̂ , we use the continuity of the exponential, together
with the dominated convergence theorem. Let {ξj}∞j=1 be any sequence with ξj → ξ as
j →∞. Recalling the definition of the integral, we have:

f̂(ξj) =

∫
Rn
f(x)e−ix·ξjdx.

Now, clearly for x ∈ Rn we have:

f(x)e−ix·ξj → f(x)e−ix·ξ, as j →∞

so we have pointwise convergence of the integrand. We can also estimate:∣∣∣f(x)e−ix·ξj
∣∣∣ 6 |f(x)|

so the integrand is dominated by an integrable function, since f ∈ L1(Rn). Applying the
Dominated Convergence Theorem, we conclude:

f̂(ξj)→ f̂(ξ), as j →∞.
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This implies that f̂(ξ) is continuous. We can readily estimate:

sup
ξ∈Rn

∣∣∣f̂(ξ)
∣∣∣ = sup

ξ∈Rn

∣∣∣∣∫
Rn
f(x)e−ix·ξdx

∣∣∣∣ 6 sup
ξ∈Rn

∫
Rn
|f(x)| dx = ‖f‖L1 .

This establishes the first part of the Lemma. To establish the second part, we make use
of an approximation argument. Chapter 1 that if f ∈ L1(Rn), we can approximate f by
an element of C∞0 (Rn). Given ε > 0, there exists fε ∈ C∞0 (Rn) with

‖f − fε‖L1 <
ε

2
.

Now, in the integral for f̂ε we can integrate by parts::

f̂ε(ξ) =

∫
Rn
fε(x)e−ix·ξdx

=

∫
Rn
fε(x) div

(
ξ

−i |ξ|2
e−ix·ξ

)
dx

= −
∫
Rn

ξ

−i |ξ|2
·Dfε(x)e−ix·ξdx

so that for each i = 1, . . . , n we have, by the Cauchy-Schwarz inequality:∣∣∣f̂ε(ξ)∣∣∣ =

∣∣∣∣∫
Rn

ξ

i |ξ|2
·Dfε(x)e−ix·ξdx

∣∣∣∣
6
∫
Rn

∣∣∣∣ ξ

i |ξ|2
·Dfε(x)e−ix·ξ

∣∣∣∣ dx (4.2)

6
∫
Rn

1

|ξ|
|Dfε(x)| dx

=
1

|ξ|

∣∣∣∣∣∣ |Dfε(x)|
∣∣∣∣∣∣
L1

From this, we conclude that there exists R > 0 such that if |ξ| > R, we have
∣∣∣f̂ε(ξ)∣∣∣ < ε

2 .
For |ξ| > R we calculate: ∣∣∣f̂(ξ)

∣∣∣ =
∣∣∣f̂(ξ)− f̂ε(ξ) + f̂ε(ξ)

∣∣∣
6
∣∣∣f̂ε(ξ)∣∣∣+

∣∣∣f̂(ξ)− f̂ε(ξ)
∣∣∣

6
∣∣∣f̂ε(ξ)∣∣∣+ ‖f − fε‖L1 < ε.

In the last line, we have used (4.1), together with the linearity of the Fourier transform.
Since ε > 0 was arbitrary, we have shown that

∣∣∣f̂(ξ)
∣∣∣→ 0.

Remark. The argument above is another example of an approximation argument where
one first proves the result on a suitably nice dense subset then extends to the full space by
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continuity. In this case, we are using the fact that the Fourier transform is a bounded (hence
continuous) linear operator from L1(Rn) to the Banach space of continuous functions
decaying at infinity equipped with the uniform norm. The dense set is C∞0 (Rn) ⊂ L1(Rn).

Another tactic which we used here was to use integration by parts to exploit the rapid
oscillations in the e−ix·ξ factor when |ξ| is large.

One might be tempted to infer from (4.2) that
∣∣∣f̂(ξ)

∣∣∣ 6 C(1 + |ξ|)−1. While this is
true for each fε approximating f , in general the constant C will grow larger and larger as
ε→ 0, so we cannot quite come to this conclusion.

Exercise(∗). For ξ ∈ Rn, define eξ(x) = eiξ·x. Show that Teξ ∈ S ′, and that:

Teξ → 0, as |ξ| → ∞

in the weak-∗ topology of S ′.

We shall prove some important properties of the Fourier transform. Recall that
τyf(x) = f(x− y), and introduce the character ey(x) = eiy·x.

Lemma 4.2 (Properties of the Fourier transform). i) Suppose f ∈ L1(Rn), x ∈ Rn,
λ > 0 and fλ(y) = λ−nf(λ−1y). Then

f̂λ(ξ) = f̂(λξ) (êxf)(ξ) = τxf̂(ξ) τ̂xf(ξ) = e−x(ξ)f̂(ξ)

ii) Suppose f, g ∈ L1(Rn). Then f ? g ∈ L1(Rn) and:

f̂ ? g(ξ) = f̂(ξ)ĝ(ξ).

Proof. i) Writing out the expression for f̂λ(ξ), and changing the integration variable to
z = λ−1x, we see

f̂λ(ξ) =

∫
Rn
fλ(x)e−iξ·xdx =

∫
Rn
f(λ−1x)e−iξ·xλ−ndx =

∫
Rn
f(y)e−iλξ·zdz = f̂(λξ).

Next, we calculate:

(êxf)(ξ) =

∫
Rn
eix·yf(y)e−iξ·ydy =

∫
Rn
f(y)e−i(ξ−x)·ydy = τxf̂(ξ).

Finally, we have:

τ̂xf(ξ) =

∫
Rn
f(y−x)e−iξ·ydy =

∫
Rn
f(z)e−iξ·(z+x)dz = e−iξ·x

∫
Rn
f(z)e−iξ·zdz = e−x(ξ)f̂(ξ),

where we have used the substitution z = y − x.

ii) First we show that f ? g ∈ L1(Rn). To see this, we first estimate:

|f ? g(x)| =
∣∣∣∣∫

Rn
f(y)g(x− y)dy

∣∣∣∣ 6 ∫
Rn
|f(y)g(x− y)| dy
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Integrating and applying Fubini’s theorem, we have:

‖f ? g‖L1 6
∫
Rn

(∫
Rn
|f(y)g(x− y)| dy

)
dx

=

∫
Rn
|f(y)|

(∫
Rn
|g(x− y)| dx

)
dy

=

∫
Rn
|f(y)| ‖g‖L1 dy = ‖f‖L1 ‖g‖L1

Now, we can calculate the Fourier transform:

f̂ ? g(ξ) =

∫
Rn
f ? g(x)e−iξ·xdx

=

∫
Rn

(∫
Rn
f(y)g(x− y)dy

)
e−iξ·xdx

=

∫
Rn
f(y)

(∫
Rn
g(x− y)e−iξ·xdx

)
dy

=

∫
Rn
f(y)τ̂yg(ξ)dy

=

∫
Rn
f(y)ĝ(ξ)e−iξ·ydy = f̂(ξ)ĝ(ξ)

Exercise(∗). Calculate the Fourier transform of the following functions f ∈
L1(R):

a) f(x) =
sinx

1 + x2
.

b) f(x) =
1

ε2 + x2
, for ε > 0 a constant.

c) f(x) =

√
σ

t
e−σ

(x−y)2
t , where σ > 0, t > 0 and y are constants.

*d) f(x) =
1

coshx
.

We saw with the examples that there is a duality between the decay of a function
and the regularity of its Fourier transform and vice versa. To make this more precise we
prove the following result, which tells us, roughly speaking, that the Fourier transform
swaps coordinate functions xj multiplying f for derivatives iDj acting on f̂ .

Theorem 4.3. i) Suppose f ∈ C1(Rn) and that f,Djf ∈ L1(Rn) for all j = 1, . . . n.
Then

D̂jf(ξ) = iξj f̂(ξ)
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ii) Suppose (1 + |x|)f ∈ L1(Rn). Then f̂ ∈ C1(Rn), and:

Dj f̂(ξ) = −i x̂jf(ξ)

Proof. i) We again appeal to an approximation result. For f ∈ C1(Rn) with f,Dif ∈
L1(Rn), then for any ε > 0 there exists fε ∈ C1

0(Rn) such that ‖f − fε‖L1 < ε and
‖Djf −Djfε‖L1 < ε. Integrating by parts, we readily calculate:

D̂jfε(ξ) =

∫
Rn
Djfε(x)e−iξ·xdx

= −
∫
Rn
fε(x)Dj(e

−iξ·x)dx

= iξj

∫
Rn
fε(x)e−iξ·xdx

so that D̂jfε(ξ) = iξj f̂ε(ξ). Now, we calculate:∣∣∣D̂jf(ξ)− iξj f̂(ξ)
∣∣∣ =

∣∣∣D̂jf(ξ)− D̂jfε(ξ) + iξj f̂ε(ξ)− iξj f̂(ξ)
∣∣∣

6 ‖Djf −Djfε‖L1 + |ξ| ‖f − fε‖L1

6 ε(1 + |ξ|)

Since ε > 0 is arbitrary, we must have that
∣∣∣D̂jf(ξ)− iξj f̂(ξ)

∣∣∣ = 0, and the result
follows.

ii) From the condition on f it is clear that xjf ∈ L1(Rn), so −i x̂jf is continuous. It
suffices to prove then that:

∆hk
j f̂(ξ)→ −i x̂jf(ξ), as k →∞

for any sequence {hk}∞k=1 ⊂ R with hk → 0. We calculate:

∆hk
j f̂(ξ) =

1

hk

(
f̂(ξ + hkej)− f̂(ξ)

)
=

∫
Rn
f(x)e−ix·ξ

(
e−ixjhk − 1

hk

)
dx.

Now for x ∈ Rn we have:

f(x)e−ix·ξ
(
e−ixjhk − 1

hk

)
→ −ixjf(x)e−ix·ξ

as k →∞. Noting that
∣∣eiθ − 1

∣∣ = 2
∣∣sin θ

2

∣∣ 6 θ for any θ ∈ R, we have that:∣∣∣∣f(x)e−ix·ξ
(
e−ixjhk − 1

hk

)∣∣∣∣ 6 |xjf(x)|

where the right hand side is integrable. By the Dominated Convergence Theorem,
we have:

lim
k→∞

∆hk
j f̂(ξ) =

∫
Rn
−ixjf(x)e−ix·ξdx = −i x̂jf(ξ).

We deduce that f̂ ∈ C1(Rn).
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Exercise(∗). Suppose f ∈ C1(Rn) and that f,Djf ∈ L1(Rn). Fix ε > 0. Show
that there exists fε ∈ C1

0 (Rn) such that

‖f − fε‖L1 + ‖Djf −Djfε‖L1 <
ε

2
.

Corollary 4.4. i) Suppose f ∈ Ck(Rn) and Dαf ∈ L1(Rn) for |α| 6 k. Then there is
some constant Ck > 0 depending only on k such that:

sup
ξ∈Rn

∣∣∣(1 + |ξ|)kf̂(ξ)
∣∣∣ 6 Ck

∑
|α|6k

‖Dαf‖L1

ii) Suppose (1 + |x|)kf ∈ L1(Rn). Then f̂ ∈ Ck(Rn) and for any |α| 6 k we have:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ 6 ∥∥∥(1 + |x|)kf

∥∥∥
L1

iii) The Fourier transform is a continuous linear map from S into S :

F : S → S .

Proof. i) First we note the algebraic fact that for any k there is some constant Ck such
that1:

(1 + |ξ|)k 6 Ck
∑
|α|6k

|ξα|

holds for any ξ ∈ Rn. Repeatedly applying the part i) of Theorem 4.3 we know that:

i|α|ξαf̂(ξ) = D̂αf(ξ).

We therefore have:

(1 + |ξ|)k
∣∣∣f̂(ξ)

∣∣∣ 6 Ck
∑
|α|6k

∣∣∣i|α|ξαf̂(ξ)
∣∣∣ = Ck

∑
|α|6k

∣∣∣D̂αf(ξ)
∣∣∣

taking the supremum over ξ ∈ Rn and applying the estimate (4.1) we conclude

sup
ξ∈Rn

∣∣∣(1 + |ξ|)kf̂(ξ)
∣∣∣ 6 Ck

∑
|α|6k

‖Dαf‖L1 .

ii) By iterating part ii) of Theorem 4.3 we have that for |α| 6 k:

Dαf̂(ξ) = (−i)|α|x̂αf(ξ).

Taking the supremum of the absolute value over ξ ∈ Rn and applying the estimate
(4.1) we have:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ 6 ‖xαf‖L1 6

∥∥∥(1 + |x|)kf
∥∥∥
L1

1recall that ξα := ξα1
1 ξα2

2 · · · ξαn
n
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iii) Note that if:
sup
x∈Rn

(1 + |x|)N |f(x)| < K,

we have:
‖f‖L1 =

∫
Rn
|f(x)| dx 6 K

∫
Rn

1

(1 + |x|)N
dx <∞

provided N > n. Thus in particular if f ∈ S then there exists some constant Cn
such that: ∥∥(1 + |x|)MDαf

∥∥
L1 6 Cn sup

x∈Rn
(1 + |x|)M+n+1 |Dαf(x)|

for all M ∈ N and all multi-indices α. Applying the previous two parts we conclude
that f̂ ∈ C∞(Rn) and:

sup
ξ∈Rn,|β|6M

(1 + |ξ|)N
∣∣∣Dβ f̂(ξ)

∣∣∣ 6 CN,M,n sup
x∈Rn,|α|6N

(1 + |x|)M+n+1 |Dαf(x)|

For some constant CN,M,n depending only on N,M,n. Thus f̂ ∈ S . Moreover, if
{fj}∞j=1 ⊂ S is a sequence with fj → 0 in S , then f̂j → 0 in S , so that F is
continuous.

Notice that while the Fourier transform maps S to itself, the same is not true of
D(Rn). Suppose f ∈ C∞0 (Rn), then provided supp f ⊂ K for K a compact set we have:

f̂(ξ) =

∫
K
f(x)e−ix·ξdx

By repeatedly differentiating, it is possible to show that f̂ is in fact real analytic, and
hence f̂ cannot vanish on any open set without vanishing everywhere. In particular, f̂
cannot vanish outside a compact set.

Exercise 3.8. Suppose f ∈ L1(Rn), with supp f ⊂ BR(0) for some R > 0.

a) Show that f̂ ∈ C∞(Rn) and for any multi-index:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ 6 R|α| ‖f‖L1

b) (*)Show that f̂ is real analytic, with an infinite radius of convergence, i.e.:

f̂(ξ) =
∑
α

Dαf̂(0)
ξα

α!

holds for all ξ ∈ Rn. Deduce that if f̂(ξ) vanishes on an open set, it must
vanish everywhere.
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You may assume the following form of Taylor’s theorem. Suppose g ∈ Ck+1(Br(0)).
Then for x ∈ Br(0):

g(x) =
∑
|α|6k

Dαg(0)
xα

α!
+

∑
|β|=k+1

Rβ(x)xβ

where the remainder Rβ(x) satisfies the following estimate in Br(0):

|Rβ(x)| 6 1

β!
max
|α|=|β|

max
y∈Br(0)

|Dαg(y)| .

Exercise 3.9. Recall that L∞(R) = L1(R)′. Consider the sequence (fn)∞n=1,
where fn ∈ L∞(R) is given by fn(x) = sin(nx). Show that fn

∗
⇀ 0. Show that

f2
n
∗
⇀ g for some g ∈ L∞(R) which you should find.

To complete this section, we are going to establish the invertibility of the Fourier
transform, under some reasonable assumptions on f and f̂ . In particular, this will permit
us to show that F : S → S is in fact a bijection.

Theorem 4.5 (Fourier inversion theorem). Suppose f ∈ L1(Rn), and assume f̂ ∈ L1(Rn),
then for almost every x:

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ. (4.3)

Proof. We shall establish the result by looking at the limit ε→ 0 of

Iε(x) =
1

(2π)n

∫
Rn
f̂(ξ)e−

1
2
ε2|ξ|2eix·ξdξ.

in two different ways. Firstly note that for ξ ∈ Rn we have:

f̂(ξ)e−
1
2
ε2|ξ|2eix·ξ → f̂(ξ)eix·ξ.

Moreover, we can estimate ∣∣∣f̂(ξ)e−
1
2
ε2|ξ|2eix·ξ

∣∣∣ 6 ∣∣∣f̂(ξ)
∣∣∣

so that the integrand is dominated by an integrable function. Thus by the Dominated
Convergence Theorem we have:

Iε(x)→ 1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ, as ε→ 0.

On the other hand, we have, using Fubini’s thorem:

Iε(x) =
1

(2π)n

∫
Rn

(∫
Rn
f(y)e−iξ·ydy

)
e−

1
2
ε2|ξ|2eix·ξdξ

=
1

(2π)n

∫
Rn
f(y)

(∫
Rn
e−

1
2
ε2|ξ|2e−iξ·(y−x)dξ

)
dy

=

∫
Rn
f(y)

1

εn (2π)
n
2

e−
|y−x|2

2ε2 dy

= f ? ψε(x)
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where ψε(x) = ε−nψ(ε−1x) for

ψ(x) =
1

(2π)
n
2

e−
1
2
|x|2 .

Note that ψ ∈ C∞(Rn), ψ(x) > 0 and∫
Rn
ψ(x)dx = 1

so by Theorem 1.13, b) we have that:

f ? ψε → f,

in L1(Rn), thus we must have that

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ

for almost every x.

Note that by the Riemann Lebesgue Lemma the map

x 7→ 1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ

is continuous. Thus under the conditions of the theorem, if f is additionally assumed to
be continuous, then we can upgrade the almost everywhere convergence to convergence
everywhere. Alternatively, our result shows that if both f ∈ L1(Rn) and f̂ ∈ L1(Rn),
then f must be almost everywhere equal to a continuous function.

We can summarise the inversion formula quite neatly by noting that (on a suitable f):

F2f = (2π)nf̌ .

An immediate corollary of the above result is that F : S → S is a bijection, and that
F−1 : S → S is continuous.

Exercise(∗). Consider the following ODE problem. Given f : R→ C, find φ
such that:

− φ′′ + φ = f. (4.4)

a) Show that if f ∈ S , there is a unique φ ∈ S solving (4.4), and give an
expression for φ̂.

b) Show that

φ(x) =

∫
R
f(y)G(x− y)dy

where

G(x) =

{
1
2e
x x < 0,

1
2e
−x x > 0.
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Exercise(∗). Suppose f ∈ L1(R3) is a radial function, i.e. f(Rx) = f(x),
whenever R ∈ SO(3) is a rotation.

a) Show that f̂ is radial.

b) Suppose that ξ = (0, 0, ζ). By writing the Fourier integral in polar coordinates,
show that

f̂(ξ) =

∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0
f(r)e−iζr cos θr2 sin θdθdrdφ.

c) Making the substitution s = cos θ, and using the fact that f̂ is radial, deduce:

f̂(ξ) = 4π

∫ ∞
0

f(r)
sin r |ξ|
r |ξ|

r2dr

for any ξ ∈ Rn.

4.2 The Fourier transform on L2(Rn)

Having defined the Fourier transform acting on functions in L1(Rn), we are going to
extend it to act on more general functions (and eventually distributions). Firstly, we shall
see how the Fourier transform extends very nicely to act on functions in L2(Rn). As we
have already seen, this is a particularly nice function space because is is a Hilbert space.
We recall the inner product:

(f, g) =

∫
Rn
f(x)g(x)dx,

which induces the norm via:
‖f‖L2 = (f, f)

1
2

and moreover it is complete, which means that all Cauchy sequences converge in L2(Rn).
We shall first establish that the Fourier transform maps L1(Rn)∩L2(Rn) into L2(Rn),

and moreover show that the L2 inner product is preserved by the Fourier transform (up
to multiplication by a constant).

Theorem 4.6 (Parseval’s Formula). Suppose f, g ∈ L1(Rn)∩L2(Rn). Then f̂ , ĝ ∈ L2(Rn)
and moreover:

(f, g) =
1

(2π)n
(f̂ , ĝ).

Proof. We will again use a density argument to prove this result. First suppose that
f, g ∈ S . Then using the Fourier Inversion Theorem (Theorem 4.5) and Fubini’s theorem
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we can calculate:

(f, g) =

∫
Rn
f(x)g(x)dx

=

∫
Rn
f(x)

(
1

(2π)n

∫
Rn
ĝ(ξ)eix·ξdξ

)
dx

=
1

(2π)n

∫
Rn

(∫
Rn
f(x)eix·ξdx

)
ĝ(ξ)dξ

=
1

(2π)n

∫
Rn

(∫
Rn
f(x)e−ix·ξdx

)
ĝ(ξ)dξ

=
1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ =

1

(2π)n
(f̂ , ĝ)

Now suppose that f, g ∈ L1(Rn) ∩ L2(Rn). By Theorem 1.13 part b), there exists a
sequence {fj}∞j=1 ⊂ C∞0 (Rn) ⊂ S such that:

‖fj − f‖L1 + ‖fj − f‖L2 <
1

j

and similarly for g. We know that:

sup
ξ∈Rn

∣∣∣f̂j(ξ)− f̂(ξ)
∣∣∣ 6 ‖fj − f‖L1 <

1

j

so that f̂j → f uniformly on Rn. We also have by the calculation above:∥∥∥f̂j − f̂k∥∥∥
L2

= (2π)
n
2 ‖fj − fk‖L2 .

Now since fj → f in L2(Rn), we have that {fj} is a Cauchy sequence in L2(Rn). Thus
f̂j is a Cauchy sequence in L2(Rn). By the completeness of L2(Rn), we have that f̂j
converges in L2(Rn) and hence f̂ ∈ L2(Rn). Furthermore, we know that

(fj , gj) =
1

(2π)n
(f̂j , ĝj)

since each of the sequences {fj}, {gj}, {f̂j}, {ĝj} converge in L2(Rn), we can take the
limit2 j →∞ to conclude:

(f, g) =
1

(2π)n
(f̂ , ĝ)

Thus we have shown that the Fourier transform F maps L1(Rn)∩L2(Rn) into L2(Rn).
Moreover, we have that it is a bounded as an operator from L2(Rn) to itself, since∥∥∥f̂∥∥∥

L2
6 (2π)

n
2 ‖f‖L2 .

This means that F is a bounded linear map defined on a dense subset of a Banach space.
A general result tells us that the map extends uniquely to a bounded linear map on the
entire space. Rather than invoke an abstract result, we can show this directly.

2You should check that you understand why this is valid.
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Corollary 4.7. There is a unique continuous linear operator F : L2(Rn)→ L2(Rn) such
that:

F [f ] = F [f ], for all f ∈ L1(Rn) ∩ L2(Rn). (4.5)

We say that F is the extension of the Fourier transform to L2(Rn). It is sometimes known
as the Fourier-Plancherel transform.

Proof. For any f ∈ L2(Rn), we can take a sequence {fj}∞j=1 ⊂ L1(Rn) ∩ L2(Rn) with
fj → f in L2(Rn) (for example by approximating f with smooth functions of compact
support). By Theorem 4.6 we have that:∥∥∥f̂j − f̂k∥∥∥

L2
= (2π)

n
2 ‖fj − fk‖L2 . (4.6)

Now, since fj converges in L2(Rn), it is in particular a Cauchy sequence in L2(Rn).
Equation (4.6) shows that f̂j is also a Cauchy sequence in L2(Rn), hence has a limit,
say F ∈ L2(Rn) by the completeness of L2(Rn). Suppose {f ′j}∞j=1 ⊂ L1(Rn) ∩ L2(Rn) is
another sequence with f ′j → f , and suppose f̂j → F ′. Then we have:∥∥F − F ′∥∥

L2 = lim
j→∞

∥∥∥f̂j − f̂ ′j∥∥∥
L2

= lim
j→∞

(2π)
n
2

∥∥fj − f ′j∥∥L2 = 0

since both fj and f ′j tend to f . Thus F depends only f , and not on the sequence fj
which we chose to approximate f .

We define F [f ] = F , i.e.:

F [f ] = lim
j→∞

F [fj ], where {fj}∞j=1 ⊂ L1(Rn) ∩ L2(Rn), fj → f in L2(Rn),

and the limit is to be understood to be in L2(Rn). This certainly satisfies (4.5), since we
can take our approximating sequence to be the constant sequence fj = f for all j when
f ∈ L1(Rn) ∩ L2(Rn). F is clearly linear and moreover, we have that∥∥F [f ]

∥∥
L2 =

∥∥∥∥ lim
j→∞

F [fj ]

∥∥∥∥
L2

= lim
j→∞

‖F [fj ]‖L2

= lim
j→∞

(2π)
n
2 ‖fj‖L2 = (2π)

n
2 ‖f‖L2 ,

so F is bounded and hence continuous3. It remains to show that F is unique. Suppose
that F ′ is another continuous linear operator satisfying (4.5). For any f ∈ L2(Rn), take
a sequence {fj}∞j=1 ⊂ L1(Rn) ∩ L2(Rn) with fj → f in L2(Rn). We have:

F ′[f ] = lim
j→∞

F ′[fj ] = lim
j→∞

F [fj ] = F [f ]

so that F ′ = F .
3If {fj}∞j=1 ⊂ L2(Rn) is a sequence with fj → f in L2(Rn), then∥∥F [fj ]−F [f ]∥∥L2 =

∥∥F [fj − f ]∥∥L2 = (2π)
n
2 ‖fj − f‖L2 → 0

so F [fj ]→ F [f ] in L2(Rn).
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Exercise(∗). (*) Suppose that f, g ∈ L2(Rn), and denote the Fourier-Plancherel
transform by F . You may assume any results already established for the Fourier
transform.

a) Show that

(f, g) =
1

(2π)n
(
F [f ],F [g]

)
.

b) Recall that f̌(y) = f(−y). Show that:

F
[
F [f ]

]
= (2π)nf̌ .

Hence, or otherwise, deduce that F : L2(Rn)→ L2(Rn) is a bijection, and
that F−1

: L2(Rn)→ L2(Rn) is a bounded linear map.

c) Show that:

F [f ](ξ) = lim
R→∞

∫
BR(0)

f(x)e−ix·ξdx

with convergence in the sense of L2(Rn).

d) Suppose that f ∈ C1(Rn) and f,Djf ∈ L2(Rn). Show that ξjF [f ](ξ) ∈
L2(Rn) and:

F [Djf ](ξ) = iξjF [f ](ξ)

e) For x ∈ R let:

f(x) =
sinx

x

i) Show that f ∈ L2(R).

ii) Show that:

F [f ](ξ) =

{
π −1 < ξ < 1,
0 |ξ| > 1.

f) i) Show that for all x ∈ Rn:

|f ? g(x)| 6 ‖f‖L2 ‖g‖L2 .

ii) Show that f ? g ∈ C0(Rn) and:

f ? g = F−1
[
F [f ] · F [g]

]
where:

F−1[f̂ ](x) =
1

(2π)n

∫
Rn
f̂(ξ)eiξ·xdξ.

[Hint for parts a), b), d), f): approximate by Schwartz functions]
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Exercise(∗). Work in R3. For k > 0, define the function:

G(x) =
e−k|x|

4π |x|

a) Show that G ∈ L1(R3).

b) Show that:

Ĝ(ξ) =
1

|ξ|2 + k2

[Hint: use Exercise 4.1, part c)]

Exercise 3.10. Suppose f ∈ S (Rn). By observing that

‖f‖2L2 =

∫
Rn

1

n
(div x) |f(x)|2 dx,

or otherwise, show that:

(2π)
n
2 ‖f‖2L2 6

2

n

∥∥|x| f(x)
∥∥
L2

∥∥ |ξ| f̂(ξ)
∥∥
L2

with equality if and only if f(x) = ae−λ|x|
2

for some a ∈ C, λ > 0. Deduce that
if x0, ξ0 ∈ Rn:

(2π)
n
2 ‖f‖2L2 6

2

n

∥∥|x− x0| f(x)
∥∥
L2

∥∥ |ξ − ξ0| f̂(ξ)
∥∥
L2 .

Explain how this shows that a function f ∈ L2(Rn) cannot be sharply localised
in both physical and Fourier space simultaneously. This is the uncertainty
principle.

Usually one does not labour the distinction between the Fourier transform acting on
L1(Rn) and the Fourier-Plancherel transform acting on L2(Rn). From now on we shall
use the same notation for both, so that for f ∈ L2(Rn) we write F [f ] = F [f ] = f̂ . Since
the two transforms agree wherever both are defined, there is no ambiguity in this. The
majority of the results that we have already established for the Fourier transform extend
to the Fourier-Plancherel transform in a straightforward way, see Exercise 4.2.

4.3 The Fourier transform on S ′

We are now going to extend the Fourier transform in a slightly different way, such that it
acts on distributions. Suppose that f ∈ L1(Rn), and φ ∈ S . Then since f̂ ∈ C0(Rn) and
f̂ decays towards infinity, we have that Tf̂ ∈ S ′. By Fubini we have:

Tf̂ [φ] =

∫
Rn
f̂(x)φ(x)dx =

∫
Rn

(∫
Rn
f(y)e−ix·ydy

)
φ(x)dx

=

∫
Rn
f(y)

(∫
Rn
φ(x)e−ix·ydx

)
dy

=

∫
Rn
f(x)φ̂(x)dx.
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Thus for f ∈ L1(Rn) we have that:

Tf̂ [φ] = Tf [φ̂], for all φ ∈ S .

Motivated by this, we define:

Definition 4.1. For a distribution u ∈ S ′, we define the Fourier transform of u, written
û ∈ S ′ to be the distribution satisfying:

û[φ] = u[φ̂], for all φ ∈ S .

Notice that the definition makes sense because the Fourier transform maps S to S
continuously. If we tried to use the above definition but with φ ∈ D(Rn) and u ∈ D ′(Rn),
we would run into difficulties because φ̂ 6∈ D(Rn).

Example 17. a) For ξ ∈ Rn we have:

δ̂ξ = Te−ξ

To see this, we use the definition. For φ ∈ S :

δ̂ξ[φ] = δξ[φ̂] = φ̂(ξ) =

∫
Rn
e−ix·ξφ(x)dx = Te−ξ [φ]

Since φ was arbitrary, the distributions are equal.

b) For x ∈ Rn we have:
T̂ex = (2π)nδx.

To see this, we note for φ ∈ S :

T̂ex [φ] = Tex [φ̂] =

∫
Rn
eix·ξφ̂(ξ)dξ = (2π)nφ(x) = (2π)nδx[φ].

Again, as φ is arbitrary the distributions are equal. Note that a particular case is
T̂1 = (2π)nδ0.

c) For α a multi-index, denote by Xα the map

Xα : x 7→ xα.

Then we have:
T̂Xα = (2π)ni|α|Dαδ0

For φ ∈ S :

T̂Xα [φ] = TXα [φ̂] =

∫
Rn
ξαφ̂(ξ)dξ

= (−i)|α|
∫
Rn
D̂αφ(ξ)dξ

= (2π)n(−i)|α|Dαφ(0) = (2π)ni|α| × (−1)|α|δ0 [Dαφ]

= (2π)ni|α|Dαδ0[φ]
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Most of the properties of the Fourier transform defined on S are inherited by the
transform defined on S ′. We first need to define a couple of operations on S ′. Recall
that if φ ∈ S , then τxφ ∈ S is the translate of φ, given by τxφ(y) = φ(y − x), and
φ̌ ∈ S is given by φ̌(y) = φ(−y). For u ∈ S , we define:

τxu[φ] = u[τ−xφ], ǔ[φ] = u[φ̌]

Notice also that if f ∈ C∞(Rn) is a function of tempered growth, i.e., if for each α and
there exists a constant Cα and integer Nα such that:

|Dαf(x)| 6 Cα(1 + |x|)Nα , ∀x ∈ Rn.

then φf ∈ S when φ ∈ S and we can define fu ∈ S ′ by

fu[φ] = u[fφ]

Exercise(∗). Verify that if f ∈ L1
loc. is such that Tf ∈ S ′, then:

τxTf = Tτxf , and Ťf = Tf̌

Lemma 4.8. Suppose u ∈ S ′ is a tempered distribution. Then:

êxu = τxû, τ̂xu = e−xû, D̂αu = i|α|Xαû Dαû = (−i)|α|X̂αu

Moreover:
ˆ̂u = (2π)nǔ,

so that the Fourier transform on S ′ is invertible.

Proof. These are all calculations using the corresponding results for S . Take φ ∈ S . We
have:

êxu[φ] = exu[φ̂] = u[exφ̂] = u
[
τ̂−xφ

]
= û[τ−xφ] = τxu[φ].

Since φ was arbitrary, we have êxu = τxû. Similarly, we calculate:

τ̂xu[φ] = τxu[φ̂] = u[τ−xφ̂] = u
[
ê−xφ

]
= û[e−xφ] = e−xu[φ].

Next we have

D̂αu[φ] = Dαu
[
φ̂
]

= (−1)|α|u
[
Dαφ̂

]
= (−1)|α|u

[
(−i)|α|X̂αφ

]
= i|α|u

[
X̂αφ

]
= i|α|û [Xαφ] =

(
i|α|Xαû

)
[φ]

similarly:

Dαû[φ] = (−1)|α|û[Dαφ] = (−1)|α|u[D̂αφ]

= (−1)|α|u[i|α|Xαφ̂] = (−i)|α|Xαu[φ̂]

=
(

(−i)|α|X̂αu
)

[φ].
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Finally, we have

ˆ̂u[φ] = û[φ̂] = u[
ˆ̂
φ] = u[(2π)nφ̌] = (2π)nǔ[φ]

Since ˇ̌u = u, we have that the Fourier transform is invertible.

Importantly, the Fourier transform is also a continuous linear map S ′ → S ′.

Lemma 4.9. The map:
F : S ′ → S ′

u 7→ û

is a linear homeomorphism.

Proof. We already have that F is linear. From the definition of the weak-? topology, a
sequence {uj}∞j=1 ⊂ S ′ converges to u if

uj [φ]→ u[φ]

for all φ ∈ S . Suppose that we have such a convergent sequence in S ′. We calculate:

ûj [φ] = uj [φ̂]→ u[φ̂] = û[φ].

Thus if uj → u we have F(uj)→ F(u). Thus F is continuous. Since F4 = (2π)2nι, we
have that F is invertible and the inverse is also continuous.

Remark. Strictly, we have only established that F is sequentially continuous with respect
to the weak-? topology induced on S ′ by S . Establishing genuine continuity is not difficult,
but requires the full description of the weak-? topology, and we leave this as an exercise.

Exercise 3.11. Let f : R→ R be the sign function

f(x) =

{
−1 x < 0
1 x > 0

and define fR(x) = f(x)1[−R,R](x).

a) Sketch fR(x), and show that TfR → Tf in S ′(R) as R→∞.

b) Compute f̂R(ξ), and show that for φ ∈ S (R):

Tf̂R [φ] = −2i

∫ ∞
0

φ(x)− φ(−x)

x
dx+ 2i

∫ ∞
0

(
φ(x)− φ(−x)

x

)
cosRxdx.

Deduce T̂f = −2iP.V.
(

1
x

)
, where we define the distribution P.V.

(
1
x

)
by:

P.V.

(
1

x

)
[φ] = lim

ε→0

∫
R\(−ε,ε)

φ(x)

x
dx, φ ∈ S (R).
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c) Write down T̂H , where H is the Heaviside function:

H(x) =

{
0 x < 0
1 x > 0

By considering e−εxH(x), or otherwise, find an expression for the distribution
u which acts on φ ∈ S (R) by:

u[φ] := lim
ε→0+

∫
R

φ(x)

x+ iε
dx.

Exercise 3.12. Suppose φ ∈ C∞c (Rn ×Rm). For each y ∈ Rm let φy : Rn → C
be given by φy(x) = φ(x, y). Let u ∈ D ′(Rn).

a) Show that ψ : y 7→ u[φy] is smooth and find an expression for Dαψ. Deduce
that ∫

Rm
ψ(y)dy = u[Ψ], where Ψ(x) =

∫
Rm

φ(x, y)dy.

b) Show that there exists a sequence of smooth functions fn ∈ C∞c (Rn) such
that Tfn → u in the weak-∗ topology of D ′(Rn).

4.3.1 Convolutions

We have generalised almost all of the properties of the Fourier transform to distributions.
The final result that we shall establish concerns convolutions. Recall that if u ∈ D ′(Rn)
and φ ∈ D(Rn) then u ? φ ∈ C∞(Rn) is given by:

u ? φ(x) = u
[
τxφ̌
]
.

Notice that this definition continues to make sense for each x, provided u ∈ S ′ and
φ ∈ S , although it is no longer clear that the resulting function is smooth. We have the
following results concerning this convolution.

Theorem 4.10. Suppose u ∈ S ′ and φ ∈ S are given. Then the function:

u ? φ : Rn → C

has the following properties

a) u ? φ ∈ C∞(Rn) with
Dα(u ? φ) = Dαu ? φ = u ? Dαφ.

b) There exist constants N ∈ N, K > 0 depending on u and φ such that:

|u ? φ(x)| 6 K(1 + |x|)N .

c) Tu?φ ∈ S ′ and moreover:
T̂u?φ = φ̂û.
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d) For any ψ ∈ S , we have:

(u ? φ) ? ψ = u ? (φ ? ψ)

e) We have:

Tû?φ̂ = (2π)nφ̂u

Proof. a) The smoothness of u ? φ is proven exactly as in Lemma 3.10, ii). The only
modification to the argument required is to note that for φ ∈ S , we have

∆h
i φ→ Diφ in S , as h→ 0.

b) First, we note the following simple inequality which holds for all x, y ∈ Rn:

1 + |x+ y| 6 1 + |x|+ |y| 6 (1 + |x|)(1 + |y|).

Next, recall from Lemma 3.15 that there exist N, k ∈ N and C > 0 such that:

|u[ψ]| 6 C sup
y∈Rn;|α|6k

∣∣(1 + |y|)NDαψ(y)
∣∣ , for all ψ ∈ S .

Applying this inequality with ψ = τxφ̌, we calculate:

|u ? φ(x)| =
∣∣u [τxφ̌]∣∣ 6 C sup

y∈Rn;|α|6k

∣∣(1 + |y|)NDαφ(y − x)
∣∣

= C sup
z∈Rn;|α|6k

∣∣(1 + |z + x|)NDαφ(z)
∣∣

6

[
C sup
z∈Rn;|α|6k

∣∣(1 + |z|)NDαφ(z)
∣∣] (1 + |x|)N

which gives the result on setting:

K = C sup
y∈Rn;|α|6k

∣∣(1 + |z|)NDαφ(z)
∣∣ .

c) Combining the above two results, we have that Tu?φ ∈ S ′, since u ? φ ∈ L1
loc.(Rn) and

u ? φ grows at most polynomially. It therefore makes sense to consider the Fourier
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transform. Suppose that ψ ∈ D(Rn). We calculate:

T̂u?φ[ψ̂] = Tu?φ

[
ˆ̂
ψ
]

= (2π)nTu?φ
[
ψ̌
]

Fourier Inversion Thm

= (2π)n
∫
Rn
u ? φ(x)ψ(−x)dx Defn. of Tf

= (2π)n
∫
Rn
u
[
τxφ̌
]
ψ(−x)dx Defn. of u ? φ

= (2π)n
∫
Rn
u
[
ψ(−x)τxφ̌

]
dx Linearity of u

= (2π)nu

[∫
Rn
ψ(−x)τxφ̌dx

]
(!!)

= (2π)nu
[

ˇ(φ ? ψ)
]

Defn. of φ ? ψ

= u

[
̂̂
φ ? ψ

]
= û

[
φ̂ ? ψ

]
Fourier Inversion Thm

= û
[
φ̂ψ̂
]

=
(
φ̂û
)

[ψ̂] F.T. of convolution

Most of the manipulations here are relatively straightforward. We have used Theorems
4.2, 4.5 in addition to various definitions. The step marked (!!), in which we inter-
changed an integration and an application of u requires some justification. Crudely
this is true because we can replace the integration with an appropriately convergent
Riemann sum and use the linearity and continuity of u. We shall justify this step in
Lemma 4.11. The conclusion of this calculation is that:

T̂u?φ[ψ̂] =
(
φ̂û
)

[ψ̂]

This holds for all ψ ∈ D(Rn). Now, since D(Rn) is dense in S and F : S → S is a
homeomorphism, we have that:

F [D(Rn)] =
{
ψ̂ : ψ ∈ D(Rn)

}
is dense in S . Thus, by approximation,

T̂u?φ[χ] =
(
φ̂û
)

[χ]

holds for any χ ∈ S and we’re done.

d) Note that in the process of proving the previous part, we established that for any
ψ ∈ D(Rn): ∫

Rn
u ? φ(x)ψ(−x)dx = u

[
ˇ(φ ? ψ)

]
which is equivalent to:

(u ? φ) ? ψ(0) = u ? (φ ? ψ) (0). (4.7)



96 Chapter 4 The Fourier Transform and Sobolev Spaces

Now, note that:

u ? τyφ = τy (u ? φ) , φ ? τyψ = τy (φ ? ψ)

as can be easily seen from the definitions. Applying (4.7) with ψ replaced by τyψ, we
conclude that:

(u ? φ) ? ψ(y) = u ? (φ ? ψ) (y).

Since this holds for any ψ ∈ D(Rn) and D(Rn) is dense in S , we’re done.

e) This result follows by applying part c) to û ? φ̂ and repeatedly making use of the
Fourier inversion theorem. We calculate:

T̂û?φ̂ =
ˆ̂
φˆ̂u = (2π)2nφ̌ǔ

= (2π)2n ˇ(φu) = (2π)n
̂̂
(φu)

Since the Fourier transform is a bijection on S ′, the result follows.

In order to complete the proof of the above result, we need to justify the step marked
(!!) in which a tempered distribution and an integration were interchanged. We will first
prove a result concerning the convergence of Riemann sums, which will enable us to
establish that the (!!) step was justified. Let us suppose that Ω ⊂ Rn and Ω′ ⊂ Rm are
open and that f ∈ C0(Ω× Ω′) is uniformly continuous. We will also assume that there is
some R > 0 such that:

supp f(·, y) ⊂ [−R,R)n ⊂ Ω

for each y ∈ Ω′.
Next, we define a dyadic family of partitions of [−R,R)n into cubes as follows:

Πk =

{[
−R

2k
i1,

R

2k
(i1 + 1)

)
× · · · ×

[
−R

2k
in,

R

2k
(in + 1)

)
: il ∈ [−2k, 2k − 1] ∩ Z

}
where k = 0, 1, . . .. The (k + 1)st partition is obtained by chopping each cube in the kth

partition into cubes with half the side length. Clearly for each fixed k:⋃
Πk = [−R,R)n

For π ∈ Πk, we define xπ to be the point at the centre of the cube π. We define the kth

Riemann sum with respect to this partition by:

Sk(y) =
∑
π∈Πk

f(xπ, y) |π| .

Lemma 4.11. With the definitions as above,

Sk(y)→
∫

Ω
f(x, y)dx

uniformly in y ∈ Ω′.
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Proof. First note that x 7→ f(x, y) is continuous and of compact support, hence Riemann
integrable on Ω. Thus for each fixed y we have:

Sk(y)→
∫

Ω
f(x, y)dx

Next consider k′ > k. We have that Πk′ is a refinement of Πk, i.e. if π′ ∈ Πk′ , then there
is a unique π ∈ Πk with π′ ⊂ π. We calculate:

Sk(y)− Sk′(y) =
∑
π∈Πk

f(xπ, y) |π| −
∑
π∈Πk

∑
π′∈Πk′
π′⊂π

f(xπ′ , y)
∣∣π′∣∣

=
∑
π∈Πk

∑
π′∈Πk′
π′⊂π

(f(xπ, y)− f(xπ′ , y))
∣∣π′∣∣

here we have used that:
|π| =

∑
π′∈Πk′
π′⊂π

∣∣π′∣∣
Now, since f is uniformly continuous, we know that for any ε > 0 there exists a δ,
independent of y, such that ∣∣f(x, y)− f(x′, y)

∣∣ < ε

for all |x− x′| < δ. Notice that for π′ ⊂ π we have:∣∣x′π − xπ∣∣ 6 R

2k+1

√
n.

Thus given ε > 0, there exists K such that for all k > K:

|f(xπ, y)− f(xπ′ , y)| < ε

(2R)n
.

Now suppose k′ > k > K. We estimate:

|Sk(y)− Sk′(y)| 6
∑
π∈Πk

∑
π′∈Πk′
π′⊂π

|f(xπ, y)− f(xπ′ , y)|
∣∣π′∣∣

6
ε

(2R)n

∑
π∈Πk

∑
π′∈Πk′
π′⊂π

∣∣π′∣∣ = ε,

since the sum over the partition simply gives us back the volume of the large cube.
Sending k′ to infinity, we have the result we require.

This result allows us to establish the result we require:

Corollary 4.12. Suppose u ∈ S ′, φ ∈ S and ψ ∈ D(Rn). Then:

u

[∫
Rn
ψ(−x)τxφ̌dx

]
=

∫
Rn
u
[
ψ(−x)τxφ̌

]
dx
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Proof. Fix Ω, R > 0 such that supp ψ̌ ⊂ [−R,R)n ⊂ Ω. Define the map:

f : Ω× Rn → C
(x, y) 7→ ψ(−x)φ(y − x)

Notice that (1+ |y|)NDα
y f is uniformly continuous on Ω×Rn for any α, N . Thus applying

Lemma 4.11 we deduce that:

Sk →
∫
Rn
ψ(−x)τxφ̌dx, in S .

By the continuity of u, we deduce that:

u

[∫
Rn
ψ(−x)τxφ̌dx

]
= u

[
lim
k→∞

Sk

]
= lim

k→∞
u [Sk]

By the linearity of u, we calculate:

u [Sk] = u

∑
π∈Πk

f(xπ, ·) |π|

 =
∑
π∈Πk

u [f(xπ, ·)] |π| =
∑
π∈Πk

u
[
ψ(−xπ)τxπ φ̌

]
|π|

But x 7→ u
[
ψ(−x)τxφ̌

]
is smooth, hence Riemann integrable, and we have that

lim
k→∞

∑
π∈Πk

u
[
ψ(−xπ)τxπ φ̌

]
|π| =

∫
Rn
u
[
ψ(−x)τxφ̌

]
dx.

4.4 The Fourier–Laplace transform on E ′(Rn)

Recall that E ′(Rn) ⊂ S ′(Rn) is a continuously embedded subspace, consisting of the
distributions of compact support. These distributions are precisely those which extend to
continuous linear maps from E (Rn) to C (see Theorem 3.14). For these distributions, we
can express the Fourier transform in a very clean fashion.

Theorem 4.13. Suppose that u ∈ E ′(Rn). Then û = Tυ̂ for some υ̂ ∈ C∞(Rn) with:

υ̂(ξ) = u[e−ξ].

Proof. Suppose that suppu ⊂ BR(0). Pick ψ ∈ D(Rn) with ψ = 1 on BR+1(0), so that
ψu = u. We calculate:

û = ψ̂u =
1

(2π)n
Tû?ψ̂.

By Theorem 4.10 e). Thus we have û = Tυ̂ with υ̂ = (2π)−nû ? ψ̂ ∈ C∞(Rn), by Theorem
4.10 a).

Now let φ ∈ S be such that φ̂ = ψ. We calculate:

υ̂(ξ) =
1

(2π)n
û ? ψ̂(ξ) = û ? φ̌(ξ)

= û [τξφ] = u
[
τ̂ξφ
]

= u[e−ξψ] = (ψu)[e−ξ]

= u[e−ξ].



4.5 Periodic distributions and Poisson’s summation formula 99

In practice, one does not distinguish between the distribution û and the function υ̂
and one uses the same letter to denote both. Notice that for u ∈ E ′(Rn), the expression
u[e−z] makes sense for z ∈ Cn. Moreover, this function is in fact holomorphic on Cn.
The analytic extension of a Fourier transform from Rn to Cn (or a subset thereof) is
sometimes called the Fourier-Laplace transform.

4.5 Periodic distributions and Poisson’s summation formula

Recall that the translate of a distribution u ∈ D ′(Rn) is defined by:

τzu[φ] = u [τ−zφ] , for all φ ∈ D(Rn),

Bearing this in mind, we can make a very natural definition of what it means to be
periodic:

Definition 4.2. We say that a distribution u ∈ D ′(Rn) is periodic if for each g ∈ Zn we
have:

τgu = u.

Example 18. a) The distribution u = Te2πg is periodic for any g ∈ Zn. Suppose g′ ∈ Zn.
Then:

τg′Te2πg [φ] = Te2πg
[
τ−g′φ

]
=

∫
Rn
e2πig·yφ(y + g′)dy

=

∫
Rn
e2πig·(z−g′)φ(z)dz = e−2πig·g′

∫
Rn
e2πig·zφ(z)dz

= Te2πg [φ]

b) Suppose v ∈ E ′(Rn). Then
u =

∑
g∈Zn

τgv

is periodic. It is straightforward to show that u defines a distribution (see Exercise
below). To check periodicity, we have, for g ∈ Zn:

τg′u[φ] = u[τ−g′φ] =
∑
g∈Zn

τgv
[
τ−g′φ

]
=
∑
g∈Zn

v
[
τ−g−g′φ

]
=
∑
g∈Zn

τg+g′v [φ] = u[φ],

where we shift the dummy variable in the sum for the last step.

Exercise(∗). Suppose v ∈ E ′(Rn) and let:

u =
∑
g∈Zn

τgv.

Show that if φ ∈ D(Rn) with suppφ ⊂ K for some compact K ⊂ Rn then

u[φ] =
∑
g∈A

τgv[φ],

for some finite set A ⊂ Zn which depends only on K. Deduce that u defines a
distribution.
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When dealing with a periodic function f ∈ C∞(Rn), many quantities of interest are
averages over a fundamental cell of the periodic lattice:

q =

{
x ∈ Rn : −1

2
6 xi <

1

2
, i = 1, . . . , n

}
For example:

M(f) =

∫
q
f(x)dx

is the mean value that f attains. We’d like to extend this notion to makes sense for
periodic functions, but we’re presented with a difficulty. The obvious definition would be
to set:

M(u)
!

= u[1q]

but of course 1q 6∈ D(Rn) so we’re not able to do this. Instead we will ‘smear out’ the
function 1q. To do this, notice that a crucial property of 1q is the following identity:∑

g∈Zn
τg1q = 1,

which tells us that 1q generates a partition of unity.
We shall construct a smooth ‘partition of unity’, which will allow us to localise various

objects, and thus render them easier to deal with, and will enable us to define the mean of
a periodic distribution. This is a slightly technical result, but the basic idea is important
and crops up in many areas of analysis.

Lemma 4.14. Let
Q = {x ∈ Rn : |xi| < 1, i = 1, . . . , n}

be the cube of side length 2 centred at the origin. There exists a function ψ ∈ C∞(Rn)
with ψ > 0 and suppψ ⊂ Q such that:∑

g∈Zn
τgψ = 1.

Suppose that u ∈ D ′(Rn) is periodic, and ψ,ψ′ are both as above. Then:

u[ψ] = u[ψ′]

We then define:
M(u) := u[ψ]

Proof. Note

q =

{
x ∈ Rn : |xi| 6

1

2
, i = 1, . . . , n

}
.

By Lemma 1.14, there exists a function ψ0 ∈ C∞0 (Q), with ψ0(x) = 1 for x ∈ q and
ψ0 > 0. Consider:

S(x) :=
∑
g∈Zn

ψ0(x− g).
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For any bounded open set Ω, we have that

A = {g ∈ Zn : (Ω− g) ∩Q 6= ∅}

is finite. For x ∈ Ω, we have:

S(x) =
∑
g∈A

ψ0(x− g),

so S(x) is smooth. Moreover, for each x ∈ Rn, there is at least one g ∈ Zn with x− g ∈ q.
Thus S(x) > 1. We can thus take:

ψ(x) =
ψ0(x)

S(x)
.

This is smooth, positive, supported in Q and moreover:∑
g∈Zn

τgψ(x) =
1

S(x)

∑
g∈Zn

ψ0(x− g) = 1.

Now suppose u ∈ D ′(Rn) is periodic and ψ,ψ′ are both partitions of unity as above.
We calculate:

u[ψ] = u

ψ ∑
g∈Zn

τgψ
′

 =
∑
g∈Zn

u
[
ψτgψ

′]

=
∑
g∈Zn

τ−gu
[
τ−gψψ

′] = u

ψ′ ∑
g∈Zn

τ−gψ

 = u[ψ′]

We thus have an acceptable definition of the mean of a periodic distribution. Notice
that if u = Tf for some locally integrable periodic function f , then by choosing a bounded
sequence of ψj ’s such that ψj → 1q pointwise, we can show that:

M(Tf ) =

∫
q
f(x)dx,

justifying calling M the mean of the distribution.
To see why this technical lemma is useful, let us apply it to show that a periodic

distribution is necessarily tempered, and in fact the periodic distributions we found by
translating a compact distribution are indeed all of the periodic distributions.

Lemma 4.15. Suppose v ∈ E ′(Rn) is a compact distribution. Then:

u =
∑
g∈Zn

τgv (4.8)

converges in S ′. Conversely, suppose that u ∈ D ′(Rn) is a periodic distribution. Then
there exists v ∈ E ′(Rn) such that (4.8) holds and thus u extends uniquely to a tempered
distribution u ∈ S ′.
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Proof. Let K = supp v. Since v ∈ E ′(Rn), by Lemma 3.13 there exists C > 0, N such
that:

|v[φ]| 6 C sup
x∈K;|α|6N

|Dαφ(x)| , for all φ ∈ E (Rn).

Now suppose φ ∈ S ⊂ E (Rn). We have:

|τgv [φ]| = |v [τ−gφ]| 6 C sup
x∈K;|α|6N

|Dαφ(x+ g)| .

Since K is bounded, we have that K ⊂ BR(0) for some R > 0. We calculate:

1 + |g| = 1 + |x+ g − x| 6 1 +R+ |x+ g| 6 (1 +R)(1 + |x+ g|)

for all x ∈ K, so that:

1 6 (1 +R)
1 + |x+ g|

1 + |g|
.

We conclude that for any M > 1:

|τgv [φ]| 6 C(1 +R)M

(1 + |g|)M
sup

x∈K;|α|6N
(1 + |x+ g|)M |Dαφ(x+ g)|

6
C(1 +R)M

(1 + |g|)M
sup

y∈Rn;|α|6N
(1 + |y|)M |Dαφ(y)| .

Since φ ∈ S , in particular we have:

|τgv [φ]| 6 C ′

(1 + |g|)n+1

where C ′ depends on v, φ. Now, since:∑
g∈Zn

1

(1 + |g|)n+1 <∞,

(see Exercise below) we deduce that for each φ ∈ S the sum:∑
g∈Zn

τgv [φ]

converges. This is precisely the statement that the sum in (4.8) converges in S ′.
Now suppose u ∈ D ′(Rn) is periodic, and take ψ as in Lemma 4.14. Suppose

φ ∈ D(Rn) is arbitrary. We have:

u[φ] =

∑
g∈Zn

τgψ

u[φ] =
∑
g∈Zn

u [τgψφ] . (4.9)

Now, since u is periodic,:

u [τgψφ] = τgu [τgψφ] = u [ψτ−gφ] = (ψu) [τ−gφ] = τg(ψu)[φ]
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Now ψu has compact support, so by Theorem 3.14 extends uniquely to v ∈ E ′(Rn). Thus
we have:

u =
∑
g∈Zn

τgv

which by the first part of the proof converges in S ′, thus u ∈ S ′.

Exercise(∗). Recall that for x ∈ Rn:

‖x‖1 :=
n∑
i=1

|xi| .

For k ∈ N set:

Qk =

{
g ∈ Zn : k − 1

2
6 ‖g‖1 < k +

1

2

}
a) Show that:

#Qk = (2k + 1)n − (2k − 1)n

so that #Qk 6 c(1 + k)n−1 for some c > 0.

b) By applying the Cauchy-Schwarz identity to estimate a · b for a = (1, . . . , 1)
and b = (|g1| , . . . , |gn|), deduce that:

‖g‖1 6
√
n |g|

c) Show that there exists a constant C > 0, depending only on n such that:

∑
g∈Zn;‖g‖16K

1

(1 + |g|)n+1
6 1 + C

K∑
k=1

1

k2

holds for all K ∈ N. Deduce that:∑
g∈Zn

1

(1 + |g|)n+1
<∞.

We have shown that a periodic distribution is necessarily tempered. It is therefore
reasonable to ask what one can say about the Fourier transform of a periodic distribution.
In fact, it will turn out that the Fourier transform of a periodic distribution has a very
simple form: it consists of a sum over δ-distributions with support on the points of an
integer lattice.

Before we establish this, we will first need a technical result regarding distributions.

Lemma 4.16. Suppose that u ∈ S satisfies:(
e−g′ − 1

)
u = 0 (4.10)

for all g′ ∈ Zn. Then:
u =

∑
g∈Zn

cgδ2πg,
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where cg ∈ C satisfy the bound

|cg| 6 K(1 + |g|)N

for some K > 0, N ∈ Z, and the sum converges in S ′.

Proof. First, we claim that suppu ⊂ Λ, with

Λ = {2πg : g ∈ Zn} .

Suppose φ ∈ D(Rn) with suppφ ⊂ Rn\Λ. Then for each g′ ∈ Zn, we have
(
e−g′ − 1

)−1
φ ∈

S , since φ vanishes near any zeros of e−g′ − 1. Applying the condition (4.10), we deduce:

0 =
(
e−g′ − 1

)
u
[(
e−g′ − 1

)−1
φ
]

= u[φ]

so u vanishes. Thus suppu ⊂ Λ.
Now, let us take ψ as in Lemma 4.14, and define ψ̃(x) = ψ

(
x
2π

)
. It’s straightforward

to check that: ∑
g∈Zn

τ2πgψ̃ = 1, supp ψ̃ ⊂ {x ∈ Rn : |xi| < 2π}.

For g ∈ Zn, let us consider vg = (τ2πgψ̃)u. This distribution is supported at 2πg, and by
multiplying (4.10) by τ2πgψ̃ we have:(

e−g′ − 1
)
vg = 0

In particular, we have, taking g′ = lj for j = 1, . . . n, where {lj} is the canonical basis for
Rn: (

e−i(xj−2πgj) − 1
)
vg = 0.

Now, (
e−i(xj−2πgj) − 1

)
= (xj − 2πgj)κ(xj)

where κ(xj) is non-zero on a neighbourhood of gj . Thus we conclude that:

(xj − 2πgj)vg = 0, j = 1, . . . n.

Now suppose φ ∈ S . We can write:

φ(x) = φ(2πg) +

n∑
j=1

(xj − 2πgj)φj(x)

where φj(x) ∈ C∞(Rn). Since vg has compact support, it extends to smoothly to act on
E (Rn) and we calculate:

vg[φ] = vg[φ(2πg)] +

n∑
j=1

(xj − 2πgj)vg[φj ] = vg[φ(2πg)]
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Returning to the definition of vg, we have:

(τ2πgψ̃)u[φ] = (τ2πgψ̃)u[φ(2πg)] = u[τ2πgψ̃]δ2πg[φ]

so that
(τ2πgψ̃)u = u[τ2πgψ̃]δ2πg

Summing over g ∈ Zn, we recover:

∑
g∈Zn

(τ2πgψ̃)u =

∑
g∈Zn

(τ2πgψ̃)

u = u =
∑
g∈Zn

cgδ2πg

Where
cg = u[τ2πgψ̃].

To establish the estimate for cg, we recall from Lemma 3.15 that there exist N, k ∈ N
and C > 0 such that:

|u[φ]| 6 C sup
x∈Rn;|α|6k

∣∣(1 + |x|)NDαφ(x)
∣∣ , for all φ ∈ S .

Applying this to τ2πgψ̃, we have:

|cg| 6 C sup
x∈Rn;|α|6k

∣∣∣(1 + |x|)NDαψ̃(x− 2πg)
∣∣∣

6 C sup
x∈Rn;|α|6k

∣∣∣(1 + |x+ 2πg|)NDαψ̃(x)
∣∣∣

6 C ′ sup
x∈Rn;|α|6k

∣∣∣(1 + |x|)NDαψ̃(x)
∣∣∣× (1 + |g|)N

6 K(1 + |g|)N

With this bound, it is a straightforward exercise to verify that the sum converges in
S ′.

Exercise(∗). Show that if cg satisfy:

|cg| 6 K(1 + |g|)N

for some K > 0 and N ∈ N, then:∑
g∈Zn

cgδ2πg

converges in S ′.

This now enables us to establish a result regarding the Fourier series of a periodic
distribution.
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Theorem 4.17. Suppose u ∈ D ′(Rn) is a periodic distribution. Then there exist constants
cg ∈ C such that:

u =
∑
g∈Zn

cgTe2πg .

with cg are given by:
cg = M(e−2πgu).

and satisfy the bound:
|cg| 6 K(1 + |g|)N (4.11)

for some K > 0, N ∈ Z.

Proof. Since u is periodic, it is tempered by Lemma 4.15. Thus we may take the Fourier
transform. Noting that:

τg′u = u

for all g′ ∈ Zn, we have that

e−g′ û = û =⇒ (e−g′ − 1)û = 0.

By Lemma 4.16, we deduce that:

û = (2π)n
∑
g∈Zn

cgδ2πg,

for some cg satisfying (4.11), where the sum converges in S ′. We can apply the inverse
Fourier transform, making use of the fact that it is continuous on S ′ to deduce:

u =
∑
g∈Zn

cgTe2πg ,

with convergence again in S ′. To establish the formula for cg, we make use of the
comments after Lemma 4.14 to note that:

M(e−2πgTe2πg′ ) =

∫
q
e2πi(g−g′)·xdx = δgg′

Since u 7→M(e−2πgu) is a continuous map from S ′ to C, we deduce that:

M(e−2πgu) =
∑
g′∈Zn

cgM(e−2πgTe2πg′ ) = cg′ .

Remark. Usually one writes the Fourier series for u as:

u =
∑
g∈Zn

cge2πg,

ignoring the distinction between the function e2πg and the distribution it defines.
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As a simple example, let us consider the distribution:

u =
∑
g∈Zn

δg.

By Lemma 4.15, this defines a periodic distribution, since δg = τgδ0 and δ0 ∈ E ′(Rn).
Notice also that if ψ satisfies the conditions of Lemma 4.14, then since suppψ ⊂ {x ∈ Rn :
|xj | < 1}, we have that τgψ(0) = 0 for g ∈ Zn with g 6= 0. Thus, since

∑
g∈Zn τgψ = 1,

we must have ψ(0) = 1. We can then calculate:

cg = M(e−2πgu) = u[ψe−2πg] = ψ(0)e−2πig·0 = 1.

Thus we have established Poisson’s formula:∑
g∈Zn

δg =
∑
g∈Zn

Te2πg ,

where we understand both sums to converge in S ′. This is sometimes written, with an
abuse of notation: ∑

g∈Zn
δ(x− g) =

∑
g∈Zn

e2πg·xi

We can specialise various results concerning Fourier transforms to the case of Fourier
series.

Corollary 4.18. i) Suppose u ∈ D ′(Rn) is periodic and may be written as:

u =
∑
g∈Zn

cgTe2πg .

Then Dju ∈ D ′(Rn) is periodic and has Fourier series:

Dju =
∑
g∈Zn

(2πigjcg)Te2πg .

ii) Suppose f ∈ L1
loc.(Rn), then:

|cg| 6 ‖f‖L1(q) ,

and moreover, cg → 0 as |g| → ∞.

iii) Suppose f ∈ Cn+1(Rn) is periodic. Then:

f(x) =
∑
g∈Zn

cge
2πig·x

with the sum converging uniformly.
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iv) Suppose f, h ∈ L2
loc.(Rn) are periodic with Fourier coefficients fg, hg respectively.

Then: ∫
q
f(x)h(x)dx =

∑
g∈Zn

fghg.

This is the Fourier series version of Parseval’s formula. Moreover,

f(x) =
∑
g∈Zn

cge
2πig·x

holds, with the sum converging in L2(q).

Proof. i) Since the Fourier series for u converges in S ′, we may differentiate term by
term (as differentiation is a continuous operation from S ′ to itself). Since

DjTe2πg = (2πigj)Te2πg ,

the result follows.

ii) Note that if f ∈ L1
loc.(Rn), then:

|cg| =
∣∣∣∣∫
q
e−2πig·xf(x)dx

∣∣∣∣ 6 ∫
q
|f(x)| dx = ‖f‖L1(q) .

Now, given ε > 0, we can approximate4 f by a smooth periodic function fε, with
Fourier coefficients c′g, such that

‖f − fε‖L1(q) <
ε

2
.

Since DjDjfε ∈ L1
loc.(Rn), we have that |g|2

∣∣c′g∣∣ < C, for each j = 1, . . . , n so there
exists R > 0 such that

∣∣c′g∣∣ < ε
2 for |g| > R. We have:∣∣cg − c′g∣∣ 6 ‖f − fε‖L1(q) <

ε

2
,

so we conclude that for |g| > R:

|cg| =
∣∣cg − c′g + c′g

∣∣ < ε

2
+
ε

2
= ε.

Thus cg → 0 as |g| → ∞.

iii) Since f ∈ Ck+1(Rn), we have that Dαf ∈ L1
loc.(Rn) for |α| < n + 1. Applying the

previous two results we conclude that |cg| 6 K(1 + |g|)−n+1 for some K > 0. Thus
the partial sums:

Fn(x) =
∑

g∈Zn,|g|6n

cge
2πig·x

4See Exercise 4.5
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converge uniformly to some continuous function F by the Weierstrass M−test. We
have:

Tf = lim
n→∞

∑
g∈Zn,|g|6n

cgTe2πg = lim
n→∞

TFn = TF

since uniform convergence implies convergence in S ′. By the injectivity of the
mapping between continuous functions and distributions we conclude f = F .

iv) Suppose f, h ∈ C∞(Rn) are periodic. Then:

f(x) =
∑
g∈Zn

fge
2πig·x, h(x) =

∑
g∈Zn

hge
2πig·x

with supg∈Zn(1 + |g|)N |fg| <∞ for all N ∈ N, and similarly for hg. We calculate:

∫
q
f(x)g(x)dx =

∫
q

∑
g∈Zn

fge
−2πig·x

∑
g′∈Zn

hg′e
2πig′·x

 dx

=
∑
g∈Zn

∑
g′∈Zn

fghg′

∫
q
e2πi(g′−g)·xdx

=
∑
g∈Zn

∑
g′∈Zn

fghg′δgg′ =
∑
g∈Zn

fghg.

In particular, we have that:

‖f‖L2(q) = ‖fg‖`2(Zn) ,

where for a sequence {ag}g∈Zn , we define:

‖ag‖`2(Zn) =

∑
g∈Zn

|ag|2
 1

2

.

Now suppose f ∈ L2
loc.(Rn). Given k > 0, we can find f (k) ∈ C∞(Rn) with Fourier

coefficients f (k)
g such that: ∥∥∥f − f (k)

∥∥∥
L2(q)

<
1

k
.

Since by Cauchy-Schwarz we have:

‖f‖L1(q) =

∫
q
|f(x)| dx 6

(∫
q
|f(x)|2 dx

) 1
2
(∫

q
dx

) 1
2

= ‖f‖L2(q)

we have that: ∥∥∥fg − f (k)
g

∥∥∥
`∞(Zn)

:= sup
g∈Zn

∣∣∣fg − f (k)
g

∣∣∣ < 1

k
,

Now, f (k) is a Cauchy sequence in L2(q), so {f (k)
g } is a Cauchy sequence in `2(Zn).

We conclude that f (k)
g converges in `2(Zn), however we also know that f (k) → f
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in `∞(Zn), thus we must have f (k) → f in `2(Zn). Taking a similar sequence of
h(k) ∈ C∞(Rn) approximating h with Fourier coefficients h(k)

g , and recalling that:(
f (k), h(k)

)
L2(q)

=
(
f (k), h(k)

)
`2(Zn)

,

the result follows on sending k →∞. The convergence of the Fourier series in L2(q)
follows by showing that the partial sums form a Cauchy sequence in L2(q).

Exercise(∗). Suppose f ∈ Lploc.(R
n) is a periodic function. Fix ε > 0, and let:

Q = {x ∈ Rn : |xj | < 1, j = 1, . . . , n}, q =

{
x ∈ Rn : |xj | <

1

2
, j = 1, . . . , n

}
a) Show that there exists hε ∈ C∞(Rn) with:

supphε ⊂ Q

such that:
‖f1q − hε‖Lp(Rn) < ε.

Define
fε =

∑
g∈Zn

τghε

b) Show that fε is smooth and periodic.

c) Show that there exists a constant cn depending only on n such that:

‖f − fε‖Lp(q) < cnε.

Exercise(∗). Suppose that f : R→ R is given by:

f(x) = x for |x| < 1

2
, f(x+ 1) = f(x).

Show that:

f(x) =
∑

n∈Z,n 6=0

i(−1)n

2πn
e2πinx =

∞∑
n=1

(−1)n+1

nπ
sin(2πnx),

with convergence in L2
loc.(R).

Exercise(∗). Suppose f : R→ R is given by:

f(x) =

{
−1 −1

2 < x 6 0
1 0 < x 6 1

2

, f(x+ 1) = f(x).
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a) Show that:

f(x) =
1

πi

∞∑
n=−∞

2

2n+ 1
e2πi(2n+1)x =

4

π

∞∑
n=0

1

2n+ 1
sin [2π(2n+ 1)x]

With convergence in L2
loc.(Rn).

Define the partial sum:

SN (x) = 8
N−1∑
n=0

1

2π(2n+ 1)
sin [2π(2n+ 1)x] .

b) Show that:

SN (x) = 8

∫ x

0

N−1∑
n=0

cos [2π(2n+ 1)t] dt.

c) Show that:

cos [2π(2n+ 1)t] sin 2πt =
1

2
(sin [2π(2n+ 2)t]− sin [4πnt])

And deduce:
SN (x) = 8

∫ x

0

sin 4πNt

2 sin 2πt
dt.

d) Show that the first local maximum of SN occurs at x = 1
4N , and:

SN

(
1

4N

)
> 8

∫ 1
4N

0

sin 4πNt

4πt
dt =

2

π

∫ π

0

sin s

s
ds ' 1.179 . . .

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is
known as Gibbs Phenomenon.

Exercise(∗). (*) Suppose that λ = {λ1, . . . λn} is a basis for Rn. We define the
lattice generated by λ to be:

Λ =


n∑
j=1

zjλj : zj ∈ Z

 .

Define the fundamental cell:

qΛ =


n∑
j=1

xjλj : |xj | <
1

2

 .

We say that u ∈ D ′(Rn) is Λ−periodic if:

τgu = u for all g ∈ Λ.
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a) Show that there exists ψ ∈ C∞0 (2qΛ) such that ψ > 0 and∑
g∈Λ

τgψ = 1.

b) Show that if u ∈ D ′(Rn) is Λ−periodic and ψ, ψ′ are both as in part a), then

1

|qΛ|
u[ψ] =

1

|qΛ|
u[ψ′] =: M(u)

c) Define the dual lattice by:

Λ∗ := {x ∈ Rn : g · x ∈ 2πZ, ∀g ∈ Λ}

Show that there exists a basis λ∗ = {λ∗1, . . . λ∗n} such that λ∗j · λk = δjk, and
Λ∗ is the lattice induced by λ∗.

d) Show that if g ∈ Λ∗ then eg is Λ−periodic.

e) Show that if u ∈ D ′(Rn) is Λ−periodic, then:

û =
∑
g∈Λ∗

cgδg

for some cg ∈ C satisfying |cg| 6 K(1 + |g|)N for some K > 0, N ∈ Z.

f) Show that if u ∈ D ′(Rn) is Λ−periodic, then:

u =
∑
g∈Λ∗

dgTeg

where |dg| 6 K(1 + |g|)N for some K > 0, N ∈ Z are given by:

dg = M(e−gu)

4.6 Sobolev spaces

4.6.1 The spaces W k,p(Ω)

Suppose Ω ⊂ Rn is an open set. For k ∈ Z>0 and 1 6 p 6 ∞, we say that f ∈ Lp(Ω)
belongs to the Sobolev space W k,p(Ω) if for any |α| 6 k there exists fα ∈ Lp(Ω) with:

DαTf = Tfα .

We call fα the weak, or distributional derivative of f and write Dαf := fα. We can
equip W k,p(Ω) with the norm:

‖f‖Wk,p(Ω) :=
∑
|α|6k

‖Dαf‖Lp(Ω) .
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With this norm, W k,p(Ω) is complete, and hence a Banach space. The Sobolev spaces
are particularly well suited to the study of PDE, and form the starting point for many
modern PDE investigations.

We can think of k as telling us how differentiable our function is, while p tells us
how integrable our function is. Roughly speaking spaces with larger k contain smoother
functions, while spaces with larger p contain less ‘spiky’ functions. We shall see that
(roughly speaking) one can trade smoothness for integrability: a function that belongs
to W k,p(Rn) belongs to certain W l,q(Rn) where l < k and p > q. If k and p are large
enough we can even conclude that the function must be classically differentiable.

We will frame the result as concerning the embedding of W k,p(Rn) spaces. Recall that
a Banach space (X, ‖·‖X) is said to embed continuously into the Banach space (Y, ‖·‖Y )
if X ⊂ Y and there exists a constant C such that:

‖x‖Y 6 C ‖x‖X , for all x ∈ X.

Theorem 4.19 (Sobolev embedding theorem). Suppose k > l and 1 6 p < q <∞ satisfy
(k − l)p < n and:

1

q
=

1

p
− k − l

n
.

Then W k,p(Rn) embeds continuously into W l,q(Rn).

If kp > n, then W k,p(Rn) embeds continuously into the Hölder space Ck−
[
n
p

]
−1,γ

(Rn),
where [x] is the largest integer less than or equal to x, and

γ =

{ [
n
p

]
+ 1− n

p
n
p 6∈ Z,

any element of (0, 1) n
p ∈ Z.

Here we have introduced the Hölder space Cm,κ(Rn) which consists of f ∈ Cm(Rn)
such that:

‖f‖Cm,κ(Rn) :=
∑
α6m

sup
x∈Rn

|Dαf(x)|+
∑
α=m

sup
x,y∈Rn

|Dαf(x)−Dαf(y)|
|x− y|κ

<∞.

We shan’t attempt to prove the general Sobolev embedding theorems, but will establish a
special case later on.

4.6.2 The space Hs(Rn)

We shall immediately specialise to the case p = 2 and Ω = Rn. This is an important
special case for two reasons. Firstly, W k,2(Ω) is a Hilbert space (in addition to being
a Banach space), and so carries additional structure. Secondly, W k,2(Rn) is very well
adapted to the Fourier transform. To see this, we recall that if f ∈ L2(Rn), then:

T̂f = Tf̂

where f̂ ∈ L2(Rn) is the Fourier-Plancherel transform of f . We immediately obtain an
alternative characterisation of the space W k,2(Rn). A function f ∈ L2(Rn) belongs to
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W k,2(Rn) if and only if: ∫
Rn

(
1 + |ξ|2

)k ∣∣∣f̂(ξ)
∣∣∣2 dξ <∞.

Notice that in this characterisation there is no need to restrict k to be an integer, nor in
fact for f to belong to L2(Rn). This motivates the following definition. For s ∈ R we say
that f ∈ S ′ belongs to the space Hs(Rn) provided f̂ ∈ L2

loc.(Rn) and:

‖f‖Hs(Rn) :=

(∫
Rn

(
1 + |ξ|2

)s ∣∣∣f̂(ξ)
∣∣∣2 dξ) 1

2

<∞.

Hs(Rn) is complete, and moreover is a Hilbert space. We see that if k ∈ Z>0 then
Hk(Rn) = W k,2(Rn), where we make the canonical identification between a functions
f ∈ L2(Rn) and the distribution Tf ∈ S ′(Rn). From now on, we shall use f to mean
both the function and the distribution.

Exercise 4.1. Let s ∈ R.

a) Show that S is a dense subset of Hs(Rn).

b) Find a condition on s such that δx ∈ Hs(Rn).

c) Show that Ht(Rn) is continuously embedded in Hs(Rn) for s < t.

d) Show that the derivative Dα is a bounded linear map from Hs+k(Rn) into
Hs(Rn), where k = |α|.

e) (*) Show that the pairing 〈, 〉 : H−s(Rn) × Hs(Rn) → C, which acts on
f ∈ H−s(Rn), g ∈ Hs(Rn) by

〈f, g〉 =
1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ

is well defined, and show that the map g 7→ 〈f, g〉 is a bounded linear operator
on Hs(Rn). Deduce that Hs(Rn)′ may be identified with H−s(Rn). How
does this relate to your answer to part b)?

4.6.3 Sobolev Embedding

An important feature of the Sobolev spaces Hs(Rn) is that for s sufficiently large, they
embed into Ck(Rn). More previsely:

Theorem 4.20. Fix k ∈ Z>0. Suppose that f ∈ Hs(Rn) for some s > k + n
2 , then

(possibly after redefinition on a set of measure zero) f ∈ Ck(Rn). That is, we have:

Hs(Rn) ⊂ Ck(Rn).
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Proof. First suppose f ∈ S (Rn). Then by the Fourier inversion theorem we have for
|α| 6 k:

Dαf(x) =
i|α|

(2π)n

∫
Rn
eix·ξξαf̂(ξ)dξ.

We estimate with the Cauchy-Schwarz inequality:

|Dαf(x)| = 1

(2π)n

∣∣∣∣∫
Rn
eix·ξξαf̂(ξ)dξ

∣∣∣∣
6

1

(2π)n

∫
Rn

∣∣∣ξαf̂(ξ)
∣∣∣ dξ

6
1

(2π)n

(∫
Rn

(1 + |ξ|2)s
∣∣∣f̂(ξ)

∣∣∣2 dξ) 1
2

(∫
Rn

|ξα|2

(1 + |ξ|2)s
dξ

) 1
2

Now, since |ξα|2 6 ck(1 + |ξ|2)k for some ck > 0, we have that:

1

(2π)n

(∫
Rn

|ξα|2

(1 + |ξ|2)s
dξ

) 1
2

6
ck

(2π)n

(∫
Rn

1

(1 + |ξ|2)s−k
dξ

) 1
2

=: Cn,k,s <∞

where we have used s > k + n
2 in order to ensure that the integral converges. We thus

have that:
sup

|α|6k,x∈Rn
|Dαf(x)| 6 Cn,k,s ‖f‖Hs(Rn) . (4.12)

Now suppose f ∈ Hs(Rn). We can approximate f by a sequence (fm)∞m=1 with
fm ∈ S (Rn) and fm → f in Hs(Rn) and pointwise almost everywhere. In particular,
(fm) is Cauchy in Hs(Rn), so by the estimate (4.12) applied to fm− fl we have that (fm)
is Cauchy in Ck(Rn), thus there exists f∗ ∈ Ck(Rn) such that Dαfm → Dαf∗ uniformly
for all |α| 6 k. Since fm → f pointwise almost everywhere, we deduce that f = f∗ almost
everywhere.

Exercise 4.2. a) Suppose s = n
2 + γ for some 0 < γ < 1. Show that there

exists a constant Cn,γ > 0 such that for all x, y ∈ Rn:∫
Rn

∣∣eix·ξ − eiy·ξ∣∣2
|ξ|2s

dξ 6 Cn,γ |x− y|2γ

b) Show that if s = n
2 + k + γ for some k ∈ Z>0, 0 < γ < 1, then

Hs(Rn) ⊂ Ck,γ(Rn).

Exercise 4.3. Fix s ∈ R, and suppose that f ∈ Hs(Rn).

a) Show that there exists a unique u ∈ Hs+4(Rn) which solves:

∆2u+ u = f.

b) Show further that there exists C > 0 such that ‖u‖Hs+4 6 C ‖f‖Hs .

c) For what values of s does the equation hold in the sense of classical derivatives
(possibly after redefining u, f on a set of measure zero)?
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4.6.4 The trace theorem

We are often interested in the restriction of a function defined on Rn, or some open subset,
to some hypersurface Σ ⊂ Rn. For example, when studying a PDE problem posed in
some nice domain Ω we might wish to impose a boundary condition on ∂Ω. If we work
with functions in Hs(Rn) for s > 0, which are defined only almost everywhere, then this
is a problem, since for nice domains ∂Ω will have Lebesgue measure zero. The trace
theorem allows us to make sense of the restriction of a function in Hs to a hypersurface
Σ, even when we don’t have f ∈ C0 by Sobolev embedding. We restrict to the problem
of defining f |{xn=0} when f ∈ Hs(Rn) is given, however by combining this result with
coordinate transformations it is fairly easy to see how to generalise to the case of smoothly
embedded submanifolds.

Theorem 4.21. Let s > 1
2 . Then there is a bounded linear map T : Hs(Rn)→ Hs− 1

2 (Rn)
such that

Tf = f |{xn=0}

for all f ∈ Hs(Rn) ∩ C0(Rn).

Proof. See Exercise 4.4.

Exercise 4.4. Assume s > 1
2 and suppose u ∈ S (Rn). Define Tu ∈ S (Rn−1)

by:
Tu(x′) = u(x′, 0), x′ ∈ Rn−1.

a) Show that if ξ′ ∈ Rn−1:

T̂ u(ξ′) =
1√
2π

∫
R
û(ξ′, ξn)dξn.

b) Deduce that:

∣∣∣T̂ u(ξ′)
∣∣∣2 6

1

2π

(∫
R

(1 + |ξ|2)s
∣∣û(ξ′, ξn)

∣∣2 dξn)
∫

R

dξn(
1 + |ξ|2

)s
 ,

where ξ = (ξ′, ξn).

c) By changing variables in the second integral above to ξn = t
√

1 + |ξ′|2,
conclude that there exists a constant C(s) such that:

‖Tu‖
Ĥs− 1

2 (Rn−1)
6 C(s) ‖u‖Ĥs(Rn) .

d) Conclude that T extends to a bounded linear operator T : Hs(Rn) →
Hs− 1

2 (Rn−1).



4.6 Sobolev spaces 117

e) (*) Suppose v ∈ S (Rn−1) and let φ ∈ C∞c (R) satisfy
∫
R φ(t)dt =

√
2π.

Define u through its Fourier transform by:

û(ξ′, ξn) =
v̂(ξ′)√
1 + |ξ′|2

φ

 ξn√
1 + |ξ′|2

 .

Show that there exists a constant C > 0 such that:

‖u‖Hs(Rn) 6 C ‖v‖
Hs− 1

2 (Rn−1)

and that Tu = v. Conclude that T : Hs(Rn)→ Hs− 1
2 (Rn−1) is surjective.

4.6.5 The space H1
0 (Ω)

Suppose that Ω is an open subset of Rn. For any function f ∈ C∞c (Ω), we can trivially
extend to an element of C∞c (Rn) by f(x) = 0 for x ∈ Ωc, so can abuse notation slightly
to denote by C∞c (Ω) the space of smooth functions f : Rn → C with support in some
compact K ⊂ Ω. We define H1

0 (Ω) to be the completion of C∞c (Ω) with respect to the
H1(Rn)-norm. H1

0 (Ω) is a Hilbert space, equipped with the inner product:

(u, v)H1 =

∫
Ω

(
Du(x) ·Dv(x) + u(x)v(x)

)
dx.

Let u ∈ H1
0 (Ω). Then by definition there exists a sequence (φn)∞n=1, with φn ∈ C∞c (Ω)

and φn → φ in H1(Rn). Since for any open U ⊂ Rn we have

‖fn − f‖L2(U) 6 ‖fn − f‖L2(Rn) 6 ‖fn − f‖H1(Rn) ,

we deduce that fn|U → f |U in L2. If we choose U = Ωc, we conclude that if f ∈ H1
0 (Ω)

then f |Ωc = 0 almost everywhere.
If we assume the boundary of Ω is smooth, i.e. is an embedded smooth (n−1)-manifold,

then we can make sense of the restriction of f to ∂Ω in the trace sense, and since the
trace operator is a continuous map from H1(Rn), we find that f vanishes on ∂Ω in the
trace sense.

For many PDE problems, one wishes to solve some equation in an open set Ω, subject
to the condition that the solution vanishes on the boundary of Ω. Seeking a solution in
H1

0 (Ω) is often a convenient way to encode this boundary condition.

4.6.6 Rellich–Kondrachov

The Rellich–Kondrachov theorem is an important result concerning Sobolev spaces, with
applications in PDE, calculus of variations and beyond. It concerns compact embedding
for Sobolev spaces defined on a bounded domain. We shall prove a version of the result
for the space H1

0 (Ω), where Ω is a bounded open set.

Theorem 4.22 (Rellich–Kondrachov). Suppose that Ω is a bounded open set and that
(ui)

∞
i=1 is a bounded sequence in H1

0 (Ω). Then there exists u ∈ H1
0 (Ω) and a subsequence

(uij )
∞
j=1 such that:
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i) uij ⇀ u in H1
0 (Ω), and

ii) uij → u in L2(Ω).

Proof. By assumption, we have that

‖ui‖L2(Ω) 6 ‖ui‖H1
0 (Ω) 6 K

so (ui)
∞
i=1 is bounded in both H1

0 (Ω), and L2(Ω), and we immediately deduce from the
Banach–Alaoglu theorem that there exists u ∈ H1

0 (Ω) and a subsequence (uij )
∞
j=1 such

that uij ⇀ u in H1
0 (Ω), and uij ⇀ u in L2(Ω). For convenience, let us set wj = uij so

that wj ⇀ u in H1
0 (Ω), and wj ⇀ u in L2(Ω). Thus our goal is to improve the weak-L2

convergence of (wj) to strong-L2 convergence.
Fix ε > 0. We make use of Parseval’s Formula (Theorem 4.6) to give:

‖wj − u‖2L2 =
1

(2π)n
‖ŵj − û‖2L2

=
1

(2π)n

∫
|ξ|<R

|ŵj(ξ)− û(ξ)|2 dξ +
1

(2π)n

∫
|ξ|>R

|ŵj(ξ)− û(ξ)|2 dξ

We deal with the two integrals on the final line separately. First we estimate:

1

(2π)n

∫
|ξ|>R

|ŵj(ξ)− û(ξ)|2 dξ 6 2

(2π)nR2

∫
|ξ|>R

|ξ|2 (|ŵj(ξ)|2 + |û(ξ)|2)dξ

6
2K2

(2π)nR2
< ε,

provided R > 0 is chosen sufficiently large.
Now consider the remaining integral that we need to bound. First, we note that

ŵj(ξ) =

∫
Ω
wj(x)e−ix·ξdx = (wi, e−ξ)L2(Ω) ,

where we recall ey(x) = eix·y. Noting that e−ξ ∈ L2(Ω) since |Ω| <∞, and that wj ⇀ u
in L2(Ω), we deduce that for each ξ ∈ Rn:

ŵj(ξ)→ û(ξ).

We can also estimate, for |ξ| < R:

|ŵj(ξ)− û(ξ)|2 6 2 |ŵj(ξ)|2 + 2 |û(ξ)|2 6 2
(
‖ŵj‖2L∞ + ‖û‖2L∞

)
6 2

(
‖wj‖2L1(Ω) + ‖u‖2L1(Ω)

)
6 2|Ω|

(
‖wj‖2L2(Ω) + ‖u‖2L2(Ω)

)
6 4K2|Ω| ∈ L1(BR(0))

So by the dominated convergence theorem we deduce that

1

(2π)n

∫
|ξ|<R

|ŵj(ξ)− û(ξ)|2 dξ → 0
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as j →∞, so that for j sufficiently large we have established:

‖wj − u‖2L2 < 2ε

Corollary 4.23. Let Ω ⊂ Rn be open and bounded. Suppose that L : L2(Ω)→ H1
0 (Ω) is

a bounded linear operator, then L : L2(Ω)→ L2(Ω) is compact.

Exercise 4.5. Suppose that Ω ⊂ Rn is open and bounded. For u ∈ H1
0 (Ω),

define the Dirichlet energy:

E[u] =

∫
Ω
|Du|2 dx.

a) Suppose that (ui)
∞
i=1 is a sequence with ui ∈ H1

0 (Ω) such that ui ⇀ u. Show
that E[u] 6 lim infiE[ui].

b) Consider the set

E1 = {E[u] : u ∈ H1
0 (Ω), ‖u‖L2 = 1}

Let λ1 := inf E . Show that there exists w1 ∈ H1
0 (Ω) with ‖w1‖L2 = 1 and

E[w1] = λ1, and deduce λ1 > 0.

c) Deduce that:

λ1 ‖u‖2L2 6
∫

Ω
|Du|2 dx

holds for all u ∈ H1
0 (Ω), with equality for u = w1. This is Poincaré’s

inequality.

d) By considering u = w1 + tφ for t ∈ R, φ ∈ D(Ω), or otherwise, show that w1

satisfies
−∆w1 = λ1w1,

where we understand this equation as holding in D ′(Ω).

e) (*) Suppose χ ∈ C∞c (Ω), and let v = χw1. Show that v satisfies −∆v+v = f ,
where we understand the equation as holding in S ′(Rn), where f ∈ L2(Rn).
Deduce that v ∈ H2(Rn). By iterating this argument, deduce that w1 ∈
H1

0 (Ω) ∩ C∞(Ω).

f) (*) By considering

E2 = {E[u] : u ∈ H1
0 (Ω), ‖u‖L2 = 1, (u,w1)L2 = 0},

or otherwise, show that there exists λ2 > λ1 and w2 ∈ H1
0 (Ω) ∩ C∞(Ω) with

w2 6= w1, ‖w2‖L2 = 1 solving

−∆w2 = λ2w2.
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4.7 PDE Examples

4.7.1 Elliptic equations on Rn

Consider the following equation on Rn, with k > 0:

−∆u+ k2u = f,

where f is given and we wish to find u. Suppose that f ∈ Hs(Rn) for some s ∈ R. We
claim that there is a unique solution u ∈ Hs+2(Rn). Our assumptions on u, f permit us
to take the Fourier transform of the equation so that:

(|ξ|2 + k2)û(ξ) = f̂(ξ)

holds pointwise almost everywhere. Since |ξ|2 + k2 > C(1 + |ξ|2) > 0 for some C, we can
divide through to find

û(ξ) =
f̂(ξ)

|ξ|2 + k2
,

again using |ξ|2 + k2 > C(1 + |ξ|2) > 0 we deduce:

‖u‖Hs+2(Rn) 6 C ‖f‖Hs(Rn) .

Thus we indeed have that u ∈ Hs+2(Rn). Uniqueness follows from the injectivity of the
Fourier transform. Note that if s > n

2 then f ∈ C0(Rn) and u ∈ C2(Rn), so that we in
fact have a classical solution to the PDE. Note also that the solution is more regular than
the data. This is an example of a phenomenon known as elliptic regularity.

4.7.2 Elliptic boundary value problems

Suppose that Ω ⊂ Rn is open, assume f : Ω→ R is given, and consider the equation:{
−∆u+ u = f in Ω

u = 0 on ∂Ω.
(4.13)

We wish to reformulate this so that we can solve it. In order to incorporate the boundary
condition, we shall seek a solution u ∈ H1

0 (Ω). Since an element of H1
0 (Ω) only has weak

derivatives in L2 up to first order, we need to recast the equation in a form that makes
sense. To do this, suppose we have a sufficiently regular solution, conjugate the equation
and multiply it by v ∈ C∞c (Ω) to deduce, after integrating by parts:∫

Ω

(
Du ·Dv + uv

)
dx =

∫
Ω
fvdx (4.14)

holds for all v ∈ C∞c (Ω). We realise that, if f ∈ L2(Ω), we are seeking u ∈ H1
0 (Ω) such

that:
(u, v)H1 = (f, v)L2

for all v ∈ C∞c (Ω). We also notice that since C∞c (Ω) is dense in H1
0 (Ω), this is equivalent

to requiring the condition holds for v ∈ H1
0 (Ω). We say that u ∈ H1

0 (Ω) is a weak solution
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of (4.13) if (4.14) holds for all v ∈ H1
0 (Ω). Clearly, if u is a classical solution then it is a

weak solution.
Now, for f ∈ L2(Ω), the map F : H1

0 (Ω) → C given by v 7→ (f, v)L2 is a bounded
linear operator, hence we can apply Riesz representation theorem for the Hilbert space
H1

0 (Ω) to deduce that there exists a unique ũ ∈ H1
0 (Ω) such that F (v) = (u, v)H1 for all

v ∈ H1
0 (Ω). This is precisely the solution we seek! In conclusion, then, we have shown:

Lemma 4.24. Given f ∈ L2(Ω) there exists a unique u ∈ H1
0 (Ω) solving (4.13) in the

sense that (4.14) holds for all v ∈ H1
0 (Ω).

We note that setting v = u in (4.14), and using Cauchy-Schwarz we have:

‖u‖2H1 = (f, u)L2 6 ‖f‖L2 ‖u‖L2 6 ‖f‖L2 ‖u‖H1 ,

so that
‖u‖H1 6 ‖f‖L2 .

We will now show that we can improve the regularity of u, at least in the interior
of Ω, provided we make some assumptions on f . For this, we introduce the space (here
k ∈ Z>0)

Hk
loc.(Ω) =

{
u : Ω→ C| χu ∈ Hk(Rn), for all χ ∈ C∞c (Ω)

}
Fix a compact K ⊂ Ω and suppose that the real function χ ∈ C∞c (Ω) satisfies χ(x) = 1

for x ∈ K. Let φ ∈ S (Rn), then since χφ ∈ C∞(Ω), we can set v = χφ in (4.15):∫
Ω
Du ·D(χφ) + uχφdx =

∫
Ω
fχφdx

rearranging, we have:∫
Ω
D(χu) ·Dφ+Du · (Dχ)φ−Dφ · (Dχ)u+ uχφdx =

∫
Ω
fχφdx

and hence: ∫
Ω
−(χu)∆φ+ 2Du · (Dχ)φ+ φ(∆χ)u+ uχφdx =

∫
Ω
fχφdx

So that v = χu satisfies: ∫
Rn
v(−∆φ+ 1)dx =

∫
Rn
gφdx,

where
g = −2Du · (Dχ)− u∆χ+ fχ ∈ L2(Rn).

We have deduced that v ∈ H1(Rn) satisfies:

−∆v + v = g
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in the sense of S ′(Rn). Now, by the results of the previous section, we deduce v ∈ H2(Rn)
with:

‖v‖H2 6 C ‖g‖L2 .

Further, v(x) = u(x) for all x ∈ K. Suppose χ̃ ∈ C∞c (Ω), then by applying the above
argument with the compact set K = supp χ̃ we deduce that χ̃u = χ̃χu ∈ H2(Rn). Thus
u ∈ H1

0 ∩H2
loc.(Ω).

Now suppose that f ∈ L2 ∩H1
loc.(Ω). Repeating the above argument, we notice that

g ∈ H1(Rn), and so v ∈ H3(Rn), and as a consequence we can conclude u ∈ H1
0∩H3

loc.(Rn).
Iterating, we find:

Theorem 4.25. Suppose Ω ⊂ Rn is open and f ∈ L2 ∩ Hk
loc.(Ω). Then there exists a

unique u ∈ H1
0 ∩ H

k+2
loc. (Ω) solving (4.13) in the weak sense. In particular, by Sobolev

embedding if f ∈ L2 ∩ C∞(Ω), then u ∈ H1
0 ∩ C∞(Ω).

Now, if u ∈ C∞(Ω), then we can see that the equation −∆u+ u = f must hold in Ω
in the classical sense. If we assume more regularity of the boundary (and f), then we can
also show that u extends to the boundary as a continuous function, and the boundary
condition holds classically also. Discussing boundary regularity would take us beyond the
remit of this course however.

We note, that our proof shows that the elliptic regularity phenomenon that we observed
above for an equation on Rn is in fact localisable: if (−∆u+ u) is smooth in the interior
of some open set, then u is smooth in that set. This is certainly not true for (for example)
the wave operator −∂2

t + ∆. It is straightforward (try it!) to find a function that satisfies
the wave equation in one dimension, hence utt − uxx = 0 ∈ C∞(R2), but for which
u /∈ C∞(R2).

Spectral theory for elliptic boundary value problems

We now assume that Ω ⊂ Rn is both open and bounded. Let us represent by A the map
which takes f ∈ L2(Ω) to the unique solution u ∈ H1

0 (Ω) to (4.13). We can check that
A is linear, since if u = Af and w = Ag for some f, g ∈ L2(Ω) and a ∈ C, then for any
v ∈ H1

0 (Ω) we have:

(u+ aw, v)H1 = (u, v)H1 + a(w, v)H1 = (f, v)L2 + a(g, v)L2 = (f + ag, v)L2

so that Af + aAg = A(f + ag). Moreover, A : L2(Ω) → L2(Ω) is Hermitian. Suppose
u = Af and w = Ag for some f, g ∈ L2(Ω). Then

(f,Ag)L2 = (f, w)L2 = (u,w)H1 = (w, u)H1 = (g, u)L2 = (Af, g)L2 .

Finally, by Corollary 4.23 we have that A : L2(Ω) → L2(Ω) is compact. Thus by the
spectral theorem for compact operators (see Linear Analysis), the spectrum of A takes the
form σ(A) = {0, µ1, µ2, . . .}, where µk ∈ R, µk → 0. Further, there exists an orthonormal
basis for L2(Ω) consisting of eigenvectors of A. An eigenvector of A satisfies Aw = µw
for µ ∈ R, and thus for v ∈ H1

0 (Ω):

(w, v)L2 = (Aw, v)H1 = µ(w, v)H1 (4.15)
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Setting v = w we deduce µ > 0, so in particular µ 6= 0, and we deduce that w solves:

−∆w + w =
1

µ
w

in the weak sense. This means that we can test the equation against elements of
H1

0 (Ω) (alternatively, we can understand the equation as holding in D ′(Ω)). Now, since
µ−1w ∈ H1

0 (Ω), we conclude from our previous work that w ∈ H1
0 ∩ H3(Ω). Hence

w ∈ H1
0 ∩H5(Ω), etc. We conclude, after Sobolev embedding that w ∈ C∞(Ω).

Finally, noting that an eigenfunction of (−∆ + 1) is also an eigenfunction of −∆, we
have shown:

Theorem 4.26. Let Ω ⊂ Rn be open and bounded. Then there exists an orthonormal
basis {wk}∞k=1 for L2(Ω) such that wk ∈ H1

0 ∩ C∞(Ω) satisfy

−∆wk = λkwk in Ω,

where λ1 6 λ2 6 λ3 6 · · · , and λk → ∞. (In fact, by Exercise 4.5 we can show that
0 < λ1).

Exercise 4.6. Let H be the completion of S (Rn) with respect to the norm

‖u‖H :=

(∫
Rn

(
|Du|2 + |x|2 |u|2

)
dx

) 1
2

a) Show that H is a Hilbert space with the inner product:

(u, v)H :=

∫
Rn

(
Du ·Dv + |x|2uv

)
dx,

and show that if u ∈ H,χ ∈ C∞c (BR(0)), then χu ∈ H1
0 (BR(0)), with

‖χu‖H1 6 CR,χ ‖u‖H for some constant CR,χ > 0.

b) Show that H embeds compactly into L2(Rn), that is H ⊂ L2(Rn) and if
(un)∞n=1 is a bounded sequence in H then it admits a subsequence which
converges in L2(Rn).
[Hint: take a subsequence converging weakly in both H and L2(Rn), and write
un = unχR + un(1 − χR), where χR ∈ C∞c (BR(0)) satisfies χR(x) = 1 for
|x| < R− 1, where R is to be chosen.]

c) If f ∈ L2(Rn), we say that u ∈ H is a weak solution of:

−∆u+ |x|2u = f (†)

if
(u, v)H = (f, v)L2 for all v ∈ H. (�)

Show that if u, f ∈ S (Rn) solve (†), then u satisfies (�). Show that for any
f ∈ L2(Rn), there exists a unique solution u ∈ H to (�).
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d) Denote by Lf the unique solution u ∈ H to (�) for f ∈ L2(Rn). Show that the
map f 7→ Lf is a compact, symmetric, linear operator L : L2(Rn)→ L2(Rn).
Deduce that there exists an orthonormal basis (wk)∞k=1 for L2(Rn) consisting
of wk ∈ H satisfying:

(wk, v)H = λk(wk, v)L2 for all v ∈ H, ([)

where 0 < λ1 6 λ2 6 λ3 6 · · · , and λk →∞.

e) Show that if wk ∈ H satisfies ([), then in fact wk ∈ C∞(Rn). Show further
that ŵk will also solve ([) with the same λk. Deduce that there exists
an orthonormal basis for L2(Rn), consisting of smooth functions, which
diagonalises the Fourier–Plancherel transform.

f) (**) Show that w ∈ H ∩ C∞(Rn) satisfies:

−∆w + |x|2w = λw

for some λ ∈ R if and only if:

w(x) = Hk1(x1) · · ·Hkn(xn)e−
1
2
|x|2 ,

where x = (x1, . . . , xn), Hk(t) are the Hermite polynomials, and λ = n +
2k1 + . . . 2kn.
[Hint: treat the case n = 1 first. You may wish to look up the simple harmonic
oscillator in a textbook on quantum mechanics.]

4.7.3 Spaces involving time

For certain PDE problems it’s useful to separate out the time direction from the spatial
directions. To do this, it’s useful to introduce some new function spaces:

Definition 4.3. Given a Banach space (X, ‖·‖X), and an interval I ⊂ R, the space
C0(I;X) is the space of continuous functions u : I → X.

If I is open, we define Ck(I;X) for k > 0 inductively as follows. We say u ∈
Ck−1(I;X) belongs to Ck(I,X) if there exists u′ ∈ Ck−1(I;X) such that for each t ∈ I:∥∥∥∥u(t+ ε)− u(t)

ε
− u′(t)

∥∥∥∥
X

→ 0, as ε→ 0.

A typical example of X will be one of the space Hs(Rn) for s > 0.

4.7.4 The heat equation

Let us now give another example to show how powerful the Fourier transform can be for
solving PDE problems. Let us consider the heat equation on Rn. The problem we shall
consider is, given u0 : Rn → R, determine u : Rn × [0, T )→ R, such that{

ut = ∆u in (0, T )× Rn,
u = u0 on {0} × Rn (4.16)
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We suppose that our solution is a continuous mapping from (0, T ) intoH2(Rn), i.e. for each
fixed t we wish u(t, ·) =: u(t) to be an element of H2(Rn). In terms of the function spaces
above u ∈ C0((0, T );H2(Rn)). We will also suppose that u is continuously differentiable
as a mapping from (0, T ) into L2(Rn). In other words, u ∈ C1((0, T );L2(Rn)). Finally,
we wish for the initial condition to make sense, so we also require u ∈ C0([0, T );L2(Rn).

Exercise(∗). Show that if u ∈ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)), then
denoting by û the Fourier transform of u in the spatial variables:

û(t, ξ) = lim
R→∞

∫
BR(0)

u(t, x)e−ix·ξdx,

we have û ∈ C0((0, T );L2(Rn)) ∩ C1((0, T );L2(Rn)).

Let us, then, seek a solution of (4.16) such that

u ∈ C0([0, T );L2(Rn)) ∩ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn))

Under this assumption we can take the Fourier transform of (4.16) for (t, x) ∈ (0, T )×Rn
to get: {

ût(t, ξ) = − |ξ|2 û(t, ξ) (t, ξ) ∈ (0, T )× Rn,
û(0, ξ) = û0(ξ) ξ ∈ Rn

Now, the PDE has become an ODE for each fixed ξ! This ODE has a unique solution
given for almost every ξ ∈ Rn by:

û(t, ξ) = û0(ξ)e−t|ξ|
2

.

We note that if u0 ∈ L2(Rn), then û0 ∈ L2(Rn) and thus û ∈ C0([0, T );L2(Rn)) ∩
C1((0, T );L2(Rn)). In fact, for t > 0, we have that û(t, ξ) and ût(t, ξ) are rapidly
decaying functions of ξ, in particular they belong to Hs(Rn) for any s > 0, so we have
that u(t, x) is smooth in x. Since u satisfies the equation (∂t)

nu = (∆)nu, we have that
u is smooth in both t and x. We can recover u(t, x) via the inverse Fourier transform
formula:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ. (4.17)

Summarising, we have the following result:

Lemma 4.27. Suppose u0 ∈ L2(Rn). Then (4.16) admits a unique solution u such that

u ∈ C0([0, T );L2(Rn)) ∩ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn))

given by (4.17). In fact,
u ∈ C∞((0, T )× Rn).

Even with very rough initial data, the heat equation instantaneously gives a smooth
solution. This is an example of what is known as parabolic regularity.
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Exercise 4.7. Suppose that u0 ∈ L1(Rn) ∩ L2(Rn) and that u(t, x) is the
solution of the heat equation with initial data u0. Explicitly, u is given by:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ,

for t > 0.

a) Show that:
‖u(t, ·)‖L2 6 ‖u0‖L2 ,

b) Show that:
u(t, x) = u0 ? Kt(x)

where the heat kernel is given by:

Kt(x) =
1

(4πt)
n
2

e−
|x|2
4t .

c) Suppose that u0 > 0. Show that u > 0, and:

‖u(t, ·)‖L1 = ‖u0‖L1 .

Exercise 4.8. Consider the free Schrödinger equation:{
ut = i∆u in (0, T )× Rn,
u = u0 on {0} × Rn (∗)

Suppose u0 ∈ H2(Rn).

a) Show that (∗) admits a unique solution u such that

u ∈ C0([0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)),

whose spatial Fourier-Plancherel transform is given by:

û(t, ξ) = û0(ξ)e−it|ξ|
2

.

b) Show that:
‖u(t, ·)‖H2(Rn) = ‖u0‖H2(Rn)

*c) For t > 0, let Kt ∈ L1
loc.(Rn) be given by:

Kt(x) =
1

(4πit)
n
2

e
i|x|2
4t ,

where for n odd we take the usual branch cut so that i
1
2 = ei

π
4 . For ε > 0 set

Kε
t (x) = e−ε|x|

2

Kt(x).
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i) Show that TKε
t
→ TKt in S ′ as ε→ 0.

ii) Show that if <(σ) > 0, then:∫
R
e−σx

2−ixξdx =

√
π

σ
e−

ξ2

4σ .

iii) Deduce that

K̂ε
t (ξ) =

(
1

1 + 4itε

)n
2

e
−it|ξ|2
1+4itε

iv) Conclude that:
T̂Kt = TK̃t ,

where K̃t = e−it|ξ|
2

.

*d) Suppose that u ∈ S (Rn). Show that for t > 0:

u(t, x) =

∫
Rn
u0(y)Kt(x− y)dy,

and deduce that for t > 0:

sup
x∈Rn

|u(t, x)| 6 1

(4πt)
n
2

‖û0‖L1 .

This type of estimate which shows us that (locally) solutions to the Schrödinger
equation decay in time is known as a dispersive estimate.

4.7.5 The wave equation

Now let us consider the wave equation on Rn. The problem we shall consider is, given
u0, u1 : Rn → R, determine u : Rn × (−T, T )→ R, such that

utt = ∆u in (−T, T )× Rn,
u = u0 on {0} × Rn
ut = u1 on {0} × Rn

(4.18)

We will seek a solution in the space:

Xs := C0((−T, T ), Hs+2(Rn)) ∩ C2((−T, T )×Hs(Rn)).

Fourier transforming in the spatial variable, we have: ûtt(t, ξ) = − |ξ|2 û(t, ξ) (t, ξ) ∈ (−T, T )× Rn,
û(0, ξ) = û0(ξ) ξ ∈ Rn
ût(0, ξ) = û1(ξ) ξ ∈ Rn

Again, this is an ODE for each fixed ξ, and we deduce:

û(t, ξ) = û0(ξ) cos (|ξ| t) + û1(ξ)
sin (|ξ| t)
|ξ|
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Notice that if u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn), then we conclude û ∈ Xs. Thus (after
taking the inverse Fourier transform) we have found the unique solution of the wave
equation in Xs.

Let’s specialise to R3. We’d like to write this solution as some sort of convolution,
at least for initial data in the Schwarz class. For this we need to find the (inverse)
Fourier transform of cos (|ξ| t) and sin(|ξ|t)

|ξ| , where we have to understand these functions
as tempered distributions. Let us define, for t > 0 the distribution:

Ut[φ] =
1

4πt

∫
∂Bt(0)

φ(y)dσy

for all φ ∈ S ′, where dσy is the surface measure on the sphere ∂Bt(0). This is a
distribution of compact support, so we can invoke Theorem 4.13 to find the Fourier
transform:

Ût = Tυ̂t

where:
υ̂t(ξ) = Ut[e−ξ] =

1

4πt

∫
∂Bt(0)

e−iξ·ydσy

We can perform this integral by choosing spherical polar coordinates for y with the axis
aligned with the vector ξ. Doing so, the integral becomes:

υ̂t(ξ) =
1

4πt

∫ π

θ=0

∫ 2π

φ=0
e−i|ξ|t cos θt2 sin θdθdφ

=
t

2

∫ 1

−1
e−i|ξ|tzdz =

t

2

(
e−i|ξ|t

−i |ξ| t
− ei|ξ|t

−i |ξ| t

)

=
sin (|ξ| t)
|ξ|

.

Now, let us return to our expression for u:

û(ξ) = û0(ξ) cos (|ξ| t) + û1(ξ)
sin (|ξ| t)
|ξ|

=
∂

∂t

(
û0(ξ)

sin (|ξ| t)
|ξ|

)
+ û1(ξ)

sin (|ξ| t)
|ξ|

Suppose u0, u1 ∈ S . Then by Theorem 4.10, we have:

u(t, x) =
∂

∂t
Ut ? u0(x) + Ut ? u1(x)

=
∂

∂t

(
1

4πt

∫
∂Bt(0)

u0(x− y)dσy

)
+

1

4πt

∫
∂Bt(0)

u1(x− y)dσy

=
∂

∂t

(
1

4πt

∫
∂Bt(x)

u0(y)dσy

)
+

1

4πt

∫
∂Bt(x)

u1(y)dσy

=
∂

∂t

(
t−
∫
∂Bt(x)

u0(y)dσy

)
+ t−
∫
∂Bt(x)

u1(y)dσy (4.19)
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Where for a surface Σ with surface measure σ:

−
∫

Σ
dσ :=

1

|Σ|

∮
Σ
dσ.

Expression (4.19) is known as Kirchoff’s formula. While our derivation assumes
u0, u1 ∈ S , this assumption can be relaxed. This expression tells us some interesting
facts about solutions to the wave equation. First note that the value of u(x, t) depends
only on the initial data on the sphere ∂Bt(x). This is known as the strong Huygens
principle. In particular this shows us that information is propagated at a finite speed by
the wave equation. Secondly, note that the value of u(x, t) depends on derivatives of u0.
This suggests that Ck−regularity is not propagated in wave evolution, although we have
already seen that Hs−regularity is propagated.

Exercise(∗). Let R3
∗ := R3 \ {0}, S∗,T := (−T, T )× R3

∗ and |x| = r. You may
assume the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave

equation on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave

equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST := (−T, T )×
R3, with

u(0, t) = f ′(t).

*d) By considering a suitable sequence of functions f , or otherwise, deduce that
there exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) 6 C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for
large |x|.
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