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Chapter 1

Lebesgue Integration Theory

1.1 Introduction

This course can be thought of as “putting the function into functional analysis”!. The
course Linear Analysis builds on earlier material in the Tripos to describe how a vector
space structure (the linear part) interacts with a topological structure (the analysis part).
This leads to a very beautiful abstract theory of Banach and Hilbert spaces, as well as
other more general topological vector spaces. In this course, we shall see how many of
these abstract results relate to more concrete spaces, in particular spaces of functions.

You are (hopefully) familiar from Part IB with the space C°([a,b]) of continuous
functions f : [a,b] — C, equipped with the norm:

[fllco = sup [f(z)].

a<lz<b

The completeness of this space follows from standard results concerning the uniform
convergence of sequences of uniformly continuous functions, hence this is a Banach space.
This space and its generalisations are important in many applications (for example in the
proof of the Picard-Lindel6f Theorem, and the Schauder Theory for elliptic PDE).

Other spaces of functions naturally arise in many settings. For example, when studying
Fourier series defined on [a, b], it is natural to consider the space of continuous functions
f :]a,b] — C equipped with the norm:

1= ( b If(:r)Ide>é-

This norm comes from an inner product in a natural way. This space is not complete:
we can construct a sequence of continuous functions f; such that (f;);en is Cauchy with
respect to the L? norm, but for which there is no continuous function f such that f; — f
in L2. One might hope to fix this by considering the space Z([a,b]) of Riemann integrable
functions, however, we encounter two issues. Firstly, there are non-zero f € Z%([a, b]) such
that || f]|;2 =0, so ||-|| ;2 ceases to be a norm. In order to avoid this we can work instead

!More ambitiously, one could attempt to “put the fun into putting the function into functional
analysis”, but we do not aim so high.
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with the space R([a,b]) = Z([a,b])/ ~ where we quotient by the equivalence relation
f~gif||f —gll;2 =0. The second issue is more serious: even working with the space
R([a,b]), we do not find completeness with respect to the L? norm.

Exercise(x). a) Find a sequence of continuous functions f; : [a,b] — C such
that (f;)ien is Cauchy with respect to the L? norm, but for which there is
no continuous function f : [a,b] — C such that f; — f in L.

b) Find a sequence f; € R([a,b]) such that (f;)en is Cauchy with respect to
the L? norm, but for which there is no f € R([a,b]) such that f; — f in L2

The solution to this problem is hopefully familiar to you. We should abandon the
Riemann integral and work instead with the Lebesgue integral. This brings in our second
pre-requisite course, Probability and Measure. The construction of the theory of measures
and the Lebesgue integral is considerably more involved than that of the Riemann integral,
however the pay-off is that the resulting theory of integration is much more powerful. In
this course, we shall briefly review the theory of Lebesgue integration that you should
have learned last term, before moving on to make use of measure theory, in combination
with functional analysis, to understand various function spaces with importance in many
branches of analysis.

1.2 Spaces of differentiable functions

Before reviewing integration, we briefly state some facts about the spaces of smooth
functions. Let Q C R™ be an open set. We denote by C*(Q) the space of all k-times
continuously differentiable complex valued functions on €2, and by

() = () CH®),
k=0

the set of smooth functions on €.

When dealing with partial derivatives of high orders, the notation can get rather messy.
To mitigate this, it’s convenient to introduce multi-indices. We define a multi-index a to
be an element of (Z()", i.e. a n—vector of non-negative integers a = (aq,...,a,). We
define |a| = a1 + ...+ oy, and

Oelf (0N (2N (2"
oz N 8331 8%2 8l‘n ’

in other words, we differentiate a; times with respect to z1, as times with respect to xo
and so on. When it’s unambiguous on which variables the derivative acts, we will also
use the more compact notation:

0
Di = 5
&xi
and o
(0%
pei=

.—%.
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For a vector z € R", we will also use the notation:
a® = (21)* (w2)"2 - - (2n) ™"
finally, we define
al = arlag! - ayl.

The spaces C*(Q2) and C°°(f) are vector spaces over C, where addition and scalar
multiplication are defined pointwise. If ¢1, 2 € C*(Q2) and A € C, we define the maps

¢1 + P2, Ap1 by
d1+ds : Q2—C, Ay Q—C, (11)
x = ¢1(x) + do(z), x = Ap1(x). '
Exercise(*). Show that with the definitions (1.1) the space C*(Q) is a vector
space over C, and that C'(2) is a vector subspace of C*(Q) provided k < I < oo.

Definition 1.1. If ¢ € C°(), the support of ¢ is the set:
supp¢ = {z € Q: ¢(z) # 0},

where the closure is understood to be relative® to Q. That is supp ¢ is the closure of the
set on which ¢ is not zero. We say that ¢ has compact support if supp ¢ is compact.

For 0 < k < 0o, we define C*() to be the subset of C*(2) consisting of functions
with compact support. C*(Q) is a vector subspace of C*(Q).

Theorem 1.1. There exists a function 1) € C2°(R™) such that

i) =0
ii) (0) # 0
iii) suppy C B1(0) :={x e R" : |z < 1}
iv) We have:
Y(x)dr = 1.
Rn
Proof. First, we note that the function:
0 t<0
1) =
x(t) { e t>0

is smooth, i.e. x € C®(R). Moreover, y > 0 and x(1) # 0. We define ¢y(z) =
X (1 -2 |m|2> Since the map « ~— |z|? is smooth, 1y € C(R™). We set:

Yo(x)
Y(z) = —~—r.
) = e d@)ds
It is easy to verify that v satisfies conditions i) — iv). O

2If Q C R™ is open, and A C Q, then the closure of A relative to € is the intersection of  with the
closure of A as a subset of R™. Note that the closure of A relative to {2 may not be closed as a subset of
R™.
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Corollary 1.2. For Q C R™ open, CZ°(Q2) is not the trivial subspace {0} C C>°(2).

Proof. Since € is open, there exists €, z such that the ball B.(z) = {y € R" : |y — z| < €}
is contained in Q. The function y — ¢ [e"(y — z)] is easily seen to belong to C2°(2). O

Exercise(x). Construct explicitly a function ¢ € CS°(R™) such that
Ho<uv<l

ii) supp¢ C Ba(0)

i) ¢(x) =1 for |z| < 1.

Suppose Q C €, where both are open subsets of R™. If ¢ € C*(Q), then we can
extend ¢ to a function on ' by setting ¢ = 0 on Q' \ . This extended function will
be smooth in €’ and we do not alter the support, so in this way we see that C¥(Q) is a
vector subspace of C*(Q).

The following result is useful:

Lemma 1.3. Suppose Q C R™ is open and K C Q is compact. Then d(K,00Q) > 0,
where:

d(K,00) = xe]i{Igl/fE@Q |z —yl.

Proof. K is compact, so K C Bp(0) for some R > 0. Let Qr = QN Br(0). Qg is
open and bounded, with K C Qg. It suffices to show that d(K,9Qr) > 0. Since Qg is
bounded, 0 is compact. Therefore the map:

f : KX@QR%RZ(),
($,y)’—> ‘x_yla

is a continuous map on a compact set, hence it achieves its minimum d at (zg, yp). Suppose
that d = 0, then x¢ = yo, but xop € K C Qg and yp € 0Qr C Q% a contradiction. Thus
d > 0 and we’re done. ]

Corollary 1.4. If ¢ € C*(Q), extend ¢ to R™ by ¢ = 0 on Q°. Define 1,0 by:

¢  Q—C,
y = ¢y — o). (1:2)

Then there exists € > 0 such that T,¢ € C*(Q) for all x € B.(0).

Proof. We have
SUpp Tz = supp ¢ + x

Since supp ¢ is compact, supp 7, ¢ is just a translate of a compact set, so is compact as a
subset of R™. We need to check that supp 7,¢ C Q. We have d(supp ¢, 9Q2) =6 > 0. Set
€ = 0/2. Then we have, by Lemma 1.3

supp ¢ + Bc(0) C

but if x € B(0), then supp 7,¢ C supp ¢ + B(0) and we’re done. O
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1.3 Review of integration

In this section we will briefly recall the main definitions and theorems of the theory
of measure and Lebesgue integration. We shall focus on the Lebesgue measure on R”.
Appendix B gives a much fuller account of the theory, and in particular contains proofs
of the results claimed below.

We start with the basic definition of a measure space.

Definition 1.2. Given a set E, a collection of subsets £ of E is called a o-algebra if:
i)beé&

ii) A€ & implies A={reFE:xg A} €&

ii) A, € € for n € N implies U, A, € E.

The pair (E,E) is called a measurable space and elements of £ are called measurable sets.
A measure on (E, &) is a function p: E — [0,00] such that:

i) u(@) =0
ii) If Ay € € for n € N are disjoint, then p(UnAyp) = >, n(A4y).
A triple (E, &, ) is called a measure space.

A simple example of a measure space is given by taking £ = 2F and p(A) = #A.
This is the counting measure. Given any collection A of subsets of E, we can define o(A),
the g-algebra generated by A to be the intersection of all g-algebras containing A. If £
is a topological space, the Borel algebra is the g-algebra generated by the open sets of F,
written B(E).

A particular case of interest is £ = R"™, on which we can define a o-algebra M, and
measure A with the following properties:

i) B(R") c M
ii) If Ais arectangle, i.e. A = (a1,b1] x -+ X (an, by], then A(A) = (b1 —ay) - (b —ay).

iii) A € M if and only for any € > 0 there exists an open set O and a closed set C' such
that C C A C O and
AMO\C) <e.

Since any open set in R” is the countable union of disjoint rectangles these conditions
determine M, X uniquely. We note that if A(A) < oo, then the set C in iii) above may
be assumed to be compact. Property iii) is sometimes referred to as Borel regularity. We
call M the g-algebra of Lebesgue measurable sets, and A is the Lebesgue measure. For
the Lebesgue measure, we often denote A\(A) by |A|, and p by dz.

Definition 1.3. A function f : E — G which maps between two measurable spaces (E,E),
(G, G) is measurable if f~Y(A) € € for all A € G. Special cases include:
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a) If (G,G) = (R, B(R)), we simply say f is a measurable function on (E,E).

b) If (G,G) = ([0,00],B([0,0¢])) we say f is a non-negative measurable function on
(E,E).

¢) If E,G are topological spaces with their Borel algebras then we say f is a Borel function
on E.

The class of measurable functions is closed under vector space operations, products
and limits.
A simple function is a function of the form

N
f= Z apl
k=1

for Ay € £ and ay constant (typically in [0,00], R or C). All simple functions are
measurable. For a non-negative simple function we define the integral

N
p(f) —/ fp =" apu(Ay),
E k=1
where 0 - oo = 0 by convention. For a non-negative measurable function we define
u(f) = /E fdp == sup {u(g) : g simple and 0 < g < f}.

A measurable function is integrable if pu(|f]) < oo, in which case we can write f = f*— f~
with f* non-negative and u(f*) < co. Then

u(f) = /E fdu = u(fH) — u(f).

The integral satisfies all the usual basic properties (linearity, additivity etc.), and agrees
with the Riemann integral when both are defined. We can also state two important
theorems for interchanging limits and integrals.

Theorem 1.5 (Monotone convergence). Let (f,)22; be an increasing sequence of non-
negative measurable functions on a measure space (E,E, u) which converge to f. Then

lm [ fady = / fd

Theorem 1.6 (Dominated convergence). Let (f,)22; be a sequence of measurable func-
tions on a measure space (E,E, 1) such that

i) fn — [ pointwise ae.

i) |fnl < g ae for some integrable g.
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Then:
lim | fody = / fu

Associated to each measure space (E, &, i) are scale of Banach spaces.

Definition 1.4. For 1 < p < oo, and f : E — C measurable, we define:

1l = ( / If!pdu>p-

I 1l oo :essEsup|f] =inf{C: |f] < C ae}.

while for p = oo we set

The space LP(E, ) is then defined to be
LP(E,p) ={f : E — C measurable : | f||;, < oo}/ ~

where we quotient by the equivalence relation f ~ g if f = g ae.
If E is a topological space and B(E) C &, we define LT (E, i) to consist of measurable

loc.

functions (modulo ~) such that flg € LP(E, ) for all compact K.
When our measure space is (R", M, \) we will often write LP(R"™) := LP(R"™, \).

Theorem 1.7. The space LP(E, ) equipped with the norm ||-||;, is a Banach space for
I<p<oo

It is useful also to note that the set S of complex valued simple functions on E such
that

n({a s s(z) # 0}) < oo

is dense in LP(E, u) for 1 < p < oo.

Exercise 1.1. Suppose f,g: F — C are measurable functions on some measure
space (E,E, ). Show that:

a) [fgllr < 1f 1l lgll e where 1< p, g, < oo satisfy p~ + ¢~ =77

[You may wish to first establish the special case r = 1./

b) I1f + gllpe < I fllze + lgllLe for 1< p < oo

Exercise 1.2. a) Suppose that pu(F) < oo. Show that if f € LP(E, ), then
f € LYE,p) for any 1 < g < p, with

[fllza < p(E) @ [|f]l Lo -
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b) Suppose that f € LPO(E, u) N LPY(E, p) with pp < p1 < 0o. For 0 < 6 < 1,

define py by
1 1-6 6

Po Po b1
Show that f € LP?(E, u) with

1F 1l oo < LA zm0 A1 %0

c¢) Show that for p; # pa we have LP1(R"™) ¢ LP2(R™). For which p;,ps do we
have LP* (R™) C L2 (R™)?

loc. loc.

Exercise 1.3. Let R be the set of rectangles of the form (a1, b1] x - - - X (ap, by,
with a;,b; € Q, and let Sg be the set of functions of the form

N
= (+iB)g,
k=1

for Ry € Rg and ag, B € Q. For 1 < p < oo show that Sgp is dense in LP(R")
and deduce that LP(R™) is separable. Show that L>°(R™) is not separable.
[Hint: for the last part exhibit an uncountable subset X C L*°(R™) such that

1f = gll e zn) > 1 for any f.g € X, f # ] .

1.4 Convolution and mollification

In this section, we are going to establish some results concerning mollification of functions
in LP(R™). The final result will be to establish the density of C2°(R") in LP(R"™) for
1 < p < oco. We first establish an important fact about the spaces LP(R™): namely that
the translation operator is continuous on these spaces. More concretely, for any z € R”
we set 7, f(x) = f(x — z). We then show:

Lemma 1.8. Suppose p € [1,00) and g € LP(R"). Let {2;}32; C R" be a sequence of
points such that z; — 0 as j — co. Then:

72,9 = gHLP(R") — 0.

Proof. 1. First, suppose g = 1g, where R = (a1,b1] X (ag,b2] X ... X (an,by] is a
rectangle, with side-lengths I,,, = b,, — a,, for m = 1,...,n. Now, since when a
box is translated by a vector z; each side is translated by a distance of at most |z,
and has area at most I"-.  where I,,4; is the longest side-length we can crudely
estimate

1
HTZJg gHLP R7) 2n|z]|Ir7rllax
Note that this estimate requires p < oo: it does not hold for p = co. We conclude
that:

]1320 |79 - gHLP(R") = 0.
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2. Now suppose g = 1 4, where A is a measurable set of finite measure. Fix € > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K C A and an
open U D A such that |U \ K| < €P. Since U is open, we can write U as a union of

open rectangles:
U= |J R

acd
Since K is compact, it is covered by a finite subset of these:

N
Kc|JRi =B
i=1
Now, note that K C B C U, so the symmetric difference AAB C U \ K. Thus?
114 = 15| Logny = |AAB|Y? < ¢. By the paragraph 1 above, we know that there
exists J such that for all j > J we have:
715 - ]IBHLP(R") <€
Therefore:
[ ]]'AHLP(R") =04 =7 lp + 75— 1p + 15 - ]IAHLP(R")
<74 - TZJ']IBHLP(R") + |7 1n — ]IBHLP(R") 15 = Lall ooy
=214 - ]lB”LP(R") + Hsz]lB - ]lBHLp(Rn)
< 3€

for all j > J. Thus
Jim 7,9 = gl 1o ny = O-
3. Now suppose ¢ is a simple function, g = Zf\i 19il4,, where g; € C and A; are
measurable sets of finite measure. Then we have:

N

HTng - gHLp(Rn) < Z |gl| HTZj]]‘Ai — ﬂAi
=1

Lp(R)

S0 as j — oo we have:

Jggo 729 = gHLP(R") =0

4. Now suppose that g € LP(R™). Fix € > 0. Recall that there exists a simple function
g=>1" gl with g; € C, |A;| < oo such that ||g — §||Lp(Rn) < €. By the previous

part, we can find J such that Hrzjg . gHLp( < e forall j = J. Now:

R™)
72,9 — gHLP(R”) =9 — 720+ -G+ 5 - gHLP(R")
< |9 - TngHLP(]R”) + |75 - gHLP(]R") +119 = 9ll o)
=2lg = 9l ey + 72,9 — QHLP(Rn)
< Je

3This is another point at which p # oo is crucial.
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Thus, we conclude that
jlggo |79 — gHLP(R”) =0

and we're done. O

If f, g are functions mapping R” to C, then we define the convolution of f and g to
be:

(fxg)(z) = - f(y)g(x — y)dy,

provided the integral exists. This will happen if (for example) f € L'(R") and g €
L>*(R,).

Lemma 1.9. Suppose f,g,h € C°(R™). Then:

frxg=g*f, frx(gxh)=(fxg)*h

and

/n(f*g)(x)dx = f(x)dfﬂ/ng(x)d:z.

R

Proof. With the change of variables y = x — z, we have?

(o)) = [ 1=y = [ f@=20== g5 )

Next, we calculate:

[f % (gx b)) (z) =

(y)g(w — y)dy> h(z — w)dw
)

= [(fxg) x| (z

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f,g,h € C2°(R™) to invoke Fubini’s theorem (Theorem B.30)

41f you're worried about a missing minus sign from the change of variables when n is odd, observe:

/: k(z)dz = [:)o k(-y)d(—y) = — /O;OO k(—y)dy = /: k(—y)dy.
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when passing from the second to third line. Finally, we calculate:

fyg(x — y)dy) dx

(
~ [ ([ rwata - spas) ay
(

) f(y)/ng(Z)dZ) dy
f@ids [ g2y

where again, the fact that f,g € C°(R"™) allows us to invoke Fubini. O]

The assumption that the functions are smooth and compactly supported is certainly
overkill in this theorem. It would be enough, for example, to consider functions in C?(R"),
or even weaker spaces, provided we can justify the application of Fubini’s theorem.

Exercise(x). Suppose that f,g,h € C°(R™).

a) Show that for any multi-index «, we have that D*f € LP(R™) for 1 < p < oo,
i.e. that

||Daf“Lp(Rn) = (/]R" |D* f(z)|P d:v) ' < .

b) Define
F : R"xR"
(z,y) = f(2)g(y — ).
Show that F € L}(R™ x R").
¢) For each x € R", set

G, : R"xR"
(y,2) = f(y)g(2)h(z —y — 2).

Show that G, € L*(R™ x R™).

1.4.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f % ¢ is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 1.10. Suppose f € L} . (R™) and g € C*(R™) for some k > 0. Then f*g €
Ck(R™) and
D(f +g) = fx D%,

for any multiindex with |a| < k.
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Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof. We introduce the difference quotient

fz + hei) — [(x)
- :

Lemma 1.11. a) Suppose f € CO(R") and {2;}2; C R" is a sequence with z; — 0 as
1 — 00. Then for any x € R":

Alf(z) =

i) 7, f(T) — f(z) as j — oo.
it) |72, f(x)] < (supgn | f]) Lp,(0) (@), for some R >0 and all j.

b) Suppose f € CL(R™) and {h;}32, C R s a sequence with hj — 0 as j — oco. Then for
any x € R":
i) A?]f(x) — D;f(x) as j — oo.
ii) ‘A?’f(x)’ < (supgn [Dif|) 1,0y (), for some R >0 and all j.

Proof. a) i) Recall 7, f(x) = f(x — z;). Clearly since z; — 0, f(z — z;) = f(z) as
j — oo by the continuity of f.

ii) Since z; — 0, there exists some p > 0 such that z; € B,(0) for all j. Now

supp 7; f = supp f + z; C supp f + B,(0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp 7., f C Br(0). Thus 7, f = 7, fl, ) and we estimate:

|72, (@)] = |72, f (@) L) (@) < SUp | £ L5 0) (7).
b) Suppose f € CL(R™) and {h;}321 C R is a sequence with hj — 0 as j — oo. Then for
any x € R™:

i) From the definition of the difference quotient and of the partial derivative:

flx + hjei) — f(2)
h

ii) Since hj — 0, there is some p > 0 such that |h;| < p for all j. We have:

Al f(z) =

— D, f(x), as j — 00.

h.
supp A, f C supp 7_p,e, f Usupp f = (supp f — hje;) Usupp f
C (suppf + B,;(O)) Usupp f
- BR(O)

for some R > 0 since the union of two bounded sets is bounded. Thus A?j f=

A?j J1p,0)- We also observe that by the mean value theorem, for any h € R,
there exists s € R with |s| < |h| such that

f(x+ he;) — f(x)
h

= Dif(z + se;)
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thus
A f(@)| < sup|Dif].
]Rn

Putting these two facts together, we readily find:
h; h;
AV T(@)] = | A (@) L0 () < 5p D1 L0 (x).
O

Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 1.10. 1. First we establish the result for ¥ = 0. We need to show
that if f € L}, (R™") and g € C2(R") then f x g is continuous. To show this, it
suffices to show that f x g(z — 2z;) = f* g(x) for any x € R" and any sequence
{#j}72, with z; — 0. Now, note that

frg(x—z)= - fW)g(z =z —y)dy = f( )72;9(x — y)dy.

Now, sending 7 — 0o, we are done, so long as we can Justlfy interchanging the limit
and the integral. Note that for any fixed x and all j:

| F(y)7, 9( —y)\ésﬂé}rp!g!ﬂsR(oﬂx—y)lf(y)\

for some R by the previous Lemma. Since f € L}  (R") the right hand side is
integrable, and so by the dominated convergence theorem:

lim f*g(x—z) = /R lim f(y)7.,9(z dy—/ f(y y)dy = fxg(x).

j—ro0 n j—00

2. Now suppose that f € L} (R™) and g € C}(R"). Clearly f* D;g is continuous by
the previous argument. To show f x g € C'(R"), it suffices to show that for any
z € R™ and any sequence {h;}72; C R with h; — 0 we have:

lim Al f  g(2) = f » Digl(a).

Note that
Al fxgla) = f*g(ﬁhjzi)_f*g(x)
:/nf(y> (9<$+hj€i —}?j)—g(w—y)>dy
f( VAN g(z — y)dy

so that again we are done prov1ded we can send j — oo and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to
invoke the DCT and deduce that:

lim A" 4 g(z) = /Rhmf() Sg(a — y)dy = f * Digla).

j—ro0 n j—00
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3. The case where g € C¥(R™) with k > 1 now follows by a simple induction. O

Exercise(*). Show that f x g € C*(R") under the hypotheses:
a) fe LY (R"), g€ C*R™) with supgn |D%| < oo for all |a| < k.
b) f € L'(R™) with supp f compact, g € C*(R™).
We have shown that when two functions are convolved, loosely speaking the resulting

function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.

Lemma 1.12. Suppose f € LI _(R™) and g € CF*(R™) for some k > 0. Then?

loc.
supp (f x g) C supp f + suppg.
Proof. Recall:

frg(z)= . f(W)g(z —y)dy.

Clearly, if f * g(z) # 0, then there must exist y € R™ such that y € supp f and
x—y=z€suppyg. Thus r = y + z with y € supp f and z € suppg. This tells us that:

{x e R": fxg(x) # 0} Csupp f + suppg.
Since supp f is closed and supp g is compact, we know that supp f + supp g is closed, thus

supp fxg ={z € R": fxg(z) # 0} Csupp f +supp g,
which is the result we require. O
Exercise(x). a) Prove the following identities for r,s > 0 and z € R™:

i) By(x) 4+ Bs(0) = Brys(z)
ii) By(z)+ Bs(0) = By1s(x)
iii) By(z) + Bs(0) = By1s(x)

Suppose that A, B C R™. Show that:

b) If one of A or B is open, then so is A + B.

d

)

¢) If A and B are both bounded, then so is A + B.
) If A is closed and B is compact, then A + B is closed.
)

e) If A and B are both compact, then so is A + B.

Exercise(*). Show that if f € C¥(R") and g € CL(R") then f x g € C*(R").
Conclude that C2°(R"™) is closed under convolution.

5Strictly speaking, we haven’t defined the support of a measurable function. We can do this in several
ways, but the simplest is to define:

supp f = m{E CR": Eis closed, and f =0 a.e. on E}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.
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1.4.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 1.13. Suppose ¢ € C°(R™) satisfies:
i) >0

i) supp ¢ C B1(0)

i) [pn ¢(x)dz =1

Such a ¢ exists by Theorem 1.1. Define:

o) = 50 (1)
Then:
a) If f € CE(R™), then ¢ * f is smooth, and
D (pex f) = Df as € — 0,
uniformly on R™ for any multi-index with |a| < k.
b) If g € LP(R™) with 1 < p < 00, then ¢ * g is smooth, and

bexg— g in LP(R™) as € — 0.

¢) Suppose f € C*(R™) with supg. |D* f| < oo for |a| < k, and suppose g € L*(R™) with
920, [png(x)dz =1. Set ge(y) = e "g (e 'y). Then f*g. € C*R"), and
D% (f xgc) (x) = D*f(x) as € — 0,
for any x € R™ and any multi-index with |a| < k.

Proof. a) Note that the rescaling of ¢ to produce ¢, is such that a change of variables
gives:

gbe(y)dy =1
RTL

By Theorem 1.10, we have that D*(¢. x f) = ¢e * D f for any |a| < k. Using these
two facts, we calculate:

DY(¢e x f)(z) — D f(x) = - be(y)D* f(x — y)dy — D f () - be(y)dy
= Lo de(y) [Df(x —y) — D f(x)] dy

- / 6() [D°f(x — €2) — D*f(x)] d=
B1(0)
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where in the last line we made the substitution y = €z, and noted that ¢ has support in
B1(0), so we can restrict the range of integration. Now, since ¢ > 0, we can estimate:

[D*(¢e f)(x) = D*f(2)| < / ¢(2) |D*f(x — e2) = D*f(x)| dz

B1(0)
< sup [Df(x—ez) — Df()] x / o(2)dz
z€B1(0) B1(0)

= sup |Df(z —ez) — D"f(z)|
z€B1(0)

since fR” ¢ = 1. Now, since D f is continuous and of compact support, it is uniformly
continuous on R™. Fix € > 0. There exists § such that for any v,w € R"™ with
|z —y| < &, we have

ID° f(v) - DOf(w)] < &
For any = € R", taking ¢ < 0, and v = z — ez, w = x with z € B;(0) we have
|lv —w| < 4, sor
[D*f(x —ez) = Df(z)| <€

holds for any = € R", z € B1(0). We have therefore shown that for any é > 0, there
exists & such that for any € < d we have:

sup |[D%(¢e * f)(z) — D f(z)| <€
zeR"

This is the statement of uniform convergence on R".

b) Noting that LP(R™) C L} (R™) by an application of Hélder’s inequality (see Exercise
1.2), Theorem 1.10 immediately establishes the smoothness of ¢. x g. To establish
convergence as € — (0, we shall require certain measure theoretic results. First
we require Minkowski’s Integral Identity (see Exercise 1.4). This states® that for
F:R"™ x R" — C a measurable function, we have the estimate:

L ") < [ [ reara] o

Now, following the calculation in the previous proof, we readily have that:

/n F(z,y)dx

(¢ * 9)(x) — g(2)] < - ¢(2) lg(x — ez) —g(z)| dz

SThere is more general statement for a map F : X x Y — C, which is measurable with respect to the
product measure p X v where (X, u) and (Y, v) are measure spaces.
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Integrating and applying Minkowski’s integral inequality, we have:

6020~ gl = | [ 10 x)@) - st aa]
b 1
d:v]

Il %

< [ | L oeriste - - g ] a:

= [ 0 17eeg = oy (1.3)

¢(2)lg(x — €2) — g(x)| dz
R™

To establish our result it will suffice to set € = €;, where {¢;}32; C R is any sequence

with €; — 0, and show that Hgbgj *g— gHLP(R") — 0. Note that since HTejngLp(Rn) =

||gHLP(Rn) we have:
(=) ||7e129 = 9l oy < 26(2) 91l oy

so the integrand is dominated uniformly in j by an integrable function. Now by
Lemma 1.8, as y varies, 7, : LP(R") — LP(R"™) is a continuous family of bounded
linear operators. This means that for each z € R"™ we have:

=0.

lim H’TE
Jj—00

79~ gHLP(]R")

Thus we can apply the Dominated Convergence Theorem (Theorem B.26) to the
integral on the right hand side of 1.3, and conclude that

lim |6, 9 = 91| 1o ny = O-

Again, by Theorem 1.10, we have that DY(f x g.) = D*f * g. for any |a| < k. By a
change of variables, we calculate:

D2(f 9@ = |
Now, clearly for each fixed x € R™:

9(2) D f(x — ez) = g(2) D f(x)

for z € R™ as € — 0. Furthermore,

9(2) D f(z — e2)| < g(2) sup [ D f]

n

ge(y) D f( — y)dy = / 9(2)D° f(z — e2)dz

n

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

D(f % g0)(x) = D*f(x) / g(2)dz = D* f(z)

n

as € — 0.
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The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 1.14. Suppose Q C R" is open, and K C Q is compact. Then there exists
X € C°(Q) such that x =1 in a neighbourhood of K.

Proof. By Lemma 1.3, there exists € > 0 such that d(K,02) > 4e. We define K, =
K + By:(0). As the sum of two compact sets, K, is compact. Moreover, K. C €. Suppose
¢ is as in Theorem 1.13. Consider:

X = e x L.
We have by Theorem 1.10 that x € C*°(R") and from Lemma 1.12 we deduce:

supp x = K, + supp ¢ C K + Ba.(0) + B.(0) = K + B3.(0) C Q.

Thus x € C°(2). Now, suppose x € K + B¢(0). Then = + B(0) C K, and so:
x(@) = | o)l (@ —y)dy

— / be) L. (z — y)dy
<(0)

:/) Pe(y)dy = 1.
<(0)
Thus x(z) =1 for z € K + B¢(0), which is a neighbourhood of K. O

The following exercise establishes results required for the proof of Theorem 1.13.

Exercise 1.4. a) Suppose 1 < p < oo and let ¢ satisfy p~! +¢~' = 1. Show
that for a measurable function f : R" — C:

115 =suw{ [ 17@gte]de s g < L@, ol < 1

b) Now suppose p < oo and assume F' : R™ x R” — C is integrable. Set
G(y) = Jgn F(z,y)dx. Show that if ||g|;, <1 then

[ ictawiar< [ | [ 1Fesral e

Deduce Minkowski’s integral inequality

[/ /nF(x,y)dxpdy]és/n [/H‘F(l‘ay)!pdy];dx.

Exercise 1.5. Let I = (0,1) and 1 < p < co. Exhibit a sequence (f;)52; with
fj € LP(I) such that f; — 0 in LP(I), but fj(x) does not converge for any x.
Does such a sequence exist if p = o0?
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1.5 Lebesgue differentiation theorem

The fundamental theorem of calculus is a fundamental result in the theory of Riemann
integration. It comes in two (related) flavours.

Theorem 1.15 (Fundamental Theorem of Calculus). Suppose that f : [a,b] — R is
continuous, and define the function F : [a,b] — R by:

Flz) = / " e,

Then F is differentiable on (a,b), and:

From this one can deduce the alternative form of the Fundamental Theorem of
Calculus, relating the integral of a function to its anti-derivative.

Corollary 1.16. Suppose that f : [a,b] — R is continuous and that F : [a,b] — R is
continuous on [a,b], differentiable on (a,b) and satisfies F'(x) = f(x) for all z € (a,b).
Then:

b
/ F(t)dt = F(b) — Fla).

We seek to generalise Theorem 1.15 in the setting of the Lebesgue integral. First, we
note that the result implies

F — F(x — I el
f(o) = tim TN —F@ ) /
r—0 2r r—0 21 -
1
= lim —— ft)dt
r=0 | By (2)| J B, (2)
where we have used that the ball of radius r about x is simply B,(z) = (z —r,x 4+ r) in
one dimension. Rearranging, we can further conclude

1
im———— [ (f(t) — f(2))dt =0.
r—=0 | B ()] J B, (2)
This statement is meaningful in dimensions higher that one. In fact we shall prove
something slightly stronger

Theorem 1.17 (Lebesgue differentiation theorem). Let f : R™ — C be integrable. Then
for almost every x € R™ we have

1
lim ——— [f(y) = f(z)[ dy = 0. (1.4)
r=0 | By ()| /B, (2)

Note that it suffices for f to be defined on an open set 2 C R", and we obtain the
same differentiability result at almost every x € () by considering flg. We say that a
point x such that (1.4) holds is a Lebesgue point of f. In order to establish this result, we
first introduce a related quantity for which we are able to prove an estimate.
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Definition 1.5. Given an integrable function f : R™ — C, the Hardy-Littlewood Mazimal
function M f is defined to be

1
Mf(z) =sup ——F—
r>0 | Br(®)] /B, ()
The Hardy-Littlewood Maximal function and its generalisations are of use in many
contexts in mathematics, in particular in harmonic anaysis. For our purposes, a key result
is that it satisfies a weak L'-bound.

1f(y)| dy.

Lemma 1.18 (Weak L'-bound for Mf). Suppose f € L'(R") forn > 1. Then Mf is
measurable, finite almost everywhere, and there exists a constant C,, depending only on n
such that:

Cn
{2 : Mf(z) > A < == £l (1.5)
for all A > 0.

Proof. Let Ay = {x : M f(z) > A}. Then for each x € A) there exists a radius r, such

that
1

|Br, ()] /5, @

We claim A) is open, which implies M f is measurable. To see this, suppose x € Ay with
corresponding 7, and let (z,,,)>°_; be a sequence with z,, — x and x,,, € Ax. Then by
the dominated convergence theorem we have

|f(y)ldy > A (1.6)

1 1
TR fW)ldy = |f(y)] dy,
|Br, (%)] JB,, (@m) | By, (z)| JB,, )
however, by assumption
1 1
[f(y)ldy < A |f(y)ldy > A,

|Br, ()] JB,, (2m) |Br, ()] JB,, ()

a contradiction.

Fix K C Ay a compact set. Since K is covered by Uyea, By, (), we can pick a finite
subcover of K, say K C UfilBl-, where B; = B, (x) for some z. By Wiener’s covering
Lemma (see Exercise 1.8) there is a disjoint subcollection B;,, ..., B;, such that

ik
n
K| < i| <37 |By|.
j=1

Now, each B;; satisfies (1.6), so we have

3" 3"
K| < Z/ Dy < 517l

Where in the final inequality we use that the B;; are disjoint. Since this holds for all
compact K C Ay, (1.5) follows. Finally, note that {M f = oo} C {Mf > A}, which
implies [{M f = oo}| < C/X for all A, thus [{M f = oco}| = 0. O
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With this result in hand, we are now ready to establish the Lebesgue differentiation
theorem.

Proof of Theorem 1.17. For each A > 0 define:

Ay=<z eR": limsup ———
{ r—0 | Br(2)] By (x)

[f(y) — f(z)|dy > 2>\}

If we can show that |Ay| = 0 for all A, then we will be done, as the set of x € R™ which
are not Lebesgue points for f is precisely U2 ;A 1.
Fix € > 0. We can find g € C2°(R") such that ||f — g||;1 < e. We estimate:

1 1
- _ dy < ———
Bo@)] Sy W IO S B

1
+ 1B, (z)| /Br(x) lg(y) — g(z)|dy + |g(z) — f(z)]

1f(y) —9(y)| dy

We can bound the first term by

1
T fly) —gly)| dy < sup
Bo@)] Sy @ 9N S SUDBTS

= M[f —g](z)

1f(y) — 9(y)| dy

Now, since g is continuous, we have

lim sup

e g(y) —g(z)|dy =0,
R TN ST BT(x)I (y) — g(=)]

hence

msup —— [ [f(y) — f(@)|dy < M[f - g)() + | (2) — g(a)].
r—0 ’B’r(x)| By (x)

Now, if z € A), then we must either have M[f — g](x) > X or |f(z) — g(x)| > A. By
Lemma 1.18 we know

C, Che

o s MIF —gl() > A} < S0~ gl < 2

9

and by Tchebychev’s inequality we know

(s 1f(@) — ga)] > A} < 129l

<
A A

we conclude that

1+C,
Ayl < €.
| Ay 3
Since € was arbitrary, we conclude |A)| = 0, and we're done. O

Exercise 1.6. Suppose 1 < p < 0.
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a) Suppose f € LP(R™). Show that

1A%

o /@) > A} < 25

This is known as Tchebychev’s inequality, the p = 1 case is Markov’s inequal-
1ty.

b) We say that a measurable f : R” — C is in weak-LP(R"™), written f €
LP(R™) if there exists a constant C' such that

o s @) > A< S

Show that LP(R™) C LP*(R"™), and that the inclusion is proper.

Exercise 1.7. Suppose that f € L"(R") for some 1 < r < oo. Show that

[f [l oo = limp—soo 1] £o-
[Hint: you may find the estimates in Ezercises 1.2b), 1.6 a) useful.|

Exercise 1.8. a) Let Bj,...,By be a finite collection of open balls in R™.
Show that there exists a subcollection B;,, ..., B;, of disjoint balls such that

N k
UBicJBB)),
i=1 j=1

where 3B is the ball with the same centre as B but three times the radius.
Deduce
N k
UBi|<3"> |By].
j=1

i=1
b) (*) Suppose {B; : j € J} is an arbitrary collection of balls in R™ such
that each ball has radius at most R. Show that there exists a countable
subcollection {B; : j € J'}, J' C J of disjoint balls such that

UBiclJ6GB).

1€ icJ’

These are Wiener and Vitali’s covering Lemmas, respectively.

Exercise 1.9. Suppose f : R — C is integrable and let F(z) = [*__ f(t)dt.
Show that F is differentiable with F'(z) = f(x) at each Lebesgue point x € R.
Deduce that F' is differentiable almost everywhere.

Exercise 1.10. Suppose ¢ € L®(R") satisfies ¢ > 0, supp ¢ C B1(0), and
Jon @dz = 1. Set ¢c(x) = e "¢(e1x). Show that if f € LY(R"), and z is a
Lebesgue point of f,

dex f(z) = f(z), as € — 0.
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1.6 Littlewood’s principles: Egorov’s Theorem and Lusin’s Theorem

In his 1944 “Lectures on the Theory of Functions”, J. E. Littlewood stated three principles:

“Every (measurable) set is nearly a finite sum of intervals; every function
(of class LP) is nearly continuous; every convergent sequence of functions is
nearly uniformly convergent.”

The first of these results may be stated more precisely in our language as follows:

Lemma 1.19. Suppose |A| < co. Then for any € > 0 there exists a set B, which is a
finite union of rectangles, such that

|AAB| < e.

This follows straightforwardly from the basic properties of Lebesgue measurable sets.
The third of Littlewood’s principles follows from

Theorem 1.20 (Egorov’s Theorem). Suppose (fr);2, is a sequence of functions defined
on a set E C R™ with |E| < 0o, and suppose that fi, — f almost everywhere on E. Then
given € > 0 we can find a closed set Ac C E such that |E — A¢| < € and f — f uniformly
on A..

Proof. By discarding a set of measure zero if necessary, we can assume without loss of
generality that fy(z) — f(x) for all z € E. For each n,k € N let

1
Ep = {weE: |fi(x) — f(z)| < —, forall j > k}
n
Fixing n, we note that E}! C Ej' ; and that U2 | E})' = E. By countable additivity, we

have |E}'| is an increasing sequence, with |E}'| — |E| as k — oo. Pick k;, such that
‘E \ E%ﬂ < 27", By construction we have:

1
|fj(a:)—f(x)]<ﬁ, for all j > k, and x € E} .

Now pick N such that > 7 \ 27" < €/2 and let
o0
A= () Ep,.
n=N

Now we observe

|E\ ALl < Z |E\ B} | < e/2.

Next. suppose that § > 0. Pick n > N such that 1/n < §, and note that x € A, implies
z € EY . We deduce that |f;(z) — f(z)| < for all j > k;, and hence f; — f uniformly
on AL Fmally, we can pick a closed set Ac C AL such that |AL\ A < €/2 and hence
|E — A | <e O
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The final of Littlewood’s principles is given flesh by

Theorem 1.21 (Lusin’s Theorem). Suppose f is measurable and finite valued on E,
where E C R™ with |E| < co. Then given € > 0 we can find a closed set Fe C E with
|E\ Fe| < € such that f|g, is continuous.

Proof. Suppose first f is a simple function

m
f=> ala,
k=1

where |Aj| < oo and the Ay, are disjoint with £ = U | A, (if necessary, we add the term
0Lf-1(g) to arrange this). For any € > 0, we can pick compact sets K C Ay with

€
|AR \ Ki| < —.
m

Let B = U}" | K}. Then |E \ B| < e. Since the sets K}, are compact and disjoint (hence
min, ; dist(K;, K;) > 0), and f is constant on each K}, we have that f is continuous on
B.

Now let f,, be a sequence of simple functions such that f, — f ae. Then we can
find C,, such that |C| < 27" and f, is continuous outside C,,. By Egorov’s theorem, we
can find a set A./3 such that f, — f uniformly on A./3 and |E\ Ag/g‘ < €/3. Let N be
sufficiently large that "7 \ 27" < €/3.

Fe/ = Ae/3\ fj Cn
n=N

Now, |E \ F!| < 2¢/3 and moreover, for n > N the functions f,, are continuous on F/, so
since they converge uniformly to f, we have that f is continuous on F!. Finally, picking
F. C F! closed with |F!\ F.| < ¢/3 we’re done. O

Remark. Note that Lusin’s Theorem asserts that f|g, is continuous, which means that f
s continuous if we think of it as defined only at points of Fe. This is not the same as the
statement that f (defined on E) is continuous at points of F,. For example if f = g,
then flr\q = 0 is continuous, however f is nowhere continuous.
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