Appendix B

Background Material: Measure Theory and
integration

In this appendix we shall briefly review some of the basics of measure theory, including
sigma algebras, measurable spaces, measures and the construction of the Lebesgue measure.
These notes follow parts of the notes from Prof. Norris’ version of the course Probability
and measure, as well as the books Real and complex analysis by Rudin, Real Analysis by
Stein and Shakarchi annd Measure Theory and Integration by M. Taylor.

B.1 Sigma algebras and measures

Given a set E, the basic goal of measure theory is to assign to certain subsets A C E a
value, p(A) which represents in some appropriate sense the ‘size’ of A. For example, if E
is finite or countable and A is any subset of E we might set u(A) to be the number of
elements in A (where p(A) may be oo if A is not finite). In this case p is defined on all
of the power set 2F. We call p the counting measure.

For E = R, it is natural to wish to define u(A) to be the ‘length’ of A. This is
unambiguous if A is some interval, but it turns out that we run into problems trying to
define the ‘length’ of an arbitrary subset of R. As a consequence, we will need to restrict
our attention to a smaller collection of sets than the power set 2K,

Definition B.1. Let E be a set. A collection £ of subsets of E is called a o-algebral if
E contains O and is closed under taking the complement and forming countable unions.

That is if A € £ then
A°={zx € E|lx g A} € &,

and if (An)52 is a sequence with Ay, € &, then
UJanee
n=1

(E,€&) is called a measurable space.

Lpronounced “sigma algebra”
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164 Appendix B Background Material: Measure Theory and integration

A measure on (E,&) is a set function p: € — [0,00] such that u(0) = 0 and p is
countably additive. That is for a sequence (Ay)22, with Ay, € € disjoint, we have:

e¢] o0
2 (U An> = ZM(ATL)
n=1 n=1
(E,&, 1) is called a measure space.

Note that (F,2F) is always a measurable space, since 2F is always a c-algebra.
Suppose (E, E, p) is a measure space and that A € £. Then we can define a new measure
space (A, E&|a,p|la) by taking E|4 = {B € £€: B C A} and defining p|a(B) = u(B) for all
B e S‘A.

Exercise B.1. Let E be finite or countable and £ = 2%,
a) Verify that if p is the counting measure, then (E, £, ) is a measure space.

b) A mass function is a map m : E — [0, 00]. Define a set-function on (E, &) by

z€EA

Show that p,, is a measure on (E, ), and moreover if p is any measure on
(E, &) then u = py, for some m.

For the examples in Exercise B.1, we can identify in a straightforward way both an
appropriate o-algebra and measure. In more general situations we may not be so lucky,
so it is very helpful to be able to appeal to abstract results to construct measure spaces
by starting with something simpler. We shall require the following Lemma, whose proof
we defer to an exercise.

Lemma B.1. Suppose that for each i € I, where I is some (not necessarily countable)
index set, & is a o-algebra of the set E. Then the intersection N;c;&E; is a o-algebra.

With this fact in hand we can define the o-algebra generated by a collection of sets.

Definition B.2. If A is a collection of subsets of E, then the o-algebra generated by A,
denoted o(A), is the intersection of all o-algebras € on E such that A C £.

Since 2F is always a o-algebra, and A C 2F, o(A) is always well defined. When (E, 7)
is a topological space, with 7 the collection of open sets, it is natural to introduce the
Borel algebra® B(E) := o(7). When E = R with it’s standard topology, we often write
B := B(R). A measure defined on the measure space (E,B(F)) is called a Borel measure.
A Borel measure which is finite on compact sets is called a Radon measure.

Exercise B.2. a) Prove Lemma B.1.

b) Let E = {1,2,3}. Find o({1}), and show that o({1}) # 2F.

2The notation B(E) assumes that the topology is obvious from context
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Exercise B.3. a) Show that if U C R is open in the standard topology, then:

o0
U= ]I,
n=1
where each I,, = (ap, b,) with a,, < by, is an open interval, and the I,,’s are

disjoint.

b) Show that B = o(.A) when A is given by:

— e

a,b)la,b € R,a < b}, the collection of all open intervals in R.

I
~
—

—
—-

— — — — — ~— ~— ~— ~—
~=

a,blla,b € R,a < b}, the collection of all closed intervals in R.
a,blla,b € R,a < b}.

e
—-
—

I
~=
—

iv = {la,b)|a,b € R,a < b}.
(—00,b)|b € R}.

vi) A= {(—o0,b]|b € R}.

vii = {(a,0)|a € R}.

I
—~~

a,0)la € R, a}.
a,b)la,b € Q,a < b}.

NN N N N N N N N
I

—

{

[Hint : reduce cases ii) —ix) to case i).]

We have a means of generating a o-algebra from a smaller collection of sets, A. We’d
like to define a measure by how it acts on A, and then ‘extend’ this measure to act
on o(A) (or some larger o-algebra containing A. For this we need both an existence
and a uniqueness result for the extension. We first introduce the idea of m-system and
d-system and establish Dynkin’s m-system Lemma, which will eventually furnish a proof
of uniqueness for extensions of measures.

Definition B.3. Let A be a collection of subsets of E. We say that

i) A is a w-system if it contains the empty set and is closed under pairwise intersection,
i.€.
e e A,
e ANBe A forall A,B € A.

it) A is a d-system if it contains E and is closed under taking differences, and countable
unions of increasing sets, i.e.

e Fec A,
e B\ A€ A forall A,B € A with A C B,

. U A, € A for all sequences (A,)2, with A, € A and A, C Apiq.

n=1
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Exercise(x). Show that if A is both a m-system and a d-system, then it is a
o-algebra.

Dynkin’s 7-system Lemma extends the previous exercise.

Lemma B.2 (Dynkin’s m-system Lemma). Let A be a w-system. Then any d-system
containing A also contains o(A).

Proof. Let D denote the intersection of all d-systems containing A. Then D is a d-system
and it suffices to show that o(.A) C D. In order to do this, we show that D is a m-system,
hence it is a o-algebra containing .4 and thus it must contain o(A) from the definition of
a(A).
We introduce
D' ={BeD|BNAecDforall Ac A}.

Clearly A C D' because A is a m-system. Next we claim that D’ is a d-system. Clearly
E € D'. Suppose By, By € D' with By C Bs, then for A € A we have:

(BQ\Bl)ﬂA:(BgﬂA)\(BlﬂA)ED

because D is a d-system and we conclude By \ By € D'. Now suppose B, € D' and
B,, C Bpy1 and let B = ;2| By. Then for any A € A, we have C), := B,NA € D,
Cn C Cpy180 Uy Cp, = BNA €D asDis ad-system. We deduce that D' is a d-system
containing A, hence D' = D by the minimality of D.
Now, we let
D' ={BeD|BNAeD foral AcD}.

By the above, we have that A C D", since D' = D. By the same arguments as above we
can check that D" is a d-system, and so D" = D and D” is a w-system as required. [J
B.1.1 Construction of measures

As described above, we are going to give a means of constructing a measure by specifying
how it behaves on some suitable collection of sets. First we introduce some notation
concerning set functions

Definition B.4. Let A be a collection of subsets of E containing (). A set function is a
function p : A — [0, 00] with (@) = 0. We say that a set function w is:

e increasing if

w(A) < u(B), forall A,B e A, with AC B,
o additive if, for all disjoint sets A, B € A with AU B € A we have:
(AU B) = p(A) + u(B),

e countably additive if for all sequence of disjoint sets (A,)>2, with A, € A and

U A, € A we have:
n=1 n=1
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e countably subadditive if for all sequences (Ay)s>, with A, € A and U321 A, € A

we have:
m (U An> <D Ay,
n=1 n=1

We shall also need to define what it means for a collection of subsets to be a ring

Definition B.5. Let A be a collection of subsets of E. We say A is a ring on E if ) € A
and for all A, B € A:
B\Ae A, AUBEeA.

We say A is an algebra if ) € A and for all A, B € A:
Ae A, AUBe A

Let us suppose that A is a ring of subsets of E, together with a countably additive
set function p : A — [0, 00]. For any set B C E, we can introduce the outer measure

Ww(B) = nf 3 plAy),
n=1

where the infimum is taken over all sequences (A,)5°; of sets such that A4, € A and
B c U2, An. If no such sequence exists we set p*(B) = co. We clearly have p*(0) = 0,
so we have a set function defined on 2F and moreover, p* is increasing. In general,
however, * will not define a measure on the measure space (£, 2%), in order for p* to be
a measure we must restrict to a smaller g-algebra. We say that A C F is p*-measurable
if, for all B C E we have:

i*(B) = w* (BN A) + " (BN A°),

and we denote by M the collection of all p*-measurable sets. One of the fundamental
results of measure theory is:

Theorem B.3 (Carathéodory’s Theorem). Suppose A is a ring of subsets of E, and
A —[0,00] is a countably additive set function. Define u*, M as above. The collection
M is a o-algebra which contains A. The set function p* : M — [0,00] is a measure on

(E,M).

We shall establish this result through several Lemmas. First, we establish countable
subadditivity of u*.

Lemma B.4. The set function p* : 28 — [0, 00] is countably subadditive.
Proof. Let B = Up2 1 By,. We wish to show

W (B) < > (Ba).

n=1
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We can easily see that if p*(B,) = oo for some n, then necessarily p*(B) = oo, so we
can focus on the case where p*(B,) < oo for all n. Fix € > 0. For each n we can find a
sequence of sets (Ay m)oo_, such that A, ,, € A with B, C UX_, A, ,, and

> wlAnm) < @ (By) + €277

m=1

Now, B C ;2 Usw_ Apm, so we have:

w(B) < Z Z M(An,m) < ZM(Bn) +e

n=1m=1 n=1
Since € was arbitrary, the result follows. O
Next we show that p* extends pu.
Lemma B.5. Suppose A € A. Then p*(A) = p(A).

Proof. Tt is obvious that u*(A) < u(A), by considering the sequence A1 = A, A, = for
n > 1, so it suffices to show p*(A) > u(A). Since p is countably additive, it is finitely
additive (take all but finitely many elements of the sequence to be the empty set). Since
Ais aring, if A, B € A with A C B, then B\ A € A. By finite additivity of u:

u(B) = u(AU (B\ A)) = p(A) + u(B\ A) > p(A)

so  is increasing. Suppose (Ay)o2; is a sequence with A,, € A. Let By = A; and
n n—1
By =J A\ | 4x
k=1 k=1

for n > 1. Then (B,)52, is a disjoint sequence, B, C A, and moreover each B, € A

since A is a ring. We have:

z <U An) =1 (U Bn) =D u(Bn) <Y nlAn),
n=1 n=1 n=1

n=1

so p is countably subadditive.
Now, suppose A € A and take any sequence (A4,)5; with 4, € A and A C U2 A,
Note that AN A, =A\ ((AUA,)\ A4),so AN A, € A. We deduce:

o0

n(A) = p <U (AmAn)> < ZM(AmAn) < ZN(An)
n=1

n=1 n=1

Taking the infimum over all such sequences, we conclude pu(A) < p*(A) and we're
done. O

Lemma B.6. M contains A.
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Proof. Suppose A € A and B C E. We need to show:
W*(B) = i (B0 A) + (B 1 A%,

Since B = (BN A) U (BN A°) and using subadditivity of u*, it is immediate that
p*(B) < p*(BNA)+ p*(Bn A°), so it suffices to show

1(B) > pf(BAA) + (B A°).

If *(B) = oo this is trivial, so we can focus on the case p*(B) < co. Fix € > 0, then
there exists a sequence (4,)2%, with 4,, € A, B C U A4, and

S i(A) < i(B) +e.
n=1

We note that: - -
BnAc |J(A.n4), BnA®c|J(A.nAa).

n=1 n=1

Recalling that 4,, N A € A and noting that A, N A°= (AU A,) \ A € A we deduce:

p (BNA)+ p*(BNAS) i,uA ﬂA)+iu(AnﬁAC):iu(An)gu*(B)—i—e.
n=1 —

n=1
Since € was arbitrary, we're done. O
Lemma B.7. M is an algebra.

Proof. From the definition of M it is immediate that £ € M and that A € M implies
A€ € M. It remains to show that M is closed under pairwise union, or equivalently
pairwise intersection (since AU B = (A°N B€)¢). Suppose that A1, A € M and B C E.
Then

' (B)

p* (BN Ay + p" (BN AY)

p (BN AN Ay)+ p* (BN AL NAS) + p* (BN AJ)

W (BNAINA) +p* (BN (A1 NA2)°N AL+ p* (BN (AN A2)° N AY)
W (BNAINA) + p* (BN (AN A2)°)

*

so A1 N Ay € M. O
Finally, we are ready to prove Carathéodory’s theorem:

Proof of Theorem B.3. We already know that M is an algebra containing A, so it suffices
to show that if (A,)52; is a sequence of disjoint sets with A,, € M, and A = ;7| Ay,

then we have:
o

AeA, w4 =) u(An)
n=1
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so that M is closed under countable unions and hence is a o-algebra, and p* is a countably
additive set function on M, hence a measure. Fix any B C FE. Since the A,, are disjoint,
we know A; N Ag =0 and A; N A = A;. We deduce:
W (B) = 1" (BN Ay + (BN A5)
=u* (BNAINA2)+p*(BNAINAS) + p*(BNATNAg) + p* (BN AT N AS)
=u* (BN AL+ u (BN Ag) + u* (BN Af N AS)

=...=> p(BNA)+u (BNATN---NAS)
k=1

Now, since BN A® C BN A{N---N AS, by the fact that p* is increasing we know
p(BNnAfN---NAS) > p*(B N A°. Hence, letting n — oo and using countable
subadditivity we find:

w(B) > S (B A + 0 (BN AY) > g (BOA) + 4 (BN AS)  (B.)
k=1
The reverse inequality holds by subadditivity, and so we have

W (B) = i (BN A) + (B 1 AY)
and thus A € M. Setting B = A in (B.1) we deduce:

pEA) = 3w (An). a
n=1

Carathéodory’s theorem gives a way to extend a countably additive set function
defined on a ring A to a measure on o(A), since we can restrict the outer measure to
o(A). It is often useful to know whether this extension of y is unique. We have the
following result:

Theorem B.8. Let i, po be measures on (E,E) with pi1(E) = pe(E) < co. Suppose
that puy = pg on A, where A is a w-system which generates £. Then g = pe on E.

Proof. Let D = {A € &|pu1(A) = p2(A)} be the collection of sets on which the measures
agree. By hypothesis F € D and A C D. We shall show that D is a d-system, so by
Dynkin’s m-system Lemma we have £ = 0(A) C D and we're done.

Suppose A, B € £ with A C B, then by additivity of the measures, we have:

pi(A) + p(B\ A) = pm(B) < oo, p2(A) + p2(B\ A) = pa(B) < o0,

so that if A, B € D then B\ A € D.

Now suppose that we have a sequence (4,)%, with A, € D and A,, C A,41 and
A = U2, A,. Then setting By = A; and B, = A, \ A,—1 for n > 1, we can write
A = U2 B, where the B,, are disjoint. Thus:

pr(A) = pi(Bn) = pa(Bn) = p2(A)
n=1 n=1

and hence A € D. Thus D is a d-system and so & = D and we’re done. O
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This result requires that E has finite measure. For many of the situations we’re
interested in this is too restrictive an assumption. We can extend the result for measures
which satisfy a weaker condition.

Corollary B.9. Let u1, o be measures on (E,E). Suppose that puy = po on A, where A
is a m-system which generates . Suppose also that E = |J;2, B;, where B; € A and the
B;’s are disjoint with uy(B;) = pe(B;) < co. Then puy = pg on €.

Proof. For each i, and for any A € &, define u(A) = u1 (AN By), pb(A) = u2(AnN By).
By assumption we have pi(E) = pb(E) < oo and moreover p(A) = ub(A) for all A € A.
Thus pi = pb on €. Further, if A € £ is any measurable set, then

p1(A) = (U(Bz‘ N A)) =Y m(BinA)
i=1 i=1
= p2(Bi N A) = (U(Bi N A)) = p2(A)
i=1 i=1

Completeness of measures

A useful feature of the measures obtained from Carathéodory’s theorem is that they have
a property known as completeness.

Definition B.6. Let (E, &, u) be a measure space. We say p is complete if for any A € €
with pu(A) =0, each subset of A also belongs to &.

A subset of a set of measure zero is sometimes known as a null set, so a complete
measure is one for which all null sets are measurable.

Lemma B.10. Suppose (E, M, u) is a measure space obtained from Carathéodory’s
theorem. Then it is complete.

Proof. Let u* be the outer measure on F whose restriction to M gives u. Suppose N C A,
where A € M with u(A) = 0. Since p* is increasing we have p*(N) < p(A) = 0, so
w*(N) = 0. For any set B C E we have:

(T AN) + ' (TN N) < @' (N) 4+ 1°(T) = (T

again using the increasing property of p*. By Lemma B.4 we know p* is subadditive,
hence

w(T) < p*(TNN) +p*(T ONS),

and thus N € M. O
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B.1.2 Lebesgue measure

We specialise now to (arguably) the most important measure, the Lebesgue measure.
This measure gives us the standard notion of volume for sets in R™. We first introduce
the rectangles in R"™.

Definition B.7. A rectangle in R™ is a set of the form:
R= (alabl] X (CZQ,bQ] X X (anabn]y

with a; < b; fori=1,...,n. We define Ar to be the collection of finite unions of disjoint
rectangles.

Exercise(x). Show that:
a) The collection of rectangles is a m-system.
b) Apg is a ring.
c) Apg generates B(R").
The main result we will establish shows:

Theorem B.11. There exists a unique Borel measure p on R™ such that, for all rectangles
R = (a1,b1] X -+ X (an, by] with a; < b; fori=1,...,n,

u(R) = (b1 —a1)(bg —az) - - - (b, — an).
The measure p is called the Lebesque measure on R™.

Proof. For any A € Ap we can write A = UY | R; for disjoint rectangles R; := (a},bi] x
- % (al, bi]. We define for such A:
n
p(A) =D (b5 — af)(bs — ab) - (b, — ap,).
i=1
Note that the decomposition of A into rectangles is not unique, however one can verify
that this is well defined and additive. If we can show that p is countable additive, then
we can apply Carathéodory’s theorem to establish the existence of the Lebesgue measure.
Suppose that (A4,)52; is a sequence of disjoint sets with A,, € Apg, such that A =
U2, A; € Ag. We wish to show that

> u(Ai) = p(A)
=1

Set B, = U, A;, note N2, B; = () as the sets A; are disjoint. Since Apg is a ring,
B, = A\ U"'A; € Ag. By finite additivity of u we have:

n—1
u(A) = u(Ai) + u(Bn),
=1
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so it suffices to prove that u(By,) — 0 as n — co. Suppose not, then there exists € > 0
such that p(B,) > 2¢ for all n. For each n we can find C, € A with C,, C B, and
w(Cp \ By) < €27". Then

o0

1B\ (CLN - N Co)) < pl(BL\C1)U...U(Bu\ Ca)) € 27" =e.

n=1

Since p(Bp) = 2¢, we must have u(CyN---NCy) =€ s0 CrN---NC, # () and so
K,=Cin---NnC, #0. Now, K, is a nested sequence of non-empty compact sets, and
so 0 # N2, K; C N2, B; which is a contradiction.

Thus, we conclude that a Borel measure p exists on R” with the required property
acting on rectangles. In order to establish uniqueness, we can invoke Corollary B.9, after
noting that the set of rectangles is a m-system and that moreover we can write R" as a
countable disjoint union of rectangles, for example by taking the rectangles of the form
z + (0,1]", where z € Z". O

We note that the Lebesgue measure is translation invariant: u(B + z) = u(B) for
any z € R", B € B(R™). To see this, for fixed x € R" let u,(B) = u(B). If B is a
rectangle, then p;(R) = u(R) (since by —ay = (by —x1) — (a1 —x1), etc.) so by uniqueness
1y = p. We also note that Carathéodory’s theorem actually shows us that the Lebesgue
measure is actually defined on M, a larger o-algebra than B(R™). We call M the algebra
of Lebesgue measurable sets. By construction, we have that the Lebesgue measure is
complete when R” is equipped with M as o-algebra, however it is not complete on the
Borel algebra. For any Lebesgue measurable subset £ C R™ we can define the natural
restriction of Lebesgue measure to E, which we also refer to as the Lebesgue measure.

Lemma B.12 (Borel regularity of Lebesgue measure). Suppose A € M is Lebesgue
measurable. Then for any € > 0 there exists an open set O and a closed set C' such that

CCcAcCO and:
wO\A)<e,  p(A\C)<e

If u(A) < oo, then we may take C' to be compact.

Proof. First, let us assume p(A) < co. From the definition of Lebesgue measurability, we
know that

p(A) = i (A) = inf Y~ p(An),
n=1

where the infimum is taken over all sequences (A,)>%; of sets such that A, € Ar and
A C U A,. Since each A, € Ag is a finite disjoint union of rectangles, we may assume
without loss of generality that each A, is a rectangle. Fix ¢ > 0. We can choose A,, such
that:

. > €
inf Y ju(An) < p(A) + 5
n=1
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For each rectangle A,,, we can find a rectangle A,, with A,, C A and u(A4,) < p(A, )+
Then let O = U2 A° By construction, A C O and O is open. Moreover,

0) <D nlAn) <Y pA) + 53027 <
n=1 n=1 n=1

We deduce that
w(O\ A) <e.

Now suppose p(A) = oo. Set A = AN {|z| < k}, then pu(Ax) < oo, so we can find
an open Oy with (O \ Ay) < €27F. We set O = U2 0. Then O is open and A C O.
Moreover,

O\ A= (U100 \ A= JOx\ 4) c |J(Or\ Ap)
k=1 k=1

so that
w(O\ A) < ZM O\ Ag) <

We have thus established the first part of the proof. For the second part, we note that
if A is measurable, then so is A°, and hence there exists an open O with A¢ C O and
uw(O\ A€) < e. Set C = O°. This is closed and C' C A. Moreover, A\C = C°\ A° = O\ A°¢
SO

w(A\ C) <e.

For the final observation, note that if p(A) < oo, then since Ay is an increasing
sequence with UyAr = A, we have that limg_,o (Ax) = pu(A) < oo, so there exists
k such that p(A\ Ag) = p(A) — u(Ax) < §. Let C C A be a closed set such that
w(Ar \ C) < §. We have u(A\ C) = u((A\ Ax) U (Ax \ C)) < ¢, and moreover C is a
subset of a bounded set, hence compact. ]

We next show

Lemma B.13. Let A C R™. Suppose that for any € > 0 there exists an open set O and a
closed set C such that C C A C O and:

w(O\C) <e
Then A = By UN, where N C By where By, By € B(R™) with u(Bg) = 0.
Proof. For each i, we can find O; open and C; closed such that C; C A C O; and
w(0;\ Cy) < 27°,

We have that By = U2, C; € B(R™) from the properties of o-algebras. Furthermore, let
By =N2,(0; \ C;). Again By € B(R"), and moreover:

((B2) < p (NP (03\ Gy)) <27
for any n, so u(Bz) = 0. Since A\ B; C By we are done. n
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Now, noting that the union of a Borel set and a null set is Lebesgue measurable by
the completeness of Lebesgue measure, we have established:

Theorem B.14. Suppose A C R™. The following are equivalent:
i) A is Lebesgue measurable.

it) For any € > 0 there exists an open set O and a closed set C such that C C A C O
and:

w0\ 0) < e

iii) A= By UN, where N C By where By, By € B(R™) with pu(Bsg) = 0.

B.2 Measurable functions

We next wish to introduce the idea of a measurable function between two measurable
spaces. Suppose (E, ) and (G, G) are measurable spaces. We say f : E — G is measurable
if f71(A) € & whenever A € G. Note the similarity to the definition of continuous maps
between topological spaces. If (G,G) = (R, B), then we simply refer to a measurable
function on (E,&). If? (G,G) = (R, B[0,00]), we refer to a non-negative measurable
function. While convenient, this nomenclature has the slightly unfortunate consequence
that a non-negative measurable function need not be a measurable function. If F is a
topological space and £ = B(E), then a measurable function on (E, ) is called a Borel
function on E.

Exercise B.4. a) Suppose (G, G) is a measurable space and F is any set. Show
that if f: E — (G is any function, the collection:

U9 ={f(4): Aeg},
is a g-algebra, known as the pull-back o-algebra.

b) Suppose (F,€) and (G, G) are measurable spaces, with G = o(A) for some
collection A. Further suppose that f : F — G has the property that
f7H(A) € € for all A € A. Show that

{AcG:f YA e&
is a o-algebra containing A4 and deduce that f is measurable.

c¢) Suppose (E,£) is a measurable space. Show that f : E — R is measurable if
and only if

Y (=00, N) :={z € E: f(zx) <A} €&, forall XeR.
and f : [0, 00] is measurable if and only if

AN :={z e E:0< f(z) <A} €&, forall0< )< oo.

3We give [0, 0] a topology by saying U C [0,00] is open if and only if tan™!(U) is open in the
standard topology of [0, ], where by convention tan(z/2) = +oo0.
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Exercise B.5. Suppose E, G are topological spaces equipped with their Borel
o-algebras.

a) Show that any continuous function f : F — G is measurable. Deduce that
in particular any continuous function f : £ — R is a Borel function.

b) Show that if g : G — R is continuous, and f : F — G is measurable then
g o f is measurable.

c) Let G = R”, with its canonical basis (e;)! ;. Show that f : E — G is
measurable if and only if each component function f; = (f,e;) : E — R is
measurable.

An important feature of the class of measurable functions (and indeed a strong
motivation for the development of the theory) is that it behaves well under limiting
operations.

Theorem B.15. Suppose (E,E) is a measurable space and (fn)52, is a sequence of
non-negative measurable functions. Then the functions fi + afo for a > 0 and f1fs are
measurable, as are

inf f,, sup f,, liminff,, limsup f,.
n n n n

In particular, if f,(x) = f(x), then f is measurable.
The same results hold for (not necessarily non-negative) measurable functions, provided
the limiting functions are real valued (i.e. don’t take the values £00).

Proof. By Exercise B.4 we know that f; ([0, A))f5 ([0, \)) € & for any 0 < A < co. Now,
for any 0 < X\ < o0:

(fitafe) ' (0,M)= | Hf<Ar-ar}n{g<rie€.

reQ,r>0

so f1 + afs is measurable. We also note that f2 is measurable, since (f2)~1([0,))) =
f (o, /\%)) € £. Combining these two results, and noting

fife = i (fi+ f)? = (A — f)?)

we deduce that fi fo is measurable. Next, we note that
{inf £, < A} = J{fo <A}

so inf, f, is measurable. Similarly,

{sup fu < A} = U (ﬂ{fn < r}>

reQ,r< n

so sup,, fn is measurable. Finally, we note that limsup,, f, = infy gy, where g =
sup,> fn and liminf,, f, = supy hy, where hy, = inf,,>; fn. The last conclusion follows
since if f,,(x) converges, then lim,, f,(z) = limsup,, fn(z) = liminf, f,(x).

The proofs in the real valued case follow, mutatis mutandis. O
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We establish one further result concerning measurable functions, before moving on to
discuss the interaction between measurable functions and measures.

Exercise B.6. Suppose (F,€) is a measurable space and f is a measurable
function on E. Show that the functions f*, f~,|f| defined by:

f+($) = max{f(x),O}, f_(:lj') = max{_f($)70}7 ‘f| = f++f_7
are non-negative measurable functions.

Theorem B.16 (Monotone Class Theorem). Let (E,E) be a measurable space and let A
be a m-system generating £. Suppose V s a vector space of bounded functions f: E — R
such that:

i) 1€V andly €V forall A€ A;

it) if fn €'V for allm and f is a bounded function such that 0 < f, < fpy1 and fr, — f
pointwise, then f € V.

Then V' contains every bounded measurable function.

Proof. Let D ={A € & :14 € V}. Then the assumptions on V ensure D is a d-system
containing A, so D = £. Since V is a vector space, it must contain all finite linear
combinations of indicator functions of measurable sets. If f is a bounded non-negative
measurable function, then f,, = 27™|2"f| is such a function, and moreover f, is an
increasing sequence which tends to f pointwise, so f € V. Since any bounded measurable
function can be written as the difference of two bounded non-negative measurable functions
we're done. O

We shall now see how measurable functions interact with measures. Firstly, we note
that a measurable function can be use to induce a measure on its image, given a measure
on its domain. Suppose (E,€) and (G, G) are measurable spaces, u is a measure on (E, &)
and f: F — G is a measurable function. We can define a measure on (G, G), f.u, called
the push-forward or image measure by:

fep(A) = p(f71(A)), for all A € G.

Next we consider convergence in the context of a measurable space (E, &, u). Given
some property P conditioned on a point « € E, we say that P holds almost everywhere
in E if

p({z € E: P(x) is false}) = 0.
For example, we can consider R equipped with the Lebesgue measure, and introduce
the Dirichlet function f(z) =1 for x € Q, f(xz) = 0 otherwise. Then we can say ‘f = 0
almost everywhere’. In circumstances where the choice of measure is ambiguous, one
sometimes writes p-almost everywhere. We often abbreviate almost everywhere to a.e.

If (fn)52, is a sequence of measurable functions on (E, &, ), we say f, — f almost
everywhere if

p{z € E: folx) # f(2)}) = 0.
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Another notion of convergence that we can consider is convergence in measure. We say
that f, — f in measure if

pw({z e E:|folx)— f(x)] >€}) -0, foralle>D0.
The connection between these two notions is captured by

Theorem B.17. Suppose (E,&, ) is a measure space, and (fn)52; is a sequence of
measurable functions on E. Then:

i) Suppose u(E) < oo, then if f, — f almost everywhere, then f, — f in measure.

i) If fn — f in measure, then there exists a subsequence (fn,)p>, such that fn, — f
almost everywhere.

Proof. 1) By considering f, — f, assume wlog f, — 0 a.e.. Fix € > 0, then for any n:

u ( N Alfnl < e}> < ul{lfal < )

m>=n

Now, set Ap, =(,,,5,{[fm| < €}. We have A,, C Ay, 11 and

S UA” <= there exists N such that |f,(z)| <eforalln > N.
n

Thus as n — oo, we have:
1(An) 2 p({z: fu(z) = 0}) = p(E).

ii) Again, wlog suppose f, — 0 in measure. Set n; = 1. For each k£ > 1 we can find
ng > Ng41 such that
al{l fu| > 1/k}) <27,
Now, let

A = U {z € E:|fn, (x)] >1/m}.

m>k

we have that x € (), Ay if and only if for any k there exists m > k such that
| frn(z)| > 1/m. Thus x & (), Ak if and only if there exists k such that for any
m = k we have |f,, (x)] < 1/m and we conclude f,, — 0 for all & ("), A;. Now,
Agy1 C Ag so, for any m:

u <ﬂAk> < () = gt [ U o @) > 1/m)
k

m=>k

<D #l{lfan (@) > 1/m}) <27

m>k

we conclude that p ([, Ax) = 0 and thus f,, — 0 a.e..



B.3 Integration 179

Exercise B.7. Let E = [0, 1] be equipped with the Lebesgue measure. Con-
struct a sequence of functions f, : [0,1] — [0, 1] such that f, — f in measure,
but (fn(2))5; does not converge for any = € [0, 1].

A final result concerns the measurability of a function which equals a measurable
function almost everywhere.

Lemma B.18. Let (E,E, 1) be a complete measure space, and let f be a measurable
function on E. If g: E — R is such that f = g almost everywhere, then g is measurable.

Proof. Under the assumptions, N = {f # ¢} is null, hence measurable by the completeness
hypothesis, and p(N) = 0. Fix a € R. By assumption A = {f < a} is measurable, and if
we can show that B = {g < a} is measurable then we will be done. Now, BN A° C N, so
by completeness A N B¢ is measurable, hence

B=AU(BnNA"

is measurable. O

B.3 Integration

We now wish to define a notion of integration for measurable functions on some measure

space (E, &, u). We approach this by first considering the case of non-negative measurable

functions. These can be approximated from below by simple functions, which are finite

linear combinations of characteristic functions on which the integral can be easily defined.
We say f is simple if

k
f = Z an]lAn
n=1

where o, € R and A,, € £. For a non-negative simple function it is natural to define the
integral as:

k
p(f) = Z anp(An)
n=1
Here, by convention 0 - co = 0. Alternative notations which we will make use of are:
u(f) = / fdp = / f(@)dp(z)
E E

We note that ay,, A, are not uniquely determined by f, however u(f) is independent of
the particular representation we choose.

Exercise B.8. a) Show that if 0 < ay,, 5, < 00, Ay, By, € £ satisty

k l
Z an]lAn = Z Bn]any
n=1 n=1
then

k l
Z anpi(An) = Z Bni(Bn).
n=1 n=1
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b) If f, g are simple functions and a,b > 0, show that

i) plaf +bg) = ap(f) + bu(g)-
i) 16 £ < g then u(f) < plg).
iii) f =0 a.e. if and only if u(f) = 0.

For a non-negative measurable function, we define the integral to be:

p(5) = [ fdu=sup{utg) g simple with 0 < g < f}.

By the results of Exercise B.8 this is consistent with the previous definition when f is
simple. Note that p(f) is permitted to take the value co. We also note that if f, g are
non-negative measurable functions with f < g, then

/ Jdp < / gdu.
FE E

It also follows immediately from the definition that for any € > 0 there exists a simple
function f. such that

L= sddn= [ (7= odu<e

To define the integral for functions which may take both positive and negative values,
we first recall that if f is measurable then f*, f~ |f| are non-negative measurable
functions. We say that f is integrable if p(|f]) < oo, in which case we define:

u(f) = u(f*) —pu(f7).

Note that f < g if and only if f* < g™ and f~ > g, so that f < g implies u(f) < p(g).
In particular, we have that |u(f)| < u(|f|). By our comment above, for any € > 0 we can
find a simple function f. such that

/Iffe!du<6
FE

since we can approximate both f* and f~ by appropriate simple functions.

If at most one of u(f*) or u(f~) is infinite, then we can still define u(f) by the
same formula, but if both u(f*) and u(f~) are infinite then we can’t sensibly assign a
value to u(f). We can also consider the case where f takes values in R™. In this case we
pick a basis (e;)!; for R" and write f =Y | fie;. We say f is integrable if each f; is

integrable and we define:
Jfdu= </ fz’dﬂ> e
Jora=2 (],

This naturally gives a definition for functions taking complex values by the isomorphism
C~R2%
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B.3.1 Convergence theorems

A fundamental result in the Lebesgue theory of integration is the monotone convergence
theorem, sometimes called Beppo Levi’s Lemma. Suppose (E, &, i) is a measure space
and that (f,)2° is a sequence of non-negative measurable functions which is increasing,
ie. fo(z) < foyi1(z) for all 2 € E and n > 1. Then for each z € E the limit
f(z) = limy, 00 fn(x) exists in [0, 00]. We know that f is measurable, and the monotone
convergence theorem asserts that p(f) = limy,— o0 p(fn)-

Theorem B.19 (Monotone convergence theorem). Let (f,)22, be an increasing sequence
of non-negative integrable functions on a measure space (E,E, p) converging to f. Then

fdp = lim/fnd,u.
/E/‘ n—oo E

Proof. Let M = sup,, u(fn). We wish to show that M = u(f). Since f,, is an increasing
sequence, we have f, < f so that p(f,) < u(f). As this holds for all n, we deduce:

M < p(f) = sup{p(g) : g simple, g < f}.
If we can show that for any simple function g with 0 < g < f we have u(g) < M then

we’re done. Suppose
m
9= Z apl g,
i=1

is such a function, where we may assume Ay € £ are disjoint without loss of generality.
We define

gn(x) = min{g(z), 27" [2" fn]}.

Then (g,,)22 is an increasing sequence of simple functions, satisfying g, < f, < f and
gn — g- Fix 0 < € < 1. Define the sets Ay, by

n={r€A;:gn(x) =2 (1 —€)ax}

Then since g, is an increasing sequence, we have Ay, ,, C Ay 1. So by countable additivity
we have p1(Ay,) — n(Ag) as n — oo. By construction we have

Ta,9n = (1 - €)agly,,

SO
w(La,gn) = (1 — €)arp(Agn)

Now, noting that g, = > ;" 14, 9n, and using the linearity result of Exercise B.8 we see

wgn) = (1=€) > anp(Ap,) = (1 Zaku (Ax) = (1 = €e)u(g).
k=1

Now, u(gn) < pu(fn) < M, so we have (1—€)u(g) < M for any € > 0, hence pu(g) < M. O

A straightforward corollary of this result is the following:
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Corollary B.20. Suppose (fn)>2, is a sequence of non-negative measurable functions
on a measure space (E,E, p). Then

()= (o)

Another useful corollary:

Corollary B.21. Suppose (fn)2> 1 s a decreasing sequence of bounded measurable func-
tions on a measure space (E,E, ). Then

/ fdp = tim / Fudp.

Proof. We take g, = f1 — fn, since the f,, are bounded this is well defined (i.e we don’t
have to assign a value to co — 00). Then (g,)02 is an increasing sequence and we can
apply the usual monotone convergence theorem. O

Exercise(x). Give an example to show that Corollary B.21 fails if the bound-
edness assumption is dropped.

With the monotone convergence theorem in hand, we can readily show that the
integral satisfies the properties we would expect.

Theorem B.22. Suppose f,g are non-negative measurable functions on a measure space
(E,E, 1) and a,b > 0 are constants. Then:

i) /E(af—i-bg)d,u—a/Efd,u—i-b/Egdu
it) Iffégthen/Efduéngdu

iii) / fdu =0 if and only if f =0 almost everywhere.
E

Proof. Let
fo(@) = min{2"[27"f(z)],n},  gn(z) =min{2"|27"g(z)], n}.

Then (fn)221, (grn)5% is an increasing sequence of non-negative simple functions tending
to f, g respectively, and clearly (af,+bgn)5; is an increasing sequence tending to af +bg.
Since these are simple functions, we have:

/ (afn +bgn)dp = a/ fndup + b/ gndp
E E E

and by the monotone convergence theorem, we can take the limit n — oo to establish 7).
Point ii) we already noted follows directly from the definition of the integral.

Finally, if f = 0 almost everywhere, then we have u(g) = 0 for any simple g < f, and
thus p(f) = 0. Now suppose f(x) # 0 almost everywhere. Then there exists € > 0 such
that if A = {f > e} then pu(A) > 0. Then g = 1 4¢€ is a non-negative simple function with
g < f and p(g) = en(A) > 0, hence p(f) > 0. O
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We can extend this result to functions taking values in R as follows:

Theorem B.23. Suppose f, g are integrable functions on a measure space (E,E, u) and
a,b € R are constants. Then:

i) /E(af—I—bg)du:a/Efdu—i-b/Egdu

i) 111 <gthen [ fan< [ gan
E E

i11) If f =0 almost everywhere then /Efd,u =0.

Proof. Note that it follows immediately from the definition that pu(—f) = —u(f). Suppose
then that a > 0. We have:

plaf) = plaf™) — plaf™) = ap(f) —ap(f~) = ap(f).

We also note that (f +g)t — (f+9) " =f+g=f"+9g" —f~ —g~ . As a consequence
(f+9)"+f +g =(f+9)~ + f"+g", where both sides are sums of non-negative
measurable functions, hence:

w(f+9)) +u(f)+ulg™) =uw((f+9)7) +ulf*) +nugh)

and on rearranging:

w(f+9)=uw((f+9)")—w((f+9)7) = n(f") —n(f7)+ulg") —nlg™) = u(f) + nlg).

Combining our observations gives i). Noting that f < g implies 0 < g — f, we deduce
0 < u(g) — p(f) and thus 4i) holds. Finally, if f = 0 almost everywhere, then f*, f~ =0
almost everywhere thus p(f) = 0. O

Suppose (E, &, 1) is a measure space. If A € £ and f is integrable, then so is f1 4.
Recall also that A inherits a measure space structure in a natural way (A,E|a, ula)-
It is relatively straightforward to see that f|4 is integrable, and that we can define

unambiguously
[ gdni= [ srada= [ fladula,
A E A

By our linearity result i) above, if A, B are disjoint measurable sets, then

/Afdqu/deﬂz AUdeu-

We also note that by i) we have that if | f| < K almost everywhere and p(F) < oo, then
f is integrable and
/ fdp
E

A useful consequence of the monotone convergence theorem connects the Lebesgue
integral to the Riemann integral.

< Ku(E).
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Theorem B.24. Let A = (a1,b1] X -+ X (an,by] be a rectangle in R™, and suppose
f: A — R is bounded. Then f is Riemann integrable* if and only if f is continuous
almost everywhere. If so, f is integrable with respect to Lebesque measure, p, on A and

moreover
K74 f dr = f d,u
/A (x) /A ’

where Z [ denotes the Riemann integral.

Proof. Since f is bounded, we may assume that 0 < f < K for some K, without loss of
generality. We consider a sequence of partitions P, of A such that P, is a refinement
of P,, and the mesh of P,, — 0. Correspondingly, we construct two sequences of functions,
S fn by
fo= 2o i fley fu= 3 sup Sl
TEPn TE€EPn

which satisfy - B

Since each m € P, is a rectangle, it is certainly Lebesgue measurable and so in’?n
are in fact simple functions. Moreover,

[ fau=16P0. [ Fadn =070,
A A

where U, L are the usual upper and lower sums associated to a partition. The function f
is Riemann integrable if and only if L(f, P,),U(f,P,) have a common limit as n — oo,
i.e:
U(f,Pn) — %/ f(z)dx, L(f, Pn) — %/ f(z)dx, asn — occ.
A A

(f n)jl’ozl is a monotone increasing sequence, bounded above by f, so there exists a bounded

measurable function f < f such that f = lim, e in = sup in Similarly, there exists a
bounded measurable function f > f > f such that f=1lim, o f,, = inf in By applying

monotone convergence to (f )2, and (f,)5%; we have:

Jp/n=1

lim/f du—/fdué/fdué lim /fndu

We deduce that f is Riemann integrable if and only if

/A Jdp = /A fdu=2% /A f(z)da.

This occurs if and only if f = f almost everywhere.
We define the set of boundary points of P, to be:

B, = U orn A
TEPn

4For a discussion of the Riemann integral in R™ see Spivak: “Calculus on maniolds”.
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Clearly u(By) = 0, so the set B = U, B, also has measure zero. Suppose = ¢ B, then
f(z) = f(=x) if and only if f is continuous at 2. We conclude that f is Riemann integrable

if and only if f is continuous almost everywhere. Since f < f < f in this case, we deduce
that f is almost everywhere equal to f and the result follows by Lemma B.18. O

This result, that Riemann integrability is equivalent to almost-everywhere continuity,
is known as Lebesque’s criterion for integrability. In practice, many of the explicit integrals
we encounter are Riemann integrals, and this gives us access to the standard toolkit to
compute them. Where there’s no possibility for ambiguity, we will often use the standard
notation [dz or [ d"z, etc. to denote Lebesgue integration.

The next convergence result for integrals we shall require allows us to drop the
assumption that our sequence is monotone, but at the cost of a weakened result.

Lemma B.25 (Fatou’s Lemma). Suppose (f,)32 is a sequence of non-negative measur-
able functions on a measure space (E,E, ). Then

/ liminf f,dp < liminf/ fnd
E n—oo E

n—0o0

Proof. Let g, = inf,,>p fin. Then (g,)72; is an increasing sequence of non-negative
measurable functions, which tends to liminf f,. Thus by monotone convergence

/ gndi — / liminf f,du.
E E n—o0
On the other hand, for k£ > n we have:

g?’b < fk7

hence
/ gndp < / frdp forallk >n = / gndp < inf / Jrdp.
E E E k>n B

Now, as n — o0
inf / frdp — lim inf/ frndu,
kzn /g n—oo fp
and we’re done. O

Exercise(x). Construct a sequence (f,)o2; of functions f, : [0,1] — [0, c0)
satisfying the hypotheses of Fatou’s Lemma such that the inequality is strict.

The next convergence result we shall establish is an especially useful one, and in
particular will be invoked on many occasions during the course.

Theorem B.26 (The Dominated Convergence Theorem). Suppose that (E,E,u) is a
measure space and that (fn)>2, is a sequence of measurable functions such that:

i) There exists an integrable function g such that |f,| < g.

it) fo(z) = f(z) for all x.
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/Efnd,u—>/Efdu.

Proof. By Theorem B.15, f is measurable, and since |f| < g, we further have that f is
integrable. We have

Then f is integrable and:

0<gxfu—9=x/f,

so that liminf g = f,, = ¢ &= f. By Fatou and properties of lim inf, lim sup we have:

/gdu—l—/ fd,u:/ lirninf(g—i-fn)d,uSliminf/(g-l—fn)du:/gd,u—Himinf/ fndu
E E E E E E

/ gdu—/ fdu —/ liminf(g — fn)dp < liminf/ (9 — fn)du = / gd,u—limsup/ fndu
E E E E E E

Rearranging, we have:

[ tdn<timint [ g <tmsup [ fudu< [
FE FE E E

hence

liminf/ fndu:hmsup/ fnd,u:/ fdu,
E E E

and we’re done. O

We note that the hypotheses can be weakened slightly: suppose the hypotheses hold
almost everywhere, so that X = {x € F : hypotheses fail} has measure zero, then by
applying the Dominated Convergence Theorem to f,1 xc, we can recover the same result.

Exercise B.9. Here p is the Lebesgue measure on R.

a) Show that f :[0,1] — R given by f(z) = % is Lebesgue integrable, and that

1
1

fdu = lim%/ —dzx.
/[0,1} =0 Jo VT

b) Suppose f :[0,1] — R is Riemann integrable on every interval [e, 1], € > 0
and moreover

1
%/mem<c

for some C independent of €. Show that f is Lebesgue integrable with

1
/ fdp = lim%/ f(z)dx.
[0,1] e—0 6

c¢) Suppose f : R — R is Riemann integrable on every interval [—R, R] and
moreover

R
# [ l@le<c
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for some C independent of R. Show that f is Lebesgue integrable with

Afduz}%ﬂo%/_lj%f(x)dx

Give an example of a function such that

R
lim %/ f(z)dzx
R—o0 —R
exists, but f: R — R is not Lebesgue integrable.

B.3.2 Product measures and Tonelli-Fubini

Given two measure spaces (F, &, 1) and (F, F,v), we wish to construct a measure space
on ' x F. We say a subset F x F'is a rectangle if it is of the form A x B, with A € £,
B € F. We denote by £ X F the collection of finite disjoint unions of rectangles. Note
that if A; € £, B; € F then

(Al X Bl) n (AQ X Bg) = (Al N AQ) X (Bl M Bg),
(Al X Bl) U (A2 X Bg) = (Al X By \ BQ) U ((Al U Ag) X (Bl N BQ)) U (Ag X Bg \ Bl)

where the right-hand side of the second line is a disjoint union of rectangles. Finally, since
(A1 X B1)¢ = (E x BY) U (A] x F),

we see that £ X F is an algebra (hence a ring). We denote by £ ® F the o-algebra
generated by £ K F. We define a set function 7 : € X F — [0, c0] by

N N
™ <U(Ai X Bz’)) = ZM(Ai)V(Bz'),

i=1

where the rectangles A; x B; € € x F,i=1,..., N, are assumed to be disjoint. Now
suppose that (A; x B; ) °, is a sequence of dlSJOlnt rectangles such that

UijBj:AxBESX}".
j=1

We claim that

= Z 1(A;)v(Bj)

j=1

To see this, we note:

1a(2)1p(y) = Laxp(z,y) Zm <, (2,Y) Zm (v)
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Integrating with respect to x, using Corollary B.20 we see
o0 o0
P = Y 1a, ) [ Lade = L, Wu(4)
j=1 j=1

Integrating again with respect to y, by the same argument we find:

o0

p(A)u(B) =Y u(A;)v(By).
j=1

Note that this immediately implies that 7(C) is well defined for C' € £ K F, independent
of how C' is represented as a finite union of rectangles. We also note that £ X F, 7 satisfy
the conditions of Carathéodory’s theorem, Theorem B.3, thus we can define an outer
measure ™" on E x F, whose restriction to £ ® F gives a measure, which agrees with
on £ X F. We call this measure on £ ® F the product measure, p X v.

Note that the product measure p x v will not in general be unique. However, it will
be if (E,&, ) and (F,F,v) are o-finite. We say (E, &, u) is o-finite if there exists a
countable collection {A;}°; C A of disjoint measurable sets, with p(A4;) < oo, such that
E = UA;. If both (E,&, u) and (F, F,v) are o-finite, then £ X F satisfies the conditions
to enable us to apply Corollary B.9 to deduce that p x v is the unique measure on £ ® F
such that

(1 % V)(A x B) = u(A)u(B).

A Dbrief note of caution before we consider integration on product spaces. If E, F
are topological spaces and &, F are the Borel g-algebras on their respective spaces, then
£ ® F contains the Borel o-algebra of £ x F with the product topology. However, the
two need not be equal in general. One important case where we do have equality is when
E, F are o-compact metric spaces®. In particular this is the case when E = R", F' = R™.
By the uniqueness of Lebesgue measure, we have that the product measure restricted to
B(R™) x B(R™) = B(R" x R™) is the Lebesgue measure on R" ™.

We now wish to consider integration of a measurable function defined on E x F. If
f:ExXF —>R and z € F,y € F, we define the x—section, f, and y-section, fY as:

fo(y) = () = f(z,y).
We also introduce the z-section and y-section of a set A C E x F as:
Ay ={yeF:(z,y) € A}, AV ={x e F:(z,y) € A}.
Note that A, C F, AY C E and we have
(La)e =1, (1a)! =Tav,

Lemma B.27. [fAc EQF, then Ay € F forallxz € E, AY € £ for ally € F. More
generally, if f is € ® F-measurable, then f; is F-measurable and fY is E-measurable.

5A topological space is o-compact if it is the union of countably many compact sets.
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Proof. Let
C={ACExF:A,cFforallzec E,AY € £ forall y € F'}

Certainly every measurable rectangle is in C. We also have:

J=1

Ud | =UM),, (@A) =4,
j=1 "

and similarly for AY, so that C is a o-algebra and thus £ ® F C C. For the final part we
note that for

(f)719) = (f719),, (NS = (19",
whence the result follows. O

Next we prove a special case of the Tonelli and Fubini theorems, where we restrict
attention to the characteristic functions of a measurable set/

Lemma B.28. Suppose p,v are finite, and let A € £EQ F. Then
v v(dn), Y p(AY)

are measurable functions, and

(3 0)(A) = [ v(Adnte) = [ pan)aviy).

E

Proof. Let C consist of all sets A € £ ® F for which the conclusion of the Lemma holds.
Clearly C contains all rectangles, and these form a m-system. If we can show that C is a
d-system, then we will be done by Lemma B.2.

Clearly E x F € C. Suppose A, B € C with B C A. Then(A\ B), = A, \ By, so°
v((A\ B)z) = v(Az) — v(By), hence x — v((A\ B);) is measurable, and

(1> V)(A\ B) = (u x v)(A) = (px v)(B) = | v(Az)dp(z) —/ v(Bg)du(x)

F E
- / V((A\ B)o)dp(a)
E

A similar argument for (A \ B)Y shows A\ B € C.

Now suppose A, € C with A, C A,+1 and let A = U,A,,. Then by countable
additivity we have (z — v((An)z))52; is a monotone increasing sequence of functions
with limit v(A,). By monotone convergence we have v(A;) is measurable, with

[ ndnta) =t [ v((An)duta) = T o x ) (A) = X v(A),
E n—oo E n—oo

where in the final inequality we use countable additivity for g x v. A similar argument
for p(AY) establishes that A € C and we’re done. The extension to the case where u, v
are assumed o-finite is straightforward, and left as an exercise. O

5This is where the assumption that v is finite is required
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Exercise(x). Show that Lemma B.28 holds if u, v are only assumed to be
o-finite.

We now prove two very closely related results, Tonelli’s Theorem and Fubini’s Theorem.
They are often referred to together as the Tonelli-Fubini theorem.

Theorem B.29 (Tonelli). Assume (E,&, ), (F,F,v) are o-finite measure spaces. Sup-
pose f: E x F — [0,00] is a non-negative measurable function. Then so are f., f¥, and
setting:

() = /F L@dvy),  gly) = /E £ () dp(z),

we have that h : E — [0,00], g : F' — [0,00] are non-negative measurable functions on
their respective domains with:

EXFfd(u X V)= /Ehdu = /ngy. (B.2)

Proof. Take (f,)52; a monotone increasing sequence of non-negative simple functions
with f,, — f. Letting

hin() = /F Fe@dr(y),  guly) = /E (fo)? () du(a),

we have

Fud(p % v) = fE oy dlpt = /F ndv, (B.3)

by the previous Lemma and the linearity of the integral. For each z € FE, we have
that ((fn)z)52; is a monotone increasing sequence with (fy); — fz and similarly for
((fn)¥)s2 . Thus, we have (h,)52, is an increasing sequence of functions with h, — h,
and similarly for g, by the monotone convergence theorem. Thus we can pass to the limit
in (B.3) by the monotone convergence theorem to obtain (B.2). O

ExXF

Theorem B.30 (Fubini). Assume (E,E&, ), (F,F,v) are o-finite measure spaces. Sup-
pose f: B x F — R is an integrable function. Then f, : ' — R is integrable for p-almost
everyx € E, as is fY : E — R for v-almost every y. Thus

h(x) = /F L), aly) = /E £ () dp(), (B.4)

are defined almost everywhere. We have that h : E — R, g : F — R are integrable
functions on their respective domains, and:

/EXFfd(uxy):/Ehdu:/ngu. (B.5)

Proof. Write f = ft — f~, with f* non-negative and integrable. By Tonelli applied to
f* we find h*, g% such that

/ fEd(p x v) :/ hEdu = / grdv.
ExXF E F
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The first integral is finite by assumption, so we must have that h*, g are finite almost
everywhere, and moreover are integrable. Thus h = h™ — h™ and g = g7 — g~ satisfy
(B.4) and we also deduce (B.5). O

In the particular case where £ = R", I' = R equipped with their Borel sets and
Lebesgue measure, then we conclude that if f: R"™ x R™ — R with

/ (@, y)| dedy < oo
Rn+m

/n < - f(a:,y)dy> dz = /m ( . f(x,y)d:c) dy = /an f(2)dz

with obvious notation.

In combination, Tonelli-Fubini together with the Dominated Convergence Theorem
are very powerful, and typically suffice for the majority of convergence related results
that we require in standard analysis.

Exercise B.10. Let (f,)7%; be a sequence of measurable functions f,, : R — R

such that
o0
Z/ | fn| dz < 0.
n=1 R

Show that: -
f@) =" falx)
n=1

converges for a.e. x € R™, and
oo
/ fdx = Z fndz.
R™ 1 J/R™

B.4 The LP-spaces

Given a measure space (F, &, i), we say that a measurable complex-valued” function f
belongs to LP(E, u) for some p < 1 < oo if

Il = ( /E f\”du); = (u(If1))7 < oo.

We say that f € L£L®(F,pu) if f is bounded almost everywhere, that is there exists
0 < K < oo such that

p({lf ()] > K}) = 0.

If so, then we define

[l oo := nf{ K= u({[f(z)| > K}) = 0}

We can show:

"We can also assume f is real-valued
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Lemma B.31. For1 < p < oo, the function f — || f||;» defines a seminorm on L>(E, ).
That is:

i) |||l is non-negative:

Ifllpe =0,  forall f € LP(E,p).

ii) |||l » is homogeneous:

IMlle = Ao s forall f € LP(E, ), A € C.

iii) ||-||» satisfies the triangle inequality:
1f+9lle < fllze + Mgl forall f,g € L2(E, p).

Proof. See Exercise B.11. O

We note that the crucial property that is missing and prevents LP(E, u) from being a
normed space is positivity, i.e. that ||f||;, = 0 if and only if f = 0. By Theorem B.22, we
know that || f||;, = 0 if and only if f = 0 holds almost everywhere. In order to construct
a normed space, we must quotient out the elements of £P(E, ) which satisfy || f||,, = 0.
To do this, we introduce an equivalence relation according to:

f~g <= f—g=0ae.

It is straightforward to see that ~ defines an equivalence relation on LP(FE,u) and
moreover, by the reverse triangle inequality

feg = Al = llgllz -

Thus we can define a new space
LP(E,p) = LP(E, 1)/ ~,
and |[|-||;, descends to a norm on the quotient space by:

1A~ e = [1f Il -

In practice, we usually elide the distinction between the function f € LP(E, p) and the
equivalence class of functions [f]. € LP(E, ), so it is standard to speak of a function f
belonging to LP(E, it). One should always remember, however, that in general statements
about elements of LP(E, ) hold at most almost everywhere. It is immediate that we have

Lemma B.32. The space LP(E, 1), equipped with the norm ||-||;,, is a normed vector
space.

In the case where E = R" equipped with the o-algebra of Lebesgue measurable sets
and the Lebesgue measure, we typically write LP(R™) instead of LP(R"™,dz) to denote the
associated spaces.
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Exercise B.11. Let (E,&, 1) be a measure space. Show that ||-||;, defines a
seminorm on LP(E, ) for 1 < p < oo:

a) First check that the homogeneity and non-negativity properties are satisfied.
b) Establish the triangle inequality for the special cases p = 1, oc.
c¢) Next prove Young’s inequality: if a,b € R, and p,q¢ > 1 with p~t +¢ 1 =1
then:
a? bl

ab < — +
p q

Hint: set t = p~', consider the function log[taP + (1 — t)b] and use the
concavity of the logarithm

d) With® p,q > 1 such that p~'+¢~! = 1, show that if || f||;, = 1 and ||g||;, = 1
then

/ |fgldp <1
FE

Deduce Hélder’s inequality:
/Elfgldu <l llgllpa,  forall f € LP(E, p), y€ LYUE,p).
e) Show that if f,g € LP(FE, p)

Iy < gl dp g gl© dp
IF +9lz < | VI +9P dut [ 1]l +9P"d
Apply Hélder’s inequality to deduce:

-1
1 + gl < (Lf e + lgllze) 1 + gliZs

and conclude
1f +alle < IFlle + llgll e -
This is Minkowski’s inequality.

Exercise B.12. a) Suppose that p(E) < co. Show that if f € LP(E, p1), then
f e LYE,p) for any 1 < g < p, with

pP—q
[fllpe < w(E) @ (| fll -

b) Suppose that f € LPO(E, u) N LPL(E, ) with pg < p1 < 0o. For 0 < 6 < 1,

define py by . P

Po po b1
Show that f € LPo(F, n) with

1-6 0
1l oo < I Fllzeo [[fI1Zor -

8We permit p, ¢ to take the value co with the convention co™! =0
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B.4.1 Completeness

The most important property of the LP-spaces is that in fact, they are complete, i.e. they
are Banach spaces. To establish this, we first prove the following result.

Lemma B.33. Suppose (E, &, u) is a measure space and 1 < p < co. Let (gn)s>; be a
sequence with g, € LP(E, ) such that

0
Z lgnllp < o0
n=1

then there exists f € LP(E, u) such that

[eS)
Zgn = f7
n=1

where the sum converges pointwise almost everywhere, and in LP(E, u).

Proof. Fix representative’ functions g, € LP(E, 1) corresponding to each g, € LP(E, ).
Define hy,, h : E — [0, 00] by

n 00
k=1 k=1

Note that (hy)72 is a monotone increasing sequence of non-negative measurable functions,
converging pointwise to h, so by the monotone convergence theorem we have

hPdp = lim [ hPdp.
/;v n—oo E

By Minkowski’s inequality we see

n o
hnllze <D gklle <K = llgill o -
k=1 k=1

It follows that h € LP(E, p) with ||h||;, < K, which in particular implies that h is finite
almost everywhere. At each point = such that h(z) < oo, we have that Y o gi(x)
converges absolutely, hence converges by the completeness of C. We deduce that Y7, gk
converges pointwise almost everywhere and we define:

fla) = > orey gk(x) if the sum converges
Lo otherwise

Now, we have that |f| < h, which implies || f||;, < ||| ;» < K, and moreover:

n p n p
F=Y ar| < (|f|+Z|§k|) < (2h)7.
k=1 k=1

9We typically don’t state this point explicitly, but on this occasion we will make the distinction
between £P and L*
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Since hP is integrable, by the Dominated Convergence Theorem (Thm B.26) we deduce

that
/ 'f ng

which implies Y72, g, converges to f in LP. Noting that a different choice of represen-
tatives g, will result in hy, h, f which differ from those defined above only on a set of
measure zero, since the union of countably many sets of measure zero also has measure
zero we are done. O

du — 0, asn— oo,

With this result in hand, we are able to establish

Theorem B.34 (Riesz-Fischer Theorem). Suppose (E,E,u) is a measure space and
1<p<oo. Then LP(E, ) is complete.

Proof. To prove completeness, suppose (f)5; is a Cauchy sequence with respect to the
LP-norm. It suffices to show there exists f € LP(F, u) with f, — f in LP. We split the
cases p < oo and p = oo.

1. First suppose 1 < p < co. Then by the Cauchy property we can find a subsequence
(fny)72, such that

ankJrl - fnkHLP < 27",

Set gk = fnyy — Jn,- By construction we have:

oo o
Z 9kl » < 2271@ =1
k=1 k=1

so by Lemma B.33 there exists g € LP(F, ) such that
o0
o=y
k=1

with the sum converging pointwise a.e. and in LP. Noting that f,, , = fn, + Zi:l Gk,
we deduce that (fy,, )32 converges in LP to some f € LP(E, u). It follows by a standard
argument using the fact it is a Cauchy sequence that (f,)5%, converges to f in LP.

2. Now consider the case p = co. Since (fy,) is Cauchy in L*°(E, p), for each m € N there
exists n such that for any j,m > n we have

1 C
|fi(x) — fr(z)] < po- for all z € Ny, .,
where p (N g,m) = 0. Let

N=J Njkm:

j7k7m
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then u(N) = 0 and further we have that for any m € N there exists n € N such that
for 5,k > n:

sup [fy(a) = fula)| < ;- (B.6)

so by the completeness of C we have that for each x € N¢ we have f;(z) — f(x) for
some f(r) € C We let f(z) =0 for z € N, so that f : E — C. Sending k — oo in
(B.6) we see that for j > n

1
sup |f5(x) = F)] < o

whence we conclude that || f]|;« < co and f; — f in L™, O
Note that we have in fact proved the stronger result:

Corollary B.35. Suppose (fn)>2, is a Cauchy sequence in LP(E,u) for 1 < p < oo.
Then there exists a subsequence (fp, )5, which converges pointwise almost everywhere.

B.4.2 Density

It is often useful, when discussing topological spaces to identify dense subsets consisting
of ‘nice’ or ‘concrete’ objects, for example elements of (Q can be easily discussed, while
a general element of R is typically expressible only as some limit of elements of Q. In
the main body of the course we shall establish that C2°(R") is dense in LP(R"™). For a
general measure space, we don’t necessarily have a notion of continuity or smoothness,
but we can show

Theorem B.36. Let S be the set of all complex, measurable, simple functions on E such
that:

u({z s(z) # 0}) < oo.
Then S is dense in LP(E, ) for 1 < p < oo.

Proof. Clearly S C LP(E, u). Now, suppose f > 0 with f € LP(E, u) and let
fo(x) = min{2"[27" f(z) ], n}.

We have f, € S and 0 < f, < f, so that f, € LP(E,pu). Further, we know that
fn(z) = f(x) and moreover

|f = ful? < 1FI7,
so by the Dominated convergence Theorem (Thm B.26) we deduce

/Wf—nfmw+o
E

hence f, — f in LP. A general (i.e. complex valued) element of LP(FE, ) may be written
as:

F=1 =0 il = 1),

where fF, fzi are non-negative elements of LP(FE, i), hence the result follows. O
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