
Appendix B

Background Material: Measure Theory and
integration

In this appendix we shall briefly review some of the basics of measure theory, including
sigma algebras, measurable spaces, measures and the construction of the Lebesgue measure.
These notes follow parts of the notes from Prof. Norris’ version of the course Probability
and measure, as well as the books Real and complex analysis by Rudin, Real Analysis by
Stein and Shakarchi annd Measure Theory and Integration by M. Taylor.

B.1 Sigma algebras and measures

Given a set E, the basic goal of measure theory is to assign to certain subsets A ⊂ E a
value, µ(A) which represents in some appropriate sense the ‘size’ of A. For example, if E
is finite or countable and A is any subset of E we might set µ(A) to be the number of
elements in A (where µ(A) may be ∞ if A is not finite). In this case µ is defined on all
of the power set 2E . We call µ the counting measure.

For E = R, it is natural to wish to define µ(A) to be the ‘length’ of A. This is
unambiguous if A is some interval, but it turns out that we run into problems trying to
define the ‘length’ of an arbitrary subset of R. As a consequence, we will need to restrict
our attention to a smaller collection of sets than the power set 2R.

Definition B.1. Let E be a set. A collection E of subsets of E is called a σ-algebra1 if
E contains ∅ and is closed under taking the complement and forming countable unions.
That is if A ∈ E then

Ac = {x ∈ E|x 6∈ A} ∈ E ,

and if (An)∞n=1 is a sequence with An ∈ E, then

∞⋃
n=1

An ∈ E .

(E, E) is called a measurable space.

1pronounced “sigma algebra”
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A measure on (E, E) is a set function µ : E → [0,∞] such that µ(∅) = 0 and µ is
countably additive. That is for a sequence (An)

∞
n=1 with An ∈ E disjoint, we have:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

(E, E , µ) is called a measure space.

Note that (E, 2E) is always a measurable space, since 2E is always a σ-algebra.
Suppose (E, E , µ) is a measure space and that A ∈ E . Then we can define a new measure
space (A, E|A, µ|A) by taking E|A = {B ∈ E : B ⊂ A} and defining µ|A(B) = µ(B) for all
B ∈ E|A.

Exercise B.1. Let E be finite or countable and E = 2E .

a) Verify that if µ is the counting measure, then (E, E , µ) is a measure space.

b) A mass function is a map m : E → [0,∞]. Define a set-function on (E, E) by

µm(A) =
∑
x∈A

m(x).

Show that µm is a measure on (E, E), and moreover if µ is any measure on
(E, E) then µ = µm for some m.

For the examples in Exercise B.1, we can identify in a straightforward way both an
appropriate σ-algebra and measure. In more general situations we may not be so lucky,
so it is very helpful to be able to appeal to abstract results to construct measure spaces
by starting with something simpler. We shall require the following Lemma, whose proof
we defer to an exercise.

Lemma B.1. Suppose that for each i ∈ I, where I is some (not necessarily countable)
index set, Ei is a σ-algebra of the set E. Then the intersection ∩i∈IEi is a σ-algebra.

With this fact in hand we can define the σ-algebra generated by a collection of sets.

Definition B.2. If A is a collection of subsets of E, then the σ-algebra generated by A,
denoted σ(A), is the intersection of all σ-algebras E on E such that A ⊂ E.

Since 2E is always a σ-algebra, and A ⊂ 2E , σ(A) is always well defined. When (E, τ)
is a topological space, with τ the collection of open sets, it is natural to introduce the
Borel algebra2 B(E) := σ(τ). When E = R with it’s standard topology, we often write
B := B(R). A measure defined on the measure space (E,B(E)) is called a Borel measure.
A Borel measure which is finite on compact sets is called a Radon measure.

Exercise B.2. a) Prove Lemma B.1.

b) Let E = {1, 2, 3}. Find σ({1}), and show that σ({1}) 6= 2E .
2The notation B(E) assumes that the topology is obvious from context
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Exercise B.3. a) Show that if U ⊂ R is open in the standard topology, then:

U =

∞⋃
n=1

In,

where each In = (an, bn) with an < bn is an open interval, and the In’s are
disjoint.

b) Show that B = σ(A) when A is given by:

i) A = {(a, b)|a, b ∈ R, a < b}, the collection of all open intervals in R.
ii) A = {[a, b]|a, b ∈ R, a < b}, the collection of all closed intervals in R.
iii) A = {(a, b]|a, b ∈ R, a < b}.
iv) A = {[a, b)|a, b ∈ R, a < b}.
v) A = {(−∞, b)|b ∈ R}.
vi) A = {(−∞, b]|b ∈ R}.
vii) A = {(a,∞)|a ∈ R}.
viii) A = {[a,∞)|a ∈ R, a}.
ix) A = {(a, b)|a, b ∈ Q, a < b}.

[Hint : reduce cases ii)− ix) to case i).]

We have a means of generating a σ-algebra from a smaller collection of sets, A. We’d
like to define a measure by how it acts on A, and then ‘extend’ this measure to act
on σ(A) (or some larger σ-algebra containing A. For this we need both an existence
and a uniqueness result for the extension. We first introduce the idea of π-system and
d-system and establish Dynkin’s π-system Lemma, which will eventually furnish a proof
of uniqueness for extensions of measures.

Definition B.3. Let A be a collection of subsets of E. We say that

i) A is a π-system if it contains the empty set and is closed under pairwise intersection,
i.e.

• ∅ ∈ A,
• A ∩B ∈ A for all A,B ∈ A.

ii) A is a d-system if it contains E and is closed under taking differences, and countable
unions of increasing sets, i.e.

• E ∈ A,
• B \A ∈ A for all A,B ∈ A with A ⊂ B,

•
∞⋃
n=1

An ∈ A for all sequences (An)
∞
n=1 with An ∈ A and An ⊂ An+1.
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Exercise(∗). Show that if A is both a π-system and a d-system, then it is a
σ-algebra.

Dynkin’s π-system Lemma extends the previous exercise.

Lemma B.2 (Dynkin’s π-system Lemma). Let A be a π-system. Then any d-system
containing A also contains σ(A).

Proof. Let D denote the intersection of all d-systems containing A. Then D is a d-system
and it suffices to show that σ(A) ⊂ D. In order to do this, we show that D is a π-system,
hence it is a σ-algebra containing A and thus it must contain σ(A) from the definition of
σ(A).

We introduce
D′ = {B ∈ D|B ∩A ∈ D for all A ∈ A} .

Clearly A ⊂ D′ because A is a π-system. Next we claim that D′ is a d-system. Clearly
E ∈ D′. Suppose B1, B2 ∈ D′ with B1 ⊂ B2, then for A ∈ A we have:

(B2 \B1) ∩A = (B2 ∩A) \ (B1 ∩A) ∈ D

because D is a d-system and we conclude B2 \ B1 ∈ D′. Now suppose Bn ∈ D′ and
Bn ⊂ Bn+1 and let B =

⋃∞
n=1Bn. Then for any A ∈ A, we have Cn := Bn ∩ A ∈ D,

Cn ⊂ Cn+1 so
⋃∞
n=1Cn = B∩A ∈ D as D is a d-system. We deduce that D′ is a d-system

containing A, hence D′ = D by the minimality of D.
Now, we let

D′′ = {B ∈ D|B ∩A ∈ D for all A ∈ D} .
By the above, we have that A ⊂ D′′, since D′ = D. By the same arguments as above we
can check that D′′ is a d-system, and so D′′ = D and D′′ is a π-system as required.

B.1.1 Construction of measures

As described above, we are going to give a means of constructing a measure by specifying
how it behaves on some suitable collection of sets. First we introduce some notation
concerning set functions

Definition B.4. Let A be a collection of subsets of E containing ∅. A set function is a
function µ : A → [0,∞] with µ(∅) = 0. We say that a set function µ is:

• increasing if
µ(A) 6 µ(B), for all A,B ∈ A, with A ⊂ B,

• additive if, for all disjoint sets A,B ∈ A with A ∪B ∈ A we have:

µ(A ∪B) = µ(A) + µ(B),

• countably additive if for all sequence of disjoint sets (An)
∞
n=1 with An ∈ A and

∪∞n=1An ∈ A we have:

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An),
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• countably subadditive if for all sequences (An)
∞
n=1 with An ∈ A and ∪∞n=1An ∈ A

we have:

µ

( ∞⋃
n=1

An

)
6
∞∑
n=1

µ(An),

We shall also need to define what it means for a collection of subsets to be a ring

Definition B.5. Let A be a collection of subsets of E. We say A is a ring on E if ∅ ∈ A
and for all A,B ∈ A:

B \A ∈ A, A ∪B ∈ A.

We say A is an algebra if ∅ ∈ A and for all A,B ∈ A:

Ac ∈ A, A ∪B ∈ A.

Let us suppose that A is a ring of subsets of E, together with a countably additive
set function µ : A → [0,∞]. For any set B ⊂ E, we can introduce the outer measure

µ∗(B) := inf
∞∑
n=1

µ(An),

where the infimum is taken over all sequences (An)
∞
n=1 of sets such that An ∈ A and

B ⊂
⋃∞
n=1An. If no such sequence exists we set µ∗(B) =∞. We clearly have µ∗(∅) = 0,

so we have a set function defined on 2E and moreover, µ∗ is increasing. In general,
however, µ∗ will not define a measure on the measure space (E, 2E), in order for µ∗ to be
a measure we must restrict to a smaller σ-algebra. We say that A ⊂ E is µ∗-measurable
if, for all B ⊂ E we have:

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac),

and we denote byM the collection of all µ∗-measurable sets. One of the fundamental
results of measure theory is:

Theorem B.3 (Carathéodory’s Theorem). Suppose A is a ring of subsets of E, and
µ : A → [0,∞] is a countably additive set function. Define µ∗,M as above. The collection
M is a σ-algebra which contains A. The set function µ∗ :M→ [0,∞] is a measure on
(E,M).

We shall establish this result through several Lemmas. First, we establish countable
subadditivity of µ∗.

Lemma B.4. The set function µ∗ : 2E → [0,∞] is countably subadditive.

Proof. Let B = ∪∞n=1Bn. We wish to show

µ∗(B) 6
∞∑
n=1

(Bn).
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We can easily see that if µ∗(Bn) = ∞ for some n, then necessarily µ∗(B) = ∞, so we
can focus on the case where µ∗(Bn) <∞ for all n. Fix ε > 0. For each n we can find a
sequence of sets (An,m)∞m=1 such that An,m ∈ A with Bn ⊂ ∪∞m=1An,m and

∞∑
m=1

µ(An,m) 6 µ
∗(Bn) + ε2−n.

Now, B ⊂
⋃∞
n=1

⋃∞
m=1An,m, so we have:

µ∗(B) 6
∞∑
n=1

∞∑
m=1

µ(An,m) 6
∞∑
n=1

µ(Bn) + ε.

Since ε was arbitrary, the result follows.

Next we show that µ∗ extends µ.

Lemma B.5. Suppose A ∈ A. Then µ∗(A) = µ(A).

Proof. It is obvious that µ∗(A) 6 µ(A), by considering the sequence A1 = A, An = ∅ for
n > 1, so it suffices to show µ∗(A) > µ(A). Since µ is countably additive, it is finitely
additive (take all but finitely many elements of the sequence to be the empty set). Since
A is a ring, if A,B ∈ A with A ⊂ B, then B \A ∈ A. By finite additivity of µ:

µ(B) = µ (A ∪ (B \A)) = µ(A) + µ(B \A) > µ(A)

so µ is increasing. Suppose (An)
∞
n=1 is a sequence with An ∈ A. Let B1 = A1 and

Bn =
n⋃
k=1

Ak \
n−1⋃
k=1

Ak

for n > 1. Then (Bn)
∞
n=1 is a disjoint sequence, Bn ⊂ An and moreover each Bn ∈ A

since A is a ring. We have:

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) 6
∞∑
n=1

µ(An),

so µ is countably subadditive.
Now, suppose A ∈ A and take any sequence (An)

∞
n=1 with An ∈ A and A ⊂ ∪∞n=1An.

Note that A ∩An = A \ ((A ∪An) \A), so A ∩An ∈ A. We deduce:

µ(A) = µ

( ∞⋃
n=1

(A ∩An)

)
6
∞∑
n=1

µ(A ∩An) 6
∞∑
n=1

µ(An)

Taking the infimum over all such sequences, we conclude µ(A) 6 µ∗(A) and we’re
done.

Lemma B.6. M contains A.
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Proof. Suppose A ∈ A and B ⊂ E. We need to show:

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac).

Since B = (B ∩ A) ∪ (B ∩ Ac) and using subadditivity of µ∗, it is immediate that
µ∗(B) 6 µ∗(B ∩A) + µ∗(B ∩Ac), so it suffices to show

µ∗(B) > µ∗(B ∩A) + µ∗(B ∩Ac).

If µ∗(B) = ∞ this is trivial, so we can focus on the case µ∗(B) < ∞. Fix ε > 0, then
there exists a sequence (An)

∞
n=1 with An ∈ A, B ⊂ ∪∞n=1An and

∞∑
n=1

µ(An) 6 µ
∗(B) + ε.

We note that:

B ∩A ⊂
∞⋃
n=1

(An ∩A), B ∩Ac ⊂
∞⋃
n=1

(An ∩Ac).

Recalling that An ∩A ∈ A and noting that An ∩Ac = (A ∪An) \A ∈ A we deduce:

µ∗(B ∩A) + µ∗(B ∩Ac) 6
∞∑
n=1

µ(An ∩A) +
∞∑
n=1

µ(An ∩Ac) =
∞∑
n=1

µ(An) 6 µ
∗(B) + ε.

Since ε was arbitrary, we’re done.

Lemma B.7. M is an algebra.

Proof. From the definition ofM it is immediate that E ∈M and that A ∈M implies
Ac ∈ M. It remains to show that M is closed under pairwise union, or equivalently
pairwise intersection (since A ∪B = (Ac ∩Bc)c). Suppose that A1, A2 ∈M and B ⊂ E.
Then

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac1)
= µ∗(B ∩A1 ∩A2) + µ∗(B ∩A1 ∩Ac2) + µ∗(B ∩Ac1)
= µ∗(B ∩A1 ∩A2) + µ∗(B ∩ (A1 ∩A2)

c ∩A1) + µ∗(B ∩ (A1 ∩A2)
c ∩Ac1)

= µ∗(B ∩A1 ∩A2) + µ∗(B ∩ (A1 ∩A2)
c)

so A1 ∩A2 ∈M.

Finally, we are ready to prove Carathéodory’s theorem:

Proof of Theorem B.3. We already know thatM is an algebra containing A, so it suffices
to show that if (An)∞n=1 is a sequence of disjoint sets with An ∈ M, and A =

⋃∞
n=1An,

then we have:

A ∈ A, µ∗(A) =

∞∑
n=1

µ∗(An).



170 Appendix B Background Material: Measure Theory and integration

so thatM is closed under countable unions and hence is a σ-algebra, and µ∗ is a countably
additive set function onM, hence a measure. Fix any B ⊂ E. Since the An are disjoint,
we know A1 ∩A2 = ∅ and A1 ∩Ac2 = A1. We deduce:

µ∗(B) = µ∗(B ∩A1) + µ∗(B ∩Ac1)
= µ∗(B ∩A1 ∩A2) + µ∗(B ∩A1 ∩Ac2) + µ∗(B ∩Ac1 ∩A2) + µ∗(B ∩Ac1 ∩Ac2)
= µ∗(B ∩A1) + µ∗(B ∩A2) + µ∗(B ∩Ac1 ∩Ac2)

= . . . =
n∑
k=1

µ∗(B ∩Ak) + µ∗(B ∩Ac1 ∩ · · · ∩Acn)

Now, since B ∩ Ac ⊂ B ∩ Ac1 ∩ · · · ∩ Acn, by the fact that µ∗ is increasing we know
µ∗(B ∩ Ac1 ∩ · · · ∩ Acn) > µ∗(B ∩ Ac). Hence, letting n → ∞ and using countable
subadditivity we find:

µ∗(B) >
∞∑
k=1

µ∗(B ∩Ak) + µ∗(B ∩Ac) > µ∗(B ∩A) + µ∗(B ∩Ac) (B.1)

The reverse inequality holds by subadditivity, and so we have

µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac)

and thus A ∈M. Setting B = A in (B.1) we deduce:

µ∗(A) =
∞∑
n=1

µ∗(An).

Carathéodory’s theorem gives a way to extend a countably additive set function
defined on a ring A to a measure on σ(A), since we can restrict the outer measure to
σ(A). It is often useful to know whether this extension of µ is unique. We have the
following result:

Theorem B.8. Let µ1, µ2 be measures on (E, E) with µ1(E) = µ2(E) < ∞. Suppose
that µ1 = µ2 on A, where A is a π-system which generates E. Then µ1 = µ2 on E.

Proof. Let D = {A ∈ E|µ1(A) = µ2(A)} be the collection of sets on which the measures
agree. By hypothesis E ∈ D and A ⊂ D. We shall show that D is a d-system, so by
Dynkin’s π-system Lemma we have E = σ(A) ⊂ D and we’re done.

Suppose A,B ∈ E with A ⊂ B, then by additivity of the measures, we have:

µ1(A) + µ1(B \A) = µ1(B) <∞, µ2(A) + µ2(B \A) = µ2(B) <∞,

so that if A,B ∈ D then B \A ∈ D.
Now suppose that we have a sequence (An)

∞
n=1 with An ∈ D and An ⊂ An+1 and

A = ∪∞n=1An. Then setting B1 = A1 and Bn = An \ An−1 for n > 1, we can write
A = ∪∞n=1Bn, where the Bn are disjoint. Thus:

µ1(A) =
∞∑
n=1

µ1(Bn) =
∞∑
n=1

µ2(Bn) = µ2(A)

and hence A ∈ D. Thus D is a d-system and so E = D and we’re done.
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This result requires that E has finite measure. For many of the situations we’re
interested in this is too restrictive an assumption. We can extend the result for measures
which satisfy a weaker condition.

Corollary B.9. Let µ1, µ2 be measures on (E, E). Suppose that µ1 = µ2 on A, where A
is a π-system which generates E. Suppose also that E =

⋃∞
i=1Bi, where Bi ∈ A and the

Bi’s are disjoint with µ1(Bi) = µ2(Bi) <∞. Then µ1 = µ2 on E.

Proof. For each i, and for any A ∈ E , define µi1(A) = µ1(A ∩ Bi), µi2(A) = µ2(A ∩ Bi).
By assumption we have µi1(E) = µi2(E) <∞ and moreover µi1(A) = µi2(A) for all A ∈ A.
Thus µi1 = µi2 on E . Further, if A ∈ E is any measurable set, then

µ1(A) = µ1

( ∞⋃
i=1

(Bi ∩A)

)
=
∞∑
i=1

µ1(Bi ∩A)

=

∞∑
i=1

µ2(Bi ∩A) = µ2

( ∞⋃
i=1

(Bi ∩A)

)
= µ2(A)

Completeness of measures

A useful feature of the measures obtained from Carathéodory’s theorem is that they have
a property known as completeness.

Definition B.6. Let (E, E , µ) be a measure space. We say µ is complete if for any A ∈ E
with µ(A) = 0, each subset of A also belongs to E.

A subset of a set of measure zero is sometimes known as a null set, so a complete
measure is one for which all null sets are measurable.

Lemma B.10. Suppose (E,M, µ) is a measure space obtained from Carathéodory’s
theorem. Then it is complete.

Proof. Let µ∗ be the outer measure on E whose restriction toM gives µ. Suppose N ⊂ A,
where A ∈ M with µ(A) = 0. Since µ∗ is increasing we have µ∗(N) 6 µ(A) = 0, so
µ∗(N) = 0. For any set B ⊂ E we have:

µ∗(T ∩N) + µ∗(T ∩N c) 6 µ∗(N) + µ∗(T ) = µ∗(T )

again using the increasing property of µ∗. By Lemma B.4 we know µ∗ is subadditive,
hence

µ∗(T ) 6 µ∗(T ∩N) + µ∗(T ∩N c),

and thus N ∈M.
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B.1.2 Lebesgue measure

We specialise now to (arguably) the most important measure, the Lebesgue measure.
This measure gives us the standard notion of volume for sets in Rn. We first introduce
the rectangles in Rn.

Definition B.7. A rectangle in Rn is a set of the form:

R = (a1, b1]× (a2, b2]× · · · × (an, bn],

with ai < bi for i = 1, . . . , n. We define AR to be the collection of finite unions of disjoint
rectangles.

Exercise(∗). Show that:

a) The collection of rectangles is a π-system.

b) AR is a ring.

c) AR generates B(Rn).

The main result we will establish shows:

Theorem B.11. There exists a unique Borel measure µ on Rn such that, for all rectangles
R = (a1, b1]× · · · × (an, bn] with ai < bi for i = 1, . . . , n,

µ(R) = (b1 − a1)(b2 − a2) · · · (bn − an).

The measure µ is called the Lebesgue measure on Rn.

Proof. For any A ∈ AR we can write A = ∪Ni=1Ri for disjoint rectangles Ri := (ai1, b
i
1]×

· · · × (ain, b
i
n]. We define for such A:

µ(A) :=

n∑
i=1

(bi1 − ai1)(bi2 − ai2) · · · (bin − ain).

Note that the decomposition of A into rectangles is not unique, however one can verify
that this is well defined and additive. If we can show that µ is countable additive, then
we can apply Carathéodory’s theorem to establish the existence of the Lebesgue measure.

Suppose that (An)∞n=1 is a sequence of disjoint sets with An ∈ AR, such that A =
∪∞i=1Ai ∈ AR. We wish to show that

∞∑
i=1

µ(Ai) = µ(A)

Set Bn = ∪∞i=nAi, note ∩∞i=1Bi = ∅ as the sets Ai are disjoint. Since AR is a ring,
Bn = A \ ∪n−1i=1 Ai ∈ AR. By finite additivity of µ we have:

µ(A) =
n−1∑
i=1

µ(Ai) + µ(Bn),
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so it suffices to prove that µ(Bn)→ 0 as n→∞. Suppose not, then there exists ε > 0
such that µ(Bn) > 2ε for all n. For each n we can find Cn ∈ A with Cn ⊂ Bn and
µ(Cn \Bn) 6 ε2−n. Then

µ(Bn \ (C1 ∩ · · · ∩ Cn)) 6 µ((B1 \ C1) ∪ . . . ∪ (Bn \ Cn)) 6
∞∑
n=1

ε2−n = ε.

Since µ(Bn) > 2ε, we must have µ(C1 ∩ · · · ∩ Cn) > ε, so C1 ∩ · · · ∩ Cn 6= ∅ and so
Kn = C1 ∩ · · · ∩ Cn 6= ∅. Now, Kn is a nested sequence of non-empty compact sets, and
so ∅ 6= ∩∞i=1Ki ⊂ ∩∞i=1Bi which is a contradiction.

Thus, we conclude that a Borel measure µ exists on Rn with the required property
acting on rectangles. In order to establish uniqueness, we can invoke Corollary B.9, after
noting that the set of rectangles is a π-system and that moreover we can write Rn as a
countable disjoint union of rectangles, for example by taking the rectangles of the form
z + (0, 1]n, where z ∈ Zn.

We note that the Lebesgue measure is translation invariant: µ(B + x) = µ(B) for
any x ∈ Rn, B ∈ B(Rn). To see this, for fixed x ∈ Rn let µx(B) = µ(B). If B is a
rectangle, then µx(R) = µ(R) (since b1−a1 = (b1−x1)− (a1−x1), etc.) so by uniqueness
µx = µ. We also note that Carathéodory’s theorem actually shows us that the Lebesgue
measure is actually defined onM, a larger σ-algebra than B(Rn). We callM the algebra
of Lebesgue measurable sets. By construction, we have that the Lebesgue measure is
complete when Rn is equipped withM as σ-algebra, however it is not complete on the
Borel algebra. For any Lebesgue measurable subset E ⊂ Rn we can define the natural
restriction of Lebesgue measure to E, which we also refer to as the Lebesgue measure.

Lemma B.12 (Borel regularity of Lebesgue measure). Suppose A ∈ M is Lebesgue
measurable. Then for any ε > 0 there exists an open set O and a closed set C such that
C ⊂ A ⊂ O and:

µ(O \A) < ε, µ(A \ C) < ε.

If µ(A) <∞, then we may take C to be compact.

Proof. First, let us assume µ(A) <∞. From the definition of Lebesgue measurability, we
know that

µ(A) = µ∗(A) = inf
∞∑
n=1

µ(An),

where the infimum is taken over all sequences (An)∞n=1 of sets such that An ∈ AR and
A ⊂ ∪ni=1An. Since each An ∈ AR is a finite disjoint union of rectangles, we may assume
without loss of generality that each An is a rectangle. Fix ε > 0. We can choose An such
that:

inf
∞∑
n=1

µ(An) < µ(A) +
ε

2
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For each rectangle An, we can find a rectangle Ãn with An ⊂ Ã◦n and µ(Ãn) < µ(An)+
ε

2n+1 .
Then let O = ∪∞n=1Ã

◦
n. By construction, A ⊂ O and O is open. Moreover,

µ(O) 6
∞∑
n=1

µ(Ãn) 6
∞∑
n=1

µ(An) +
ε

2

∞∑
n=1

2−n < µ(A) + ε.

We deduce that
µ(O \A) < ε.

Now suppose µ(A) = ∞. Set Ak = A ∩ {|x| 6 k}, then µ(Ak) <∞, so we can find
an open Ok with µ(Ok \Ak) < ε2−k. We set O = ∪∞k=1Ok. Then O is open and A ⊂ O.
Moreover,

O \A = (∪∞k=1Ok) \A =
∞⋃
k=1

(Ok \A) ⊂
∞⋃
k=1

(Ok \Ak)

so that

µ(O \A) 6
∞∑
k=1

µ(Ok \Ak) < ε.

We have thus established the first part of the proof. For the second part, we note that
if A is measurable, then so is Ac, and hence there exists an open O with Ac ⊂ O and
µ(O\Ac) < ε. Set C = Oc. This is closed and C ⊂ A. Moreover, A\C = Cc\Ac = O\Ac
so

µ(A \ C) < ε.

For the final observation, note that if µ(A) < ∞, then since Ak is an increasing
sequence with ∪kAk = A, we have that limk→∞ µ(Ak) = µ(A) < ∞, so there exists
k such that µ(A \ Ak) = µ(A) − µ(Ak) < ε

2 . Let C ⊂ Ak be a closed set such that
µ(Ak \ C) < ε

2 . We have µ(A \ C) = µ((A \ Ak) ∪ (Ak \ C)) < ε, and moreover C is a
subset of a bounded set, hence compact.

We next show

Lemma B.13. Let A ⊂ Rn. Suppose that for any ε > 0 there exists an open set O and a
closed set C such that C ⊂ A ⊂ O and:

µ(O \ C) < ε.

Then A = B1 ∪N , where N ⊂ B2 where B1, B2 ∈ B(Rn) with µ(B2) = 0.

Proof. For each i, we can find Oi open and Ci closed such that Ci ⊂ A ⊂ Oi and

µ(Oi \ Ci) < 2−i.

We have that B1 = ∪∞i=1Ci ∈ B(Rn) from the properties of σ-algebras. Furthermore, let
B2 = ∩∞i=1(Oi \ Ci). Again B2 ∈ B(Rn), and moreover:

µ(B2) 6 µ (∩ni=1(Oi \ Ci)) 6 2−n+1

for any n, so µ(B2) = 0. Since A \B1 ⊂ B2 we are done.
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Now, noting that the union of a Borel set and a null set is Lebesgue measurable by
the completeness of Lebesgue measure, we have established:

Theorem B.14. Suppose A ⊂ Rn. The following are equivalent:

i) A is Lebesgue measurable.

ii) For any ε > 0 there exists an open set O and a closed set C such that C ⊂ A ⊂ O
and:

µ(O \ C) < ε.

iii) A = B1 ∪N , where N ⊂ B2 where B1, B2 ∈ B(Rn) with µ(B2) = 0.

B.2 Measurable functions

We next wish to introduce the idea of a measurable function between two measurable
spaces. Suppose (E, E) and (G,G) are measurable spaces. We say f : E → G is measurable
if f−1(A) ∈ E whenever A ∈ G. Note the similarity to the definition of continuous maps
between topological spaces. If (G,G) = (R,B), then we simply refer to a measurable
function on (E, E). If3 (G,G) = (R,B[0,∞]), we refer to a non-negative measurable
function. While convenient, this nomenclature has the slightly unfortunate consequence
that a non-negative measurable function need not be a measurable function. If E is a
topological space and E = B(E), then a measurable function on (E, E) is called a Borel
function on E.

Exercise B.4. a) Suppose (G,G) is a measurable space and E is any set. Show
that if f : E → G is any function, the collection:

f−1(G) = {f−1(A) : A ∈ G},

is a σ-algebra, known as the pull-back σ-algebra.

b) Suppose (E, E) and (G,G) are measurable spaces, with G = σ(A) for some
collection A. Further suppose that f : E → G has the property that
f−1(A) ∈ E for all A ∈ A. Show that

{A ⊂ G : f−1(A) ∈ E}

is a σ-algebra containing A and deduce that f is measurable.

c) Suppose (E, E) is a measurable space. Show that f : E → R is measurable if
and only if

f−1((−∞, λ)) := {x ∈ E : f(x) < λ} ∈ E , for all λ ∈ R.

and f : [0,∞] is measurable if and only if

f−1([0, λ)) := {x ∈ E : 0 6 f(x) < λ} ∈ E , for all 0 6 λ <∞.
3We give [0,∞] a topology by saying U ⊂ [0,∞] is open if and only if tan−1(U) is open in the

standard topology of [0, π
2
], where by convention tan(π/2) = +∞.
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Exercise B.5. Suppose E, G are topological spaces equipped with their Borel
σ-algebras.

a) Show that any continuous function f : E → G is measurable. Deduce that
in particular any continuous function f : E → R is a Borel function.

b) Show that if g : G → R is continuous, and f : E → G is measurable then
g ◦ f is measurable.

c) Let G = Rn, with its canonical basis (ei)
n
i=1. Show that f : E → G is

measurable if and only if each component function fi = (f, ei) : E → R is
measurable.

An important feature of the class of measurable functions (and indeed a strong
motivation for the development of the theory) is that it behaves well under limiting
operations.

Theorem B.15. Suppose (E, E) is a measurable space and (fn)
∞
n=1 is a sequence of

non-negative measurable functions. Then the functions f1 + af2 for a > 0 and f1f2 are
measurable, as are

inf
n
fn, sup

n
fn, lim inf

n
fn, lim sup

n
fn.

In particular, if fn(x)→ f(x), then f is measurable.
The same results hold for (not necessarily non-negative) measurable functions, provided

the limiting functions are real valued (i.e. don’t take the values ±∞).

Proof. By Exercise B.4 we know that f−11 ([0, λ))f−12 ([0, λ)) ∈ E for any 0 6 λ <∞. Now,
for any 0 6 λ <∞:

(f1 + af2)
−1([0, λ]) =

⋃
r∈Q,r>0

[{f < λ− ar} ∩ {g < r}] ∈ E .

so f1 + af2 is measurable. We also note that f21 is measurable, since (f21 )
−1([0, λ)) =

f−11 ([0, λ
1
2 )) ∈ E . Combining these two results, and noting

f1f2 =
1

4

(
(f1 + f2)

2 − (f1 − f2)2
)

we deduce that f1f2 is measurable. Next, we note that

{inf
n
fn < λ} =

⋃
n

{fn < λ}

so infn fn is measurable. Similarly,

{sup
n
fn < λ} =

⋃
r∈Q,r<λ

(⋂
n

{fn < r}

)
so supn fn is measurable. Finally, we note that lim supn fn = infk gk, where gk =
supn>k fn and lim infn fn = supk hk, where hk = infn>k fn. The last conclusion follows
since if fn(x) converges, then limn fn(x) = lim supn fn(x) = lim infn fn(x).

The proofs in the real valued case follow, mutatis mutandis.
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We establish one further result concerning measurable functions, before moving on to
discuss the interaction between measurable functions and measures.

Exercise B.6. Suppose (E, E) is a measurable space and f is a measurable
function on E. Show that the functions f+, f−, |f | defined by:

f+(x) := max{f(x), 0}, f−(x) := max{−f(x), 0}, |f | := f+ + f−,

are non-negative measurable functions.

Theorem B.16 (Monotone Class Theorem). Let (E, E) be a measurable space and let A
be a π-system generating E. Suppose V is a vector space of bounded functions f : E → R
such that:

i) 1 ∈ V and 1A ∈ V for all A ∈ A;

ii) if fn ∈ V for all n and f is a bounded function such that 0 6 fn 6 fn+1 and fn → f
pointwise, then f ∈ V .

Then V contains every bounded measurable function.

Proof. Let D = {A ∈ E : 1A ∈ V }. Then the assumptions on V ensure D is a d-system
containing A, so D = E . Since V is a vector space, it must contain all finite linear
combinations of indicator functions of measurable sets. If f is a bounded non-negative
measurable function, then fn = 2−nb2nfc is such a function, and moreover fn is an
increasing sequence which tends to f pointwise, so f ∈ V . Since any bounded measurable
function can be written as the difference of two bounded non-negative measurable functions
we’re done.

We shall now see how measurable functions interact with measures. Firstly, we note
that a measurable function can be use to induce a measure on its image, given a measure
on its domain. Suppose (E, E) and (G,G) are measurable spaces, µ is a measure on (E, E)
and f : E → G is a measurable function. We can define a measure on (G,G), f∗µ, called
the push-forward or image measure by:

f∗µ(A) = µ(f−1(A)), for all A ∈ G.

Next we consider convergence in the context of a measurable space (E, E , µ). Given
some property P conditioned on a point x ∈ E, we say that P holds almost everywhere
in E if

µ ({x ∈ E : P (x) is false}) = 0.

For example, we can consider R equipped with the Lebesgue measure, and introduce
the Dirichlet function f(x) = 1 for x ∈ Q, f(x) = 0 otherwise. Then we can say ‘f = 0
almost everywhere’. In circumstances where the choice of measure is ambiguous, one
sometimes writes µ-almost everywhere. We often abbreviate almost everywhere to a.e.

If (fn)∞n=1 is a sequence of measurable functions on (E, E , µ), we say fn → f almost
everywhere if

µ({x ∈ E : fn(x) 6→ f(x)}) = 0.
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Another notion of convergence that we can consider is convergence in measure. We say
that fn → f in measure if

µ ({x ∈ E : |fn(x)− f(x)| > ε})→ 0, for all ε > 0.

The connection between these two notions is captured by

Theorem B.17. Suppose (E, E , µ) is a measure space, and (fn)
∞
n=1 is a sequence of

measurable functions on E. Then:

i) Suppose µ(E) <∞, then if fn → f almost everywhere, then fn → f in measure.

ii) If fn → f in measure, then there exists a subsequence (fnk)
∞
k=1 such that fnk → f

almost everywhere.

Proof. i) By considering fn − f , assume wlog fn → 0 a.e.. Fix ε > 0, then for any n:

µ

( ⋂
m>n

{|fm| 6 ε}

)
6 µ({|fn| 6 ε})

Now, set An =
⋂
m>n{|fm| 6 ε}. We have An ⊂ An+1 and

x ∈
⋃
n

An ⇐⇒ there exists N such that |fn(x)| 6 ε for all n > N.

Thus as n→∞, we have:

µ(An) > µ ({x : fn(x)→ 0}) = µ(E).

ii) Again, wlog suppose fn → 0 in measure. Set n1 = 1. For each k > 1 we can find
nk > nk+1 such that

µ({|fnk | > 1/k}) 6 2−k.

Now, let
Ak =

⋃
m>k

{x ∈ E : |fnm(x)| > 1/m}.

we have that x ∈
⋂
k Ak if and only if for any k there exists m > k such that

|fnm(x)| > 1/m. Thus x 6∈
⋂
k Ak if and only if there exists k such that for any

m > k we have |fnm(x)| 6 1/m and we conclude fnk → 0 for all x 6∈
⋂
k Ak. Now,

Ak+1 ⊂ Ak so, for any m:

µ

(⋂
k

Ak

)
6 µ (Am) = µ

⋃
m>k

{|fnm(x)| > 1/m}


6
∑
m>k

µ({|fnm(x)| > 1/m}) 6 2m−1

we conclude that µ (
⋂
k Ak) = 0 and thus fnk → 0 a.e..
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Exercise B.7. Let E = [0, 1] be equipped with the Lebesgue measure. Con-
struct a sequence of functions fn : [0, 1]→ [0, 1] such that fn → f in measure,
but (fn(x))∞n=1 does not converge for any x ∈ [0, 1].

A final result concerns the measurability of a function which equals a measurable
function almost everywhere.

Lemma B.18. Let (E, E , µ) be a complete measure space, and let f be a measurable
function on E. If g : E → R is such that f = g almost everywhere, then g is measurable.

Proof. Under the assumptions, N = {f 6= g} is null, hence measurable by the completeness
hypothesis, and µ(N) = 0. Fix a ∈ R. By assumption A = {f < a} is measurable, and if
we can show that B = {g < a} is measurable then we will be done. Now, B ∩Ac ⊂ N , so
by completeness A ∩Bc is measurable, hence

B = A ∪ (B ∩Ac)

is measurable.

B.3 Integration

We now wish to define a notion of integration for measurable functions on some measure
space (E, E , µ). We approach this by first considering the case of non-negative measurable
functions. These can be approximated from below by simple functions, which are finite
linear combinations of characteristic functions on which the integral can be easily defined.

We say f is simple if

f =
k∑

n=1

αn1An

where αn ∈ R and An ∈ E . For a non-negative simple function it is natural to define the
integral as:

µ(f) :=
k∑

n=1

αnµ(An)

Here, by convention 0 · ∞ = 0. Alternative notations which we will make use of are:

µ(f) =

∫
E
fdµ =

∫
E
f(x)dµ(x)

We note that αn, An are not uniquely determined by f , however µ(f) is independent of
the particular representation we choose.

Exercise B.8. a) Show that if 0 6 αn, βn <∞, An, Bn ∈ E satisfy
k∑

n=1

αn1An =
l∑

n=1

βn1Bn ,

then
k∑

n=1

αnµ(An) =

l∑
n=1

βnµ(Bn).
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b) If f, g are simple functions and a, b > 0, show that

i) µ(af + bg) = aµ(f) + bµ(g).

ii) If f 6 g then µ(f) 6 µ(g).

iii) f = 0 a.e. if and only if µ(f) = 0.

For a non-negative measurable function, we define the integral to be:

µ(f) =

∫
E
fdµ = sup{µ(g) : g simple with 0 6 g 6 f}.

By the results of Exercise B.8 this is consistent with the previous definition when f is
simple. Note that µ(f) is permitted to take the value ∞. We also note that if f, g are
non-negative measurable functions with f 6 g, then∫

E
fdµ 6

∫
E
gdµ.

It also follows immediately from the definition that for any ε > 0 there exists a simple
function fε such that ∫

E
|f − fε| dµ =

∫
E
(f − fε)dµ < ε

To define the integral for functions which may take both positive and negative values,
we first recall that if f is measurable then f+, f−, |f | are non-negative measurable
functions. We say that f is integrable if µ(|f |) <∞, in which case we define:

µ(f) = µ(f+)− µ(f−).

Note that f 6 g if and only if f+ 6 g+ and f− > g−, so that f 6 g implies µ(f) 6 µ(g).
In particular, we have that |µ(f)| 6 µ(|f |). By our comment above, for any ε > 0 we can
find a simple function fε such that ∫

E
|f − fε| dµ < ε

since we can approximate both f+ and f− by appropriate simple functions.
If at most one of µ(f+) or µ(f−) is infinite, then we can still define µ(f) by the

same formula, but if both µ(f+) and µ(f−) are infinite then we can’t sensibly assign a
value to µ(f). We can also consider the case where f takes values in Rn. In this case we
pick a basis (ei)ni=1 for Rn and write f =

∑n
i=1 fiei. We say f is integrable if each fi is

integrable and we define: ∫
E
fdµ =

n∑
i=1

(∫
E
fidµ

)
ei

This naturally gives a definition for functions taking complex values by the isomorphism
C ' R2.
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B.3.1 Convergence theorems

A fundamental result in the Lebesgue theory of integration is the monotone convergence
theorem, sometimes called Beppo Levi’s Lemma. Suppose (E, E , µ) is a measure space
and that (fn)∞n=1 is a sequence of non-negative measurable functions which is increasing,
i.e. fn(x) 6 fn+1(x) for all x ∈ E and n > 1. Then for each x ∈ E the limit
f(x) = limn→∞ fn(x) exists in [0,∞]. We know that f is measurable, and the monotone
convergence theorem asserts that µ(f) = limn→∞ µ(fn).

Theorem B.19 (Monotone convergence theorem). Let (fn)∞n=1 be an increasing sequence
of non-negative integrable functions on a measure space (E, E , µ) converging to f . Then∫

E
fdµ = lim

n→∞

∫
E
fndµ.

Proof. Let M = supn µ(fn). We wish to show that M = µ(f). Since fn is an increasing
sequence, we have fn 6 f so that µ(fn) 6 µ(f). As this holds for all n, we deduce:

M 6 µ(f) = sup{µ(g) : g simple, g 6 f}.

If we can show that for any simple function g with 0 6 g 6 f we have µ(g) 6 M then
we’re done. Suppose

g =
m∑
i=1

ak1Ak

is such a function, where we may assume Ak ∈ E are disjoint without loss of generality.
We define

gn(x) = min{g(x), 2−nb2nfnc}.

Then (gn)
∞
n=1 is an increasing sequence of simple functions, satisfying gn 6 fn 6 f and

gn → g. Fix 0 < ε < 1. Define the sets Ak,n by

Ak,n = {x ∈ Ak : gn(x) > (1− ε)ak}

Then since gn is an increasing sequence, we have Ak,n ⊂ Ak,n+1. So by countable additivity
we have µ(Ak,n)→ µ(Ak) as n→∞. By construction we have

1Akgn > (1− ε)ak1Ak,n

so
µ(1Akgn) > (1− ε)akµ(Ak,n)

Now, noting that gn =
∑m

k=1 1Akgn, and using the linearity result of Exercise B.8 we see

µ(gn) > (1− ε)
m∑
k=1

akµ(Ak,n)→ (1− ε)
m∑
k=1

akµ(Ak) = (1− ε)µ(g).

Now, µ(gn) 6 µ(fn) 6M , so we have (1−ε)µ(g) 6M for any ε > 0, hence µ(g) 6M .

A straightforward corollary of this result is the following:
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Corollary B.20. Suppose (fn)
∞
n=1 is a sequence of non-negative measurable functions

on a measure space (E, E , µ). Then∫
E

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

(∫
E
fndµ

)
.

Another useful corollary:

Corollary B.21. Suppose (fn)
∞
n=1 is a decreasing sequence of bounded measurable func-

tions on a measure space (E, E , µ). Then∫
E
fdµ = lim

n→∞

∫
E
fndµ.

Proof. We take gn = f1 − fn, since the fn are bounded this is well defined (i.e we don’t
have to assign a value to ∞−∞). Then (gn)

∞
n=1 is an increasing sequence and we can

apply the usual monotone convergence theorem.

Exercise(∗). Give an example to show that Corollary B.21 fails if the bound-
edness assumption is dropped.

With the monotone convergence theorem in hand, we can readily show that the
integral satisfies the properties we would expect.

Theorem B.22. Suppose f, g are non-negative measurable functions on a measure space
(E, E , µ) and a, b > 0 are constants. Then:

i)
∫
E
(af + bg)dµ = a

∫
E
fdµ+ b

∫
E
gdµ

ii) If f 6 g then
∫
E
fdµ 6

∫
E
gdµ

iii)
∫
E
fdµ = 0 if and only if f = 0 almost everywhere.

Proof. Let

fn(x) = min{2nb2−nf(x)c, n}, gn(x) = min{2nb2−ng(x)c, n}.

Then (fn)
∞
n=1, (gn)

∞
n=1 is an increasing sequence of non-negative simple functions tending

to f, g respectively, and clearly (afn+bgn)
∞
n=1 is an increasing sequence tending to af+bg.

Since these are simple functions, we have:∫
E
(afn + bgn)dµ = a

∫
E
fndµ+ b

∫
E
gndµ

and by the monotone convergence theorem, we can take the limit n→∞ to establish i).
Point ii) we already noted follows directly from the definition of the integral.

Finally, if f = 0 almost everywhere, then we have µ(g) = 0 for any simple g 6 f , and
thus µ(f) = 0. Now suppose f(x) 6= 0 almost everywhere. Then there exists ε > 0 such
that if A = {f > ε} then µ(A) > 0. Then g = 1Aε is a non-negative simple function with
g 6 f and µ(g) = εµ(A) > 0, hence µ(f) > 0.
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We can extend this result to functions taking values in R as follows:

Theorem B.23. Suppose f, g are integrable functions on a measure space (E, E , µ) and
a, b ∈ R are constants. Then:

i)
∫
E
(af + bg)dµ = a

∫
E
fdµ+ b

∫
E
gdµ

ii) If f 6 g then
∫
E
fdµ 6

∫
E
gdµ

iii) If f = 0 almost everywhere then
∫
E
fdµ = 0.

Proof. Note that it follows immediately from the definition that µ(−f) = −µ(f). Suppose
then that a > 0. We have:

µ(af) = µ(af+)− µ(af−) = aµ(f+)− aµ(f−) = aµ(f).

We also note that (f + g)+ − (f + g)− = f + g = f+ + g+ − f− − g−. As a consequence
(f + g)+ + f− + g− = (f + g)− + f+ + g+, where both sides are sums of non-negative
measurable functions, hence:

µ((f + g)+) + µ(f−) + µ(g−) = µ((f + g)−) + µ(f+) + µ(g+)

and on rearranging:

µ(f + g) = µ((f + g)+)− µ((f + g)−) = µ(f+)− µ(f−) + µ(g+)− µ(g−) = µ(f) + µ(g).

Combining our observations gives i). Noting that f 6 g implies 0 6 g − f , we deduce
0 6 µ(g)− µ(f) and thus ii) holds. Finally, if f = 0 almost everywhere, then f+, f− = 0
almost everywhere thus µ(f) = 0.

Suppose (E, E , µ) is a measure space. If A ∈ E and f is integrable, then so is f1A.
Recall also that A inherits a measure space structure in a natural way (A, E|A, µ|A).
It is relatively straightforward to see that f |A is integrable, and that we can define
unambiguously ∫

A
fdµ :=

∫
E
f1Adµ =

∫
A
f |Adµ|A,

By our linearity result i) above, if A, B are disjoint measurable sets, then∫
A
fdµ+

∫
B
fdµ =

∫
A∪B

fdµ.

We also note that by ii) we have that if |f | 6 K almost everywhere and µ(E) <∞, then
f is integrable and ∣∣∣∣∫

E
fdµ

∣∣∣∣ 6 Kµ(E).

A useful consequence of the monotone convergence theorem connects the Lebesgue
integral to the Riemann integral.
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Theorem B.24. Let A = (a1, b1] × · · · × (an, bn] be a rectangle in Rn, and suppose
f : A → R is bounded. Then f is Riemann integrable4 if and only if f is continuous
almost everywhere. If so, f is integrable with respect to Lebesgue measure, µ, on A and
moreover

R

∫
A
f(x)dx =

∫
A
fdµ,

where R
∫

denotes the Riemann integral.

Proof. Since f is bounded, we may assume that 0 6 f 6 K for some K, without loss of
generality. We consider a sequence of partitions Pn of A such that Pn+1 is a refinement
of Pn and the mesh of Pn → 0. Correspondingly, we construct two sequences of functions,
f
n
, fn by

f
n
=
∑
π∈Pn

inf
π
f1π, fn =

∑
π∈Pn

sup
π
f1π

which satisfy
0 6 f

n
6 f

n+1
6 f 6 fn+1 6 fn 6 K.

Since each π ∈ Pn is a rectangle, it is certainly Lebesgue measurable and so f
n
, fn

are in fact simple functions. Moreover,∫
A
f
n
dµ = L(f,Pn),

∫
A
fndµ = U(f,Pn),

where U,L are the usual upper and lower sums associated to a partition. The function f
is Riemann integrable if and only if L(f,Pn), U(f,Pn) have a common limit as n→∞,
i.e:

U(f,Pn)→ R

∫
A
f(x)dx, L(f,Pn)→ R

∫
A
f(x)dx, as n→∞.

(f
n
)∞n=1 is a monotone increasing sequence, bounded above by f , so there exists a bounded

measurable function f 6 f such that f = limn→∞ fn = sup f
n
. Similarly, there exists a

bounded measurable function f > f > f such that f = limn→∞ fn = inf f
n
. By applying

monotone convergence to (f
n
)∞n=1 and (fn)

∞
n=1 we have:

lim
n→∞

∫
A
f
n
dµ =

∫
A
fdµ 6

∫
A
fdµ 6 lim

n→∞

∫
A
fndµ

We deduce that f is Riemann integrable if and only if∫
A
fdµ =

∫
A
fdµ = R

∫
A
f(x)dx.

This occurs if and only if f = f almost everywhere.
We define the set of boundary points of Pn to be:

Bn =
⋃
π∈Pn

∂π ∩A

4For a discussion of the Riemann integral in Rn see Spivak: “Calculus on maniolds”.
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Clearly µ(Bn) = 0, so the set B = ∪nBn also has measure zero. Suppose x 6∈ B, then
f(x) = f(x) if and only if f is continuous at x. We conclude that f is Riemann integrable
if and only if f is continuous almost everywhere. Since f 6 f 6 f in this case, we deduce
that f is almost everywhere equal to f and the result follows by Lemma B.18.

This result, that Riemann integrability is equivalent to almost-everywhere continuity,
is known as Lebesgue’s criterion for integrability. In practice, many of the explicit integrals
we encounter are Riemann integrals, and this gives us access to the standard toolkit to
compute them. Where there’s no possibility for ambiguity, we will often use the standard
notation

∫
dx or

∫
dnx, etc. to denote Lebesgue integration.

The next convergence result for integrals we shall require allows us to drop the
assumption that our sequence is monotone, but at the cost of a weakened result.

Lemma B.25 (Fatou’s Lemma). Suppose (fn)
∞
n=1 is a sequence of non-negative measur-

able functions on a measure space (E, E , µ). Then∫
E
lim inf
n→∞

fndµ 6 lim inf
n→∞

∫
E
fndµ

Proof. Let gn = infm>n fm. Then (gn)
∞
n=1 is an increasing sequence of non-negative

measurable functions, which tends to lim inf fn. Thus by monotone convergence∫
E
gndµ→

∫
E
lim inf
n→∞

fndµ.

On the other hand, for k > n we have:

gn 6 fk,

hence ∫
E
gndµ 6

∫
E
fkdµ for all k > n =⇒

∫
E
gndµ 6 inf

k>n

∫
E
fkdµ.

Now, as n→∞
inf
k>n

∫
E
fkdµ→ lim inf

n→∞

∫
E
fndµ,

and we’re done.

Exercise(∗). Construct a sequence (fn)
∞
n=1 of functions fn : [0, 1] → [0,∞)

satisfying the hypotheses of Fatou’s Lemma such that the inequality is strict.

The next convergence result we shall establish is an especially useful one, and in
particular will be invoked on many occasions during the course.

Theorem B.26 (The Dominated Convergence Theorem). Suppose that (E, E , µ) is a
measure space and that (fn)∞n=1 is a sequence of measurable functions such that:

i) There exists an integrable function g such that |fn| 6 g.

ii) fn(x)→ f(x) for all x.
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Then f is integrable and: ∫
E
fndµ→

∫
E
fdµ.

Proof. By Theorem B.15, f is measurable, and since |f | 6 g, we further have that f is
integrable. We have

0 6 g ± fn → g ± f,

so that lim inf g ± fn = g ± f . By Fatou and properties of lim inf, lim sup we have:∫
E
gdµ+

∫
E
fdµ =

∫
E
lim inf(g + fn)dµ 6 lim inf

∫
E
(g + fn)dµ =

∫
E
gdµ+ lim inf

∫
E
fndµ∫

E
gdµ−

∫
E
fdµ =

∫
E
lim inf(g − fn)dµ 6 lim inf

∫
E
(g − fn)dµ =

∫
E
gdµ− lim sup

∫
E
fndµ

Rearranging, we have:∫
E
fdµ 6 lim inf

∫
E
fndµ 6 lim sup

∫
E
fndµ 6

∫
E
fdµ,

hence
lim inf

∫
E
fndµ = lim sup

∫
E
fndµ =

∫
E
fdµ,

and we’re done.

We note that the hypotheses can be weakened slightly: suppose the hypotheses hold
almost everywhere, so that X = {x ∈ E : hypotheses fail} has measure zero, then by
applying the Dominated Convergence Theorem to fn1Xc , we can recover the same result.

Exercise B.9. Here µ is the Lebesgue measure on R.

a) Show that f : [0, 1]→ R given by f(x) = 1√
x
is Lebesgue integrable, and that∫

[0,1]
fdµ = lim

ε→0
R

∫ 1

ε

1√
x
dx.

b) Suppose f : [0, 1] → R is Riemann integrable on every interval [ε, 1], ε > 0
and moreover

R

∫ 1

ε
|f(x)| dx 6 C

for some C independent of ε. Show that f is Lebesgue integrable with∫
[0,1]

fdµ = lim
ε→0

R

∫ 1

ε
f(x)dx.

c) Suppose f : R → R is Riemann integrable on every interval [−R,R] and
moreover

R

∫ R

−R
|f(x)| dx 6 C
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for some C independent of R. Show that f is Lebesgue integrable with∫
R
fdµ = lim

R→∞
R

∫ R

−R
f(x)dx.

Give an example of a function such that

lim
R→∞

R

∫ R

−R
f(x)dx

exists, but f : R→ R is not Lebesgue integrable.

B.3.2 Product measures and Tonelli–Fubini

Given two measure spaces (E, E , µ) and (F,F , ν), we wish to construct a measure space
on E × F . We say a subset E × F is a rectangle if it is of the form A×B, with A ∈ E ,
B ∈ F . We denote by E � F the collection of finite disjoint unions of rectangles. Note
that if Ai ∈ E , Bi ∈ F then

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2)× (B1 ∩B2),

(A1 ×B1) ∪ (A2 ×B2) = (A1 ×B1 \B2) ∪ ((A1 ∪A2)× (B1 ∩B2)) ∪ (A2 ×B2 \B1)

where the right-hand side of the second line is a disjoint union of rectangles. Finally, since

(A1 ×B1)
c = (E ×Bc

1) ∪ (Ac1 × F ),

we see that E � F is an algebra (hence a ring). We denote by E ⊗ F the σ-algebra
generated by E � F . We define a set function π : E � F → [0,∞] by

π

(
N⋃
i=1

(Ai ×Bi)

)
=

N∑
i=1

µ(Ai)ν(Bi),

where the rectangles Ai × Bi ∈ E × F , i = 1, . . . , N , are assumed to be disjoint. Now
suppose that (Aj ×Bj)∞j=1 is a sequence of disjoint rectangles such that

∞⋃
j=1

Aj ×Bj = A×B ∈ E × F .

We claim that

µ(A)µ(B) =

∞∑
j=1

µ(Aj)ν(Bj).

To see this, we note:

1A(x)1B(y) = 1A×B(x, y) =

∞∑
j=1

1Aj×Bj (x, y) =

∞∑
j=1

1Aj (x)1Bj (y)
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Integrating with respect to x, using Corollary B.20 we see

µ(A)1B(y) =
∞∑
j=1

1Bj (y)

∫
1Ajdµ =

∞∑
j=1

1Bj (y)µ(Aj)

Integrating again with respect to y, by the same argument we find:

µ(A)µ(B) =
∞∑
j=1

µ(Aj)ν(Bj).

Note that this immediately implies that π(C) is well defined for C ∈ E � F , independent
of how C is represented as a finite union of rectangles. We also note that E � F , π satisfy
the conditions of Carathéodory’s theorem, Theorem B.3, thus we can define an outer
measure π∗ on E × F , whose restriction to E ⊗ F gives a measure, which agrees with π
on E � F . We call this measure on E ⊗ F the product measure, µ× ν.

Note that the product measure µ× ν will not in general be unique. However, it will
be if (E, E , µ) and (F,F , ν) are σ-finite. We say (E, E , µ) is σ-finite if there exists a
countable collection {Ai}∞i=1 ⊂ A of disjoint measurable sets, with µ(Ai) <∞, such that
E = ∪Ai. If both (E, E , µ) and (F,F , ν) are σ-finite, then E � F satisfies the conditions
to enable us to apply Corollary B.9 to deduce that µ× ν is the unique measure on E ⊗F
such that

(µ× ν)(A×B) = µ(A)ν(B).

A brief note of caution before we consider integration on product spaces. If E,F
are topological spaces and E ,F are the Borel σ-algebras on their respective spaces, then
E ⊗ F contains the Borel σ-algebra of E × F with the product topology. However, the
two need not be equal in general. One important case where we do have equality is when
E,F are σ-compact metric spaces5. In particular this is the case when E = Rn, F = Rm.
By the uniqueness of Lebesgue measure, we have that the product measure restricted to
B(Rn)× B(Rm) = B(Rn × Rm) is the Lebesgue measure on Rn+m.

We now wish to consider integration of a measurable function defined on E × F . If
f : E × F → R, and x ∈ E, y ∈ F , we define the x−section, fx and y-section, fy as:

fx(y) = fy(x) = f(x, y).

We also introduce the x-section and y-section of a set A ⊂ E × F as:

Ax = {y ∈ F : (x, y) ∈ A}, Ay = {x ∈ F : (x, y) ∈ A}.

Note that Ax ⊂ F , Ay ⊂ E and we have

(1A)x = 1Ax , (1A)
y = 1Ay ,

Lemma B.27. If A ∈ E ⊗ F , then Ax ∈ F for all x ∈ E, Ay ∈ E for all y ∈ F . More
generally, if f is E ⊗ F-measurable, then fx is F-measurable and fy is E-measurable.

5A topological space is σ-compact if it is the union of countably many compact sets.
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Proof. Let

C = {A ⊂ E × F : Ax ∈ F for all x ∈ E,Ay ∈ E for all y ∈ F}

Certainly every measurable rectangle is in C. We also have: ∞⋃
j=1

Aj


x

=
∞⋃
j=1

(Aj)x , (Ax)
c = (Ac)x,

and similarly for Ay, so that C is a σ-algebra and thus E ⊗ F ⊂ C. For the final part we
note that for

(fx)
−1(S) =

(
f−1(S)

)
x
, (fy)−1(S) =

(
f−1(S)

)y
,

whence the result follows.

Next we prove a special case of the Tonelli and Fubini theorems, where we restrict
attention to the characteristic functions of a measurable set/

Lemma B.28. Suppose µ, ν are finite, and let A ∈ E ⊗ F . Then

x 7→ ν(Ax), y 7→ µ(Ay)

are measurable functions, and

(µ× ν)(A) =
∫
E
ν(Ax)dµ(x) =

∫
E
µ(Ay)dν(y).

Proof. Let C consist of all sets A ∈ E ⊗ F for which the conclusion of the Lemma holds.
Clearly C contains all rectangles, and these form a π-system. If we can show that C is a
d-system, then we will be done by Lemma B.2.

Clearly E × F ∈ C. Suppose A,B ∈ C with B ⊂ A. Then(A \ B)x = Ax \ Bx, so6

ν((A \B)x) = ν(Ax)− ν(Bx), hence x 7→ ν((A \B)x) is measurable, and

(µ× ν)(A \B) = (µ× ν)(A)− (µ× ν)(B) =

∫
E
ν(Ax)dµ(x)−

∫
E
ν(Bx)dµ(x)

=

∫
E
ν((A \B)x)dµ(x)

A similar argument for (A \B)y shows A \B ∈ C.
Now suppose An ∈ C with An ⊂ An+1 and let A = ∪nAn. Then by countable

additivity we have (x 7→ ν((An)x))
∞
n=1 is a monotone increasing sequence of functions

with limit ν(Ax). By monotone convergence we have ν(Ax) is measurable, with∫
E
ν(Ax)dµ(x) = lim

n→∞

∫
E
ν((An)x)dµ(x) = lim

n→∞
(µ× ν)(An) = µ× ν(A),

where in the final inequality we use countable additivity for µ× ν. A similar argument
for µ(Ay) establishes that A ∈ C and we’re done. The extension to the case where µ, ν
are assumed σ-finite is straightforward, and left as an exercise.

6This is where the assumption that ν is finite is required
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Exercise(∗). Show that Lemma B.28 holds if µ, ν are only assumed to be
σ-finite.

We now prove two very closely related results, Tonelli’s Theorem and Fubini’s Theorem.
They are often referred to together as the Tonelli-Fubini theorem.

Theorem B.29 (Tonelli). Assume (E, E , µ), (F,F , ν) are σ-finite measure spaces. Sup-
pose f : E × F → [0,∞] is a non-negative measurable function. Then so are fx, fy, and
setting:

h(x) =

∫
F
fx(y)dν(y), g(y) =

∫
E
fy(x)dµ(x),

we have that h : E → [0,∞], g : F → [0,∞] are non-negative measurable functions on
their respective domains with:∫

E×F
fd(µ× ν) =

∫
E
hdµ =

∫
F
gdν. (B.2)

Proof. Take (fn)
∞
n=1 a monotone increasing sequence of non-negative simple functions

with fn → f . Letting

hn(x) =

∫
F
(fn)x(y)dν(y), gn(y) =

∫
E
(fn)

y(x)dµ(x),

we have ∫
E×F

fnd(µ× ν) =
∫
E
hndµ =

∫
F
gndν, (B.3)

by the previous Lemma and the linearity of the integral. For each x ∈ E, we have
that ((fn)x)

∞
n=1 is a monotone increasing sequence with (fn)x → fx and similarly for

((fn)
y)∞n=1. Thus, we have (hn)

∞
n=1 is an increasing sequence of functions with hn → h,

and similarly for gn by the monotone convergence theorem. Thus we can pass to the limit
in (B.3) by the monotone convergence theorem to obtain (B.2).

Theorem B.30 (Fubini). Assume (E, E , µ), (F,F , ν) are σ-finite measure spaces. Sup-
pose f : E×F → R is an integrable function. Then fx : F → R is integrable for µ-almost
every x ∈ E, as is fy : E → R for ν-almost every y. Thus

h(x) =

∫
F
fx(y)dν(y), g(y) =

∫
E
fy(x)dµ(x), (B.4)

are defined almost everywhere. We have that h : E → R, g : F → R are integrable
functions on their respective domains, and:∫

E×F
fd(µ× ν) =

∫
E
hdµ =

∫
F
gdν. (B.5)

Proof. Write f = f+ − f−, with f± non-negative and integrable. By Tonelli applied to
f± we find h±, g± such that∫

E×F
f±d(µ× ν) =

∫
E
h±dµ =

∫
F
g±dν.
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The first integral is finite by assumption, so we must have that h±, g± are finite almost
everywhere, and moreover are integrable. Thus h = h+ − h− and g = g+ − g− satisfy
(B.4) and we also deduce (B.5).

In the particular case where E = Rn, F = Rm equipped with their Borel sets and
Lebesgue measure, then we conclude that if f : Rn × Rm → R with∫

Rn+m
|f(x, y)| dxdy <∞

then ∫
Rn

(∫
Rm

f(x, y)dy

)
dx =

∫
Rm

(∫
Rn
f(x, y)dx

)
dy =

∫
Rn+m

f(z)dz

with obvious notation.
In combination, Tonelli–Fubini together with the Dominated Convergence Theorem

are very powerful, and typically suffice for the majority of convergence related results
that we require in standard analysis.

Exercise B.10. Let (fn)∞n=1 be a sequence of measurable functions fn : Rm → R
such that

∞∑
n=1

∫
Rm
|fn| dx <∞.

Show that:

f(x) =

∞∑
n=1

fn(x)

converges for a.e. x ∈ Rm, and∫
Rm

fdx =

∞∑
n=1

∫
Rm

fndx.

B.4 The Lp-spaces

Given a measure space (E, E , µ), we say that a measurable complex-valued7 function f
belongs to Lp(E,µ) for some p 6 1 <∞ if

‖f‖Lp :=
(∫

E
|f |p dµ

) 1
p

= (µ(|f |p))
1
p <∞.

We say that f ∈ L∞(E,µ) if f is bounded almost everywhere, that is there exists
0 6 K <∞ such that

µ({|f(x)| > K}) = 0.

If so, then we define

‖f‖L∞ := inf{K : µ({|f(x)| > K}) = 0}.

We can show:
7We can also assume f is real-valued
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Lemma B.31. For 1 6 p 6∞, the function f 7→ ‖f‖Lp defines a seminorm on L∞(E,µ).
That is:

i) ‖·‖Lp is non-negative:

‖f‖Lp > 0, for all f ∈ Lp(E,µ).

ii) ‖·‖Lp is homogeneous:

‖λf‖Lp = |λ| ‖f‖Lp , for all f ∈ Lp(E,µ), λ ∈ C.

iii) ‖·‖Lp satisfies the triangle inequality:

‖f + g‖Lp 6 ‖f‖Lp + ‖g‖Lp , for all f, g ∈ Lp(E,µ).

Proof. See Exercise B.11.

We note that the crucial property that is missing and prevents Lp(E,µ) from being a
normed space is positivity, i.e. that ‖f‖Lp = 0 if and only if f = 0. By Theorem B.22, we
know that ‖f‖Lp = 0 if and only if f = 0 holds almost everywhere. In order to construct
a normed space, we must quotient out the elements of Lp(E,µ) which satisfy ‖f‖Lp = 0.
To do this, we introduce an equivalence relation according to:

f ∼ g ⇐⇒ f − g = 0 a.e.

It is straightforward to see that ∼ defines an equivalence relation on Lp(E,µ) and
moreover, by the reverse triangle inequality

f ∼ g =⇒ ‖f‖Lp = ‖g‖Lp .

Thus we can define a new space

Lp(E,µ) = Lp(E,µ)/ ∼,

and ‖·‖Lp descends to a norm on the quotient space by:

‖[f ]∼‖Lp := ‖f‖Lp .

In practice, we usually elide the distinction between the function f ∈ Lp(E,µ) and the
equivalence class of functions [f ]∼ ∈ Lp(E,µ), so it is standard to speak of a function f
belonging to Lp(E,µ). One should always remember, however, that in general statements
about elements of Lp(E,µ) hold at most almost everywhere. It is immediate that we have

Lemma B.32. The space Lp(E,µ), equipped with the norm ‖·‖Lp, is a normed vector
space.

In the case where E = Rn equipped with the σ-algebra of Lebesgue measurable sets
and the Lebesgue measure, we typically write Lp(Rn) instead of Lp(Rn, dx) to denote the
associated spaces.
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Exercise B.11. Let (E, E , µ) be a measure space. Show that ‖·‖Lp defines a
seminorm on Lp(E,µ) for 1 6 p 6∞:

a) First check that the homogeneity and non-negativity properties are satisfied.

b) Establish the triangle inequality for the special cases p = 1,∞.

c) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1
then:

ab 6
ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the
concavity of the logarithm

d) With8 p, q > 1 such that p−1+q−1 = 1, show that if ‖f‖Lp = 1 and ‖g‖Lq = 1
then ∫

E
|fg| dµ 6 1

Deduce Hölder’s inequality:∫
E
|fg| dµ 6 ‖f‖Lp ‖g‖Lq , for all f ∈ Lp(E,µ), y ∈ Lq(E,µ).

e) Show that if f, g ∈ Lp(E,µ)

‖f + g‖pLp 6
∫
E
|f | |f + g|p−1 dµ+

∫
E
|g| |f + g|p−1 dµ

Apply Hölder’s inequality to deduce:

‖f + g‖pLp 6 (‖f‖Lp + ‖g‖Lp) ‖f + g‖p−1Lp

and conclude
‖f + g‖Lp 6 ‖f‖Lp + ‖g‖Lp .

This is Minkowski’s inequality.

Exercise B.12. a) Suppose that µ(E) <∞. Show that if f ∈ Lp(E,µ), then
f ∈ Lq(E,µ) for any 1 6 q < p, with

‖f‖Lq 6 µ(E)
p−q
qp ‖f‖Lp .

b) Suppose that f ∈ Lp0(E,µ) ∩ Lp1(E,µ) with p0 < p1 6 ∞. For 0 6 θ 6 1,
define pθ by

1

pθ
=

1− θ
p0

+
θ

p1
.

Show that f ∈ Lpθ(E,µ) with

‖f‖Lpθ 6 ‖f‖
1−θ
Lp0 ‖f‖

θ
Lp1 .

8We permit p, q to take the value ∞ with the convention ∞−1 = 0
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B.4.1 Completeness

The most important property of the Lp-spaces is that in fact, they are complete, i.e. they
are Banach spaces. To establish this, we first prove the following result.

Lemma B.33. Suppose (E, E , µ) is a measure space and 1 6 p <∞. Let (gn)∞n=1 be a
sequence with gn ∈ Lp(E,µ) such that

∞∑
n=1

‖gn‖Lp <∞

then there exists f ∈ Lp(E,µ) such that

∞∑
n=1

gn = f,

where the sum converges pointwise almost everywhere, and in Lp(E,µ).

Proof. Fix representative9 functions g̃n ∈ Lp(E,µ) corresponding to each gn ∈ Lp(E,µ).
Define hn, h : E → [0,∞] by

hn =
n∑
k=1

|g̃k| , h =

∞∑
k=1

|g̃k| .

Note that (hn)∞n=1 is a monotone increasing sequence of non-negative measurable functions,
converging pointwise to h, so by the monotone convergence theorem we have∫

E
hpdµ = lim

n→∞

∫
E
hpndµ.

By Minkowski’s inequality we see

‖hn‖Lp 6
n∑
k=1

‖gk‖Lp 6 K =:
∞∑
k=1

‖gk‖Lp .

It follows that h ∈ Lp(E,µ) with ‖h‖Lp 6 K, which in particular implies that h is finite
almost everywhere. At each point x such that h(x) < ∞, we have that

∑∞
k=1 g̃k(x)

converges absolutely, hence converges by the completeness of C. We deduce that
∑∞

k=1 g̃k
converges pointwise almost everywhere and we define:

f(x) =

{ ∑∞
k=1 g̃k(x) if the sum converges

0 otherwise

Now, we have that |f | 6 h, which implies ‖f‖Lp 6 ‖h‖Lp 6 K, and moreover:∣∣∣∣∣f −
n∑
k=1

g̃k

∣∣∣∣∣
p

6

(
|f |+

n∑
k=1

|g̃k|

)p
6 (2h)p.

9We typically don’t state this point explicitly, but on this occasion we will make the distinction
between Lp and Lp
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Since hp is integrable, by the Dominated Convergence Theorem (Thm B.26) we deduce
that ∫

E

∣∣∣∣∣f −
n∑
k=1

g̃k

∣∣∣∣∣
p

dµ→ 0, as n→∞,

which implies
∑∞

k=1 g̃k converges to f in Lp. Noting that a different choice of represen-
tatives g̃n will result in hn, h, f which differ from those defined above only on a set of
measure zero, since the union of countably many sets of measure zero also has measure
zero we are done.

With this result in hand, we are able to establish

Theorem B.34 (Riesz-Fischer Theorem). Suppose (E, E , µ) is a measure space and
1 6 p 6∞. Then Lp(E,µ) is complete.

Proof. To prove completeness, suppose (fn)
∞
n=1 is a Cauchy sequence with respect to the

Lp-norm. It suffices to show there exists f ∈ Lp(E,µ) with fn → f in Lp. We split the
cases p <∞ and p =∞.

1. First suppose 1 6 p <∞. Then by the Cauchy property we can find a subsequence
(fnk)

∞
k=1 such that ∥∥fnk+1

− fnk
∥∥
Lp
< 2−k.

Set gk = fnk+1
− fnk . By construction we have:

∞∑
k=1

‖gk‖Lp <
∞∑
k=1

2−k = 1,

so by Lemma B.33 there exists g ∈ Lp(E,µ) such that

∞∑
k=1

gk = g

with the sum converging pointwise a.e. and in Lp. Noting that fnj+1 = fn1 +
∑j

k=1 gk,
we deduce that (fnk)

∞
k=1 converges in L

p to some f ∈ Lp(E,µ). It follows by a standard
argument using the fact it is a Cauchy sequence that (fn)∞n=1 converges to f in Lp.

2. Now consider the case p =∞. Since (fn) is Cauchy in L∞(E,µ), for each m ∈ N there
exists n such that for any j,m > n we have

|fj(x)− fk(x)| <
1

m
for all x ∈ N c

j,k,m

where µ (Nj,k,m) = 0. Let
N =

⋃
j,k,m

Nj,k,m,
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then µ(N) = 0 and further we have that for any m ∈ N there exists n ∈ N such that
for j, k > n:

sup
x∈Nc

|fj(x)− fk(x)| <
1

m
, (B.6)

so by the completeness of C we have that for each x ∈ N c we have fj(x)→ f(x) for
some f(x) ∈ C We let f(x) = 0 for x ∈ N , so that f : E → C. Sending k → ∞ in
(B.6) we see that for j > n

sup
x∈Nc

|fj(x)− f(x)| <
1

m
,

whence we conclude that ‖f‖L∞ <∞ and fj → f in L∞.

Note that we have in fact proved the stronger result:

Corollary B.35. Suppose (fn)
∞
n=1 is a Cauchy sequence in Lp(E,µ) for 1 6 p 6 ∞.

Then there exists a subsequence (fnk)
∞
k=1 which converges pointwise almost everywhere.

B.4.2 Density

It is often useful, when discussing topological spaces to identify dense subsets consisting
of ‘nice’ or ‘concrete’ objects, for example elements of Q can be easily discussed, while
a general element of R is typically expressible only as some limit of elements of Q. In
the main body of the course we shall establish that C∞c (Rn) is dense in Lp(Rn). For a
general measure space, we don’t necessarily have a notion of continuity or smoothness,
but we can show

Theorem B.36. Let S be the set of all complex, measurable, simple functions on E such
that:

µ({x : s(x) 6= 0}) <∞.
Then S is dense in Lp(E,µ) for 1 6 p <∞.

Proof. Clearly S ⊂ Lp(E,µ). Now, suppose f > 0 with f ∈ Lp(E,µ) and let

fn(x) = min{2nb2−nf(x)c, n}.

We have fn ∈ S and 0 6 fn 6 f , so that fn ∈ Lp(E,µ). Further, we know that
fn(x)→ f(x) and moreover

|f − fn|p 6 |f |p ,
so by the Dominated convergence Theorem (Thm B.26) we deduce∫

E
|f − fn|p dµ→ 0

hence fn → f in Lp. A general (i.e. complex valued) element of Lp(E,µ) may be written
as:

f = f+r − f−r + i(f+i − f
−
i ),

where f±r , f
±
i are non-negative elements of Lp(E,µ), hence the result follows.
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