
Appendix A

Background Material: Functional Analysis

A.1 Topological vector spaces

This section is intended to recap some of the basic material in Linear Analysis, and to
give a bit more detail on the functional analytical underpinnings of some of the more
exotic spaces we consider in particular when constructing distributions. The material is
not examinable, but is included here to justify various assertions earlier in the course.

In the Linear Analysis course, the principle objects of study are Hilbert or Banach
spaces. These are vector spaces which are given the additional structure of an inner
product or a norm respectively. This additional structure allows us to make sense of ideas
such as convergence of a sequence, or continuity of a real valued map. Unfortunately,
some of the vector spaces that we require for this course (for example D(U), S and E (U))
are not Hilbert or Banach spaces. We need to add to the vector spaces some additional
structure, which permits us to discuss the notions of convergence and continuity, but
which is not as restrictive as assuming the presence of a norm or inner product. The extra
structure that we shall require is of course a topology, but we shall require the topology
to be in some sense consistent with the vector space structure. We are therefore led to
the idea of topological vector spaces.

A.1.1 Vector spaces and normed spaces

In order to fix notation, let’s recall a few standard definitions.

Definition A.1 (Field axioms). A field Φ is a set together with two operations, addition
+ and multiplication · which satisfy the following axioms:

i) Φ is closed under addition and multiplication: for all a, b ∈ Φ, we have a + b ∈ Φ
and a · b ∈ Φ.

ii) Both addition and multiplication are associative: the following identities hold for all
a, b, c ∈ Φ:

a · (b · c) = (a · b) · c, a+ (b+ c) = (a+ b) + c.
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iii) Both addition and multiplication are commutative: the following identities hold for
all a, b ∈ Φ:

a · b = b · a, a+ b = b+ a.

iv) There exist unique, distinct, additive and multiplicative identity elements: there exist
0 ∈ Φ and 1 ∈ Φ with 0 6= 1 such that for all a ∈ Φ we have:

a · 1 = a, a+ 0 = a.

v) There exist additive and multiplicative inverses. For every a ∈ Φ, there exists an
element (−a) ∈ Φ such that

a+ (−a) = 0.

Moreover, for every a ∈ Φ with a 6= 0, there exists an element a−1 such that

a · a−1 = 1.

vi) The multiplication operation is distributive over addition: the following identity holds
for all a, b ∈ Φ:

a · (b+ c) = a · b+ a · c.

Exercise(∗). Show that R, C and the integers modulo p, Zp form fields with
the usual definition of addition and multiplication.

The standard examples of fields that you should keep in mind for our purposes are R
and C. With the definition of a field in hand, we can now define a vector space.

Definition A.2 (Vector space axioms). Let Φ be a field, which we call the scalar field,
and we call elements of Φ scalars. A vector space X over Φ is a set whose elements are
called vectors together with two operations:

i) Addition: to every pair of vectors x, y ∈ X is associated a unique vector x+ y ∈ X
such that for all x, y, z ∈ X:

x+ y = y + x, and (x+ y) + z = x+ (y + z).

Moreover, there exists a unique element 0 ∈ X such that for all x ∈ X:

x+ 0 = x.

Finally, for each x ∈ X, there exists a unique vector (−x) such that:

x+ (−x) = 0.

ii) Scalar multiplication: to every pair (a, x) with a ∈ Φ and x ∈ X is associate a
unique vector ax ∈ X in such a way that

1x = x, a(bx) = (a · b)x,

and such that the distributive laws:

a(x+ y) = ax+ ay, (a+ b)x = ax+ bx

hold for every x, y ∈ X and a, b ∈ Φ.
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Note that the same symbols have different meanings in different contexts: + can mean
either scalar or vector multiplication, while 0 refers to the zero element of both the field
and the vector space.

It is useful to extend the operations of vector addition and scalar multiplication to
act on sets as follows. If a ∈ X, λ ∈ Φ U1, U2 ⊂ X, then we define:

a+ U1 = {a+ x : x ∈ U},
U1 + U2 = {x+ y : x ∈ U1, y ∈ U2},

λU1 = {λx : x ∈ U1}.

Note that 0 + U = U , 1U = U , 2U ⊂ U + U , but that in general 2U 6= U + U .

Definition A.3. Suppose X is a vector space over Φ, where Φ is either R or C. We say
that a subset U ⊂ X is convex if

x, y ∈ U =⇒ tx+ (1− t)y ∈ U for all t ∈ [0, 1].

We say that U is balanced if λU ⊂ U for all λ ∈ Φ with |λ| 6 1.

Exercise A.1. Suppose that λ1λ2 > 0 and that U ⊂ X is a convex subset of a
vector space X. Show that:

λ1U + λ2U = (λ1 + λ2)U.

Finally, we shall define a norm on a vector space

Definition A.4. A norm on a vector space X over Φ, where Φ is either R or C is a
map:

‖·‖ : X → R

such that

i) We have ‖x‖ > 0 for all x ∈ X, with equality if and only if x = 0.

ii) The triangle identity holds for all x, y ∈ X:

‖x+ y‖ 6 ‖x‖ + ‖y‖ .

iii) For any a ∈ Φ and x ∈ X we have:

‖ax‖ = |a| ‖x‖ .

A more general notion of distance than a norm is often useful. We define a metric
space as follows:

Definition A.5. A metric space (S, d) is a set S, together with a function d : S×S → R,
called the metric, which satisfies:
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i) The metric is symmetric:

d(x, y) = d(y, x), for all x, y ∈ S.

ii) The metric is positive definite:

0 6 d(x, y), for all x, y ∈ S,

with equality if and only if x = y.

iii) The triangle inequality holds:

d(x, y) 6 d(x, z) + d(z, y), for all x, y, z ∈ S.

To see that this is a more general notion than a normed space, we have the following
result:

Lemma A.1. If (X, ‖·‖) is a normed vector space, then it is naturaly a metric space,
with the metric:

d(x, y) := ‖x− y‖

Proof. We simply have to verify the three conditions on d. We find:

i) Noting that |−1| = 1, we have:

d(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖ = |−1| ‖y − x‖ = ‖y − x‖ = d(y, x),

so the metric is symmetric.

ii) Since we know that ‖x‖ > 0, with equality if and only if x = 0, clearly

d(x, y) = ‖x− y‖ > 0

with equality if and only if x− y = 0, which holds if and only if x = y.

iii) Recall the triangle inequality for norms ‖x+ y‖ 6 ‖x‖ + ‖y‖. We calculate:

d(x, y) = ‖x− y‖ = ‖(x− z)− (y − z)‖
6 ‖x− z‖ + ‖y − z‖
= d(x, z) + d(z, y).

Thus d satisfies the conditions to be a metric.
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A.1.2 Topological spaces

The definitions above are purely algebraic in nature. In particular, we have not introduced
any notions of convergence, completeness or continuity for these spaces. The natural
setting in which to do this is that of topology. Let us recall briefly a few definitions and
facts.

Definition A.6 (Topology axioms). A topological space is a set S in which a collection
of subsets τ (called open sets) has been specified, with the following properties:

i) The empty set is open: ∅ ∈ τ

ii) The whole space is open: S ∈ τ ,

iii) If U1, U2 ∈ τ are open sets, then their intersection is open:

U1 ∩ U2 ∈ τ.

iv) If U ⊂ τ is any collection of open sets, then their union is open:⋃
U ∈ τ.

Note that by repeatedly applying iii), we can easily see that any finite intersection of
open sets is open. Let’s recall some standard nomenclature associated with topological
concepts. A set E ⊂ S is closed if its complement Ec = S \ E is open. The closure E of
any set E is the intersection of all closed sets containing E. The interior E◦ of any set E
is the union of all open sets contained in E. Note that the closure is always closed and
the interior is always open. A neighbourhood of a point p ∈ S is an open set containing
p. A limit point of a set E ⊂ S is a point p ∈ S (not necessarily with p ∈ E) such that
every neighbourhood of p intersects E in some point other than p itself.

Lemma A.2. Suppose (S, τ) is a topological space. If U ⊂ S is open then U = U◦. If
E ⊂ S is closed, then E = E and E contains all of its limit points.

Proof. The fact that U◦ ⊂ U follows from the definition of the interior as U◦ is a union
over sets contained in U . Since U is itself an open set contained in U , we also have
U ⊂ U◦. Similarly, E ⊂ E from the definition of the closure. Since E is itself a closed
set containing E, we have E ⊂ E. Now suppose that p is a limit point, and assume for
contradiction that p ∈ Ec. Then since E is closed, Ec is open and hence a neighbourhood
of p. By the definition of a limit point we have E ∩ Ec is non-empty, a contradiction.
Thus p ∈ E.

A base, β for the topology τ is a collection of open sets, β ⊂ τ such that any open set
in τ can be written as a union of elements of β. A collection γ of neighbourhoods of p is
a local base at p if every neighbourhood of p contains a member of γ.

A set K ⊂ S is compact if every open cover of K has a finite subcover. That is to
say that from any collection {Ui}i∈I of open sets such that K ⊂ ∪i∈IUi, we can extract
a finite collection {Uik}nk=1 such that K ⊂ ∪nk=1Uik . A topological space is Hausdorff if
any two distinct points have disjoint neighbourhoods.
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Lemma A.3. Suppose (S, τ) is a Hausdorff topological space, and that K ⊂ S is compact.
Then K is closed.

Proof. Let us fix p ∈ Kc, and consider an arbitrary q ∈ K. By the Hausdorff property
of S, we know that there exist Uq, Vq open, with q ∈ Uq, p ∈ Vq and Uq ∩ Vq = ∅. Now,
{Uq : q ∈ K} is an open cover of K, hence by the compactness of K there is a finite
subcover, i.e. q1, . . . qN such that K ⊂ U = Uq1 ∪ . . .∪UqN . Consider V = Vq1 ∩ . . .∩VqN .
We have that Vp ∪ U = ∅, so that V ⊂ Kc. Moreover, as a finite intersection of open sets
V is open. Writing Kc as the union of the sets V for all p ∈ Kc, we see that Kc is open
and thus K is closed.

Lemma A.4. Suppose (S, τ) is a Hausdorff topological space, and E ⊂ S. Then p is a
limit point of E if and only if every neighbourhood of p contains infinitely many elements
of E.

Proof. If every neighbourhood of p contains infinitely many elements of E, it certainly
intersects E in some point other than p, thus p is a limit point. Conversely, suppose
that p is a limit point and suppose that U is some neighbourhood intersecting E in only
finitely many points, say {x1, . . . , xN}. by the Hausdorff property, we know that there
exist open sets Ui, Vi such that xi ∈ Ui, p ∈ Vi and Ui ∩ Vi = ∅. Then ∩Ni=1Vi ∩U is open,
contains p and doesn’t contain any other points of E. This contradicts the assumption
that p is a limit point.

A sequence (xn)n∈N in a Hausdorff space converges to a point x if every neighbourhood
of x contains all but finitely many of the points xn. If (S1, τ1) and (S2, τ2) are two
topological spaces, then we say that f : S1 → S2 is continuous if f−1(U) ∈ τ1 for all
U ∈ τ2. A homeomorphism f : S1 → S2 is a bijective continuous map whose inverse is
also continuous.

If τ1, τ2 are two different topologies on the same set S such that τ1 ⊂ τ2, then we say
that τ1 is a coarser topology than τ2, or alternatively that τ2 is a finer topology than τ1.
A finer topology has ‘more open sets’. Note that if a sequence converges in τ2 then it
necessarily converges in τ1 but that the converse does not hold. The coarsest topology on
any set S is the trivial topology, whose only open sets are the empty set and S itself. The
finest topology on any set is the discrete topology, for which any subset of S is declared
to be open.

Exercise A.2. a) Suppose that (S, τ) is a topological space, and that β is a
base for τ . Show that:

i) If x ∈ S, then there exists some B ∈ β with x ∈ B.

ii) If B1, B2 ∈ β, then for every x ∈ B1 ∩B2 there exists B ∈ β with:

x ∈ B B ⊂ B1 ∩B2.

b) Conversely, suppose that one is given a set S and a collection β of subsets of
S satisfying i), ii) above. Define τ by:

U ∈ τ ⇐⇒ for all x ∈ U, there exists B ∈ β such that x ∈ B and B ⊂ U.
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i.e. τ is the set of all unions of elements of β. Show that (S, τ) is a topological
space, with base β. We say that τ is the topology generated by β

c) Suppose that β, β′ both satisfy conditions i), ii) above and generate topologies
τ , τ ′ respectively. Moreover, suppose that if B ∈ β then for every x ∈ B
there exists B′ ∈ β′ satisfying

x ∈ B′, and B′ ⊂ B

Then τ ⊂ τ ′.

If E ⊂ S is any subset of a topological space (S, τ), then E inherits a topology, τ |E ,
called the subspace topology given by:

τ |E = {E ∩ U : U ∈ τ}.

If (S1, τ1) and (S2, τ2) are two topological spaces, then S1 × S2 inherits a topology τ
called the product topology, which is generated by the base

β = {U1 × U2 : Ui ∈ τi, i = 1, 2}

In other words, a set U is open in the product topology if it is the union of sets of the
form U1 × U2 with Ui ∈ τi, i = 1, 2.

Exercise A.3. Suppose (S1, τ1), (S2, τ2) and (S3, τ3) are topological spaces,
and that f : S1 × S2 → S3 is a continuous map. Show that for each a ∈ S1 and
b ∈ S2, the maps

fa : S2 → S3,
y 7→ f(a, y),

f b : S1 → S3,
x 7→ f(x, b),

are continuous.
The condition that f is continuous with respect to the product topology is

sometimes called joint continuity, while the continuity of fa, f b is called separate
continuity. Thus joint continuity implies separate continuity. The converse is
not true.

Theorem A.5. Let (S1, τ1) and (S2, τ2) be two topological spaces, and let β1 respectively
β2 be a base. Then the set

β = {B1 ×B2 : B1 ∈ β1, B2 ∈ β2},

is a base for the product topology (S1 × S2, τ).

Proof. Suppose U ∈ τ , and let x = (x1, x2) ∈ U . By the definition of the product
topology, there exist U1 ∈ τ1 and U2 ∈ τ2 with x ∈ U1 × U2 and U1 × U2 ⊂ U . Since
β1 is a base for (S1, τ1), and U1 ∈ τ1, there exists B1 ∈ β1 with x1 ∈ B1 and B1 ⊂ U1.
Similarly there exists B2 ∈ β2 such that x2 ∈ B2 and B2 ⊂ U2. Thus x ∈ B1 × B2 and
B1 ×B2 ⊂ U1 × U2 ⊂ U . Considering these sets as x ranges over U , we see that U may
be written as a union of elements of β and we’re done.
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Example 19. The real numbers R carry a topology, called the order topology, generated
by the base:

βR = {(a, b) : a, b ∈ R, a < b} .

This induces the product topology on Rn = R×· · ·×R. This is called the standard topology
on Rn.

Exercise A.4. Show that the base

βQ = {(p, q) : p, q ∈ Q, p < q} ,

generates the standard topology on R.

With the result of this exercise, we can establish the following very useful fact about
open sets in Rn.

Lemma A.6. Suppose Ω ⊂ Rn is open. Then there exists an exhaustion of Ω by compact
sets. That is to say a family (Ki)

∞
i=1 of compact sets Ki ⊂ Ω such that

Ki ⊂ (Ki+1)◦ ,
∞⋃
i=1

Ki = Ω.

Proof. 1. Recall that by the definition of the product topology, a base for the standard
topology of Rn is given by:

β = {I1 × · · · × In : Ik ∈ βQ}

For any B ∈ β we have B =
⋃
{B′ ∈ β : B′ ⊂ B} since, for example

(p, q) =
∞⋃
n=N

(
p+

1

n
, q − 1

n

)
for some N > [2(q − p)]−1, and taking products of such sets the result follows.

2. Let
β′ =

{
B ∈ β : B ⊂ Ω

}
.

Since β is a base,
⋃
{B ∈ β : B ⊂ Ω} = Ω, thus in view of the discussion above

Ω =
⋃
β′. Moreover, since β can be put into one-to-one correspondence with a

subset of Q2n, we have that β and hence β′ is countable.

3. Let us take an enumeration

β′ = {B1, B2, . . .}.

We define Ki inductively as follows. Pick K1 = B1. This is a closed box in Rn, so
is compact. Now suppose that K1, . . .Kn have been chosen. Since Kn ⊂ Ω, β′ is
an open cover of Kn and so admits a finite subcover. Therefore there exists in such
that Kn ⊂ B1 ∪ . . . ∪ Bin . We define Kn+1 = B1 ∪ . . . ∪ Bin . This is a union of
closed boxes, hence is compact.
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4. By construction we have Ki ⊂ (Ki+1)◦. Moreover Kn+1 6⊂ B1 ∪ . . . ∪ Bin , so
in+1 > in, and thus in →∞ as n→∞. Pick x ∈ Ω. Then x ∈ Bi for some i. Since
in →∞, x ∈ Kn for sufficiently large n, thus

⋃∞
i=1Ki = Ω.

For another example of a topological space, we return to the vector space setting.

Example 20. Let (S, d) be a metric space. The open ball of radius r > 0 about x ∈ S is
defined to be:

Br(x) := {y ∈ S : d(x, y) < r} .

The metric topology is the topology induced by the base:

β = {Br(x) : x ∈ S, r ∈ R+} .

We say that a general topological space (S, τ) is metrizable if there exists some metric d
on S such that the metric topoplogy of (S, d) coincides with τ .

Exercise A.5. Suppose that (S, d) is a metric space. Show that S is Hausdorff
with respect to the metric topology.

An important feature of metric spaces is that the notions of compactness and sequential
compactness are equivalent. We say that a topological space (S, τ) is sequentially compact
if every sequence (xn)∞n=1 with xn ∈ S admits a subsequence (xni)

∞
i=1 such that xni

converge to x ∈ S as i→∞.

Theorem A.7. Let (S, d) be a metric space endowed with the metric space topology.
Then S is compact if and only if it is sequentially compact.

Proof. 1. First suppose S is compact and consider the sequence (xn)∞n=1. We must
exhibit a convergent subsequence. Let us consider the set A = {xn}∞n=1. If A is
finite, then xn must take at least one value an infinite number of times, so has a
subsequence converging to that value, and we’re done.

Now suppose A is infinite. We claim that A has a limit point. Suppose not.
In particular, this means that each y ∈ S has a neighbourhood Uy such that
Uy ∩ A ⊂ {y}. The collection {Uy : y ∈ S} is an open cover of S, hence admits a
finite subcover, say {Uy1 , . . . UyN }. Note that we have

A = S ∩A = (Uy1 ∪ . . . ∪ UyN ) ∩A
= (Uy1 ∩A) ∪ . . . ∪ (UyN ∩A) ⊂ {y1, . . . , yN}

Since A is infinite, this contradicts the assumption that A has no limit points.

Let x be a limit point of A. Since any metric space is Hausdorff, every neighbourhood
of x must contain infinitely many points in A. Define a subsequence as follows. We
pick n1 such that xn1 ∈ B1(x). Suppose we have xnk−1

. We define nk by requiring
xnk

> xnk−1
and xnk

∈ Bk−1(x). This can always be done. By construction the
subsequence {xnk

}∞k=1 converges to x.
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2. Now suppose that (S, d) is sequentially compact. We first claim that if U is any
open cover of S, then there exists δ > 0 with the property that for each x ∈ S, there
exists U ∈ U with Bδ(x) ⊂ U . Note that while U will depend on x, δ does not.

Suppose not. Then for each n, there exists xn ∈ S such that B 1
n

(xn) is not contained
in any element of U . By the assumption of sequential compactness, we can choose
a subsequence xni → a for some a ∈ S. Now, since U is a open cover, there exists
U ∈ U with a ∈ U . Since U is open, there exists ε > 0 such that Bε(a) ⊂ U .
Now pick i sufficiently large that n−1

i < ε/2 and xni ∈ Bε/2(a). Then we have
B1/ni

(xni) ⊂ Bε(a) ⊂ U , a contradiction.

3. Next, we show that if (S, d) is sequentially compact, then for each ε > 0 there exists
a finite covering of S by balls of radius ε. Suppose not, then S cannot be covered
by finitely many balls of radius ε. Construct a sequence as follows: take x1 ∈ S to
be arbitrary. Given x1, . . . xn, choose

xn+1 ∈ (Bε(x1) ∪ . . . ∪Bε(xn))c

which is always possible. Now, by construction (xn) has no convergent subsequence,
since Bε/2(x) contains at most one element of (xn), and we have a contradiction
with the assumption of sequential compactness.

4. Finally we are ready to show that if (S, d) is sequentially compact, then it is compact.
Let U be an open cover of S. Then by 2. above, there exists δ > 0 such that for
any x ∈ S, Bδ(x) is contained in an element of U . By 3. we know that we can
choose x1, . . . xN such that the sets Bδ(xi) for i = 1, . . . , N cover S. Let Ui ∈ U
be such that Bδ(xi) ⊂ Ui. Then we must have

S =

N⋃
i=1

Bδ(xi) ⊂
N⋃
i=1

Ui,

so by construction, {Ui}Ni=1 is a finite subcover of U .

Exercise A.6. Let us take X = Rn, thought of as a vector space over R and
define:

‖(x1, . . . , xn)‖p = (|x1|p + . . . |xn|p)
1
p , p ≥ 1.

a) Show that (Rn, ‖·‖p) is a normed vector space:

i) First check that the positivity and homogeneity property are satisfied.

ii) Establish the triangle inequality for the special case p = 1.

iii) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1+q−1 =
1 then:

ab 6
ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the
concavity of the logarithm
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iv) With p, q > 1 such that p−1 + q−1 = 1, show that if ‖x‖p = 1 and
‖y‖q = 1 then

n∑
i=1

|xiyi| 6 1.

Deduce Hölder’s inequality:

n∑
i=1

|xiyi| 6 ‖x‖p ‖y‖q , for all x, y,∈ Rn.

v) Show that

‖x+ y‖pp 6
n∑
i=1

|xi| |xi + yi|p−1 +
n∑
i=1

|yi| |xi + yi|p−1

vi) Apply Hölder’s inequality to deduce:

‖x+ y‖pp 6
(
‖x‖p + ‖y‖p

)
‖x+ y‖p−1

p

and conclude
‖x+ y‖p 6 ‖x‖p + ‖y‖p .

b) Show that the metric topology of (Rn, ‖·‖p) agrees with the standard topology.
Hint: Use part c) of Exercise A.2

Exercise A.7 (?). Let X = C[0, 1], the set of continuous functions on the
closed interval [0, 1]. For f ∈ X, p > 0 define:

‖f‖p =

(∫ 1

0
|f(x)|p dx

) 1
p

a) Show that X is a vector space over R, where scalar multiplication and vector
addition are defined pointwise.

b) Establish Hölder’s inequality:

‖fg‖1 6 ‖f‖p ‖g‖q

for p, q > 1 with p−1 + q−1 = 1.

c) Show that (X, ‖·‖p) is a normed space.

d) Suppose p 6 p′. Show that:

‖f‖p 6 ‖f‖p′
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e) Let τp be the metric topology of (X, ‖·‖p). Show that if p 6 p′:

τp ⊂ τp′ .

f) Consider the sequence of functions:

fn(x) =

{
nγ−1 0 6 x < 1

n
1
nx
−γ 1

n 6 x 6 1

where n = 1, 2, . . .

i) Show that fn ∈ C[0, 1] and

lim
n→∞

‖fn‖p =


0 γ < p+1

p(
p+1
p

) 1
p

γ = p+1
p

∞ γ > p+1
p

ii) By choosing γ carefully, show that if p < p′ then

τp′ 6⊂ τp.

Hint: in parts b), c) follow the same steps as for the finite dimensional case in
Exercise A.6.

Exercise A.8. Verify that if (S, d) is a metric space, then the metric topology
defines the same notions of convergence and continuity as the standard definitions
for a metric space.

A.1.3 Topological vector spaces

Having briefly introduced the concept of vector spaces and topological spaces, we are now
ready to define a topological vector space.

Definition A.7 (Topological vector space axioms). A vector space X over a field Φ,
where Φ is either R or C is called a topological vector space if X is endowed with a
topology τ such that:

i) Every point of X is a closed set,

ii) The vector space operations are continuous with respect to τ .

To put a bit of flesh on the bones of this definition, the first condition implies that for
any x ∈ X, the set {x} is closed, or equivalently X \ {x} should be open. The second
condition should be understood as follows. We require firstly that the map:

+ : X ×X → X
(x, y) 7→ x+ y
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is continuous, where X ×X inherits the product topology from X. Secondly, we require
that the map:

· : Φ×X → X
(a, x) 7→ ax

Where Φ×X is endowed with the product topology, and we take the topology on Φ to
be the standard topology on R or C ' R2 as appropriate.

We say that a subset, E, of a topological vector space is bounded if for every neigh-
bourhood V of 0 we can find s > 0 such that E ⊂ tV whenever t > s.

A useful source of topological vector spaces are the normed spaces that we previously
introduced. We can verify that these indeed satisfy the topological vector space axioms:

Theorem A.8. If (X, ‖·‖) is normed vector space, endowed with the metric topology, then
X is a topological vector space. A set E ⊂ X is bounded if and only if supx∈E ‖x‖ <∞.

Proof. 1. First we note that for each x ∈ X, the set {x} is closed. To see this, suppose
that y 6= x, and set r = 1

2 ‖y − x‖. Then the open ball Br(y) = {z ∈ X : ‖z − y‖ <
r} does not contain x, thus we have shown that X \ {x} is open.

2. Now suppose U is an open set in X and let x, y ∈ X be such that z = x+ y ∈ U .
By the openness of U in the norm topology, there exists r > 0 such that the set
Br(z) ⊂ U . Let W = B r

2
(x)×B r

2
(y), and suppose (x′, y′) ∈W . Clearly∥∥x′ + y′ − z

∥∥ =
∥∥x′ − x+ y′ − y

∥∥ 6
∥∥x′ − x∥∥ +

∥∥y′ − y∥∥ < r

so that x′ + y′ ∈ Br(z) ⊂ U . Thus the set W ⊂ (+)−1(U) ⊂ X ×X. However, W
is open in X ×X by the definition of the product topology. Since (x, y) ∈ (+)−1(U)
was arbitrary, we deduce that (+)−1(U) is open and so + : X×X → X is continuous.

3. Finally, suppose that U is an open set in X and let x ∈ X, a ∈ Φ be such that
z = ax ∈ U . By the openness of U in the norm topology, there exists r > 0 such
that the set Br(z) ⊂ U . Let W = {b ∈ Φ : |a− b| < r1} × Br2(x), and suppose
(a′, x′) ∈W . Then we have:∥∥a′x′ − z∥∥ =

∥∥a′x′ − ax∥∥ =
∥∥(a′ − a)x′ − a(x− x′)

∥∥
6
∥∥(a′ − a)x′

∥∥ +
∥∥a(x− x′)

∥∥
< r1 (‖x‖ + r2) + |a| r2

Setting r1 = r2 = min{r,1}
4(1+‖x‖+|a|) , we have

r1 (‖x‖ + r2) + |a| r2 6
3r

4
,

and so a′x′ ∈ Br(z) ⊂ U . Thus the set W ⊂ (·)−1(U) ⊂ Φ ×X. However, W is
open in Φ×X by the definition of the product topology. Since (a, x) ∈ (·)−1(U)
was arbitrary, we deduce that (·)−1(U) is open and so · : Φ×X → X is continuous.
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4. Now suppose E ⊂ X is bounded. Then in particular, since B1(0) is an open
neighbourhood of 0, we have that E ⊂ tB1(0) for some t > 0. However, tB1(0) =
Bt(0) = {x ∈ X : ‖x‖ < t}, so necessarily we must have supx∈E ‖x‖ < t < ∞.
Conversely, suppose that supx∈E ‖x‖ = M <∞, and let V be any neighbourhood
of 0. Since V is open in the metric topology, there exists ε > 0 such that Bε(0) ⊂ V .
Let t = 2Mε−1. We have tBε(0) = B2M (0) = {x ∈ X : ‖x‖ < 2M}, thus
E ⊂ tBε(0) ⊂ tV .

Remark. One has to be careful with various notions of boundedness for sets. While for
a normed space the notion of boundedness introduced for topological vector spaces above is
equivalent to the set having finite diameter, this is not true for general metric spaces. See
the remark after Theorem A.18.

We now prove a simple but useful consequence of the topological vector space definition.

Lemma A.9. Let X be a topological vector space. For any a ∈ X and λ ∈ Φ with λ 6= 0,
define the maps:

Ta : X → X,
x 7→ x+ a.

Mλ : X → X,
x 7→ λx.

These are homeomorphisms of X to itself.

Proof. These maps are manifestly bijective, with inverses given by (Ta)
−1 = T−a and

(Mλ)−1 = Mλ−1 . All four maps are continuous by the definition of the topological vector
space, since joint continuity implies separate continuity (see Exercise A.3).

Lemma A.9 tells us that a set E ⊂ X is open if and only if all of the translates a+E
are open. In particular this means that the topology of a topological vector space is
determined by a local base at the origin.

Theorem A.10. Suppose that (X, τ) is a topological vector space, and that β̇ is a local
base at 0. Then the collection

β =
{
a+B : a ∈ X,B ∈ β̇

}
is a base for τ .

Proof. Recall that a collection of open sets β̇ is a local base at the origin if every
neighbourhood of the origin contains a member of β̇. First note that β is a collection of
open sets, since translations of open sets are open. Now suppose that U ∈ τ is an open
set and pick x ∈ U . We have that (−x) + U is a neighbourhood of the origin, and so
there exists B ∈ β̇ such that B ⊂ (−x) +U . Since translation of sets preserves inclusions,
we have x+B ⊂ x+ (−x) + U = U . Thus for any U ∈ τ we have exhibited an element
of β contained in U , so β is indeed a base for τ .

Theorem A.11. Suppose that X is a topological vector space. Then:

a) If U ⊂ X is a neighbourhood of 0 then U contains a balanced neighbourhood of 0.
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b) If U ⊂ X is a convex neighbourhood of 0, then U contains a convex balanced neigh-
bourhood of 0.

Proof. 1. Since scalar multiplication is continuous, there exists δ > 0 and V open such
that αV ⊂ U for all |α| < δ. Let

W =
⋃
|α|<δ

αV.

Then W is balanced and open, and U ′ ⊂ U , establishing a).

2. Now, suppose that U is convex, set

A =
⋂
|α|=1

αU

and choose W as in the previous paragraph. Since W is balanced, α−1W = W
whenever |α| = 1, so W ⊂ αU for all |α| = 1 and thus W ⊂ A. Thus A◦ is a
neighbourhood of the origin. Clearly A◦ ⊂ U . Since U is convex, so is αU for
any α and thus A is an intersection of convex sets hence convex. The interior of a
convex set is convex, thus A◦ is convex. Next I claim that A is balanced. Suppose
0 6 r 6 1 and |β| = 1. To show A is balanced, it suffices to show that rβA ⊂ A.
Note

rβA =
⋂
|α|=1

rβαU =
⋂
|α|=1

rαU.

However, since αU is convex and contains 0, we have rαU ⊂ αU , and it follows
that A is balanced. It follows that A◦ is balanced, convex, open, contains 0 and is
a subset of U .

Lemma A.12. Suppose (X, τ) is a topological vector space. Then:

a) τ is Hausdorff.

b) The set {x} is bounded for any x ∈ X.

c) If E1, E2 are bounded, then so is E1 + E2. In particular, x+ E1 is bounded for any
x ∈ X.

d) If (xn)∞n=1 is a sequence in X such that {xn}∞n=1 is bounded and (an)∞n=1 is a sequence
of scalars with an → 0, then anxn → 0.

Proof. 1. We first show that every neighbourhood, W , of 0 contains a balanced open
set U satisfying U + U ⊂W . To see this, note that 0 + 0 = 0, so by the continuity
of 0, there exist neighbourhoods U1, U2 of 0 such that U1 + U2 ⊂W . We let

U ′ = U1 ∩ U2

which satisfies U ′ + U ′ ⊂W . By Theorem A.11, U ′ has a balanced subset U , and
U + U ⊂ U ′ + U ′ ⊂W .
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2. Now consider x, y ∈ X with x 6= y. Since {y} is closed and x ∈ {y}c, there exists
W , a neighbourhood of x with y 6∈ W . Since −x + W is a neighbourhood of 0,
there exists a balanced U with U + U ⊂ −x + W . Thus x + U + U ⊂ W and in
particular y 6∈ x+ U + U . I claim (x+ U) ∩ (y + U) = ∅. Suppose not, then there
exists a, b ∈ U such that x+ a = y+ b, which implies y = x+ a− b. But a,−b ∈ U ,
so y ∈ x+U +U , a contradiction. We have constructed sets x+U and y+U which
are open, and contain x, y respectively, thus X is Hausdorff and we have established
a).

3. Fix x ∈ X and consider the map fx : R → X given by fx(λ) = λx. This is a
continuous map, so fx−1(W ) is open in R. Since 0 ∈ W , we have 0 ∈ fx−1(W ),
and thus from the definition of an open set in R, the interval (−ε, ε) ∈ fx−1(W ) for
some ε > 0. Thus λx ∈W for λ ∈ (0, ε), or equivalently x ∈ tW for t > ε−1. Thus
we have established b).

4. Let W be any neighbourhood of 0. By paragraph 1. there exists U a neighbourhood
or 0 such that U +U ⊂W . Since E1, E2 are both bounded, there exists s ∈ R such
that t−1Ei ⊂ U for t > s and i = 1, 2. Thus for t > s,

t−1(E1 + E2) = t−1E1 + t−1E2 ⊂ U + U ⊂W,

or equivalently E1 + E2 ⊂ tW and hence E1 + E2 is bounded, which is the first
part of c). The final part of c) follows by applying the result from b).

5. For part d), suppose W is any neighbourhood of the origin in X. As in part 1., we
can take U balanced and open with U ⊂ W . Then there exists s > 0 such that
xn ∈ tU for all n = 1, 2, . . . and any t > s. Since an → 0, there exists N such that
|an| < s−1 for all n > N . Since U is balanced, and we have xn ∈ tU and |tan| < 1
for n > N , we deduce that anxn ∈ U ⊂W for all n > N and we’re done.

Suppose that X is a vector space equipped with a metric d. We say that d is invariant
if

d(x+ z, y + z) = d(x, y),

for all x, y, z ∈ X. We have the following useful result

Lemma A.13. Suppose that X is a vector space, equipped with an invariant norm d,
and let τ be the induced metric topology. Given a sequence (xn)∞n=1 with xn → 0, there
exist scalars αn →∞ such that αnxn → 0.

Proof. 1. First note that if d is invariant, then

d(nx, 0) 6 nd(x, 0).

This is clearly true if n = 1. Suppose it holds for n = 1, . . . k − 1 Then

d(kx, 0) 6 d(kx, x) + d(x, 0)

= d((k − 1)x, 0) + d(x, 0)

6 (k − 1)d(x, 0) + d(x, 0) = kd(x, 0)

and we’re done by induction.
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2. Now note that since xn → 0, for any m ∈ N there exists Nm such that

d(xn, 0) <
1

m2
n > Nm

where we can assume that Nm < Nm+1. We define αn = m for Nm 6 n < Nm+1.
Suppose that Nm 6 n < Nm+1. Then

d(anxn, 0) 6 md(xn, 0) <
1

m
.

Thus as n→∞, we have that anxn → 0, however an →∞.

A crucially important concept which you may have come across when studying metric
spaces is the idea of a Cauchy sequence.

Definition A.8. i) Suppose (S, d) is a metric space. We say that a sequence (xn)∞n=1

is d-Cauchy if for every ε > 0 we can find an integer N such that

d(xn, xm) < ε, for all n,m > N.

A metric space is called complete if every d-Cauchy sequence converges in S.

ii) Suppose (X, τ) is a topological vector space. We say that a sequence (xn)∞n=1 is
τ -Cauchy if for every neighbourhood, U , of the origin we can find an integer N such
that

xn − xm ∈ U, for all n,m > N.

Exercise A.9. Let (X, τ) be a topological vector space

a) Show that if (xn)∞n=1 is a τ -Cauchy sequence, then {xn}∞n=1 is bounded.

b) Fix a local base β̇. Show that a sequence (xn)∞n=1 is τ -Cauchy if and only if
for any B ∈ β̇ we can find an integer N such that

xn − xm ∈ B, for all n,m > N.

Lemma A.14. Suppose that X is a vector space, equipped with an invariant norm d,
and let τ be the induced metric topology. Then a sequence (xn)∞n=1 is d-Cauchy if and
only if it is τ -Cauchy.

Proof. Suppose that (xn) is τ -Cauchy. Then for any ε > 0, there exists N such that for
all n,m > N we have xn − xm ∈ Bε(0), i.e.

ε > d(0, xn − xm) = d(xn, xm),

thus (xn) is d-Cauchy.
Now suppose (xn) is d-Cauchy. Let V be any neighbourhood of 0. Since V is open,

there exists ε > 0 such that Bε(0) ⊂ V . Since (xn) is d-Cauchy, there exists N such that
d(xn, xm) < ε for all n,m > N . Thus

ε > d(xn, xm) = d(0, xn − xm),

so xn − xm ∈ Bε(0) ⊂ V and (xn) is τ -Cauchy.
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We’re now in a position to distinguish various useful classes of topological vector
space. There is some difference of opinion on the definitions below, we follow here the
conventions of Rudin. Here (X, τ) always refers to a topological vector space:

i) X is a locally convex topological vector space if there is a local base β̇ whose members
are convex.

ii) X is locally bounded if 0 has a bounded neighbourhood.

iii) X is locally compact if 0 has a neighbourhood whose closure is compact.

iv) X is metrizable if there exists some metric d on X such that τ is the metric topology
induced by d.

v) X is an F -space if its topology τ is induced by a complete invariant metric.

vi) X is a Fréchet space if it is a locally convex F -space.

vii) X is normable if a norm exists on X such that the metric topology of the norm
agrees with τ .

viii) A normed space (X, ‖·‖), with the metric topology, is Banach if the metric induced
by the norm is complete.

ix) A space X has the Heine-Borel property if every closed and bounded subset of X is
compact.

The space Rn with the norm ‖·‖p introduced in the exercises is an example of a
topological vector space which belongs to all of these classes. The spaces that you studied
in Functional Analysis were mostly Banach spaces, although not all. For example if X is
an infinite dimensional Banach space, then the weak-* topology of X∗ is locally convex,
but not metrisable.

We note that the converse of the Heine-Borel property is always true for a topological
vector space:

Lemma A.15. Suppose (X, τ) is a topological vector space and that K ⊂ X is compact.
Then K is closed and bounded.

Proof. 1. The fact that K is closed follows immediately from Lemmas A.3, A.12.

2. Next, suppose U is a neighbourhood of 0. By the continuity of scalar multiplication,
there exists δ > 0 and a neighbourhood V of the origin in X such that αV ⊂ U
for any |α| < δ. Define W to be the union of these sets as α varies over {|α| < δ}.
Then W ⊂ V is an open, balanced, neighbourhood of 0.

3. Now I claim that
∞⋃
n=1

nW = X.
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To see this, fix x ∈ X. Since the map α 7→ αx is continuous, the set of all α with
αx ∈W is open and contains 0, hence contains n−1 for sufficiently large n. Thus
n−1x ∈ W , or x ∈ nW for large enough n. Note that since W is balanced, in
particular sW ⊂ tW for s < t.

4. Finally, since U = {nW}∞n=1 is an open cover of X, it is also an open cover of K.
Thus there exist n1, . . . , nN such that

K ⊂
N⋃
i=1

niW = nNW ⊂ nNU.

Thus K is bounded.

A.2 Locally convex spaces

We shall now specialise somewhat, to the case of locally convex topological vector spaces.
These can be given a nice description in terms of a family of semi-norms. When that
family is countable, the topology is equivalent to that induced by an invariant metric,
which if it is complete gives a Fréchet space. These can be thought of as generalisations of
the Banach spaces that you may be familiar with from functional analysis. The canonical
example of a Fréchet space that is not a Banach space is C∞(Ω), the space of smooth
functions on an open set Ω. The finite regularity spaces on a compact set Ck(K) are
Banach spaces in a natural way, but this is not true of C∞(Ω).

A.2.1 Semi-norms

A very useful way to construct the topology for a locally convex topological vector space
is via a family of semi-norms.

Definition A.9. A seminorm on a vector space X over Φ (with Φ being either R or C)
is a map p : X → R satisfying:

i) p is subadditive. For all x, y ∈ X we have:

p(x+ y) 6 p(x) + p(y)

ii) For all λ ∈ Φ and x ∈ X we have:

p(λx) = |λ| p(x)

A family of seminorms P is said to be separating if for every x ∈ X with x 6= 0, there is
at least one p ∈P with p(x) 6= 0.

From the definition we can immediately deduce some useful properties:

Lemma A.16. Let X be a vector field over R or C, and let p : X → R be a seminorm.
Then:
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a) p(0) = 0

b) |p(x)− p(y)| 6 p(x− y)

c) p(x) > 0

d) {x : p(x) = 0} is a vector subspace of X.

e) The set B = {x : p(x) < 1} is convex and balanced.

Proof. a) Applying property ii) from the definition of a seminorm with λ = 0 we
immediately have p(0) = 0.

b) From the subadditivity property we have

p(x) = p(x− y + y) 6 p(x− y) + p(y)

so p(x)− p(y) 6 p(x− y). Similarly p(y)− p(x) 6 p(y − x), but p(x− y) = p(y − x)
and the result follows.

c) Applying a), b) with y = 0 gives |p(x)| 6 p(x) which implies p(x) > 0.

d) Suppose p(x) = p(y) = 0 and λ, µ ∈ Φ. Applying c) we have:

0 6 p(λx+ µy) 6 |λ| p(x) + |µ| p(y) = 0,

so that p(λx+ µy) = 0 and thus {x : p(x) = 0} is a vector subspace.

e) It is clear that B is balanced by property ii). To see that B is convex, suppose that
x, y ∈ B and 0 < t < 1. Then

p(tx+ (1− t)y) 6 tp(x) + (1− t)p(y) < 1,

so tx+ (1− t)y ∈ B and B is convex.

Note that these results are already enough to show that a seminorm p with the
property that p(x) 6= 0 whenever x 6= 0, is in fact a norm.

We are now ready to prove an important result that shows that a family of seminorms
specifies a locally convex topology on a vector space. The proof is quite long, and you
may wish to omit it on a first read through. The argument is similar to the proof of
Theorem A.8, which in fact could be understood as a corollary of this result.

Theorem A.17. Suppose that P is a separating family of seminorms on a vector space
X. Associate to each p ∈P and n ∈ N the set:

V (p, n) =

{
x ∈ X : p(x) <

1

n

}
.

Let β̇ be the collection of all finite intersections of the sets V (p, n). Then β̇ is a convex,
balanced, local base for a topology τ on X, which turns X into a locally convex topological
vector space such that:
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a) every p ∈P is continuous

b) a set E ⊂ X is bounded if and only if every p ∈P is bounded on E.

Proof. 1. Let us define β by

β =
{
x+B : x ∈ X,B ∈ β̇

}
.

Since 0 ∈ B for any B ∈ β̇, we immediately have that for any x ∈ X there is an
element of β containing x. Now suppose that B1, B2 ∈ β. We may write

B1 = y +

N⋂
i=1

V (pi, ni), B2 = z +

M⋂
j=1

V (qi,mj),

for y, z ∈ X, pi, qj ∈ P and N,M,ni,mj ∈ N. Fix x ∈ B1 ∩ B2. Clearly x ∈ B
and B ∈ β. I claim that B ⊂ B1 ∩B2 for

B = x+

(
N⋂
i=1

V (pi, n
′
i)

)
∩

 M⋂
j=1

V (qj ,m
′
j)

 ,

provided that n′i,m
′
i are chosen sufficiently large. Since x ∈ B1 ∩B2, we have:

pi(x− y) <
1

n′i
, qi(x− z) <

1

m′j
, for all i = 1, . . . , N, j = 1, . . . ,M

For each i, j, pick n′i,m
′
j sufficiently large that

pi(x− y) +
1

n′i
<

1

ni
, qj(x− z) +

1

m′j
<

1

mj

Now suppose w ∈ B. Then we have that:

pi(w − x) <
1

n′i
, qi(w − x) <

1

m′j
, for all i = 1, . . . , N, j = 1, . . . ,M

Using the subadditivity of pi we have that for each i:

pi(w − y) 6 pi(w − x) + pi(x− y) <
1

n′i
+ pi(x− y) <

1

ni
,

thus w ∈ B1. Similarly, we have for each j that:

qj(w − z) 6 qj(w − x) + qj(x− z) <
1

m′j
+ qj(x− y) <

1

mi
,

Thus the collection β satisfies the conditions of Exercise A.2 and thus defines a
topology τ on X. Moreover, β̇ is a local base for τ and each element of β̇ is convex
and balanced.
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2. Suppose that x, y ∈ X with x 6= y. Then since x − y 6= 0 and P is separating,
there exists p ∈ P such that p(x − y) > 0. Thus, there exists n ∈ N such that
np(x− y) > 1. For this n we have that x 6∈ (y + V (p, n)). Thus we may write {x}c
as a union of sets which are open in τ , hence {x} is closed.

3. Next we must show that addition is continuous. Suppose U is an open set in X,
and pick z ∈ U . Then

N⋂
i=1

V (pi, ni) ⊂ −z + U

for some pi ∈P, ni ∈ N. Suppose that (x, y) ∈ (+)−1(z), i.e. x+ y = z. Let

V1 = x+
N⋂
i=1

V (pi, 2ni), V2 = y +
N⋂
i=1

V (pi, 2ni)

and suppose (w1, w2) ∈ V1 × V2. Then for all i we have

pi(w1 +w2− z) = pi(w1−x+w2− y) 6 pi(w1−x) + pi(w2− y) <
1

2ni
+

1

2ni
<

1

ni

so that V1 + V2 ⊂ U , or alternatively V1 × V2 ⊂ (+)−1(U). Thus we can write
(+)−1(U) as a union of sets which are open in the product topology. This proves
that addition is continuous.

4. Next we must show that scalar multiplication is continuous. Suppose U is an open
set in X, and pick z ∈ U . Then

N⋂
i=1

V (pi, ni) ⊂ −z + U

for some pi ∈P, ni ∈ N. Suppose that (α, x) ∈ (·)−1(z), i.e. αy = z. Let

V = x+
N⋂
i=1

V (pi, n
′
i), D = {β ∈ Φ : |α− β| < ε}

Suppose (β, y) ∈ D × V Then for each i we have:

pi(βy − αx) = pi(β(y − x)− (α− β)x)

<
|β|
n′i

+ εpi(x)

6
|α|+ ε

n′i
+ εpi(x).

Taking ε < (2nipi(x))−1 and n′i > 2(|α|+ (2nipi(x))−1) for each i, we conclude that

(βy − z) ∈
N⋂
i=1

V (pi, ni),

which implies that D× V ∈ (·)−1(U). Thus scalar multiplication is continuous, and
we have established that (X, τ) is a locally convex topological space.
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5. To see that p ∈P is continuous, we must show that p−1(a, b) is open, where a < b.
Suppose x ∈ p−1(a, b), so that a < p(x) < b. Consider

U = x+ V (p, n)

Suppose y ∈ V . Then

|p(y)− p(x)| 6 p(y − x) <
1

n
,

by part c) of Lemma A.16. For n sufficiently large, we have p(y) ∈ (a, b) so that
V ⊂ p−1(a, b) and we’re done.

6. It remains to show that E ⊂ X is bounded if and only if every p ∈P is bounded
on E. First suppose E is bounded and fix p ∈P. Since V (p, 1) is a neighbourhood
of the origin, from the definition of boundedness we have that E ⊂ kV (p, 1) for
some k <∞. But x ∈ kV (p, 1) implies p(x) < k, so that p is bounded on E.

Now suppose that every p ∈P is bounded on E. Let U be a neighbourhood of the
origin. Then

N⋂
i=1

V (pi, ni) ⊂ U

for some pi ∈ P, ni ∈ N. By our assumption, there exist Mi < ∞ such that
pi < Mi on E of 1 6 i 6 N . If n > Mini for all i, then E ⊂ nU , since if pi(x) < Mi,
we have

pi (x) < Mi <
n

ni
i = 1, . . . , N

so that
pi

(
1

n
x

)
<

1

ni
i = 1, . . . , N

and n−1x ∈ U .

Thus we have seen that a separating family of seminorms gives rise to a locally convex
topological space. In fact, the converse is true: given a locally convex topological space,
we can find a (not necessarily unique) separating family of seminorms which generates
the topology in the manner of the previous theorem.

In the case where the separating family of seminorms P is countable, we have an
alternative means of describing the topology.

Theorem A.18. Let
P = {pi}∞i=1

be a countable separating family of seminorms on a vector space X, and let τ be the
topology induced by this family as described in Theorem A.17. Then the locally convex
topological vector space (X, τ) is metrizable, and the topology τ agrees with that induced
by the invariant metric:

d(x, y) =
∞∑
i=1

2−i
pi(x− y)

1 + pi(x− y)
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Proof. 1. We first verify that d indeed defines an invariant metric. It is clearly
symmetric since p(−x) = p(x) for a seminorm. We note that the map

F : t 7→ t

1 + t

is smooth, monotone increasing, concave and takes [0,∞) to [0, 1). Thus d(x, y)
is a sum of non-negative terms, so d(x, y) > 0. Equality occurs if and only if
pi(x− y) = 0 for all i, which by the fact that P is separating implies x = y. Next
we claim that F is subadditive. To see this, we note that by the convexity of F ,
together with F (0) = 0 we have for t > 0 and 0 < λ < 1:

F (λt) = F (λt+ (1− λ)0) > λF (t) + (1− λ)F (0) = λF (t).

Then for t, s > 0:

F (t) + F (s) = F

(
(t+ s)

t

t+ s

)
+ F

(
(t+ s)

s

t+ s

)
>

t

t+ s
F (t+ s) +

s

t+ s
F (t+ s) = F (t+ s).

Now, since p is a seminorm we have

p(x− y) 6 p(x− z) + p(z − y)

=⇒ F [p(x− y)] 6 F [p(x− z) + p(z − y)] (Monotonicity of F )

=⇒ F [p(x− y)] 6 F [p(x− z)] + F [p(z − y)] (Subadditivity of F )

Thus we conclude

d(x, y) =
∞∑
i=1

2−i
pi(x− y)

1 + pi(x− y)

6
∞∑
i=1

2−i
(

pi(x− z)
1 + pi(x− z)

+
pi(z − y)

1 + pi(z − y)

)
= d(x, z) + d(z, y),

so d is indeed a metric on X. It is manifestly invariant.

2. Now we need to show that the topology induced by d, which we denote τd, agrees
with the topology τ induced by the family of seminorms P. Recall that the open
sets of τd are precisely those sets which can be written as a union of the open balls
Br(x) = {y ∈ X : d(x, y) < r}.

3. From the definition of τ , we have that each pi is τ -continuous on X. Since |F (t)| < 1,
we conclude by the Weierstrass M -test that the sum in d(x, y) converges uniformly.
Hence d is continuous as a real valued function on X×X with the product topology
coming from τ . In particular, the map dx : X → R given by dx(y) = d(x, y) is
continuous, and thus d−1

x (−r, r) = Br(x) is an open set in the τ topology. Thus
τd ⊂ τ .
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4. Now suppose that W is an open set of τ , and that x ∈W . By the definition of τ ,
there exists B such that x+B ⊂W and B has the form

B =
N⋂
k=1

V (pik , nk)

for some pik ∈ P and nk ∈ N, where we recall V (p, n) = {y ∈ X : p(y) < n−1}.
Now suppose d(x, y) < ε2−M . Then in particular, for 0 6 i 6M we have

pi(x− y)

1 + pi(x− y)
6 ε,

so that if ε < 1
2 :

pi(x− y) 6
ε

1− ε
6 2ε.

Thus if we take M > ik and ε < (nk)
−1 for all k = 1, . . . , N we deduce that if

y ∈ Bε2−M (x) then y − x ∈ B and thus y ∈W . Since x was arbitrary we can write
W as a union of open balls for the metric d, and thus τ ⊂ τd.

Remark. 1. Note that while a countable separating family of seminorms gives rise
to a metrizable locally convex topology, it need not be the case that the metric balls
Br(0) are themselves convex. The sets V (p, n) however are.

2. It is straightforward to see that d(x, y) < 1 for any x, y ∈ X, so that any subset of
X has finite diameter. On the other hand, it does not follow that all subsets of X
are bounded in the sense introduced above for a topological vector space.

A.3 The test function spaces

A.3.1 E (Ω) and DK

Let Ω ⊂ Rn be an open subset of Rn. Recall that for a function f : Ω → C, we say
f ∈ C∞(Ω) if Dαf is a continuous function in Ω for all multiindices α. Clearly C∞(Ω)
is a vector space over C, with addition and scalar multiplication defined pointwise: if
f, g ∈ C∞(Ω), λ ∈ C, we define the maps f + g, λf by

f + g : Ω→ C,
x 7→ f(x) + g(x),

λf : Ω→ C,
x 7→ λf(x).

Then f + g, λg ∈ C∞(Ω).
We shall endow C∞(Ω) with a topology which makes it into a Fréchet space with the

Heine-Borel property. By the exhaustion lemma, Lemma A.6, we can find a sequence
of compact sets (Ki)

∞
i=0 such that Ki ⊂ Ω, Ki ⊂ (Ki+1)◦ and

⋃
iKi = Ω. We define a

family of seminorms by:

pn(f) = max {|Dαf(x)| : x ∈ Kn, |α| 6 n} . (A.1)
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The family P = {pn : n ∈ N} is separating. If f 6= 0, then f(x) 6= 0 at some point x ∈ Ω.
For n sufficiently large, x ∈ Kn, and thus pn(f) > 0. Thus the family of seminorms P
induces a topology, τ , on C∞(Ω) which is locally convex and metrizable by Theorem
A.18. When C∞(Ω) is endowed with the topology τ , we use the notation E (Ω). A local
base is given by the sets

VN =

{
f ∈ C∞(Ω) : pN (f) <

1

N

}
, N = 1, 2, . . . .

It’s useful to categorise convergence in this space in terms of more familiar concepts
as follows:

Lemma A.19. A sequence (fn)n∈N in E (Ω) converges to f if and only if Dαfn → Dαf
uniformly on compact sets for each multiindex α.

Proof. By the translation invariance of the topology, we can assume w.l.o.g. that f = 0.
The sequence (fn) tends to 0 in E (Ω) if and only if for each N there exists mN such that
fn ∈ VN for all n > mN .

First suppose fn → 0 in E (Ω). Fix α and let K ⊂ Ω be any compact subset. For
any ε, there exists N such that N > max{|α| , ε−1}, K ⊂ KN . If n > mN then fn ∈ VN ,
which implies

sup
K
|Dαfn| 6 sup

KN

|Dαfn| 6 pN (fn) 6
1

N
< ε,

Thus Dαfn → 0 uniformly on K.
Conversely, suppose that for each multiindex α and compact set K we have that

Dαfn → 0 uniformly on K. Fix N . Then for each α with |α| 6 N we have Dαfn → 0
uniformly on KN . In particular, for each α there exists mα such that if n > mα, we have
that

sup
KN

|Dαfn| 6
1

N
.

Thus if m = max|α|6N mα then for all n > m we have fn ∈ VN and thus fn → 0 in E .

Theorem A.20. The topological vector space E (Ω) is a Fréchet space with the Heine-Borel
property.

Proof. 1. Since we already have that E (Ω) is locally convex and inherits its topology
from an invariant metric, in order to show that E (Ω) is Fréchet, we simply have to
show completeness. A sequence (fn)n∈N with fn ∈ E (Ω) is Cauchy if for any fixed
N , there exists M such that for all i, j >M we have fi − fj ∈ VN . Thus

sup
KN

|Dαfi −Dαfj | <
1

N
, for all |α| 6 N.

Since KN exhaust Ω, this implies that there exist continuous functions gα such
that Dαfn → gα uniformly on compact subsets of Ω. By a standard result, this
implies that there exists a smooth function f such that fn → f and Dαfn → Dαf
uniformly on compact subsets of Ω. Thus every Cauchy sequence has a limit and
E (Ω) is complete.
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2. Now suppose that E ⊂ E (Ω) is closed and bounded. We need to show that E
is compact. By Theorem A.7 it suffices to show that any sequence in E has a
convergent subsequence. By Theorem A.17, the boundedness of E is equivalent to
the existence of MN such that pN (f) < MN for all f ∈ E.

3. In particular, we have that

|Dαf | < MN for |α| = N

holds for all f ∈ E onKN . This in particular implies that for each β with |β| < N−1
the set {Dβf : f ∈ E} is equicontinuous on KN−1, and it is trivially pointwise
bounded by the condition pN (f) < MN .

4. Suppose that (fn)n∈N is any sequence in E. By Arzelà-Ascoli we can extract a
subsequence (fn1

k
)k∈N such that fn1

k
converges uniformly on K0. Suppose now that

an increasing sequence of integers nNk are given with the property that (DβfnN
k

)k∈N
converges uniformly on KN−1 for all |β| 6 N − 1. Consider the sequence (fnN

k
)k∈N.

Since this is a sequence in E, we know that for each β with |β| 6 N the set
{DβfnN

k
: f ∈ E, k ∈ N} is equicontinuous and pointwise bounded on KN . Thus we

can extract a subsequence (fnN+1
k

)k∈N such that (DβfnN+1
k

)k∈N converges uniformly
on KN for all |β| 6 N . Thus by induction, we can find nNk with the required
property for all N .

5. Consider the sequence (Fk)k∈N with Fk = fnk
k
where nNk are as constructed above.

Since nN+1
k is a subsequence of nNk , we conclude that DαFk converges uniformly

on compact subsets for any α, and thus for any sequence in E we have exhibited a
convergent subsequence.

If K ⊂ Rn is a compact set, we denote by DK the space of all f ∈ C∞(Rn) whose
support lies in K. If K ⊂ Ω, then DK may be identified with a vector subspace of C∞(Ω).
In fact, this subspace is closed with respect to the E (Ω) topology. To see this, note that
the map δx : E (Ω) → C given by f 7→ f(x) is continuous. Thus the set δ−1

x ({0}) is a
closed set in E (Ω). Since we can write:

DK =
⋂

x∈Ω\K

δ−1
x ({0})

and arbitrary intersections of closed sets are closed, we deduce that DK is closed (and
hence complete in the subspace topology). Thus DK is itself a Fréchet space, when
equipped with the subspace topology, which we denote τK .

A.3.2 D(Ω)

We have described the spaces DK , which consist of smooth functions whose support is
restricted to a given compact set K ⊂ Ω. The set D(Ω) of test functions is the union
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over the sets DK with K ⊂ Ω compact:

D(Ω) =
⋃
K⊂Ω

DK .

In other words, f ∈ D(Ω) if f is smooth, and is supported in some compact subset of Ω.
It is clear that D(Ω) is closed under the natural operations of addition and multiplication
by a complex number, and thus D(Ω) is a vector space over C. We would like to endow
D(Ω) with a topology which turns it into a complete, locally convex, topological vector
space, such that the subspace topology induced on DK agrees with the natural Fréchet
topology, τK introduced above for each compact K ⊂ Ω.

One natural possibility is to consider the norms

‖f‖k = max{|Dαf(x)| : x ∈ Ω, |α| 6 k}.

The family Q = {‖·‖k : k = 0, 1, . . .} is a countable separating family of seminorms and
so defines a locally convex metrizable topology, τQ on D(Ω). A local base is given by:

WN =

{
f ∈ C∞(Ω) : ‖f‖N <

1

N

}
, N = 1, 2, . . . .

The subspace topology induced on DK by τQ is indeed τK . To see this, recall that
τK is defined by the family of seminorms introduced in (A.1). Note that for any fixed
compact K ⊂ Ω there exists N0 such that K ⊂ KN0 . For N > N0 we have ‖f‖N = pN (f)
for all f ∈ DK . Clearly then:

VN ∩DK = WN ∩DK , N = N0, N0 + 1, . . . .

Suppose U is an open set in the subspace topology induced on DK by τQ and pick x ∈ U .
Then −x+ U is a neighbourhood of the origin, and thus there exists n such that

Wn ∩DK ⊂ −x+ U

But Wm+1 ⊂ Wm for all m, so without loss of generality we may assume n > N0. But
then we conclude that

Vn ∩DK = Wn ∩DK ⊂ −x+ U

and so U is open in τK . An identical argument shows the reverse inclusion: i.e. an open
set in τK is open in the subspace topology induced on DK by τQ.

Thus the topology τQ is locally convex, and induces the right subspace topology on
DK . However, it is not complete. To see this, consider Ω = R, and let φ be any non-zero
function with support in [0, 1]. Consider the sequence of functions (fm)m∈N with:

φm(x) = φ(x− 1) +
1

2
φ(x− 2) +

1

3
φ(x− 3) + . . .+

1

m
φ(x−m).

This is a Cauchy sequence with respect to the topology τQ: if n < m, then

‖φn − φm‖k =
1

n
‖φ‖k ,
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thus for any N if n,m > N ‖φ‖N we have φn − φm ∈ WN . On the other hand, the
sequence has no limit in D(Ω), since for sufficiently large m, φm has support outside any
compact set. We thus are led to discard τQ as a prospective topology for D(Ω).

In fact, the topology τQ is too coarse: in a sense, the notion of convergence is too loose.
This suggests that we should seek a finer topology. The topology that we shall introduce
for D(Ω) will in fact be the finest locally convex topology such that the subspace topology
induced on DK agrees with the natural Fréchet topology for each compact K ⊂ Ω.

Definition A.10. Let Ω be a nonempty open subset of Rn.

a) For each compact K ⊂ Ω, τK is the Fréchet space topology on DK introduced above.

b) β is the collection of all convex balanced sets W ⊂ D(Ω) such that DK ∩W ∈ τK for
every compact K ⊂ Ω.

c) τ is the collection of all (possibly empty) unions of sets of the form φ + W with
φ ∈ D(Ω) and W ∈ β.

Theorem A.21. a) τ is a topology for D(Ω) and β is a local base for τ .

b) τ makes D(Ω) into a locally convex topological vector space.

Proof. 1. It is clear from the definition that D(Ω), ∅ ∈ τ and that τ is closed under
arbitrary unions. If we can show that for any V1, V2 ∈ τ and φ ∈ V1 ∩ V2, then

φ+W ⊂ V1 ∩ V2 (A.2)

for some W ∈ β, then we can deduce that V1 ∩ V2 is open and so τ is a topology.
Moreover, setting φ = 0 and V2 = D(Ω) in (A.2) we deduce that any neighbourhood
of 0 contains an element of β and so β is a local base. To show a) then, it is enough
to establish (A.2).

2. From the definition of τ , there exist φi ∈ D(Ω) and Wi ∈ β such that φ ∈ φi +Wi

and φi + Wi ⊂ Vi for i = 1, 2. Choose a compact K ⊂ Ω such that φ, φi ∈ DK .
Since DK ∩Wi is open in DK , we have

φ− φi ∈ (1− δi)Wi (A.3)

for some δi > 0. To see this, recall that DK is a topological vector space, so in
particular scalar multiplication is continuous. Thus for any ψ ∈ DK , the map
Fψ : R→ DK given by t 7→ tψ is continuous. Thus the set A = (Fφ−φi)

−1 [Wi∩DK ]
is open in R. In particular, there exists εi such that (1 − 2εi, 1 + 2εi) ⊂ A,
which is equivalent to t(φ − φi) ∈ Wi ∩ DK for t ∈ (1 − 2εi, 1 + 2εi). But if
(1 + εi)(φ− φi) ∈Wi ∩DK , then (A.3) must hold for some δi > 0.

3. Since Wi is convex, we can use the result of Exercise A.1 to deduce that

φ− φi + δiWi ⊂ (1− δi)Wi + δiWi = Wi
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whence we deduce that
φ+ δiWi ⊂ φi +Wi ⊂ Vi.

Taking W = δ1φ1 ∩ δ2φ2 we have established (A.2) and thus proven part a) of the
theorem.

4. To show that τ makes D(Ω) into a locally convex topological space it is enough to
show that the topological vector space axioms are satisfied. Since β is a local base,
and is convex by construction the result will follow. Suppose that φ1, φ2 ∈ D(Ω)
are distinct, and consider the set:

W = {φ ∈ D(Ω) : ‖φ‖0 6 ‖φ1 − φ2‖0}

This is certainly convex as it is a metric ball. Moreover, since the sets {φ ∈ DK :
‖φ‖0 < r} (and their translations) are open in τK for any r and all compact K ⊂ Ω,
we conclude that W ∈ β. Moreover, φ1 6∈ φ2 +W . Thus the singleton set {φ1} is
closed in τ .

5. To establish the τ -continuity of addition, suppose U ∈ τ is any open set, and
suppose that we have φ1, φ2 ∈ D(Ω) with φ1 + φ2 ∈ U . Since β is a local base,
φ1 + φ2 +W ⊂ U for some W ∈ β. I claim (φ1 + 1

2W )× (φ2 + 1
2W ) ⊂ (+)−1(U).

To see this, note that by the convexity of W :

(φ1 +
1

2
W ) + (φ2 +

1

2
W ) = φ1 + φ2 +W ⊂ U.

Thus (+)−1(U) is open in the product topology and addition is τ -continuous.

6. Finally, to show that scalar multiplication is continuous, suppose U ∈ τ is any open
set, and suppose that we have α ∈ Φ, φ ∈ D(Ω) with αφ ∈ U . Since β is a local
base, αφ+W ⊂ U for some W ∈ β. I claim that for ε, δ sufficiently small, we have
{α′ ∈ Φ : |α′ − α| < δ} × (φ+ εW ) ⊂ (·)−1(U). Note that

α′φ′ − αφ = α′(φ′ − φ) + (α′ − α)φ

Now, by a similar argument to that in paragraph 2. above, the continuity of scalar
multiplication restricted to DK for a compact K which contains the support of φ
ensures we can choose δ > 0 such that δφ ∈ 1

2W . Let us set ε = (2(|α|+ δ))−1. By
the fact that W is balanced and convex, we deduce that

α′φ′ − αφ ∈ 1

2
W +

1

2
W = W,

so that {α′ ∈ Φ : |α′ − α| < δ} × (φ+ εW ) ⊂ (·)−1(U) and scalar multiplication is
indeed continuous.

From now on, whenever we refer to D(Ω), we shall assume that it is given the topology
τ that has just been constructed. The main results of this section (indeed this chapter)
are the following two results which characterise convergence and continuity in D(Ω).
These results justify the approach taken in lectures to disregard a close study of the
topology of D(Ω) and focus instead on sequential definitions of continuity.
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Theorem A.22. a) A convex balanced subset V of D(Ω) is open if any only if V ∈ β.

b) The Fréchet topology τK of any DK ⊂ D(Ω) coincides with the subspace topology that
DK inherits from D(Ω).

c) If E is a bounded subset of D(Ω) then E ⊂ DK for some K ⊂ Ω, and there are real
numbers MN <∞ such that every φ ∈ E satisfies the inequalities

‖φ‖N 6MN , N = 0, 1, . . .

d) D(Ω) has the Heine-Borel property.

e) If (φi)i∈N is a Cauchy sequence in D(Ω), then {φi}i∈N ⊂ DK for some compact K ⊂ Ω,
and (φi) is Cauchy with respect to the norm ‖·‖N for each N = 0, 1, . . ..

f) If φi → 0 in D(Ω), then there is a compact K ⊂ Ω which contains the support of every
φi , and Dαφi → 0 uniformly, as i→∞ for every multiindex α.

g) In D(Ω), every Cauchy sequence converges.

Proof. 1. Since β is a local base, clearly if V ∈ β then it is open. Now suppose V is an
arbitrary convex, balanced, open set. Let K be any compact subset of Ω and pick
φ ∈ DK ∩ V . Since β is a local base, we have φ+W ⊂ V for some W ∈ β. Thus

φ+ (DK ∩W ) ⊂ DK ∩ V.

From the definition of β, we know that DK ∩W ∈ τK , so we have shown that
DK ∩V is open in DK . Since β contains all convex, balanced sets whose intersection
with each DK is open, V ∈ β and we have established a).

2. The previous paragraph shows that any element of τ |DK
also belongs to τK , i.e.

any set which is open with respect to the subspace topology is open in the Fréchet
topology. Suppose now that E ∈ τK . To show E ∈ DK ∩W ∈ τK , we have to show
that E = DK ∩ U for some U ∈ τ . Suppose φ ∈ E. Then from the definition of the
topology of τK , there exists N, δ such that:

{ψ ∈ DK : ‖ψ − φ‖N < δ} ⊂ E.

Let:
Wφ = {ψ ∈ D(Ω) : ‖ψ‖N < δ} .

Then Wφ ∈ β, and moreover

DK ∩ (φ+Wφ) = φ+ DK ∩Wφ ⊂ E

Taking:
U =

⋃
φ∈E

(φ+Wφ)

we have U ∈ τ and E = DK ∩ U . This establishes b).
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3. To show the first part of c), we prove the contrapositive. Suppose E ⊂ D(Ω) does
not lie in any DK . Let {Km}m∈N be an exhaustion of Ω. Since E 6⊂ DKm , for each
m, we can find φm ∈ E with suppφm 6⊂ Km. In particular, there exists xm ∈ Ω\Km

with φm(xm) 6= 0. Let

W = {φ ∈ D(Ω) : |φ(xm)| < m−1 |φm(xm)|}.

A short calculation shows W is convex and balanced. Suppose K ⊂ Ω is compact,
then there exists M such that K ⊂ KM . In particular this implies xm 6∈ K for
m >M . Thus DK ∩W is an intersection of finitely many open sets, and so W ∈ β.
However, φm 6∈ mW for any m, so E is not bounded. Thus any bounded set in
D(Ω) belongs to DK for some K. By b), E is thus bounded in DK , and the final
part of c) follows by Theorem A.17.

4. Statement d) follows from c), since DK has the Heine-Borel property (Theorem
A.20). Since Cauchy sequences are bounded (Exercise A.9), c) implies that every
Cauchy sequence (φi)i∈N lies in some DK . By b), (φi)i∈N is Cauchy with respect to
τK , and e) follows. Statement f) is a restatement of e). Finally, g) follows from e)
together with b) and the completeness of DK .

The final major result of this section concerns linear maps from D(Ω) into a locally
convex space. Before we state the theorem, we introduce the notion of a bounded operator
as one which takes bounded sets to bounded sets. That is to say if X,Y are topological
vector spaces, then a linear map Λ : X → Y is bounded if Λ(E) is bounded in Y whenever
E is bounded in X.

Theorem A.23. Let Y be a locally convex topological vector space. Suppose that Λ :
D(Ω)→ Y is a linear mapping. Then the following are equivalent:

a) Λ is continuous.

b) Λ is bounded.

c) If φi → 0 in D(Ω) then Λφi → 0 in Y .

d) The restrictions of Λ to every DK ⊂ D(Ω) are continuous.

a)⇒ b) Let E be a bounded set in D(Ω) and let W be a neighbourhood of 0 in Y . Since Λ
is continuous, there exists a neighbourhood V of 0 in D(Ω) such that Λ(V ) ⊂W .
Since E is bounded, there exists s > 0 such that E ⊂ tV for all t > s. Since Λ is
linear, Λ(E) ⊂ Λ(tV ) = tΛ(V ) ⊂ tW , and hence Λ(E) is bounded.

b)⇒ c) By part e) of Theorem A.22, if φi → 0 in D(Ω), then there exists K ⊂ Ω such
that φi → 0 in DK . Since DK is metrizable, there exist scalars αi →∞ such that
αiφi → 0 in DK and hence in D(Ω) by part b) of Theorem A.22. By the linearity
of Λ, we have

Λφi = α−1
i Λ(αiφi).
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Now (αiφi) is Cauchy in D(Ω), and hence bounded. Since Λ is bounded by
assumption, {Λ(αiφi)} is bounded. As α−1

i → 0, by Lemma A.12, part d), Λφi → 0.

c)⇒ d) By part b) of Theorem A.22, we have that c) implies that if φi → 0 in DK then
Λφi → 0. We work by contradiction. Suppose that the restriction of Λ to DK is
not continuous. Then there exists a neighbourhood W of 0 in Y such that Λ−1(W )
contains no neighbourhood of 0 in DK . Since DK is metrisable, pick a metric
d which generates τK and construct a sequence (xn) by choosing xn such that
d(xn, 0) < n−1 and xn 6∈ Λ−1(W ). Then xn → 0 in DK and hence in D(Ω), but
Λ(xn) 6→ 0, contradicting c).

d)⇒ a) Suppose that U is a convex, balanced, neighbourhood of the origin in Y and set
V = Λ−1(U). Then V is convex and balanced by the linearity of Λ. By part a) of
Theorem A.22, V is open in D(Ω) if DK ∩ V is open in DK for every DK ⊂ D(Ω),
but if Λ is continuous when restricted to each DK , then DK ∩ V is open in DK

from the definition of continuity. Thus V is open. Now suppose that W is any
open set in Y , and suppose φ ∈ Λ−1(W ). Since Y is locally convex, there exists
U , a convex neighbourhood of 0 in U such that Λφ+ U ⊂W . By Theorem A.11,
we may assume that U is balanced. Since Λ is linear, φ+ Λ−1(U) ⊂ Λ−1(W ), and
φ+ Λ−1(U) is open in D(Ω), so Λ is continuous.


	The Fourier Transform and Sobolev Spaces
	The Fourier transform on L1(Rn)
	The Fourier transform on L2(Rn)
	The Fourier transform on S'
	The Fourier–Laplace transform on E'(Rn)
	Periodic distributions and Poisson's summation formula
	Sobolev spaces
	PDE Examples


