

Exercise A.1. a) Suppose that a tensor $\mathbf{T} \in T^1_1(V)$ has components $T^i_j = \lambda \delta^i_j$ with respect to a given basis B . Show that \mathbf{T} has the same components with respect to any other basis. Deduce that the Kronecker delta is invariant under a change of coordinates.

b) Suppose that $\mathbf{v} \in V$, with components v^i and $\omega \in V^*$ with components ω_j . Show that the numbers

$$T^i_j := v^i \omega_j,$$

transform as the components of a $(1, 1)$ -tensor. In this way we can build tensors of higher rank from lower rank tensors.

c) Suppose that $\mathbf{T} \in T^0_2(V)$ has components T_{ij} . Show that the numbers

$$\bar{T}_{ij} := T_{ji},$$

transform as a $(0, 2)$ -tensor. Deduce that

$$T_{(ij)} := \frac{1}{2} (T_{ij} + T_{ji}), \quad \text{and} \quad T_{[ij]} := \frac{1}{2} (T_{ij} - T_{ji}),$$

transform as the components of $(0, 2)$ -tensors. We call the tensors with components $T_{(ij)}$ and $T_{[ij]}$ the symmetric and antisymmetric part of \mathbf{T} respectively.

Exercise A.2. Verify that if the numbers g^{ij} are the unique solution of (A.5) then they indeed transform as the components of a $(2, 0)$ -tensor. This tensor is called the cometric.

Exercise A.3. Adapt the Gram-Schmidt process to show that there always exists a basis such that (A.6) holds.

Exercise A.4. Consider \mathbb{R}^3 with its canonical basis. Find an orthonormal basis for the metric whose components are given by

$$g_{12} = g_{21} = g_{33} = 1, \quad \text{all other components 0.}$$

and write down the signature of the metric.

Exercise A.5. a) Suppose that we consider a new basis $\{\mathbf{e}'_i\}$ for \mathbb{R}^3 . Show that the set of numbers

$$\frac{\partial f}{\partial x^i},$$

transform in the same way as the components of a *co-vector*.

b) Fix $\mathbf{x} \in U$ and suppose that $\mathbf{V}, \mathbf{W} \in T_{\mathbf{x}}U$ are two vectors such that for any $f \in C^1(U)$ we have

$$\mathbf{V}[f](\mathbf{x}) = \mathbf{W}[f](\mathbf{x}).$$

Show that $\mathbf{V} = \mathbf{W}$.

Exercise A.6. a) Show that the identity map on a C^k -manifold, \mathcal{M} , always belongs to $C^k(\mathcal{M}; \mathcal{M})$.

b) Show that if $f, g \in C^k(\mathcal{M}; \mathbb{R})$, we have $fg \in C^k(\mathcal{M}; \mathbb{R})$, where we define the product pointwise $fg(p) = f(p)g(p)$.

c) Suppose $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$ are all at least C^k regular, and that $f \in C^k(\mathcal{M}_1; \mathcal{M}_2)$, $g \in C^k(\mathcal{M}_2; \mathcal{M}_3)$. Show that $g \circ f \in C^k(\mathcal{M}_1; \mathcal{M}_3)$.

d) Let \mathcal{M} be a C^k -manifold of dimension n and let $\pi^i : \mathbb{R}^n \rightarrow \mathbb{R}$ be the projection onto the i^{th} coordinate. Suppose that $(\mathcal{U}_\alpha, \varphi_\alpha)$ is a chart. Show that

$$\varphi_\alpha^i = \pi^i \circ \varphi_\alpha : \mathcal{U}_\alpha \rightarrow \mathbb{R}$$

is C^k -smooth.