

**Exercise 2.1.** Let  $U \subset \mathbb{E}^{1,3}$  be open. Define an antisymmetric  $(0,2)$ –tensor field,  $F$  on  $U$  with components<sup>1</sup>

$$[F_{\mu\nu}] = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}.$$

Where  $E_i, B_i \in C^1(U)$ . Show that the vacuum Maxwell equations for  $\mathbf{E}, \mathbf{B}$  (with units such that  $c^2 = \epsilon_0 \mu_0 = 1$ ) hold in  $U$  if and only if  $F$  satisfies the equations

$$\nabla_\mu F^\mu{}_\nu = 0, \quad \nabla_{[\mu} F_{\nu\sigma]} = 0,$$

where for any  $(0,3)$ –tensor  $A_{\mu\nu\sigma}$  we define:

$$A_{[\mu\nu\sigma]} = \frac{1}{6} (A_{\mu\nu\sigma} + A_{\nu\sigma\mu} + A_{\sigma\mu\nu} - A_{\nu\mu\sigma} - A_{\mu\sigma\nu} - A_{\sigma\nu\mu}).$$

**Exercise 2.2.** Suppose that  $F$  is as in Exercise 2.1. Fix an inertial frame  $\{\vec{e}_\mu\}$ . Define

$$T_{\mu\nu}[F] = F_{\mu\sigma} F_{\nu}{}^{\sigma} - \frac{1}{4} \eta_{\mu\nu} F_{\sigma\tau} F^{\sigma\tau}.$$

Show that  $T$  has the following properties

a) We have a formula for the divergence:

$$\nabla_\mu T^\mu{}_\nu[F] = (\nabla_\mu F^\mu{}_\sigma) F_\nu{}^\sigma + \frac{3}{2} (\nabla_{[\mu} F_{\nu\sigma]}) F^{\mu\sigma}$$

b) The 00–component of  $T$  is the local energy density

$$T_{00}[F] = \frac{1}{2} \left[ |\mathbf{E}|^2 + |\mathbf{B}|^2 \right]$$

c) If  $\vec{V}$  is any future directed unit timelike vector, then:

$$V^0 \left[ |\mathbf{E}|^2 + |\mathbf{B}|^2 \right] \geq V^\mu T_{\mu 0}[F] \geq \frac{1}{4V^0} \left[ |\mathbf{E}|^2 + |\mathbf{B}|^2 \right]$$

Hence, or otherwise, deduce that the electromagnetic field exhibits finite speed of propagation.

**Exercise 2.3.** Consider the infinite cylinder  $\mathbb{R} \times S^1$  and take as coordinates  $(x, \theta)$  where  $\theta \sim \theta + 2\pi$ .

Please send any corrections to [c.warnick@warwick.ac.uk](mailto:c.warnick@warwick.ac.uk)

<sup>1</sup>The convention is that the first index specifies the row, and the second index the column.

a) Show that when  $\mathcal{M}$  is equipped with the Lorentzian metric

$$g = -dx^2 + d\theta^2,$$

it is time-orientable.

b) Now consider the metric

$$g = -\cos \theta dx^2 + 2 \sin \theta dx d\theta + \cos \theta d\theta^2$$

i) Show that the vector fields defined for  $\theta \in [0, 2\pi)$  by

$$X_0 = \cos \frac{\theta}{2} \partial_x - \sin \frac{\theta}{2} \partial_\theta, \quad X_1 = \sin \frac{\theta}{2} \partial_x + \cos \frac{\theta}{2} \partial_\theta.$$

satisfy

$$g(X_0, X_0) = -1, \quad g(X_0, X_1) = 0, \quad g(X_1, X_1) = 1.$$

Deduce that  $g$  is a Lorentzian metric.

- ii) Let us denote the point  $x = 0, \theta = 0$  by  $p$ . Suppose that there exists a nowhere vanishing timelike field  $T$ , and without loss of generality assume that  $g(X_0, T)|_p < 0$ . Show that if  $\gamma : [0, 1) \rightarrow \mathbb{R} \times [0, 2\pi)$  is any smooth curve with  $\gamma(0) = p$  then  $g(X_0, T)|_\gamma < 0$ .
- iii) By considering the curve  $\gamma : s \mapsto (0, 2\pi s)$ , deduce that  $\mathcal{M}$  is not time orientable.

**Exercise 2.4.** Consider  $\mathcal{M} = \mathbb{R}^3$ , with a choice of orthonormal basis  $\{\mathbf{e}_i\}$  with respect to the Euclidean metric  $g_{ij} = \delta_{ij}$ . Define a smooth connection on vectors by

$${}^{(\tau)}\nabla_{\mathbf{e}_i} \mathbf{e}_j = \tau \epsilon^k_{ij} \mathbf{e}_k$$

where  $\epsilon_{ijk}$  is totally anti-symmetric with  $\epsilon_{123} = 1$  and  $\tau \in \mathbb{R}$  is a constant. Consider the curve  $\gamma : (-1, 1) \rightarrow \mathbb{R}^3$  given by  $\gamma(t) = t\mathbf{e}_3$ . Show that the vector fields

$$\begin{aligned} \mathbf{X}_1 &= \mathbf{e}_1 \cos(\tau x^3) - \mathbf{e}_2 \sin(\tau x^3) \\ \mathbf{X}_2 &= \mathbf{e}_1 \sin(\tau x^3) + \mathbf{e}_2 \cos(\tau x^3) \\ \mathbf{X}_3 &= \mathbf{e}_3 \end{aligned}$$

are all parallelly transported by  ${}^{(\tau)}\nabla$  along  $\gamma$ .

**Exercise 2.5.** a) Suppose that  $f \in C^1(\mathcal{M}; \mathbb{R})$ , show that

$$T(fX, Y) = fT(X, Y), \quad T(X, Y) = -T(Y, X).$$

Deduce that if  $\{e_\mu\}$  is locally a basis with  $X = X^\mu e_\mu$ ,  $Y = Y^\mu e_\mu$  then:

$$T(X, Y) = T^\sigma_{\mu\nu} X^\mu Y^\nu e_\sigma$$

for some  $C^r$ -functions  $T^\sigma_{\mu\nu} := e^\sigma [T(e_\mu, e_\nu)]$ .

b) Show that for the connection defined in Exercise 2.4, the torsion is given by:

$$T^i{}_{jk} = 2\tau \epsilon^i{}_{jk}.$$

**Exercise 2.6.** Show that if  $f \in C^{k-1}(\mathcal{M})$ , then (2.5) implies

$$(\nabla_X \omega) [fY] = f (\nabla_X \omega) [Y]$$

for any  $Y \in \mathfrak{X}_{k-1}(\mathcal{M})$ . Deduce that  $\nabla_X \omega \in \mathfrak{X}_r^*(\mathcal{M})$ .

**Exercise 2.7.** Consider the connection defined in Exercise 2.4. Show that if we define a Riemannian metric on  $\mathbb{R}^3$  by  $g(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = v^i w^j \delta_{ij}$ , then the connection  ${}^{(\tau)}\nabla$  satisfies

$$\mathbf{x}[g(\mathbf{y}, \mathbf{z})] = g\left({}^{(\tau)}\nabla_{\mathbf{x}}\mathbf{y}, \mathbf{z}\right) + g\left(\mathbf{y}, {}^{(\tau)}\nabla_{\mathbf{x}}\mathbf{z}\right).$$

Deduce that  ${}^{(0)}\nabla$  is the Levi-Civita connection of  $g$ .