

**Exercise 1.1.** Let  $S_T := \mathbb{R}^3 \times (-T, T)$  and  $\Sigma_t = \mathbb{R}^3 \times \{t\}$ . Fix  $k \in \mathbb{N}$ . Suppose that  $u \in C^{2+k}(S_T)$ , solves the wave equation (1.1) in  $S_T$ , and that there exists  $R$  such that  $u(x, t) = 0$  for  $|x| > R$ . Define  $u_0 := u|_{\Sigma_0}$  and  $u_1 := u_t|_{\Sigma_0}$ .

a) By deriving an equation for  $\nabla_i u$  for  $i = 1, 2, 3$  show that<sup>1</sup>

$$\frac{1}{2} \int_{\Sigma_t} \left( |\nabla u_t|^2 + |\nabla^2 u|^2 \right) d\sigma = \frac{1}{2} \int_{\mathbb{R}^3} \left( |\nabla u_1|^2 + |\nabla^2 u_0|^2 \right) dx$$

for  $-T < t < T$ .

b) Deduce that:

$$\frac{1}{2} \int_{\Sigma_t} \left( |\nabla^k u_t|^2 + |\nabla^{k+1} u|^2 \right) d\sigma = \frac{1}{2} \int_{\mathbb{R}^3} \left( |\nabla^k u_1|^2 + |\nabla^{k+1} u_0|^2 \right) dx.$$

for  $-T < t < T$ .

**Exercise 1.2.** Let  $\mathbb{R}_*^3 := \mathbb{R}^3 \setminus \{0\}$ ,  $S_{*,T} := \mathbb{R}_*^3 \times (-T, T)$  and  $|x| = r$ . You may assume the result that if  $u = u(r, t)$  is radial, we have

$$\Delta u(|x|, t) = \Delta u(r, t) = \frac{\partial^2 u}{\partial r^2}(r, t) + \frac{2}{r} \frac{\partial u}{\partial r}(r, t)$$

a) Suppose  $u(x, t) = \frac{1}{r}v(r, t)$  for some function  $v$ . Show that  $u$  solves the wave equation on  $\mathbb{R}_*^3 \times (0, T)$  if and only if  $v$  satisfies the one-dimensional wave equation

$$-\frac{\partial^2 v}{\partial t^2} + \frac{\partial^2 v}{\partial r^2} = 0$$

on  $(0, \infty) \times (-T, T)$ .

b) Suppose  $f, g \in C_c^2(\mathbb{R})$ . Deduce that

$$u(x, t) = \frac{f(r+t)}{r} + \frac{g(r-t)}{r}$$

is a solution of the wave equation on  $S_{*,T}$  which vanishes for large  $|x|$ .

c) Show that if  $f \in C_c^3(\mathbb{R})$  is an odd function (i.e.  $f(s) = -f(-s)$  for all  $s$ ) then

$$u(x, t) = \frac{f(r+t) + f(r-t)}{2r}$$

extends as a  $C^2$  function which solves the wave equation on  $S_T$ , with

$$u(0, t) = f'(t).$$

Please send any corrections to c.warnick@warwick.ac.uk

<sup>1</sup>Here  $|\nabla^2 u|^2 = \sum_{i,j} \nabla_i \nabla_j u \nabla_i \nabla_j u$ , etc.

\*d) By considering a suitable sequence of functions  $f$ , or otherwise, deduce that there exists no constant  $C$  independent of  $u$  such that the estimate

$$\sup_{S_T} (|u| + |u_t|) \leq C \sup_{\Sigma_0} (|u| + |u_t|)$$

holds for all solutions  $u \in C^2(S_T)$  of the wave equation which vanish for large  $|x|$ .

**Exercise 1.3.** Show that if  $\Lambda^\nu_\mu$  is the matrix of a Lorentz transformation and

$$x'^\nu = \Lambda^\nu_\mu x^\mu, \quad y'^\nu = \Lambda^\nu_\mu y^\mu.$$

then

$$x'^\mu y'^\mu \eta_{\mu\nu} = x^\mu y^\mu \eta_{\mu\nu}.$$

**Exercise 1.4.** Using  $\mathbb{P}, \mathbb{T}$  and the transformations of Examples 1, 2 or otherwise:

a) Suppose that  $\vec{X} \in \mathbb{E}^{1,3}$  is a unit timelike vector, i.e.  $\eta(\vec{X}, \vec{X}) = -1$ . Show that there exists an inertial frame  $\{\vec{e}_\mu\}_{\mu=0,\dots,3}$ , such that writing  $\vec{X} = x^\mu \vec{e}_\mu$ , we have

$$x^\mu = (1, 0, 0, 0).$$

Deduce that if  $\vec{X}$  is timelike and  $\vec{Y} \neq 0$  satisfies  $\eta(\vec{X}, \vec{Y}) = 0$ , then  $\vec{Y}$  is spacelike.

b) Suppose that  $\vec{X} \in \mathbb{E}^{1,3}$  is a null vector, i.e.  $\eta(\vec{X}, \vec{X}) = 0$ . Show that there exists an inertial frame  $\{\vec{e}_\mu\}_{\mu=0,\dots,3}$  such that writing  $\vec{X} = x^\mu \vec{e}_\mu$ , we have

$$x^\mu = \lambda(1, 1, 0, 0).$$

for some  $\lambda > 0$ . Deduce that if  $\vec{X}$  is null and  $\vec{Y} \neq 0$  satisfies  $\eta(\vec{X}, \vec{Y}) = 0$ , then either  $\vec{Y}$  is either spacelike or parallel to  $\vec{X}$ .

c) Suppose that  $\vec{X} \in \mathbb{E}^{1,3}$  is a unit spacelike vector, i.e.  $\eta(\vec{X}, \vec{X}) = 1$ . Show that there exists an inertial frame  $\{\vec{e}_\mu\}_{\mu=0,\dots,3}$  compatible with the time orientation such that writing  $\vec{X} = x^\mu \vec{e}_\mu$ , we have

$$x^\mu = (0, 1, 0, 0).$$

Deduce that if  $\vec{X}$  is spacelike and  $\vec{Y} \neq 0$  satisfies  $\eta(\vec{X}, \vec{Y}) = 0$ , then  $\vec{Y}$  can be timelike, null or spacelike.

**Exercise 1.5.** Show that the relation  $\sim$  between timelike vectors defined in (1.7) is an equivalence relation. [Hint: the final part of Exercise 1.4 a) may be useful]