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Exercise 1.1. Let ST := R3 × (−T, T ) and Σt = R3 × {t}. Fix k ∈ N. Suppose that
u ∈ C2+k(ST ), solves the wave equation (1.1) in ST , and that there exists R such that
u(x, t) = 0 for |x| > R. Define u0 := u|Σ0

and u1 := ut|Σ0
.

a) By deriving an equation for ∇iu for i = 1, 2, 3 show that1

1

2

∫
Σt

(
|∇ut|2 +

∣∣∇2u
∣∣2) dσ =

1

2

∫
R3

(
|∇u1|2 +

∣∣∇2u0

∣∣2) dx
for −T < t < T .

b) Deduce that:

1

2

∫
Σt

(∣∣∣∇kut

∣∣∣2 +
∣∣∣∇k+1u

∣∣∣2) dσ =
1

2

∫
R3

(∣∣∣∇ku1

∣∣∣2 +
∣∣∣∇k+1u0

∣∣∣2) dx.
for −T < t < T .

Exercise 1.2. Let R3
∗ := R3 \ {0}, S∗,T := R3

∗ × (−T, T ) and |x| = r. You may assume
the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave equation

on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST , with

u(0, t) = f ′(t).

Please send any corrections to c.warnick@warwick.ac.uk
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∣∣∇2u
∣∣2 =

∑
i,j ∇i∇ju∇i∇ju, etc.
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*d) By considering a suitable sequence of functions f , or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for large |x|.

Exercise 1.3. Show that if Λνµ is the matrix of a Lorentz transformation and

x′ν = Λνµx
µ, y′ν = Λνµy

µ.

then
x′µy′µηµν = xµyµηµν .

Exercise 1.4. Using P,T and the transformations of Examples 1, 2 or otherwise:

a) Suppose that ~X ∈ E1,3 is a unit timelike vector, i.e. η
(
~X, ~X

)
= −1. Show that there

exists an inertial frame {~eµ}µ=0,...,3, such that writing ~X = xµ~eµ, we have

xµ = (1, 0, 0, 0).

Deduce that if ~X is timelike and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then ~Y is spacelike.

b) Suppose that ~X ∈ E1,3 is a null vector, i.e. η
(
~X, ~X

)
= 0. Show that there exists an

inertial frame {~eµ}µ=0,...,3 such that writing ~X = xµ~eµ, we have

xµ = λ(1, 1, 0, 0).

for some λ > 0. Deduce that if ~X is null and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then either

~Y is either spacelike or parallel to ~X.

c) Suppose that X ∈ E1,3 is a unit spacelike vector, i.e. η
(
~X, ~X

)
= 1. Show that there

exists an inertial frame {~eµ}µ=0,...,3 compatible with the time orientation such that
writing ~X = xµeµ, we have

xµ = (0, 1, 0, 0).

Deduce that if ~X is spacelike and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then ~Y can be timelike,

null or spacelike.

Exercise 1.5. Show that the relation ∼ between timelike vectors defined in (1.7) is an
equivalence relation. [Hint: the final part of Exercise 1.4 a) may be useful]


