
Chapter 1

The Wave Equation and Special Relativity

1.1 The wave equation from Maxwell’s equations

In this course we are going to take a PDE based approach to relativity. We will begin
with exploring special relativity in the context of the wave equation:

−∂
2u

∂t2
+ c2∆u = 0.

This provides a convenient proxy for the study of Maxwell’s equations. We could instead
study Maxwell’s equations directly, but since these are a system of PDEs for 6 components
of the electromagnetic field they can be a bit unwieldy.

In fact, Maxwell’s equations are closely related to the wave equation, as our first result
will establish:

Lemma 1.1. Let us denote ST := R3 × (−T, T ). Suppose E,B ∈ C2(ST ) satisfy
Maxwell’s equations. Then each component of E,B satisfies the wave equation:

−∂
2Ei
∂t2

+ c2∆Ei = 0

−∂
2Bi
∂t2

+ c2∆Bi = 0

in ST , where c = (µ0ε0)−
1
2 .

Proof. We start with (2) and differentiate in time to find

−∂
2B

∂t2
−∇× ∂E

∂t
= 0.

Using (4) to replace the term involving Ė, we have

−∂
2B

∂t2
− 1

µ0ε0
∇× (∇×B) = 0.

Now, a standard vector calculus identity tells us that ∇× (∇×A) = ∇ (∇ ·A)−∆A
for any C2 vector field A. Making use of this, together with (3), we deduce the result.
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Exercise(∗). Complete the proof by showing that the components of E obey the wave
equation.

Later on in the course we shall be able to show a converse to this result, namely
that we can find a solution of Maxwell’s equations by solving the wave equation for each
component.

At this stage, it’s useful to assume that we are using units in which c = 1. For
example, we can take the second as our unit of time and the light-second as our unit of
length. This is convenient as it saves us carrying around a constant in our formulae. If
you want to replace c it’s always possible to do so by thinking about what units various
quantities ought to carry.

1.2 The Cauchy problem for the wave equation

For the rest of this chapter, we shall be discussing solutions of the wave equation. We
will start by considering the Cauchy problem. In general, the Cauchy problem for a
PDE consists of specifying some data on a given surface and then trying to find a unique
solution of the PDE in a neighbourhood of that surface. We will discuss this much more
thoroughly when we come to the Cauchy-Kovalevskaya theorem. For now, let us consider
what data we might expect to have to specify on the surface Σ0 := R3 × {0} in order to
find a unique solution of the wave equation:

− ∂2u

∂t2
+ ∆u = 0 (1.1)

in ST := R3×(−T, T ). In order to see what data might be necessary to solve this problem,
we can try and write u as a formal1 power series in t about t = 0. That is, to try and
find coefficients un so that the formal power series:

u(x, t) =

∞∑
n=0

un(x)
tn

n!

solves (1.1). Putting this series into the equation, we find that we can cancel the terms
order by order if:

−un+2(x) + ∆un(x) = 0, n = 0, 1, . . .

In other words, once we have specified u0(x) = u(x, 0) and u1(x) = ut(x, 0), at least
in principle we can find the rest of the terms in the formal power series by repeated
differentiation. In other words, we expect that the correct Cauchy data for the wave
equation on Σ0 are the values of u|Σ0

and ut|Σ0
.

The formal power series argument above, while suggestive, is not terribly useful. For
the solutions we shall ultimately be interested in, the series expansion above will not
converge, so any arguments based on manipulating these series are rather suspect. We
need a better tool before we can understand solutions of the wave equation. In particular,
we require some a priori estimates for the solutions. Recall from the Theory of PDE

1in this context, ‘formal’ means that we will ignore issues of convergence.
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course that an a priori estimate is a an estimate that we can deduce directly from the
equation, without having to write down a solution, i.e. they are estimates that must hold
for all solutions. In the Theory of PDE course, the main a priori estimates we used were
the Maximum Principle for Laplace’s equation and for the heat equation. For the wave
equation no maximum principle exists, instead we make use of energy estimates.

Theorem 1.1 (Basic energy estimate for the wave equation). Let ST := R3 × (−T, T )
and Σt = R3 × {t}. Suppose that u ∈ C2(ST ) solves (1.1) in ST , and that there exists R
such that u(x, t) = 0 for |x| > R. Then if we define

E[u](t) :=
1

2

∫
Σt

(
u2
t + |∇u|2

)
dσ =

1

2

∫
R3

(
ut(x, t)

2 + |∇u(x, t)|2
)
dx,

we have
dE[u]

dt
= 0.

Proof. The assumptions on u(x, t) imply that we can restrict the range of the integration
in E to B2R(0) and that that we can differentiate E(t) with respect to time and pass the
time derivative under the integral2 to obtain

dE[u]

dt
=

∫
B2R(0)

(ututt + ∇u ·∇ut) dx

=

∫
B2R(0)

(ututt −∆uut) dx+

∫
∂B2R(0)

ut∇u · n dσ

Here we have used the vector calculus identity ∇ · (f∇g) = ∇f ·∇g + f∆g and then
applied the divergence theorem. The first integral vanishes, because the integrand is
proportional to utt − ∆u which is zero since u obeys the wave equation. The second
integral vanishes because u = 0 for |x| > R. The result follows.

Later on, we shall show that the assumption that solutions vanish outside a sufficiently
large ball is in fact a reasonable one, because solutions to the wave equation exhibit finite
speed of propagation. In the context of relativity, this is an analogue of the statement that
no signal may travel faster than the speed of light.

From this result, we can immediately deduce that a solution of the wave equation is
indeed uniquely determined by our proposed Cauchy data, namely u|Σ0

and ut|Σ0
.

Corollary 1.2. Suppose u, v ∈ C2(ST ) solve (1.1) in ST , and that there exists R such
that u(x, t) = v(x, t) = 0 for |x| > R. Suppose further that:

u|Σ0
= v|Σ0

, ut|Σ0
= vt|Σ0

.

Then u = v in ST .

2Check that you understand why this is true. You may wish to look at the appendix of the notes for
the course MA3G1.
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Proof. Consider w = u − v. This solves (1.1) in ST and is in C2(ST ). Moreover,
w|Σ0

= wt|Σ0
= 0. Thus E[w](0) = 0. By Theorem 1.1 we have that E[w](t) = 0 for all

−T < t < T . As a consequence, we have |∇w| = |wt| = 0 on ST , which together with
the fact that w vanishes for large x implies that w = 0 on ST .

Our energy estimate has shown that specifying u and ut on a surface of constant
time is enough to ensure the solution to the Cauchy problem, if it exists, is unique. In
fact, the energy estimate gives us a statement of continuity: the L2−norms of ut(·, t) and
|∇u| (·, t) are controlled by the initial data. More precisely, we say that two solutions
u, v as in Corollary 1.3 are ε−close in the energy norm at time t if:

E[u− v](t) ≤ ε.

We clearly have

Corollary 1.3. Suppose u, v ∈ C2(ST ) solve (1.1) in ST , and that there exists R such
that u(x, t) = v(x, t) = 0 for |x| > R. Suppose further that u and v are initially ε−close
in the energy norm. Then they remain ε−close for all times t ∈ (−T, T ).

We can improve the control over the solution to control higher derivatives:

Exercise 1.1. Let ST := R3 × (−T, T ) and Σt = R3 × {t}. Fix k ∈ N. Suppose that
u ∈ C2+k(ST ), solves the wave equation (1.1) in ST , and that there exists R such that
u(x, t) = 0 for |x| > R. Define u0 := u|Σ0

and u1 := ut|Σ0
.

a) By deriving an equation for ∇iu for i = 1, 2, 3 show that3

1

2

∫
Σt

(
|∇ut|2 +

∣∣∇2u
∣∣2) dσ =

1

2

∫
R3

(
|∇u1|2 +

∣∣∇2u0

∣∣2) dx
for −T < t < T .

b) Deduce that:

1

2

∫
Σt

(∣∣∣∇kut

∣∣∣2 +
∣∣∣∇k+1u

∣∣∣2) dσ =
1

2

∫
R3

(∣∣∣∇ku1

∣∣∣2 +
∣∣∣∇k+1u0

∣∣∣2) dx.
for −T < t < T .

We have thus established that a solution, if it exists, to the Cauchy problem for the
wave equation is unique and moreover that the solution depends continuously (in an
appropriate sense) on the initial data. The final aspect of well posedness that remains to
prove is that a solution does in fact exist. Rather than prove this now, we shall postpone
our discussion to a later date, and just state a well posedness result.

3Here
∣∣∇2u

∣∣2 =
∑
i,j ∇i∇ju∇i∇ju, etc.



1.2 The Cauchy problem for the wave equation 5

Theorem 1.4 (Well posedness of the wave equation). Suppose that u0, u1 ∈ C∞c (R3).
Then there exists a unique solution u ∈ C∞(R3 × R) to the Cauchy problem:{

−utt + ∆u = 0 in R3 × R,
u = u0, ut = u1 on R3 × {0}.

Moreover, if supp ui ⊂ BR(0), for i = 1, 2, then supp u(·, t) ⊂ BR+|t|(0).

Remarks: we have stated the theorem for smooth functions. Finite regularity versions
of this theorem can be stated, however, if we work with spaces of Ck functions, then we
have to assume more regularity on the initial data than we are able to recover for the
solution. We say that the Ck−norms are not propagated by the wave equation. This is
closely related to the absence of a maximum principle for the wave equation (see Exercise
1.2). The natural function spaces to consider are in fact the Hk spaces, whose norms are
propagated by the equations4.

Notice that the support of the function grows at most linearly in time. This is related
to the finite speed of propagation. Finally, we have stated a result which is global in t, i.e.
we do not restrict to a time interval (−T, T ). Obviously our result implies similar results
on ST .

Exercise 1.2. Let R3
∗ := R3 \ {0}, S∗,T := R3

∗ × (−T, T ) and |x| = r. You may assume
the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave equation

on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST , with

u(0, t) = f ′(t).

4You will have met these spaces if you took MA4A2: Advanced PDEs. Otherwise you may ignore
this comment.



6 Chapter 1 The Wave Equation and Special Relativity

*d) By considering a suitable sequence of functions f , or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for large |x|.

1.3 Minkowski Spacetime

In the Theory of PDE course, we constructed solutions to the Cauchy problem for the
heat equation on R3: {

ut = ∆u in (0, T )× R3,
u = u0 on {0} × R3.

Physically, the function u(t, ·) corresponds to the temperature at time t of an infinite
uniform body whose initial temperature is given by the function u0. In order to write the
heat equation out in full, we pick an orthonormal basis for R3, say {ei}i=1,2,3. Such a
choice is called a frame. Once we have chosen a frame, we can define the partial derivatives
in the ei directions. For any function f ∈ C1(R3), we write:

∂f

∂xi
(x) =

d

ds
f(x + sei)

∣∣∣∣
s=0

.

The Laplacian acting on a function u is then given by

∆f(x) = gij
∂2f

∂xi∂xj
(x) = gij

∂

∂xi

[
∂f

∂xj

]
(x).

Here, I am using summation convention, so there is an implicit summation over i, j = 1, 2, 3.
I have also introduced a new tensor, the Euclidean cometric tensor, whose components
are given by:

gij =

{
1 i = j,
0 i 6= j.

As a result, when we perform the implicit summation, the only terms that survive are
the diagonal ones and we have:

∆f(x) =
∂2f

∂x1∂x1
(x) +

∂2f

∂x2∂x2
(x) +

∂2f

∂x3∂x3
(x) (1.2)

Now, in the physical explanation of what u represents, I made no reference to any
particular frame. The heat equation (1.2), however, makes explicit reference to the
coordinates xi associated to the frame. To reconcile these two facts, we can show that if
we change our orthonormal basis, we must find that the heat equation is unchanged.

Suppose e′i is another basis for R3. We must have that

ei = e′jΛ
j
i
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for some real numbers Λj
i. Now, let us consider how changing basis affects the partial

derivatives of a function f : R3 → R. Starting from the definition of the partial derivative,
we have

∂f

∂xi
(x) =

d

ds
f(x + sei)

∣∣∣∣
s=0

=
d

ds
f
(
x + se′jΛ

j
i

)∣∣∣∣
s=0

(1.3)

= Λj i
d

ds
f
(
x + te′j

)∣∣∣∣
s=0

= Λj i
∂f

∂x′j
(x)

where we have used the chain rule to go from the second to the third line. Since Λij don’t
depend on x we can differentiate again and we find

∂2f

∂xi∂xj
(x) = ΛkiΛ

l
j

∂2f

∂x′k∂x′l
(x)

We see then that the heat equation has the same form with respect to the basis {e′i} as it
did for the basis {ei} if and only if

Λkig
ijΛlj = gkl. (1.4)

Thinking of Λi
j and gij as the components of two matrices, this is equivalent to the

matrix equation:
ΛΛT = I,

which we recognise as the condition that Λ ∈ O(3), i.e. Λ is orthogonal. In other words,
the heat equation takes the same form with respect to any orthonormal frame for R3. This
reflects a physical symmetry of the underlying problem: the invariance under rotations
and reflections of a uniform body filling all of space.

We could in fact have taken the form of the heat equation to define the orthonormal
frames. In this approach, we would say that a basis for R3 is orthonormal if and only if
the heat equation takes the form

∂u

∂t
(x) =

∂2u

∂x1∂x1
(x) +

∂2u

∂x2∂x2
(x) +

∂2u

∂x3∂x3
(x)

with respect to this basis. In principle, we could hope to make physical measurements to
determine the form of the heat equation, so this connects a mathematical construction
(an orthonormal frame) to the physics of heat propagation.

The wave equation and the Lorentz group

Now we come to the equation we are actually interested in, the wave equation. The
aim is, in a similar way to our brief discussion above, to look at the symmetries of the
wave equation. The first thing we do is to drop the distinction between time and space.
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Trivially, we can consider a point (t,x) ∈ R× R3 as belonging to R4, which we wish to
think of as the space-time manifold (what this means will become clearer as the course
progresses). We introduce a basis for spacetime:

~e0 =


1
0
0
0

 , ~e1 =


0
1
0
0

 , ~e2 =


0
0
1
0

 , ~e3 =


0
0
0
1

 .

Defining x0 := t, we can write any point in R4 as

~X := (x0,x) = xµ~eµ

where we take the convention that greek indices µ, ν, etc. are summed over 0, . . . , 3. In
order to write the wave equation concisely, we introduce a (0, 2)−tensor with components
ηµν called the metric tensor, given by:

ηµν =


−1 µ = ν = 0

1 µ = ν = 1, 2, or 3,
0 µ 6= ν.

(1.5)

Notice that {~eµ} is an orthonormal basis for η. The metric tensor has an inverse, a
(2, 0)−tensor with components ηµν satisfying

ηµσησν = δµν .

Here δµν is the usual Kronecker delta, defined by

δµν =

{
1 µ = ν
0 µ 6= ν.

We can then write the wave equation very concisely as

−utt + ∆u = ηµν
∂2u

∂xµ∂xν
= 0.

We’ll sometimes use the notation

�u = ηµν
∂2u

∂xµ∂xν
,

in the same way that ∆ is used for the Laplacian. The operator � is known as the
d’Alembertian or wave operator.

Definition 1. We define the Minkowski spacetime, E1,3, to be R4 equipped with the
metic tensor η ∈ T 0

2(R4).
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1.3.1 Lorentz transformations

As we did for the heat equation above, it is instructive to consider what happens when
we choose another basis (or frame) for R4. Suppose that {~eµ′} is a new basis for R4. We
of course have

~eµ = ~eν
′Λνµ,

for a set of real numbers Λνµ. The same calculation as (1.3) shows that for any f which
is differentiable in a neighbourhood of X ∈ E1,3 we have

∂f

∂xµ
( ~X) = Λνµ

∂f

∂x′ν
( ~X).

This means that the numbers
∂f

∂xµ
( ~X)

transform like a (0, 1)−tensor under a change of basis. It’s convenient to write this as

∇µf :=
∂f

∂xµ
,

so that the wave equation can be written

∇µ∇µu = ηµν∇ν∇µu = ∇νηµν∇µu = ∇µ∇µu = 0.

It is standard to suppress the argument to keep the notation clean, but it can be replaced
if necessary.

Since the Λνµ are constant, we see that the form of the wave equation is preserved if

ηµν = Λµση
στΛντ

Thinking of Λµν and ηµν as matrices, we can write this condition as:

Λη−1ΛT = η−1. (1.6)

Definition 2. 1. A basis with respect to which η takes the form (1.5) is called an
inertial frame. Equivalently, an inertial frame is one for which the wave equation
takes the form

− ∂2u

∂x0∂x0
( ~X) +

∂2u

∂x1∂x1
( ~X) +

∂2u

∂x2∂x2
( ~X) +

∂2u

∂x3∂x3
( ~X) = 0

2. A matrix Λ satisfying (1.6) is said to be a Lorentz transformation, and represents
a transformation between inertial frames. The set of all Lorentz transformations
O(1, 3) forms a group under matrix multiplication, called the Lorentz group.

The connection between an inertial frame and the wave equation allows us, in principle,
to determine whether a frame is inertial or not by making physical measurements of some
quantity obeying the wave equation.
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Lemma 1.2. The following conditions are equivalent to (1.6):

Λ−1 = η−1ΛT η.

and
ΛT ηΛ = η.

Proof. Multiplying (1.6) on the right by η, we have

Λη−1ΛT = η−1 ⇐⇒ Λ
(
η−1ΛT η

)
= I ⇐⇒ Λ−1 = η−1ΛT η.

since Λ is a square matrix. For the second condition, multiply the first on the right by Λ
and on the left by η to see

Λ−1 = η−1ΛT η ⇐⇒ η = ηη−1ΛT ηΛ = ΛT ηΛ.

Since the three conditions are equivalent, we can take any of them to define the
Lorentz group.

Example 1. The Lorentz group contains the orthogonal group O(3) as a subgroup. To
see this, consider the set of matrices of the form

Λ =

(
1 01×4

04×1 R3×3

)
where R3×3 ∈ O(3). It is straightforward to verify that Λ ∈ O(1, 3).

The Lorentz group is a Lie group5. We can think of the Lorentz group as a Lie
subgroup of GL(4) (since by Lemma 1.2 Lorentz transformations are invertible).

Theorem 1.5. The Lorentz group is a Lie subgroup of GL(4), and its Lie algebra, denoted
by o(1, 3) is the set of matrices ` satisfying

`η−1 + η−1`T = 0.

Proof. Consider the map f : GL(4)→ Sym(4× 4) given by

f(A) = Aη−1AT .

Clearly O(1, 3) is the preimage of η−1, so it will be enough to show that η−1 is a regular
point of the map f . To see this, we calculate

df |A = (dA)η−1AT +Aη−1(dA)T

= (dA)A−1η−1 + η−1
[
(dA)A−1

]T
5Don’t worry if you’ve not met these before. All it means is that in addition to having a group

structure, O(1, 3) can be made into a manifold, in such a way that the group operations are continuous.
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for A ∈ f−1(η−1). To show that the derivative map is surjective, we must show that for
any point A ∈ f−1(η−1) and any symmetric matrix S ∈ Sym(4× 4) we can find a matrix
B such that

BA−1η−1 + η−1
[
BA−1

]T
= S

For this, we can simply take B = 1
2SηA. Thus η

−1 is a regular point of f , and we deduce
that O(1, 3) is a closed subgroup of GL(4) and hence is a Lie subgroup. To complete the
proof, we recall that the Lie algebra of a matrix Lie group is simply the tangent space
at the identity, i.e. o(1, 3) = TIO(1, 3). From the regular value theorem we know that
TIO(1, 3) = Ker df |I , which corresponds precisely to those matrices ` satisfying

`η−1 + η−1`T = 0.

The group O(1, 3) has four connected components. The connected component contain-
ing the identity is a subgroup of O(1, 3) called the proper orthochronous Lorentz group
and is denoted SO+(1, 3). There are two important Lorentz transformations which do
not belong to SO+(1, 3). These have matrices6:

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Using T, P we can write O(1, 3) as the disjoint union of connected cosets:

O(1, 3) = SO+(1, 3) ∪ T
(
SO+(1, 3)

)
∪ P

(
SO+(1, 3)

)
∪ PT

(
SO+(1, 3)

)
.

We’ve thus reduced the problem of understanding O(1, 3) to the problem of under-
standing SO+(1, 3). Any element of SO+(1, 3) may be written as

Λ = e` =
∞∑
n=0

`n

n!

for some ` ∈ o(1, 3), where the exponential here is the matrix exponential.

Example 2. We can take

` =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

6Check that these satisfy (1.6)
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We check that

`η−1 + η−1`T =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



=


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

+


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 = 0.

Clearly if ` ∈ o(1, 3), then so is −s`. The matrix exponential of −s` is straightforward to
calculate using the fact that

`2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and `3 = `. We find

e−s` =
∞∑
n=0

(−s)n`n

n!
= I − `

∞∑
n=0

s2n+1

(2n+ 1)!
+ `2

∞∑
n=1

s2n

(2n)!

= I − ` sinh s+ `2(cosh s− 1)

=


cosh s − sinh s 0 0
− sinh s cosh s 0 0

0 0 1 0
0 0 0 1


This transformation is called a boost in the x direction of rapidity s.

Let us see how the boost of rapidity s changes our coordinates. Recall that our
transformation relates the old basis to the new basis by

~eµ = ~eν
′Λνµ,

Suppose we have a point ~X ∈ R4 with coordinates xµ relative to the old basis and x′µ

relative to the new basis. We have:

~X = xµ~eµ = xµΛνµ~eν
′ = x′ν~eν

′,

so that
x′ν = Λνµx

µ.

Thus we have:

x′0 = x0 cosh s− x1 sinh s,

x′1 = −x0 sinh s+ x1 cosh s,

x′2 = x2,

x′3 = x2.
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We can take this to mean that the frame defined by ~eµ′ is moving at a speed v = tanh s
along the positive x-direction, relative to the frame defined by ~eµ. Notice that |v| < 1.
Thus two inertial frames related by a boost of this kind cannot have a relative speed
faster than the speed of light.

Classifying vectors

The metric η allows us to define an inner product for vectors in Minkowski space. We
define

η
(
~X, ~Y

)
= xµyµηµν .

By construction, this is invariant under a Lorentz transformation to a new frame.

Exercise 1.3. Show that if Λνµ is the matrix of a Lorentz transformation and

x′ν = Λνµx
µ, y′ν = Λνµy

µ.

then
x′µy′µηµν = xµyµηµν .

In particular, for any vector ~X in Minkowski space, we have an invariant quantity
η
(
~X, ~X

)
which is the same no matter which inertial frame we calculate it in. Unlike a

traditional inner product, this quantity does not need to be positive. We classify non-zero
vectors according to the sign.

Definition 3. A non-zero vector ~X ∈ E1,3 is

i) Timelike if η
(
~X, ~X

)
< 0,

ii) Null, or lightlike if η
(
~X, ~X

)
= 0,

iii) Spacelike if η
(
~X, ~X

)
> 0.

A vector is causal if it is timelike or null.
We say that a C1−curve γ : (a, b) → E1,3 is timelike/null/spacelike/causal if its

tangent vector γ̇(s) is timelike/null/spacelike/causal for every s ∈ (a, b).

You should think of a future directed timelike vector as representing the instantaneous
velocity of a particle travelling at less than the speed of light, while a future directed null
vector represents the instantaneous velocity of a particle travelling at the speed of light.
A timelike curve should be thought of as an allowable trajectory for a massive particle.

Since a Lorentz transformation does not change the quantity η
(
~X, ~X

)
, we see that if

a vector is timelike/null/spacelike with respect to one frame it is timelike/null/spacelike
with respect to every frame. Similarly, the condition of being past/future directed is
independent of frame. In Figure 1.1 we show the surfaces η

(
~X, ~X

)
= ±1, 0, which consist

of vectors of constant Minkowski norm.
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Figure 1.1 The surfaces η
(
~X, ~X

)
= 1 (one sheeted hyperboloid) η

(
~X, ~X

)
= −1 (two sheeted

hyperboloid) and η
(
~X, ~X

)
= 0 (cone)

Exercise 1.4. Using P,T and the transformations of Examples 1, 2 or otherwise:

a) Suppose that ~X ∈ E1,3 is a unit timelike vector, i.e. η
(
~X, ~X

)
= −1. Show that there

exists an inertial frame {~eµ}µ=0,...,3, such that writing ~X = xµ~eµ, we have

xµ = (1, 0, 0, 0).

Deduce that if ~X is timelike and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then ~Y is spacelike.

b) Suppose that ~X ∈ E1,3 is a null vector, i.e. η
(
~X, ~X

)
= 0. Show that there exists an

inertial frame {~eµ}µ=0,...,3 such that writing ~X = xµ~eµ, we have

xµ = λ(1, 1, 0, 0).

for some λ > 0. Deduce that if ~X is null and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then either

~Y is either spacelike or parallel to ~X.

c) Suppose that X ∈ E1,3 is a unit spacelike vector, i.e. η
(
~X, ~X

)
= 1. Show that there

exists an inertial frame {~eµ}µ=0,...,3 compatible with the time orientation such that
writing ~X = xµeµ, we have

xµ = (0, 1, 0, 0).

Deduce that if ~X is spacelike and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then ~Y can be timelike,

null or spacelike.

It is also useful to classify some surfaces7 according to their causal properties. We
define

7for us a surface has three dimensions
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Definition 4. We say that a surface Σ ⊂ E1,3 is

i.) Timelike if at every point in Σ there is a timelike tangent vector.

ii.) Null if at every point in Σ there is a null tangent vector, but no timelike tangent
vector.

iii.) Spacelike if every vector tangent to Σ is spacelike.

We have the following useful result, which can be proven by choosing a suitable
orthonormal basis.

Lemma 1.3. i.) If Σ is timelike, then locally there exists a spacelike vector field which
is normal to the tangent plane (with respect to η).

ii.) If Σ is spacelike, then locally there exists a timelike vector field which is normal to
the tangent plane (with respect to η).

1.3.2 Causal geometry

We can define a relation between timelike vectors ~T1, ~T2 by:

~T1 ∼ ~T2 ⇐⇒ η(~T1, ~T2) < 0. (1.7)

Exercise 1.5. Show that the relation ∼ between timelike vectors defined in (1.7) is an
equivalence relation. [Hint: the final part of Exercise 1.4 a) may be useful]

Definition 5. A time orientation for the Minkowski spacetime is an equivalence class of
timelike vectors [~T ]∼. We say that a causal vector, X, is future directed if η( ~X, ~T ) < 0 and
past directed if η( ~X, ~T ) > 0 for any ~T ∈ [~T ]∼. We say that an inertial frame {~eµ}µ=0,...,3

is compatible with the time orientation ~T if ~e0 is future directed.
Suppose an inertial frame {~eµ}µ=0,...,3 is compatible with the time orientation ~T , and

that {~eµ′}µ=0,...,3 is related to {~eµ}µ=0,...,3 by a Lorentz transformation Λ. We say that Λ
preserves the time orientation if {~eµ′}µ=0,...,3 is compatible with the time orientation. We
define the orthochronous Lorentz group, O+(1, 3), to be the subgroup of O(1, 3) consisting
of all of the Lorentz transformations which preserve the time orientation.

Lemma 1.4. We can decompose the orthochronous Lorentz group as:

O+(1, 3) = SO+(1, 3) ∪ P(SO+(1, 3)).

Proof. We first show that transformations in SO+(1, 3) preserve time orientation. Suppose
for contradiction that {~eµ′}µ=0,...,3 is not compatible with the time orientation [~T ]∼, so
that η(~e0

′, ~T ) ≥ 0 and that the bases are related by

~eµ = ~eν
′Λνµ,

with Λ ∈ SO+(1, 3). This implies that there exists a continuous map Γ : [0, 1]→ O(1, 3)
with Γ(0) = I,Γ(1) = Λ. Consider the map f : [0, 1]→ R given by

f(s) = η
(
~eν
′Γν0(s), ~T

)
.
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U

I+(U)

U

J+(U)

Figure 1.2 The chronological (left) and causal (right) future of a set U

U

D+(U)

Figure 1.3 The future Cauchy development of a set U

We have that f is continuous, f(0) < 0 and f(1) ≥ 0, so there exists s0 ∈ [0, 1] such
that f(s0) = 0. Since Γ ∈ SO+(1, 3), we know that ~eν ′Γν0(s0) is a unit timelike vector,
however any non-zero vector orthogonal to the timelike vector ~T must be spacelike, which
gives a contradiction.

Finally, we observe that P preserves the time orientation and T does not. Together
with the decomposition of O(1, 3), we obtain the result.

Obviously, we can define a future directed timelike/causal curve by requiring that the
tangent vector is future directed timelike/causal at all points on the curve. This allows
us to talk about the future and past of a subset U ⊂ E1,3. We will define three important
sets:

Definition 6. 1. The chronological future of U ⊂ E1,3, denoted I+(U), is the set of all
points p ∈ E1,3 which can be reached from U by a future directed timelike curve.

2. The causal future of U ⊂ E1,3, denoted J+(U), is the set of all points p ∈ E1,3 which
can be reached from U by a future directed causal curve.

3. The future Cauchy development, or domain of dependence of U , denoted D+(U) is the
set of all points p ∈ E1,3 such that every past inextensible timelike curve through p
intersects U .

1.4 Lorentz geometry and the wave equation

1.4.1 Doppler shifts

One simple calculation we can do with the machinery that we’ve built up in the last
section allows us to explain the phenomenon of the Doppler shift. We know this best from
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the field of acoustics: the engine of a speeding car sounds higher pitched as it approaches
us than it does as it drives away. The Doppler shift also occurs for light waves. Light
coming from an object moving towards us is ‘blue-shifted’, meaning the frequency of
the electromagnetic radiation increases. Light coming from an object moving away is
‘red-shifted’. This fact is behind the dreaded radar guns used to enforce speed limits.

To see how the geometrical picture we’ve built up can help us understand this
phenomenon, let us fix an inertial frame {~eµ}µ=0,...,3 and consider the following function8

u~k : E1,3 → C
X 7→ eiη( ~X,~k) = eix

µkµ

where ~k is a constant vector. We have that

∇µu~k = ikµu~k

so that
�u~k = −kµkµu~k.

If we choose ~k to be a null vector, so that kµkµ = 0, then uk is a solution of the wave
equation. These are the plane wave solutions. In this frame, writing xµ = (t,x), we see

uk = e−ik
0t+ik·x

so that solution in this frame is seen to be a wave with frequency k0 propagating in the
direction n = k

k0
.

Now, since our solution is written in a manifestly Lorentz invariant form, we know
that u~k is given by the same expression, regardless of which inertial frame we choose.
As a result, if we instead choose an inertial frame {~eµ′}µ=0,...,3, then we would view the
solution as a wave with frequency k′0 propagating in the direction n′ = k

k0
. Suppose that

the frames are related by the boost transformation of Example 2. Then we have that

k′0 = k0 cosh s− k1 sinh s,

k′1 = −k0 sinh s+ k1 cosh s,

k′2 = k2,

k′3 = k2.

Thus we see that viewed in the two different frames, the frequency and the wavenumber in
the x1 direction differ. We can simplify the situation by assuming that k2 = k3 = 0 and
k1 = k0, so that our boost is in the direction of propagation. Then we have k′2 = k′3 = 0
and

k′0 = k′1 = k0e−s.

8If you prefer to work with real solutions of the wave equation, we are always free to take the real
part.
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Recalling that the rapidity s corresponds to a relative velocity between the two frames of
v = tanh s, we deduce that the frequency in the frame {~eµ′}µ=0,...,3 is given in terms of
the frequency in the frame {~eµ}µ=0,...,3 by

k′0 = k0

√
1− v
1 + v

Thus, if v > 0, an observer at rest in the primed frame will measure a lower frequency
relative to an observer at rest in the unprimed frame. This is because the observer in
the primed frame is moving in the positive x0−direction relative to an observer in the
unprimed frame, so sees a red shifted wave.

1.4.2 The energy-momentum tensor

Our motivation for introducing the Lorentz group was to understand symmetries of the
wave equation. We found that the wave equation looks the same in any inertial frame.
A very deep principle of theoretical physics says that symmetries give rise to conserved
quantities. In the case of the wave equation, this fact is demonstrated by the existence of
a tensor, the energy-momentum tensor, which has some very useful properties.

Definition 7. Suppose U ⊂ E1,3 is open. Given ψ ∈ C2(U), we define a symmetric
(0, 2)−tensor, the energy momentum tensor with components given by

Tµν [ψ] := ∇µψ∇νψ −
1

2
ηµν∇σψ∇σψ.

Theorem 1.6. The energy momentum tensor has the following properties:

1. We have a formula for the divergence:

∇µTµν [ψ] = (�ψ)∇νψ

2. Fix an inertial frame {~eµ}µ=0,...,3. The 00−component of T is the local energy density

T00[ψ] =
1

2

[
(∇0ψ)2 + |∇ψ|2

]
3. Fix an inertial frame {~eµ}µ=0,...,3. If ~V = V µ~eµ is any future directed unit timelike

vector, then:

V 0
[
(∇0ψ)2 + |∇ψ|2

]
≥ V µTµ0[ψ] ≥ 1

4V 0

[
(∇0ψ)2 + |∇ψ|2

]
Proof. 1. We calculate

∇µTµν [ψ] = ∇µ
(
∇µψ∇νψ −

1

2
δµν∇σψ∇σψ

)
= (∇µ∇µψ)∇νψ +∇µψ∇µ∇νψ −

1

2
∇ν (∇µψ∇µψ)

= (∇µ∇µψ)∇νψ +∇µψ∇µ∇νψ − (∇ν∇µψ)∇µψ
= (�ψ)∇νψ.
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2. Again, a straightforward calculation gives us:

T00[ψ] = ∇0ψ∇0ψ +
1

2

(
−∇0ψ∇0ψ +∇iψ∇iψ

)
=

1

2

[
(∇0ψ)2 + |∇ψ|2

]
3. Since ~V is timelike, future directed, and unit, we have V 0 > 0 and

(V 0)2 − |V |2 = 1.

We calculate, similarly to the previous part:

V µTµ0[ψ] = ∇0ψ(V 0∇0ψ + V i∇iψ) +
V 0

2

(
−∇0ψ∇0ψ +∇iψ∇iψ

)
.

Now, we use the Cauchy-Schwarz inequality and Young’s inequality (or the AM-GM
inequality) to deduce

∣∣∇0ψV
i∇iψ

∣∣ ≤ |∇0ψ| |V | |∇ψ| ≤ |V |
2

[
(∇0ψ)2 + |∇ψ|2

]
We therefore have

V 0 + |V |
2

(
(∇0ψ)2 + |∇ψ|2

)
≥ V µTµ0[ψ] ≥ V 0 − |V |

2

(
(∇0ψ)2 + |∇ψ|2

)
Now, since (V 0)2 − |V |2 = 1, we have V 0 − |V | = (V 0 + |V |)−1 and 2V 0 > |V |+ V 0,
which completes the proof.

Remark: Property 2. is sometimes known as the weak energy condition and property
3. as the dominant energy condition.

A useful Corollary is the following

Corollary 1.7. Suppose that ψ ∈ C2(U) solves the wave equation in U , and let ~V be a
C1 vector field9 on U . Defining the vector field:

~V ~J [ψ] = V νTν
µ[ψ]~eµ

we have
∇µ
(
~V Jµ[ψ]

)
= V ΠµνT

µν [ψ]

where
~V Πµν = ∇(µVν)

is the deformation tensor of ~V . ~V ~J is called the energy current associated to the vector
field ~V .

9This means that with respect to a basis for E1,3 we may write ~V = V µeµ, where V µ ∈ C1(U).
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Proof. We can calculate, using part 1. of Theorem 1.6:

∇µ
(
~V Jµ

)
= ∇µ (V νTν

µ) = (∇µV ν)Tν
µ + V ν∇µ (Tν

µ)

= ∇µVνTµν + V ν(�ψ)∇νψ

= ∇(µVν)T
µν =

~V ΠµνT
µν .

This corollary is particularly useful when the deformation tensor vanishes for ~V . These
vector fields are especially important:

Definition 8. A Killing vector is a vector field such that

~V Π = 0.

Killing vectors are closely related to symmetries of the spacetime. To explore a bit
more fully the Killing vectors, let us pick an orthonormal basis {~eµ} for E1,3 and use it
to identify each point X ∈ E1,3 with its components xµ with respect to this basis. First,
let us note that the constant vector field

~P0 = ~e0,

is a Killing field: in fact we have that ∇µVν = 0 for all µ, ν. Similarly for the constant
vector fields

~Pi = ~ei.

Now, suppose we have a matrix ` ∈ o(1, 3), which can be written in components as `µν .
Then we can define a vector field on E1,3 by:

~V` = xν`µν~eµ.

I claim this is a Killing field. To see this, first note that (V`)
µ = xν`µν , so that

∇µ(V`)ν = ηνσ`
σ
µ

hence

~V`Πµν =
1

2
(ηνσ`

σ
µ + ηµσ`

σ
ν)

=
[
η`+ (η`)T

]
νµ

=
[
η
(
`η−1 + η−1`T

)
η
]
νµ

= 0.

In fact, one can show that any Killing field of the Minkowski spacetime is a linear
combination of fields of the form ~Pµ and ~V`. All of these vector fields are useful, but for
us, the most useful will be the vector field ~P0, which is everywhere timelike. It owes its
existence to the time translation symmetry of the Minkowski spacetime. We will make
use of this vector field to prove the final result of this section:



1.4 Lorentz geometry and the wave equation 21

U

Σ

Σ′

Figure 1.4 The geometry of Theorem 1.8

Theorem 1.8 (Finite speed of propagation). Suppose that U ⊂ E1,3 is a open, bounded,
set such that the boundary ∂U consists of two smooth compact components Σ, Σ′ which
are both spacelike, and such that Σ′ lies in J+(Σ) (see Figure 1.4). Then if ψ ∈ C2(U)
solves the wave equation in U we have the estimate∫

U

(
(∇0ψ)2 + |∇ψ|2

)
dX ≤ C

∫
Σ

(
(∇0ψ)2 + |∇ψ|2

)
dσ

for a constant C which depends only on the domain U . In particular if ψ, ∂tψ vanish on
Σ, then ψ vanishes throughout U .

Proof. Pick an inertial frame {~eµ} for the wave equation, and choose coordinates ~X = xµ~eµ.
Consider the vector field

~V = e−x
0
~e0

We calculate

∇µVν =

{
e−x

0
µ = ν = 0,

0 otherwise.

We want to consider the current ~V ~J . We have

∇µ
(
~V Jµ[ψ]

)
= e−x

0
T00

We will apply Corollary B.2 (the divergence theorem) to ~V ~J . We find∫
U
∇µ
(
~V ~Jµ[ψ]

)
dx =

∫
Σ

~V Jµ[ψ]tµdσ −
∫

Σ′

~V Jµ[ψ]tµdσ

where ~t is the future directed unit normal10, and dσ is the (positive) surface measure.
Inserting our expressions for ∇µ

(
~V Jµ[ψ]

)
and ~V ~J we have:∫

Σ
e−x

0
T0µt

µdσ =

∫
Σ′
e−x

0
T0µt

µdσ +

∫
U
e−x

0
T00dx (1.8)

Now, since Σ,Σ′ are smooth and compact and U is bounded, we have that there exists a
constant c > 1 such that

0 < c−1 ≤ sup
Σ∪Σ′

t0, sup
U
|x0| ≤ c <∞.

10notice that the signs here are different from what one might expect.
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As a result, we have that∫
Σ
e−x

0
T0µt

µdσ ≤ cec
∫

Σ

(
(∇0ψ)2 + |∇ψ|2

)
dσ

∫
Σ′
e−x

0
T0µt

µdσ ≥ e−c

4c

∫
Σ′

(
(∇0ψ)2 + |∇ψ|2

)
dσ ≥ 0

and ∫
U
e−x

0
T00dX ≥ e−c

∫
U

(
(∇0ψ)2 + |∇ψ|2

)
dxdt

Putting these estimates together with (1.8), we have the result.

Corollary 1.9. Suppose that u ∈ C∞(E1,3) solves the wave equation, and that

(supp u|x0=0)
⋃

(supp ∇0u|x0=0) ⊂ BR(0)

Then
(supp u|x0=T )

⋃
(supp ∇0u|x0=T ) ⊂ BR+|T |(0).

This justifies some of the assumptions made in §1.2, where we considered solutions of
the wave equation vanishing for large |x| at any fixed time x0.

Exercise 2.1. Let U ⊂ E1,3 be open. Define an antisymmetric (0, 2)−tensor field, F on
U with components11

[Fµν ] =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 .

Where Ei, Bi ∈ C1(U). Show that the vacuum Maxwell equations for E,B (with units
such that c2 = ε0µ0 = 1) hold in U if and only if F satisfies the equations

∇µFµν = 0, ∇[µFνσ] = 0,

where for any (0, 3)−tensor Aµνσ we define:

A[µνσ] =
1

6
(Aµνσ +Aνσµ +Aσµν −Aνµσ −Aµσν −Aσνµ) .

Exercise 2.2. Suppose that F is as in Exercise 2.1. Fix an inertial frame {~eµ}. Define

Tµν [F ] = FµσFν
σ − 1

4
ηµνFστF

στ .

Show that T has the following properties
11The convention is that the first index specifies the row, and the second index the column.
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a) We have a formula for the divergence:

∇µTµν [F ] = (∇µFµσ)Fν
σ +

3

2

(
∇[µFνσ]

)
Fµσ

b) The 00−component of T is the local energy density

T00[F ] =
1

2

[
|E|2 + |B|2

]
c) If ~V is any future directed unit timelike vector, then:

V 0
[
|E|2 + |B|2

]
≥ V µTµ0[F ] ≥ 1

4V 0

[
|E|2 + |B|2

]
Hence, or otherwise, deduce that the electromagnetic field exhibits finite speed of propa-
gation.
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