
Appendix A

Some background results

A.1 Linear algebra

A.1.1 Vectors and co-vectors

Suppose we have a vector v ∈ V , belonging to an n−dimensional real1 vector space and
let B := {ei}i=1,...n be a basis for V . We can write

v =

n∑
i=1

viei,

where vi ∈ R are the uniquely determined components with respect to the basis B.
The dual space V ∗ is the n−dimensional real vector space of linear maps ω : V → R.
Such maps are sometimes called one-forms or covectors. We can define the dual basis
B∗ := {ei}i=1,...n uniquely by the requirement

ei(ej) = δij , i, j = 1, . . . , n,

where

δij =

{
1, i = j,
0, i 6= j,

is the Kronecker delta. For any ω ∈ V ∗ we can write

ω =

n∑
i=1

ωie
i,

1for simplicity. Similar constructions exist over other fields.
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so that

ω(v) =

n∑
i=1

ωie
i

 n∑
j=1

vjej

 ,

=
n∑

i,j=1

ωiv
jei(ej) =

n∑
i,j=1

ωiv
jδij ,

=

n∑
i=1

ωiv
i.

A.1.2 Tensors

The tensor product

Suppose V,W are real vector spaces of dimensions n,m respectively. From them, we can
form a new vector space: the tensor product, denoted V ⊗W . The space V ⊗W consists
of formal sums of the form

v1 ⊗w1 + . . .+ vk ⊗wk,

with vp ∈ V , wp ∈W for p = 1, . . . , k. The tensor product ⊗ is bilinear, obeying:

v ⊗ (w1 + λw2) = v ⊗w1 + λ (v ⊗w2) ,

(v1 + λv2)⊗w = v2 ⊗w + λ (v2 ⊗w2) .

If {ei}i=1,...,n and {fa}a=1,...,m are bases for V,W respectively, then we have a natural
basis:

{ei ⊗ fa}i=1,...,n; a=1,...,m

for V ⊗W .

The space T pq(V )

From a real n−dimensional vector space V , we can naturally form a (p+q)n−dimensional
vector space T pq(V ) by taking the tensor product of p copies of V and q copies of V ∗:

T pq(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
p copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q copies

.

An element of T pq(V ) is called a (p, q)−tensor, or a tensor of rank (p, q). A basis
B := {en}i=1,...n induces a basis on T pq(V ):

Bp
q =

{
ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq

}
ik,jl=1,...,n

.

With respect to this basis, we can write any (p, q)−tensor T ∈ T pq(V ) in terms of its
components:

T =

n∑
i1,...,ip,j1,...,jq=1

T i1...ipj1...jqei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq .

Often the distinction between a tensor and its components is elided, so one will speak of
‘the tensor Tij ’.
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A.1.3 Change of basis

Suppose we have a basis B := {ei}i=1,...,n and we wish to instead work with a new basis,
say B′ := {e′i}i=1,...,n. By virtue of the fact that B′ is a basis, we must be able to write

ei =
n∑
j=1

e′jΛ
j
i, (A.1)

for some real numbers Λj i with i, j = 1, . . . n. Equally, we can write

e′i =
n∑
k=1

ekΛ̃
k
i, (A.2)

for some other real numbers Λ̃j i with i, j = 1, . . . n. Substituting (A.1) into (A.2) we find

ei =
n∑
j=1

(
n∑
k=1

ekΛ̃
k
j

)
Λj i =

n∑
k,j=1

ekΛ̃
k
jΛ

j
i

Since ei are linearly independent, we conclude that

n∑
j=1

Λ̃kjΛ
j
i = δki.

A similar calculation inserting (A.2) into (A.1) shows that

n∑
j=1

ΛkjΛ̃
j
i = δki,

so that thinking of Λi
j and Λ̃ij as the components of a matrix, we have Λ−1 = Λ̃. In

this way, we can identify the set of basis transformations with the group GL(n,R) of
invertible linear transformations (or equivalently matrices) on Rn.

Suppose that v ∈ V has components vi with respect to the basis B, and components
v′i with respect to the basis B′. We can relate these two sets of components by

v =
∑
i

eiv
i =

n∑
i,j=1

e′jΛ
j
iv
i =

n∑
i=1

e′jv
′j .

Using the linear independence of B′, we deduce

v′j =
n∑
i=1

Λj iv
i, (A.3)

so that the components of v change by matrix multiplication on the left by Λ (thinking
of vi as a column vector).
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Now let’s look at how the dual bases transform. Associated to B and B′ are the dual
bases B∗ = {ei}i=1,...n and B′∗ = {e′i}i=1,...n defined by

ei(ej) = δij , e′i(e′j) = δij , i, j = 1, . . . , n.

I claim that the dual bases are related by the relation:

e′i =
n∑
j=1

Λije
j .

To show this, it is enough to check that e′i(e′j) = δij . We have:

e′i(e′j) =

n∑
j=1

Λike
k

(
n∑
k=1

elΛ̃
l
j

)
,

=

n∑
k,l=1

ΛikΛ̃
l
je
k(el),

=
n∑
k=1

ΛikΛ̃
k
j = δij .

We can invert the relationship between the bases using the fact that Λ̃ is the matrix
inverse of Λ, to find:

ei =
n∑
j=1

Λ̃ije
′j .

Suppose that ω ∈ V ∗ has components ωi with respect to the basis B∗, and components
ω′i with respect to the basis B′∗. We can relate these two sets of components by

ω =
∑
i

ωie
i =

n∑
i,j=1

ωiΛ̃
i
je
′j =

n∑
i=1

ω′je
′j

Using the linear independence of B′∗, we deduce

ω′j =
n∑
i=1

ωiΛ̃
i
j , (A.4)

so that the components of v change by matrix multiplication on the right by Λ̃ (thinking
of ωi as a row vector).

Extending these arguments to the space T pq(V ), we deduce

Lemma A.1. Under the change of basis (A.1), the components of a tensor T ∈ T pq(V )
transform according to:

T ′i1...ipj1...jq =
n∑

k1,...,kp,l1,...,lq=1

T k1...kp l1...lqΛ
i1
k1 · · ·ΛipkpΛ̃l1j1 · · · Λ̃lq jq .
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We say that an upstairs index is covariant and a downstairs index is contravariant,
reflecting the different transformation laws for the two types of index under a change of
basis B for V . For each space T pq(V ), the transformation law gives a representation of
the group GL(n,R).

Exercise A.1. a) Suppose that a tensor T ∈ T 1
1(V ) has components T ij = λδij with

respect to a given basis B. Show that T has the same components with respect to
any other basis. Deduce that the Kronecker delta is invariant under a change of
coordinates.

b) Suppose that v ∈ V , with components vi and ω ∈ V ∗ with components ωj . Show that
the numbers

T ij := viωj ,

transform as the components of a (1, 1)−tensor. In this way we can build tensors of
higher rank from lower rank tensors.

c) Suppose that T ∈ T 0
2(V ) has components Tij . Show that the numbers

T ij := Tji,

transform as a (0, 2)−tensor. Deduce that

T(ij) :=
1

2
(Tij + Tji) , and T[ij] :=

1

2
(Tij − Tji) ,

transform as the components of (0, 2)−tensors. We call the tensors with components
T(ij) and T[ij] the symmetric and antisymmetric part of T respectively.

Contracting indices

Let’s suppose we have a tensor T ∈ T 1
2(V ), so that its components can be written T ijk.

Let us consider the following set of numbers:

Sk :=
n∑
j=1

T jjk.

Now, let us see how Sk transforms when we change our basis. We have

T ′ijk =
∑

p,q,r=1,...,n

T pqrΛ
i
pΛ̃

q
jΛ̃

r
k,

so that

S′k :=

n∑
j=1

T ′jjk =

n∑
j,p,q,r=1

T pqrΛ
j
pΛ̃

q
jΛ̃

r
k,

=
n∑

p,q,r=1

T pqrδ
q
pΛ̃

r
k =

n∑
pr=1

T pprΛ̃
r
k,

=

n∑
r=1

SrΛ̃
r
k.



A.1 Linear algebra 89

In other words, the set of numbers Sk transforms in the same way as the components of
a covector. This means that the map

n∑
i,j,k=1

T ijkei ⊗ ej ⊗ ek 7→
n∑

i,j=1

T iije
j ,

is defined independently of the basis with respect to which we express the tensors. We
can calculate the sum over components in any basis that we like, and we will still have
the same covector as a result. This map is known as a contraction over indices. More
generally we have

Lemma A.2. Suppose T ∈ T pq(V ) has components T i1...ipj1...jq with respect to some
basis B for V . The numbers2

T i1...,̂ir,...,ipj1...,ĵs,...,jq =
n∑

ir,js=1

T i1...ipj1...,jqδ
ir
js ,

transform in the same fashion as the components of a (p− 1, q − 1)−tensor. As a result,
this defines a natural map T pq(V )→ T p−1

q−1(V ) which does not depend on the choice of
basis. This map is called ‘contraction of the r’th covariant and s’th contravariant indices’.

Summation convention

If we examine the various formulae that appear in this section, we will notice certain
patterns. In particular:

• Whenever an index appears exactly once on the left hand side of an equation, the
same index appears exactly once on the right hand side, and this index is not
summed over. These indices are called ‘free indices’.

• Whenever an index appears exactly twice, it occurs once in the upstairs position
and once in the downstairs position and is summed over from 1 to n. These indices
are called ‘dummy indices’.

• No index appears more than twice.

These features are the basis for a very powerful notation known as Einstein’s summation
convention. The basic idea is very simple: we follow the rules as stated above, and we
simply leave out any summation signs. Since the summations only appear when we see
a repeated index pair with one up and one down, we can always put them back in if
we want to. The great power of this convention is that so long as we stick to the rules,
the objects we form will always have predictable transformation rules under a change of

2 îr means omit this index
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basis3. For example, if T ∈ T 3
1(V ) and S ∈ T 0

2(V ), then

Pl = T jklSjk =
n∑

j,k=1

T jklSjk,

transform as the components of a covector.

A.1.4 Metric tensors

When looking at vectors on Rn, a useful concept is that of the inner product (sometimes
called the dot product). If we take B to be the canonical basis for Rn, then the inner
product of two vectors v,w ∈ Rn is

v ·w =

n∑
i=1

viwi.

It would be nice to write this using summation convention, however we have the problem
that both indices are upstairs, so we can’t simply drop the sum. To fix this, we introduce
a new (0, 2)−tensor, g, called the metric tensor. We define g to have components with
respect to the canonical basis:

gij =

{
1 i = j,
0 i 6= j.

Notice that under a change of basis gij will change in general. This is in contrast to δij
which is the same with respect to any basis. They are different tensors, even though in
this basis it looks like they have the same components: the position of indices matters!
Having defined g, we can write the inner product of two vectors as

v ·w = gijv
iwj .

More generally, we will say that a metric tensor is a symmetric, non-degenerate,
(0, 2)−tensor. A (0, 2)−tensor is symmetric if gij = gji and non-degenerate if

gijv
iwj = 0 for all wj =⇒ vi = 0.

This condition is equivalent to requiring the matrix with components gij to be invertible.
We denote the components of the inverse of gij by gij . These satisfy

gijgjk = gkjg
ji = δik. (A.5)

Exercise A.2. Verify that if the numbers gij are the unique solution of (A.5) then they
indeed transform as the components of a (2, 0)−tensor. This tensor is called the cometric.

3In this regard, summation convention is similar to Newspeak:

“In the end we shall make thoughtcrime literally impossible, because there will be no words
in which to express it.”

1984, George Orwell
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The metric tensor allows us to identify V and V ∗ as follows. An element v ∈ V with
components vi is identified with the element v[ with components

vi := gijv
j .

Similarly, an element ω ∈ V ∗ with components ωi is identified with the element ω] ∈ V
with components

ωi = gijωj .

The notation ], [ is inspired by musical notation and is designed to recall ‘raising’ and
‘lowering’ an index. The identification between V and V ∗ induced by g is occasionally
called, somewhat whimsically, the musical isometry. This obviously extends to higher
rank tensors, and allows us to identify elements of T pq(V ) with elements of T p′q′(V ) so
long as p + q = p′ + q′. By convention, when writing the components of two tensors
identified via g, we use the same core letter, relying on the raised and lowered indices to
indicate which space the tensor belongs to. When we have a metric tensor, we will often
speak of a rank k–tensor, without specifying the index structure.

A.1.5 The orthogonal groups

Given a metric tensor, g, we naturally have a bilinear form on V , defined by

g(v,w) = gijv
iwi = viwi = viw

i.

By a Gram-Schmidt type of process, it is possible to construct a basis B = {ei}i=1,...,n

such that for some r ∈ {1, . . . , n+ 1} we have

g(ei, ej) = gij =


−1 i = j, j < r,

1 i = j, j ≥ r,
0 i 6= j.

(A.6)

Exercise A.3. Adapt the Gram-Schmidt process to show that there always exists a basis
such that (A.6) holds.

We call such a basis, B, an orthonormal basis. With respect to an orthonormal basis,
the metric tensor g (thought of as a matrix) is diagonal, with entries ±1. The number of
positive and negative signs is fixed, independent of which orthonormal basis we choose,
by Silvester’s law of inertia. The number of positive and negative signs is known as the
signature of the metric, and is usually written as (+,+,+) or (−,−,+,+), or alternatively
as (r, s), where r is the number of negative signs and s the number of positive. There are
two cases that are most often studied. If all entries are positive, we say the metric has
Riemannian signature, and in this case it defines a positive-definite inner product on V .
If we have one negative entry and the rest positive, or one positive and the rest negative,
we say the metric has Lorentzian signature. This is the case of interest for special and
general relativity.

Exercise A.4. Consider R3 with its canonical basis. Find an orthonormal basis for the
metric whose components are given by

g12 = g21 = g33 = 1, all other components 0.
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and write down the signature of the metric.

Having established that every metric admits at least one orthonormal basis, a natural
question arises concerning other orthonormal bases. Suppose we have a basis B with
respect to which g has components given by (A.6). Let B′ be a new basis which is also
orthonormal, and suppose Λij is the matrix corresponding to this change of basis. Then
by the transformation law for components of T 0

2(V ), we have that

g′ij = Λ̃kiΛ̃
l
jgkl,

so that if g′ij = gij , we deduce:

gij = Λ̃kiΛ̃
l
jgkl. (A.7)

Exercise(∗). Show that (A.7) holds if and only if:

gij = ΛkiΛ
l
jgkl, (A.8)

If Λi
j satisfies either (A.7) or (A.8), we say that the corresponding transformation

is orthogonal. Orthogonal transformations form a group, which can be identified with
a subgroup of GL(n,R). We denote this group by O(r, s), where (r, s) is the signature
of the metric tensor g. In the case that r = 0, we have O(0, n) ≡ O(n), the standard
orthogonal group. To see this, we note that

ΛkiΛ
l
jδkl =

(
ΛTΛ

)
ij
.

The group at the heart of Special Relativity is O(1, 3), which is sufficiently important
that it has its own name, the Lorentz group.

A.2 Review of differentiation in Rn

We will review some material about differentiation, and fix some notation that will
(hopefully) be familiar if you attended the Manifolds course.

Suppose U is an open subset of Rn and suppose we have a function f ∈ C1(U). This
implies that at each point in x there exists a linear map df |x : Rn → R such that if
V ∈ Rn is any vector, and s is sufficiently small, we have

f(x + sV ) = f(x) + s df |x V + o(s).

The linear map df |x is called the differential of f at x. Geometrically, we should think
of the vector V in this formula as having its base at x. We call the space of such vectors
TxU , which is isomorphic, as a vector space, with R3. Since df |x is a linear map from
TxU to R, it belongs to the dual space of TxU , which we denote T ∗xU . Given any vector
V ∈ TxU , we can define the directional derivative of f along V at x to be:

V [f ](x) := df |x V = lim
s→0

f(x + sV )− f(x)

s
.



A.2 Review of differentiation in Rn 93

A.2.1 Working in coordinates

Now, suppose {ei}i=1,...,n is a basis for Rn, and let {ej}i=1,...,n be the dual basis for (Rn)∗,
defined by

ei(ej) = δij .

We define the functions
xi : R3 → R

x 7→ ei(x)

for i = 1, . . . , n. It follows4 that we can write:

x = xiei. (A.9)

For any vector V ∈ T ∗xU , we have

dxi
∣∣
x

(V ) = V [xi](x) = lim
s→0

ei(x + sV )− ei(x)

s
= ei(V ).

In other words, we have dxi = ei.
Now consider a function f which is continuously differentiable in a neighbourhood of

x ∈ U , and let us look at V [f ](x), the directional derivative of f along V . We can write
V = V iei, so that

V [f ](x) = df |x (V iei) = V i df |x (ei) = V iei[f ](x). (A.10)

In other words, to calculate the directional derivative along an arbitrary direction, it is
enough to know the three directional derivatives ei[f ](x). These directional derivatives
are useful enough that we give them a special symbol. We write

∂

∂xi
f(x) := ei[f ](x) =

d

ds
f(x + sei)

∣∣∣∣
s=0

.

This of course agrees with our usual notion of partial derivative. We can go further
though, and declare that the object ∂

∂xi
is itself a vector, which we can identify with ei

i.e. we have:
∂

∂xi
= ei ∈ TxU.

We will often find it useful to write as shorthand:

∂

∂xi
:= ∂i

Of course, we have:
dxi(∂j) = δij .

Returning to (A.10), we write

V [f ](x) = V iei[f ](x) = ei(V )ei[f ](x) =
∂f

∂xi
dxi
∣∣∣∣
x

(V )

4Check this. You may need to refer to §A.1
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so that we can write

df |x =
∂f

∂xi
dxi
∣∣∣∣
x

.

Because we have respected the Einstein summation convention, the right hand side of
this formula is independent of the choice of basis that we originally made (as, of course it
must be).

Exercise A.5. a) Suppose that we consider a new basis {e′i} for R3. Show that the set
of numbers

∂f

∂xi
,

transform in the same way as the components of a co-vector.

b) Fix x ∈ U and suppose that V ,W ∈ TxU are two vectors such that for any f ∈ C1(U)
we have

V [f ](x) = W [f ](x).

Show that V = W .

A.3 Differential geometry

We will briefly review the basic definitions of a manifold, the tangent bundle and higher
rank tensor bundles.

A.3.1 Manifolds

Definition 21. A Ck-atlas of a second countable, Hausdorff, topological spaceM is a
collection of charts {(Uα, φα)} which satisfy:

i) Each Uα ⊂M is an open subset ofM, and the Uα coverM.

ii) ϕα is a homeomorphism from Uα onto an open subset of Rn.

iii) If Uα ∩ Uβ 6= ∅, then

ϕαβ := ϕβ ◦ ϕ−1
α : ϕα (Uα ∩ Uβ)→ ϕβ (Uα ∩ Uβ)

is a Ck−diffeomorphism between subsets of Rn, that is to say that ϕ−1
αβ exists and

both ϕαβ and ϕ−1
αβ are Ck-functions on their respective domains. The functions ϕαβ

are called transition functions.

We say that two Ck-atlases {(Uα, ϕα)} and {(Vα, ψα)} forM are compatible if their
union is again a Ck-atlas. Clearly compatibility defines an equivalence relation.

Definition 22. A Ck-manifold is a second countable, Hausdorff, topological spaceM,
equipped with an equivalence class of Ck-atlases. The dimension of the manifold is n,
where we understand the charts as mapping into Rn.
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We can define in an exactly analogous way, a smooth (C∞) or real analytic5 (Cω)
atlas (and hence manifold) by requiring that the transition functions be smooth or real
analytic diffeomorphisms between open subsets of Rn. We will always assume that k ≥ 1,
which means that objects such as the tangent space are well defined.

Obviously if we have a Ck-manifold, we can always extract from it a Ck′-manifold for
k′ < k by picking a representative Ck-atlas and considering it’s equivalence class among
Ck
′-atlases. There is a pitfall for the unwary in that these two manifolds, although based

on the same topological space, are not the same. It is, however, common practice to leave
the regularity of the manifold unstated in many circumstances so one should be careful.

Example 14. Let U ⊂ Rn be an open set with the subset topology. This is certainly a
second countable, Hausdorff, topological space. We can equip U with a trivial Cω-atlas,
given by {(U, id)}. Thus U , with the equivalence class of atlases defined by the trivial
atlas, is a real analytic manifold.

Example 15. We define S1 to be the second countable, Hausdorff6, topological space
R/∼◦ , where

x∼◦y ⇐⇒ ∃ n ∈ Z s.t. x = y + 2πn.

We can define an atlas as follows. Let 0 ≤ α < 2π. We set Uα = S1 \ [α]∼◦ , and define

ϕα : Uα → (0, 2π)
[x]∼◦ 7→ θ − α

where θ is the unique real number satisfying θ∼◦x and α < θ < α + 2π. Suppose
0 ≤ α < α′ < 2π. We have that

ϕα (Uα ∩ Uβ) = (0, 2π) \ {α′ − α}
ϕβ (Uα ∩ Uβ) = (0, 2π) \ {2π + α− α′}

and

ϕαβ(s) =

{
s+ 2π + α− α′ 0 < s < α′ − α,
s− α′ + α α′ − α < s < 2π.

This can be easily verified to be a real analytic diffeomorphism, so that A = {Uα, ϕα}α∈[0,2π)

is a real analytic atlas for S1. Taking A to define an equivalence class of Cω-atlases, we
can make S1 into a real analytic manifold.

A.3.2 Mappings between manifolds, and their derivatives

Smooth functions

Suppose that we have two manifoldsM,N , which are both at least Ck-regular7 and are
equipped with representative atlases {(Uα, ϕα)}, {(Vβ, ψβ)}. Consider a function:

f :M→N .
5A function f is real analytic if there is a neighbourhood of every point on which f can be expressed

as a convergent Taylor series.
6you should check that this is true
7From now on, we’ll abuse notation and allow ‘k = ∞’ and ‘k = ω’ in statements like this.
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We say that f is Ck-smooth if for any α, β, the function

ψβ ◦ f ◦ ϕ−1
α : Uα → Vβ

is Ck, understood in the usual way for maps between subsets of Rn and Rm. We denote
by Ck(M;N ) the set of all Ck-smooth maps fromM to N .

Exercise(∗). Show that this definition is independent of the choice of atlases. That is, if
we choose a different atlas {(U ′α, ϕ′α)} forM which is compatible with {(Uα, ϕα)}, our
definition of Ck(M;N ) agrees for both.

Exercise A.6. a) Show that the identity map on a Ck-manifold,M, always belongs to
Ck(M;M).

b) Show that if f, g ∈ Ck(M;R), we have fg ∈ Ck(M;R), where we define the product
pointwise fg(p) = f(p)g(p).

c) Suppose M1,M2,M3 are all at least Ck regular, and that f ∈ Ck(M1;M2), g ∈
Ck(M2;M3). Show that g ◦ f ∈ Ck(M1;M3).

d) LetM be a Ck-manifold of dimension n and let πi : Rn → R be the projection onto
the ith coordinate. Suppose that (Uα, ϕα) is a chart. Show that

ϕiα = πi ◦ ϕα : Uα → R

is Ck-smooth.

Example 16. Take S1 and R2 with their real analytic structures as previously defined.
We define a map

f : S1 → R2,
[x]∼◦ 7→ (sinx, cosx).

First, note that this is well defined regardless of which representative x for [x]∼◦ we
choose. Now consider the functions

id ◦ f ◦ ϕ−1
α : (0, 2π) → R2,

θ 7→ (sin(θ + α), cos(θ + α)).

which are clearly real analytic. Thus, f ∈ Cω(S1;R2).

The tangent and co-tangent space at a point

Now that we have defined our Ck-smooth functions, we can define the tangent vectors
to the manifoldM at a point p ∈M . There are various ways of doing this, some more
concrete than others. We’ll give the definition here, and then show how this definition
fits with our intuition from the case of Rn.

We say that a Ck-smooth map γ : (−ε, ε) →M is a curve in M. Fix p ∈ M. We
define the tangent space at p, TpM to be the space of curves inM with γ(0) = p, modulo
the equivalence relation:

γ1 ∼ γ2 if
d

dt
[f ◦ γ1] (t)

∣∣∣∣
t=0

=
d

dt
[f ◦ γ2] (t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R).
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Each element of TpM (i.e. each equivalence class of curves under ∼) is called a tangent
vector at p, and we write [γ]∼ = γ̇(0). For any tangent vector V ∈ TpM, and function
f ∈ Ck(M;R), we define the directional derivative of f along V at p to be:

V [f ](p) :=
d

dt
[f ◦ γ] (t)

∣∣∣∣
t=0

for any γ such that γ̇(0) = V . This is a useful way to think of a tangent vector at p. It is
a direction in which we can differentiate a function.

We can endow TpM with a vector space structure using the following result:

Lemma A.3. Let (Uα, ϕα) be a chart with p ∈ Uα. The chart induces a canonical
identification between TpM and Rn.

Proof. Let us set ϕα(p) = x. Suppose we are given two curves γ1, γ2 with γi(0) = p. We
can use the fact that ϕ−1

α ◦ ϕα = idUα to see that

d

dt
[f ◦ γ1] (t)

∣∣∣∣
t=0

=
d

dt
[f ◦ γ2] (t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R)

holds if and only if

d

dt

[
f ◦ ϕ−1

α ◦ ϕα ◦ γ1

]
(t)

∣∣∣∣
t=0

=
d

dt

[
f ◦ ϕ−1

α ◦ ϕα ◦ γ2

]
(t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R)

which is true if and only if

d

dt

[
f̃ ◦ γ̃1

]
(t)

∣∣∣∣
t=0

=
d

dt

[
f̃ ◦ γ̃2

]
(t)

∣∣∣∣
t=0

for all f̃ ∈ Ck (ϕα(Uα);R) .

Where for i = 1, 2 we have defined

γ̃i : (−ε, ε) → ϕα(Uα),
t 7→ (ϕα ◦ γi)(t)

which is a curve in a subset of Rn. As a result, we can simply apply the chain rule to
deduce that γ1 ∼ γ2 if and only if we have equality of the directional derivatives:

V1[f ](x) = V2[f ](x), for all f ∈ Ck(ϕα(Uα);R),

where Vi = ˙̃γ(0) are the tangent vectors to the curves γ̃i, in the usual sense of curves in
Rn. By Exercise A.5 this holds if and only if V1 = V2. Thus, with each equivalence class
[γ]∼ we can associate a unique vector in Rn via the coordinate chart (Uα, ϕα). Conversely,
from V ∈ Rn, we can construct the curve

γV (t) = ϕ−1
α (x + V t)

Which satisfies ˙̃γV (0) = V . Thus, the chart (Uα, ϕα) induces a canonical identification of
TpM with Rn.
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We deduce from this Lemma the important result:

Theorem A.1. Given γi : (−ε, ε) → M with γi(0) = p for i = 1, 2 and λ ∈ R, there
exists a curve γ such that

d

dt
[f ◦ γ] (t)

∣∣∣∣
t=0

=
d

dt
[f ◦ γ1] (t)

∣∣∣∣
t=0

+ λ
d

dt
[f ◦ γ2] (t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R). Clearly, this defines [γ]∼ = γ̇(0) uniquely. We then write

γ̇1(0) + λγ̇2(0) := γ̇(0)

This provides us with a definition of addition of tangent vectors and scalar multiplica-
tion. With these definitions, TpM is a real vector space of dimension n.

Proof. We may simply take (with the notation of the Lemma)

γ(t) = γV (t)

where
V = ˙̃γ1(0) + λ ˙̃γ2(0).

This gives us a vector space isomorphism between TpM and Rn.

We can use this canonical identification induced by (Uα, ϕα) to provide us with a
basis for TpM for each p ∈ Uα. We pick a basis {ei}i=1,...,n for Rn and define(

∂

∂xi

)
p

= (∂i) := γ̇ei(0).

We say that
{(

∂
∂xi

)
p

}
is a coordinate basis for TpM.

The reason for this notation is made clear by the following result

Lemma A.4. Suppose f ∈ Ck(M;R) and let (Uα, ϕα) be a chart with p ∈ Uα and
ϕα(p) = x. We define f̃ = f ◦ ϕ−1

α , which is a Ck function defined on some open set
about x = xiei. We then have:(

∂

∂xi

)
p

[f ](p) =

(
∂f̃

∂xi

)
(x)

where on the right hand side, we simply have the partial derivative of f̃ as a function on
Rn.

Proof. We simply calculate using the definitions:(
∂

∂xi

)
p

[f ](p) =
d

dt
[f ◦ γei ]

∣∣∣∣
t=0

=
d

dt

[
(f ◦ ϕ−1

α )(x + eit)
]∣∣∣∣
t=0

=

(
∂f̃

∂xi

)
(x).
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Now that we have the vector space TpM, we are free to construct its dual, and the
higher rank tensor spaces associated with it. Particularly important is the dual space
T ∗pM, known as the co-tangent space at p. The cotangent space is the natural place in
which the differential of a function lives:

Definition 23. Given f ∈ Ck(M;R), we define the differential of f at p, df |p to be the
linear map

df |p : TpM → R,
V 7→ V [f ](p).

We can define a basis for T ∗pM from the coordinate basis for TpM by duality. We
define dxi

∣∣
p
∈ T ∗pM by the requirement that

dxi
∣∣
p

[(
∂

∂xj

)
p

]
= δij .

With this definition we have

df |p =

(
∂

∂xi

)
p

[f ](p) dxi
∣∣
p

The tangent and co-tangent bundles

In the previous subsection, we restricted our attention to vectors and co-vectors defined
at a single point. More often than not, rather than considering a vector at a single point
we want to consider a vector field, where we have a vector defined at each point. Before
discussing vector fields, we introduce the tangent bundle. This is the disjoint union over
the tangent spaces at each point in the manifold:

TM =
⊔
p∈M

TpM =
⋃
p∈M
{p} × TpM.

We shall show that a Ck-atlas forM induces a Ck−1-atlas for TM, so that the tangent
bundle may be given a manifold structure in a natural fashion. Suppose {(Uα, ϕα)} is
a Ck-atlas forM. Pick a chart (Uα, ϕα). We know that at each point p ∈ Uα the chart
induces a canonical identification between TpM and Rn. A tangent vector V ∈ TpM is
identified uniquely with a vector V ∈ Rn. We now define:

Ûα =
⊔
p∈Uα

TpM

and
ϕ̂α : Ûα → ϕα(Uα)× Rn,

(p, V ) 7→ (ϕα(p),V ).

Clearly ϕ̂α maps Ûα bijectively onto an open subset of R2n. We define a topology on
TM by declaring that A ⊂ TM is open if and only if ϕ̂α

(
A ∩ Ûα

)
is open in R2n for

any α. One can verify that this definition turns TM into a second countable, Hausdorff,
topological space.
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Lemma A.5. The collection {(Ûα, ϕ̂α)} is a Ck−1-atlas for TM.

Proof. By construction, ϕ̂α maps Ûα homeomorphically onto an open subset of R2n and
moreover the sets Ûα cover TM. It remains to show that the transition functions are
Ck−1-diffeomorphisms between subsets of R2n. I claim that we have

ϕ̂αβ : ϕα(Uα ∩ Uα)× Rn → ϕβ(Uα ∩ Uα)× Rn,
(x,Vα) 7→ (ϕαβ(x), Dϕαβ|x (Vα)).

To see this, recall that if ϕα(p) = x, then Vα ∈ Rn corresponds to V ∈ TpM under the
identification induced by ϕα implies that V = γ̇(0) for the curve

γ : (−ε, ε) → M,
t 7→ ϕ−1

α (x + tVα).

Recall also that, going in the other direction, if V ∈ TpM, then under the identification
induced by ϕβ it corresponds to the vector Vβ ∈ Rn defined by

Vβ =
d

dt
(ϕβ ◦ γ)(t)

∣∣∣∣
t=0

for any γ : (−ε, ε)→M such that γ(0) = p and γ̇(0) = V . Combining these two facts,
we have that

Vβ =
d

dt
(ϕβ ◦ ϕ−1

α )(x + tVα)

∣∣∣∣
t=0

=
d

dt
(ϕαβ)(x + tVα)

∣∣∣∣
t=0

= Dϕαβ|x (Vα).

Now, since ϕαβ is a Ck-diffeomorphism, Dϕαβ is a Ck−1 map into the space of invertible
matrices, thus the transition function ϕ̂αβ is a Ck−1-diffeomorphism.

As a consequence, we have:

Theorem A.2. The tangent bundle naturally inherits the structure of a Ck−1-manifold
of dimension 2n.

An entirely analogous construction can be performed in which we glue together the
co-tangent spaces to define the co-tangent bundle, T ∗M. This again inherits the structure
of a Ck−1-manifold of dimension 2n fromM. The only difference in our development
above is that the relevant transition functions are given by8:

ϕ̂∗αβ : ϕα(Uα ∩ Uα)× (Rn)∗ → ϕβ(Uα ∩ Uα)× (Rn)∗ ,

(x,ωα) 7→ (ϕαβ(x), Dϕ−1
αβ

∣∣∣∗
x

(ωα)).

8recall that the adjoint of a linear map Λ : V → V is a linear map Λ∗ : V ∗ → V ∗ whose action on
ω ∈ V ∗ is given by:

(Λ∗ω) [v] = ω [Λv] , for all v ∈ V.
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Glueing together tensor products of TpM and T ∗pM in the same manner, we can construct
tensor bundles of arbitrary rank.

Definition 24. SupposeM is at least k + 1 regular.

i) A Ck−vector field is a Ck−map X :M→ TM such that at every point p ∈M, we
have X(p) ∈ Tp(M). The set of all Ck−vector fields is denoted X(M), or Xk(M) if
the regularity is not obvious from context.

ii) A Ck−one-form is a Ck−map ω :M→ T ∗M such that at every point p ∈ M, we
have ω(p) ∈ T ∗p (M). The set of all Ck−one-form fields is denoted X∗(M), or X∗k(M)
if the regularity is not obvious from context.

Notice that there is a natural paring Xk(M)× X∗k(M)→ Ck(M;R) defined by

p ∈M 7→ ω|p
(
X|p

)
.

We can extend the definition to higher rank tensor fields in the obvious fashion.
Suppose thatM is a Ck−manifold and that ϕ : U ⊂ M→ U ⊂ Rn is a coordinate

chart, and pick a basis {ei} for Rn. At each point, we have a basis for TpM given by{(
∂

∂xi

)
p

}
.

For each i, the map
∂
∂xi

: U → TU ⊂ TM
p 7→

(
∂
∂xi

)
p

defines a Ck−1−vector field on U , i.e.
∂

∂xi
∈ Xk−1(U).

This vector field is also sometimes written ∂i. In a similar fashion, dual to these vector
fields we have the one-forms

dxi ∈ X∗k−1(U)

satisfying

dxi
(

∂

∂xj

)
= δij .

We know that at each point p ∈ U that {(∂i)p}i=1,...,n, {dxi
∣∣
p
}i=1,...,n span TpM, T ∗pM

respectively. As a consequence, any Cr−smooth (p, q)−tensor field with r ≤ k− 1 can be
written locally as

T = Tµ1,...µpν1,...νq
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµp
⊗ dxν1 ⊗ · · · ⊗ dxµq

Where Tµ1,...µpν1,...νq : U → R are Cr−functions, called the components of T in the
coordinate chart (ϕ,U). Using the chain rule, it is straightforward to demonstrate that
the condition that the components are Cr−smooth is independent of the coordinate chart,
provided r ≤ k − 1.
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A.3.3 Derivations and commutators

Definition 25. A Cr−derivation on the Ck−manifoldM is an R−linear map

D : Cs+1(M;R)→ Cs(M;R)

for any s ≤ r, which satisfies

i) D(f1 + λf2) = Df1 + λDf2,

ii) D(f1f2) = f1Df2 + f2Df1,

for all fi ∈ Cs+1(M;R), λ ∈ R.

A vector field V ∈ Xr(M) naturally defines a Cr−derivation. We can check that

DV f(p) := Vp[f ] =
d

dt
f ◦ γ(t)

∣∣∣∣
t=0

where γ(0) = p, γ̇(0) = Vp satisfies the conditions above. Conversely, we can identify a
Cr−derivation with a Cr−vector field. To see this, we first note that any C1−function
in Rn may be written locally about a point y as

g(x) = g(y) + gi(x)(xi − yi),

where gi ∈ C0(Rn) with gi(y) = ∂g
∂xi

(y). Now consider a point p ∈ M and a coordinate
chart (U , ϕ) with p ∈ U and ϕ = (ϕ1, . . . , ϕn). We deduce that any function f ∈ C1(M;R)
may be written for q in a neighbourhood of p as:

f(q) = f(p) + fi(q)(ϕ
i(q)− ϕi(p))

for some fi ∈ C0(M;R) with fi(p) = ∂
∂xi

∣∣
p

[f ]. Applying an arbitrary derivation to this
formula, we deduce that

Df = (ϕi − ϕi(p))Dfi + fiDϕ
i

Evaluating this formula at p we deduce:

Df(p) = fi(p)Dϕ
i(p) =

∂

∂xi

∣∣∣∣
p

[f ]Dϕi(p) = V |p [f ]

where V |p ∈ TpM is the tangent vector given in local coordinates by:

V |p = Dϕi(p)
∂

∂xi

∣∣∣∣
p

Defining V ∈ Xr(U) by

V := Dϕi
∂

∂xi

we have
D = DV .

We have shown that in a neighbourhood of any point there exists a V such that D = DV .
Since a vector field is uniquely determined by its action on functions, V is uniquely fixed
by this condition.
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Lemma A.6. LetM be a Ck manifold. Suppose X,Y ∈ Xr(M) for r < k. There exists
a unique vector field [X,Y ] ∈ Xr−1(M) defined by the condition:

[X,Y ]f = X(Y f)− Y (Xf), ∀f ∈ Cr(M;R)

Proof. By the previous discussion, it suffices to check that the operation [X,Y ]f defines
a Cr−1−derivation. We calculate

[X,Y ](f1 + λf2) = X(Y (f1 + λf2))− Y (X(f1 + λf2))

= X(Y f1)− Y (Xf1) + λ [X(Y f2)− Y (Xf2)]

= [X,Y ]f1 + λ[X,Y ]f2,

using the R−linearity of the action of a vector field on a function. We also find

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY g + gY f)− Y (fXg + gXf)

= fX(Y g) + (Xf)(Y g) + (Xg)(Y f) + gX(Y f)

− [fY (Xg) + (Y f)(Xg) + (Y g)(Xf) + gY (Xf)]

= f [X(Y g)− Y (Xg)] + g [X(Y f)− Y (Xf)]

= f [X,Y ]g + g[X,Y ]f

Hence the operation f 7→ [X,Y ]f is a derivation, to which we can associate the unique
vector field [X,Y ].

Exercise(∗). Working in a coordinate patch, U so that we can write

X = Xi ∂

∂xi
, X = Y i ∂

∂xi
,

for Xi, Y i ∈ Cr(U ;R), show that

[X,Y ] =

(
Xi∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
.

A.3.4 Immersions and embeddings

Push forward, pull back

For this section, we shall make the assumption that all manifolds and objects that we
discuss are smooth. We return to the situation we considered earlier, where we have two
smooth manifolds N ,M, of dimension n, n+ d respectively. Suppose we have a function
φ ∈ C∞(N ;M). The mapping φ naturally induces relations between various geometric
objects defined on the two manifolds N ,M. We start with the pull back of a function by
φ. Suppose f ∈ C∞(M;R), we define the pull back of f by φ, written φ∗f ∈ C∞(N ;R)
by

φ∗f := f ◦ φ.
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Now let us consider vectors. Suppose X ∈ TpN , and that γ ∈ C∞((−ε, ε),N ) satisfies
γ(0) = p, γ̇(0) = X. We can define a curve, γ̃ ∈ C∞((−ε, ε),M) by:

γ̃ := φ ◦ γ

We define the push-forward of X by φ, written φ∗X ∈ Tφ(p)M by:

φ∗X = ˙̃γ(0).

Lemma A.7. Suppose that X ∈ X(N ), f ∈ C∞(M;R) and φ ∈ C∞(N ,M). Fix p ∈ N .
Then:

X(φ∗f)|p = [(φ∗X) f ]|φ(p) ,

and
fφ∗X|φ(p) = φ∗ [(φ∗f)X]|φ(p)

Proof. Fix p ∈ N . Suppose that γ satisfies γ(0) = p, γ̇(0) = X|p. From the definition of
a vector acting on a function, we have:

X(φ∗f)|p =
d

ds
(φ∗f) ◦ γ(s)

∣∣∣∣
s=0

=
d

ds
(f ◦ φ) ◦ γ(s)

∣∣∣∣
s=0

=
d

ds
f ◦ (φ ◦ γ)(s)

∣∣∣∣
s=0

=
d

ds
f ◦ γ̃(s)

∣∣∣∣
s=0

= (φ∗X) f |φ(p)

For the second part, suppose that g ∈ C∞((M);R), and calculate using the previous
result:

[f (φ∗X) g]|φ(p) = f(φ(p))X(φ∗g)|p
= (φ∗f) (p) X(φ∗g)|p
= [(φ∗f)X(φ∗g)]|p
= φ∗ [(φ∗f)X] g|φ(p)

Now, suppose that ω ∈ T ∗φ(p)M is a one-form. We can define the pull-back of ω by φ,
written φ∗ω ∈ TpN by:

[φ∗ω] (X) = ω (φ∗X) , ∀ X ∈ TpN .

These definitions readily extend to allow us to define the push forward of any (p, 0)−tensor,
and the pull-back of any (0, q)−tensor. Notice that the push forward and pull-back at
each point p are linear maps between vector spaces.
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Exercise(∗). Suppose f ∈ C∞(M;R) and φ ∈ C∞(N ,M). Show that:

d (φ∗f) = φ∗df.

Notation: Where the choice of map φ is clear from context, we will write f∗ = φ∗f ,
X∗ = φ∗X, etc.

Definition 26. We say that a map ı ∈ C∞(N ;M) is a smooth immersion if the push
forward map:

ı∗ : TpN → Tφ(p)M

is an injective linear map for each p ∈ N . We say that ı is a smooth embedding if moreover
ı is injective. In this case, we write ı : N ↪→M.

If we have that ı ∈ C∞(N ;M) is an immersion, then for each p ∈ N , we can identify
TpN ' Tı(p)ı(N ), where Tı(p)ı(N ) is a linear subspace of Tφ(p)M.

Canonical immersions and extensions

Lemma A.8 (Canonical Immersion Theorem). Suppose ı : N ↪→M is an immersion,
and fix p ∈ N . There exist coordinate charts (U , ϕ) and (V, ψ) for N andM respectively,
with ϕ(p) = 0, such that

ψ ◦ ı ◦ ϕ−1 : ϕ(U) → ψ(V),
(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

Proof. Let us fix (U , ϕ) to be a coordinate chart for N centred at p, i.e., ϕ(p) = 0. Now
consider any (V, ψ), a coordinate chart forM centred at ı(p), and set f = ψ ◦ ı ◦ ϕ−1.
We will denote by (xi)i=1,...n the coordinates on ϕ(U) ⊂ Rn, and by (ya)a=1,...,n+d the
coordinates of ψ(V) ⊂ Rn+d.

The fact that ı is an immersion implies that Df(0) is injective, so by a linear
transformation on Rn+d, we may assume

Df(0) =
(
In×n 0d×n

)
.

Now set
h(y1, . . . , yn+d) = f(y1, . . . yn) + (0, . . . , 0, yn+1, . . . , yn+d),

defined on some neighbourhood of 0 in Rd+n. Clearly h(0) = 0 and Dh(0) = I(n+d)×(n+d),
so by restricting the domain to a subset if necessary, we can assume that h is smoothly
invertible. We can easily verify that on a sufficiently small neighbourhood of 0, the map
h−1 ◦ f takes (x1, . . . , xn) to (x1, . . . , xn, 0, . . . , 0), so by redefining ψ to be ψ ◦ h and
shrinking U ,V as necessary, we are done.

From here, we can derive various extension Lemmas which allow us to locally extend
objects defined on ı(N ) to a neighbourhood inM in a smooth fashion. Obviously such
extensions are highly non-unique.
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Corollary A.3. Suppose ı : N → M is an immersion, and let p ∈ N . There exists a
neighbourhood W of p in M such that for any f ∈ C∞(N ;R) we can find a function
f̃ ∈ C∞(M;R) with f = ı∗f̃ in W.

Proof. For p ∈ N we have local coordinate charts (U , ϕ), (V, ψ) centred at p, ı(p) such
that ı is given by the canonical immersion. Pick W b ϕ(U), and define W = ϕ−1(W ).
Let χT : U → [0, 1] be a smooth cut-off function equal to unity on W and vanishing near
the boundary of ϕ(U). We define f = f ◦ ϕ−1 and finally we set f̃ = 0 onM\ V, and
f̃ = f̃ ◦ ψ, for

f̃(y1, . . . yn+d) = χN (yn+1, . . . , yn+d)χT (y1, . . . , yn)f(y1, . . . , yn).

Here χN : Rd → [0, 1] is a smooth cut-off function, equal to 1 at the origin and supported
on a sufficiently small set that

supp (χN (yn+1, . . . , yn+d)χT (y1, . . . , yn)) ⊂ ψ(V).

Let U ⊂ N be an open set, and X ∈ X(U). We say that X̃ ∈ X(M) is an extension
of X away from ı(U) if X(f∗) = ı∗

[
X̃(f)

]
in U for any φ ∈ C∞(M;R). Equivalently,

X∗ = X̃ on ı(U).

Corollary A.4. Suppose ı : N → M is an immersion and let p ∈ N . There exists a
neighbourhood W of p in N such that for any X ∈ X(N ) we can find X̃ ∈ X(M) which
is an extension of X away from ı(W).

Proof. Take the same charts as in the previous proof, so that (xi) are local coordinates
on N and (ya) are local coordinates onM. We have that:

X =
n∑
i=1

Xi ∂

∂xi
,

for Xi ∈ C∞(U ,R). By the previous result, there exists W ⊂ N containing p, and
X̃i ∈ C∞(N ;R) such that ı∗X̃i = Xi. Defining X̃ ∈ X(M) by:

X̃ =
n∑
i=1

X̃i ∂

∂yi

we have the desired extension away from ı(W).

This allows us to prove the following result

Lemma A.9. Suppose X,Y ∈ X(N ), and pick p ∈ N . Let X̃, Ỹ ∈ X(M) be extensions
of X,Y away from ı(U) for some neighbourhood U of p. Then

[
X̃, Ỹ

]
is an extension of

[X,Y ] away from ı(U).



A.4 Matrix Lie Groups 107

Proof. We calculate in U :([
X̃, Ỹ

]
(φ)
)∗

=
[
X̃
(
Ỹ (φ)

)]∗
−
[
Ỹ
(
X̃ (φ)

)]∗
= X

([
Ỹ (φ)

]∗)
− Y

([
X̃ (φ)

]∗)
= X (Y (φ∗))− Y (X (φ∗))

= [X,Y ] (φ∗)

whence we are done.

Diffeomorphisms

We say that the map φ ∈ C∞(N ;M) is a diffeomorphism if φ−1 exists and belongs to
C∞(M;N ). A diffeomorphism allows us to identify TpN ' Tφ(p)M for all p ∈ N .

We can construct a family of diffeomorphisms takingM to itself from a vector field
X ∈ X(M). For this, we require the following result:

Lemma A.10. Let X ∈ X(M), and suppose p ∈M. Then there exists a parameterised
curve γ ∈ C∞((a, b);M), where a < 0 < b, satisfying:

γ(0) = p, γ̇(s) = X|γ(s) .

This is called an integral curve of X starting at p, and is unique up to extension.

Proof. Take a coordinate chart (ϕ,U) with p ∈ U , and write X = Xi ∂
∂xi

, for Xi ∈
Ck(U ;R), and set ϕ ◦ γ(s) = x(s) = (xi(s)). The condition on γ becomes:

ẋi(s) = Xi ◦ ϕ−1(x(s)), x(0) = ϕ(p),

which is an ordinary differential equation, with Lipshitz right hand side, whose solutions
are unique up to extension. By this local uniqueness property, the curve is defined
independent of the coordinate chart, and is unique up to extension.

Lemma A.11. Suppose that X ∈ X(M) has the property that for each p ∈M, the integral
curve of X through p, written γp can be extended so that it belongs to Ck((−ε, ε);M) for
some ε independent of p. Then the map

Xφs : p 7→ γp(s)

is a diffeomorphism, referred to as the one parameter family of diffeomorphisms induced
by X.

A.4 Matrix Lie Groups

This section is meant to give a very brief introduction to Lie groups. We bypass a lot of
important theory and focus our attention on the matrix Lie groups. As a result, some
of the definitions are not standard, but allow us to get to our goal more quickly. It is
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certainly no substitute for a proper study of the beautiful topic of Lie groups. Think of
the approach here as ‘good enough’ for our purposes.

We’ll start by extending the familiar definition of a group to encompass an additional
requirement, that of differentiability.

Definition 27. A group is a set G, together with a binary operation · such that

i) a · b ∈ G for all a, b ∈ G [Closure]

ii) (a · b) · c = a · (b · c) for all a, b ∈ G [Associativity]

iii) There exits e ∈ G such that e · a = a · e = a for all a ∈ G [Existence of an identity]

iv) For each a ∈ G there exists b ∈ G such that a · b = b · a = e [Existence of an inverse]

The identity element is unique, as is the inverse, and we write b = a−1 if a · b = b · a = e.
A Lie group is a group, where the set G has a smooth9 structure making it into a

manifold in such a way that the operations · and ()−1 are smooth.

The many of the most important Lie groups are groups of matrices:

Example 17. Consider the set GL(n) of invertible n× n real matrices. This is naturally
a group with the group operation of matrix multiplication. Thinking of GL(n) as an
open subset of Rn2 with the standard real analytic structure, GL(n) is also a manifold
in a natural way. Matrix multiplication and inversion are smooth with respect to this
structure, as can be seen by writing out the operations in components.

In fact, this example (and its subgroups) will be sufficiently rich to cover the situations
that we are interested in for this course. We define in the obvious way

Definition 28. A Lie subgroup of a Lie group G is a subgroup H of G endowed with a
topology and smooth structure making it into a Lie group in such a way that the inclusion
map is an immersion. A matrix Lie group is an embedded Lie subgroup of GL(n).

An important (and deep result) tells us when a subgroup of a Lie group is in fact a
Lie subgroup:

Proposition 2 (Closed subgroup theorem). If H is a subgroup of G which is closed (in
the topology of G), then H is an embedded Lie subgroup of G.

This gives us the following result

Lemma A.12. Suppose that H is a subgroup of GL(n) with the property that for any
sequence An ∈ H with An → A ∈ Mat(n × n) component-wise, either A ∈ H or
A 6∈ GL(n). Then H is a matrix Lie group.

Example 18. 1. GL+(n) = {A ∈ GL(n) : detA > 0} is a matrix Lie group

2. SL(n) = {A ∈ GL(n) : detA = 1} is a matrix Lie group
9It turns out that we can assume that the manifold is Cω without any loss of generality.
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3. O(n) = {A ∈ GL(n) : ATA = I} is a matrix Lie group

4. The set of matrices A ∈ GL(2) of the form

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ Q,

is a subgroup of GL(2), but not a matrix Lie group.

A.4.1 The matrix exponential

A very useful tool to understand the structure of matrix Lie groups is the matrix
exponential. Before we define the matrix exponential, it’s first useful to introduce a norm
on Mat(n× n), called the operator norm. We define

||A||op. = sup
x∈Rn,x 6=0

||Ax||
||x||

where ||·|| is the usual Euclidean norm. We clearly have that for any non-zero x ∈ Rn:

||Ax|| ≤ ||A||op. ||x|| .

we deduce that

||(A+B)x|| ≤ ||Ax|| + ||Bx|| ≤ ||A||op. ||x|| + ||B||op. ||x||

so that
||A+B||op. ≤ ||A||op. + ||B||op. .

so the triangle inequality is satisfied by this norm. The other criteria for ||·||op. to define
a norm are straightforward to verify.

We can also show by a simple induction that

||Anx|| ≤ ||A||nop. ||x||

holds for any x and thus
||An||op. ≤ ||A||

n
op. .

Definition 29. The matrix exponential of an element A ∈Mat(n× n) is defined to be

Exp A = eA :=

∞∑
k=0

An

n!
. (A.11)

Exercise(∗). i) Show that the sum on the right hand side of (A.11) converges in the
operator norm for any A (and hence with respect to any other norm onMat(n×n)).
Show also that (

eA
)T

= eA
T
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ii*) Show that the matrix exponential is a real analytic function Mat(n× n)→ GL(n),
where both spaces inherit the canonical real analytic structure of Rn2 , and show
that

d

dt
etA = AetA = etAA

and
etAesA = e(t+s)A = esAetA

for t, s ∈ R. Deduce that (
eA
)−1

= e−A.

iv) Show that

lim
n→∞

(
1 +

1

n
A

)n
= eA,

v) Deduce that if Γ : (−ε, ε)→ GL(n) is a C1−curve with Γ(0) = I and Γ̇(0) = A, we
have

lim
n→∞

[
Γ

(
1

n

)]n
= eA

A.4.2 The Lie algebra

With the matrix exponential in our pocket, we are ready to define the Lie algebra of a
matrix Lie group.

Definition 30. The Lie algebra h of a matrix Lie group H is defined to be the set of all
matrices a ∈Mat(n× n) such that eta ∈ H for all t ∈ R.

Theorem A.5. Let h be the Lie algebra of a matrix Lie group H. Then

i) a ∈ h⇔ a ∈ TIH, i.e. a is in the Lie algebra if and only if there exists a C1−curve
Γ : (−ε, ε)→ H with Γ(0) = I and Γ̇(0) = a.

ii) h is a vector subspace of Mat(n× n), i.e. if a, b ∈ h then a+ λb ∈ h

iii) h is closed under the matrix commutator, i.e. if a, b ∈ h then [a, b] = ab− ba ∈ h

Proof. i) “⇒” is trivial, take Γ(t) = eta. For “⇐”, we use the fact that Γ
(
t
n

)
∈ H for

any t ∈ R and n a sufficiently large integer to deduce that[
Γ

(
t

n

)]n
∈ H

for n sufficiently large. We know

lim
n→∞

[
Γ

(
t

n

)]n
= eta

which is invertible, so by the closeness of H, we have eta ∈ H and we’re done.
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ii) Suppose a, b ∈ h and fix λ ∈ R. Consider the curve Γ : (−ε, ε)→ H given by

Γ(t) = etaetλb

This is clearly C1 and we readily calculate that

Γ(0) = I, Γ̇(0) = a+ λb,

so that a+ λb ∈ h.

iii) Now consider the curve Γ : (−ε, ε)→ H given by

Γ(t) =


e
√
tae
√
tλbe−

√
t(a+b) t > 0

I t = 0

e
√
−tbe

√
−tλae−

√
−t(a+b) t < 0

This is smooth for t 6= 0. Expanding for t small and positive, we have

Γ(t) =

[
I +
√
ta+

1

2
ta2 + o(t)

] [
I +
√
tb+

1

2
tb2 + o(t)

] [
I −
√
t(a+ b) +

1

2
t(a+ b)2 + o(t)

]
= I + t

{
1

2

[
a2 + b2 + (a+ b)2

]
+ ab− a(a+ b)− b(a+ b)

}
+ o(t)

= I +
t

2
{ab− ba}+ o(t)

Noting that we can obtain the expansion for t small and negative by interchanging
t↔ −t and a↔ b, we deduce that Γ is in fact C1 with Γ̇(0) = 1

2 [a, b].

Thus the Lie algebra of a matrix Lie group is naturally a vector space endowed with
an antisymmetric bilinear operation [, ], which moreover satisfies the Jacobi identity

[[a, b] , c] + [[b, c] , a] + [[c, a] , b] = 0

One can abstractly define a Lie algebra to be a vector space endowed with such an
operation, but the concrete realisation as a space of matrices endowed with the matrix
commutator is the most useful for us.

A.4.3 The orthogonal group

As a brief example, we will give a brief treatment of the orthogonal group. Recall

O(n) = {A ∈ GL(n) : ATA = I}.

Let us find the Lie algebra, o(n). Suppose Γ : (−ε, ε)→ O(n) with Γ(0) = I. We have

Γ(t)TΓ(t) = I, t ∈ (−ε, ε)

so we can differentiate this condition to find

Γ̇(t)TΓ(t) + Γ(t)T Γ̇(t) = 0, t ∈ (−ε, ε)
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so that, setting t = 0 we deduce that if Γ̇(0) = a ∈ o(n) we must have

aT + a = 0

so that a is antisymmetric. Conversely, suppose that a is antisymmetric. We have(
eta
)T

= eta
T

= e−ta =
(
eta
)−1

,

so that eta ∈ O(n). Thus o(n) is precisely the set of antisymmetric matrices.
We should be careful here. Although eta ∈ O(n) whenever a ∈ o(n), not every element

of O(n) can be written as the exponential of an antisymmetric matrix. We know that
if A ∈ O(n) a simple calculation shows that detA = ±1. The determinant of a matrix
is a continuous real valued function, so on any continuous curve Γ : (a, b) → O(n) the
determinant must be constant. In particular for a ∈ o(n) we have:

det
(
eat
)

= 1.

In fact, we can show that by exponentiating elements of o(n) it is possible to construct
any element of SO(n).

Exercise(∗). Let

a1 =

 0 0 0
0 0 −1
0 1 0

 , a2 =

 0 0 1
0 0 0
−1 0 0

 , a3 =

 0 −1 0
1 0 0
0 0 0


Show that

[ai, aj ] = εijkak,

where εijk is the totally antisymmetric tensor with ε123 = 1. Show also that:

eθa1 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and find similar expressions for eθa2 , eθa3 . Deduce that by exponentiating o(3) we can
produce a matrix representing an arbitrary rotation, i.e. an arbitrary element of S0(3).
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Bonus material

B.1 Integration in E1,3 and the divergence theorem

We will need to integrate over surfaces embedded in E1,3 and relate these surface integrals
to volume integrals using the divergence theorem in the usual way. We would like the
expressions we write down to be invariant under a change of frame. This is slightly
complicated when the metric has Lorentzian signature. The main issue is that the notion
of outwards unit normal becomes tricky when vectors can have zero norm.

First, suppose we have an open set U ⊂ E1,3 and that f : U 7→ R is a function defined
on U . Picking an inertial frame {~eµ}, we naturally have that f̃ : (xµ) 7→ f(xµ~eµ) is a
map from some subset of Ũ ⊂ R4 to R. We say that f is measurable if f̃ is Lebesgue
measurable. Consider now

I[f ] :=

∫
Ũ
f̃(x)dx

where dx is the standard Lebesgue measure on R4. Now consider a different choice of
inertial frame {~eµ′}. We define f̃ ′ : (x′µ) 7→ f(x′µ~eµ

′), which maps Ũ ′ ⊂ R4 to R. We
have

f̃(x) = f̃ ′(Λx)

Where Λ ∈ O(1, 3) is the matrix representing the change of basis. Now, we have

I ′[f ] =

∫
Ũ ′
f̃ ′(x)dx =

∫
Ũ
f̃(y) |det Λ| dy =

∫
Ũ
f̃(y)dy = I[f ]

where we change variables xµ = Λµνy
ν and use that |det Λ| = 1. Thus, we can define∫
U
fdX := I[f ],

and this definition is independent of the inertial frame.
Next, let us introduce the alternating tensor. This is a (0, 4)−tensor, defined to be

totally antisymmetric (i.e. antisymmetric under exchange of any pair of indices), and
such that in a given inertial frame we have

ε0123 = 1.

113
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Under a Lorentz transformation with metric Λµν , the alternating tensor transforms as1

εµνστ = (det Λ)ε′µνστ ,

so that provided we restrict the transformations to belong to SO(1, 3), this tensor is
invariant.

Now suppose that we have a surface Σ which may be written as Σ = ϕ(U) for a
smooth parameterisation ϕ:

~ϕ : U ⊂ R3 → Σ ⊂ E1,3

(y1, y2, y3) 7→ ϕµ(y)eµ

The choice of parameterisation naturally gives an orientation to the surface. At any point,
the ordered set of vectors {

∂~ϕ

∂y1
,
∂ ~ϕ

∂y2
,
∂ ~ϕ

∂y3

}
defines an oriented basis for TΣ.

The vector surface measure of Σ with respect to this parameterisation is the vector
measure (defined on a subset of R3):

dS ~ϕµ = εµνστ
∂ϕν

∂y1

∂ϕσ

∂y2

∂ϕτ

∂y3
dy

Where dy is the standard Lebesgue measure on R3.
For example, suppose we consider the plane Σ = {t = 0}, which we can parameterize

by the map:
~ϕ : U ⊂ R3 → Σ ⊂ E1,3

(y1, y2, y3) 7→ yiei

so that ϕ0(y) = 0, ϕi(y) = yi. Then we have that for this parameterisation

dSϕ0 = dy, dSϕi = 0.

Exercise(∗). a) Show that if F : W → U is an orientation preserving diffeomorphism
between subsets of R3 then∫

y∈U
V µ(~ϕ(y))dS ~ϕµ =

∫
y∈W

V µ(~ϕ ◦ F (y))dS(~ϕ◦F )
µ .

b) Show that if P is the orientation reversing diffeomorphism P : W → U given by
y → −y, then we have∫

y∈U
V µ(~ϕ(y))dS ~ϕµ = −

∫
y∈W

V µ(~ϕ ◦ P (y))dS(~ϕ◦P )
µ .

Deduce that ∫
y∈U

V µ(~ϕ(y))dS ~ϕµ

depends only on the orientation of Σ and not on the choice of parameterisation.
1Check that you understand why this is!
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With the vector surface measure, we can define the flux of a sufficiently smooth vector
field V through Σ: ∫

Σ

~V · d~S :=

∫
y∈U

V µ(~ϕ(y))dS ~ϕµ

The flux of ~V through Σ does not depend on the choice of parameterisation, but it does
depend on the orientation for the surface Σ. By taking a partition of unity to localise ~V
in coordinate patches2, we can define the flux through any oriented surface3 Σ ⊂ E1,3.

If Σ is an orientable surface which is everywhere spacelike or timelike, we can define a
scalar measure on Σ, which we’ll denote by dσ:∫

Σ
fdσ =

∫
Σ
f ~N · d~S

where ~N is a unit normal of Σ with respect to η (i.e. η( ~N, ~N) = ±1) with the direction
chosen such that NµdSϕµ is a positive measure on U ⊂ R3 for each parameterisation
respecting the orientation. Notice that if Σ is not either everywhere spacelike or timelike
then this definition does not make sense because a null surface does not have a well
defined unit normal. We still have a perfectly reasonable vector measure, but no scalar
measure.

Theorem B.1. Suppose that ~V is a vector field on a bounded domain U ⊂ E1,3, whose
boundary Σ = ∂U is piecewise smooth. Suppose also that V µ ∈ C1(U). Then we have∫

U
∇µV µdX =

∫
Σ

~V · d~S,

where the orientation of Σ is chosen such that if ~K is an outwards pointing vector
transverse to Σ, then

{ ~K, ~V1, ~V2, ~V3}

is a positively oriented basis for TpE1,3 whenever {~V1, ~V2, ~V3} is a positively oriented basis
for TpΣ.

We shall omit the proof here. It can be deduced from the usual divergence theorem
on R4 keeping careful account of changes of sign.

Lemma B.1. With the same set-up as in Theorem B.1, the choice of orientation for Σ
is equivalent to the requirement that

KµdSϕµ

is a positive measure on U ⊂ R3, whenever ~ϕ : U → Σ is a local parameterisation
respecting the orientation.

2This is a technical point, which can usually be avoided. If the surface Σ cannot be smoothly
parameterised by a single coordinate patch then we have to write our vector field ~V as a sum of terms
each of which is supported on a single patch. We can then define the integral of ~V over the surface by
linearity.

3i.e. a surface with a consistent global choice of orientation
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Corollary B.2. Suppose that ~V is a vector field on a bounded domain U ⊂ E1,3, whose
boundary Σ = ∂U is piecewise smooth and can be written as Σ = Σs ∪ Σt where Σs is
spacelike and Σt is timelike. Suppose also that V µ ∈ C1(U). Then we have∫

U
∇µV µdX =

∫
Σs

~V · ~Ndσ −
∫

Σt

~V · ~Ndσ,

where ~N is the unit outwards normal.

Notice here that there is a sign change for the timelike surfaces relative to the spacelike
surfaces.

Example 19. Fix an inertial frame for E1,3. Consider the cylinder C = {xµ : 0 < x0 <
1, |x| < 1}. We have:∫

C
∇µV µdX =

∫
x0=1,x∈B1(0)

V tdx−
∫
x0=1,x∈B1(0)

V tdx+

∫
[0,1]×∂B1(0)

V · n dσdt

where Br(x) is the Euclidean ball of radius r centred at x and n, dσ are the usual outward
directed normal and surface measure of the unit Euclidean sphere.
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