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Abstract

One of the crowning achievements of modern physics is Einstein’s theory of
general relativity, which describes the gravitational field to a very high degree
of accuracy. As well as being an astonishingly accurate physical theory, the
study of general relativity is also a fascinating area of mathematical research,
bringing together aspects of differential geometry and PDE theory. In this
course, I will introduce the basic objects and concepts of general relativity
without assuming a knowledge of special relativity. The ultimate goal of the
course will be a discussion of the Cauchy problem for the vacuum Einstein
equations, including a statement of the relevant well-posedness theorems and
a discussion of their relevance. We will take a ’field theory’ approach to the
subject, emphasising the deep connection between Lorentzian geometry and
hyperbolic PDE. In contrast to the course PX436 General Relativity offered
by the department of physics, we concentrate on the mathematical structure
of the theory rather than its physical implications.

By the end of the module, students should be able to:

• Understand how the Minkowski geometry and Lorentz group arise from
considerations of signal propagation for the scalar wave equation.

• Understand the basics of Lorentzian geometry: the metric; causal clas-
sification of vectors; connection and curvature; hypersurface geometry;
conformal compactifications; the d’Alembertian operator.

• Be able to state the well-posedness theorems for the Cauchy problem for
the Einstein equations and sketch the proof of local well posedness.
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Introduction

A brief history of light

Light moves fast. Famously fast. So fast, in fact, that it’s extremely difficult to observe that
its speed, c, is finite. For this reason many people through history have, understandably,
concluded that the speed of light is infinite. Debate on the matter dates back at least to
the ancient Greeks, and the finiteness of c was only really established towards the end of
the 17th century.

The first definitive experimental proof that light has a finite speed was given by Rømer
in 1676. His argument was based on measurements of Jupiter’s moon Io. At some times
in the year, Earth is moving towards Jupiter, while at others it is moving away. Rømer
observed what we would now call a Doppler shift in the orbital frequency of Io. When
the Earth moves towards Jupiter, the frequency of its orbit appears to increase, while
when Earth is moving away from Jupiter the frequency decreases. By combining his
measurements of the frequency change with estimates of the diameter of Earth’s orbit,
Rømer argued for a value (in modern units)

c ' 2.2× 108 ms−1,

which is pretty good considering our modern value of c = 3.00 × 108 ms−1. Although
controversial at first, further measurements confirmed Rømer’s demonstration that c is
indeed finite.

At the time, there were two competing theories regarding the nature of light. Isaac
Newton favoured the ‘corpuscular theory of light’, according to which light consists of
particles. The competing theory of Huygens instead described light as a wave, propagating
through the ‘luminiferous æther’. It was not until 1804 that Young undertook his famous
‘twin slits’ experiment and demonstrated the wave character of light.

The next step in understanding light came as part of one of the great achievements
of 19th century physics. This was the unification in the early 1860s, by Maxwell, of the

iv



A brief history of light v

electrical and magnetic forces. Maxwell’s equations in a vacuum have the form:

∇ ·E = 0, (1)
∂B

∂t
+ ∇×E = 0, (2)

∇ ·B = 0, (3)

ε0
∂E

∂t
− 1

µ0
∇×B = 0. (4)

Here E,B are the electric and magnetic fields and µ0, ε0 are two constants, known as
the permeability and permittivity of free space. From these constants, we can form
a combination, (ε0µ0)−

1
2 , which somewhat suggestively has dimensions of speed. One

of Maxwell’s great contributions was to show that the system of PDEs (1–4) admits
propagating wave solutions, with speed c = (ε0µ0)−

1
2 , and to identify these electromagnetic

waves with light.

Exercise(∗). Consider a system of particles of mass mi at positions ri(t) ∈ R3. Suppose
that the particle j exerts a force Fij on the particle i, where Fij = Fij(ri − rj) depends
only on the relative separation of the particles. Show that Newton’s equation of motion
for the system:

mi
d2ri
dt2

=
∑
j

Fij

is invariant under the Galilean boost ri → ri(t) + vt.

As a means of describing the nature of light, Maxwell’s equations were a triumph.
Their interpretation gave rise to certain puzzles, however. There is a definite speed, c,
present in Maxwell’s equations. What should this speed be measured relative to? It had
been known since Galileo and Newton that the laws of mechanics do not define a definite
frame of reference: two identical mechanical systems moving at a constant speed relative
to one another cannot be distinguished. Not so for Maxwell’s equations: changing to a
different frame moving at a constant speed by the Galilean boost which leaves Newton’s
mechanics invariant does not preserve the Maxwell equations.

One possible resolution to this issue was to postulate the existence of the ‘aether’,
some fluid-like substance through which light moves (and relative to which the speed of
light is c). This however gives rise to more questions. If light propagates as waves in
some aether, what are its properties? How does it interact with moving bodies? Is it like
a fluid, flowing around solid objects and dragged along by them when they move? Or
does it flow through matter without interacting with it?

Several experiments were made towards the end of the 19th century to try and answer
these questions. The most well known of these was the Michelson-Morley experiment,
which aimed to measure the speed of the earth relative to the aether. To do this, they
measured the speed of light at various times of day and at different times of the year.

If light does behave like water waves on some background fluid, then one would expect
to see directional and seasonal variation in the speed of light, with it apparently moving
faster in the direction of the ‘aether wind’. No such effect was observed by Michelson and
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Morley. Several people helped resolve this paradox, with particular contributions due to
Fitzgerald, Lorentz and Poincaré, who between them showed that it’s possible to make
a change of coordinates preserving the form of Maxwell’s equations and representing
a shift to a frame in uniform motion, but only if one transforms both time and space
variables simultaneously. In 1905, Einstein was able to derive these transformations from
the relativity postulate (that physics is the same in two frames which are in uniform
relative motion) and the constancy of the speed of light. The resulting theory of space
and time is known as Special Relativity.

Gravity and General Relativity

At the start of the 20th century, the prevailing theory of gravitation was that of Newton.
In this theory, the gravitational field is represented by a function, Φ, which solves the
Poisson equation:

∆Φ = 4πGρ, (5)

with ρ(x, t) the density of matter. The gravitational force on a particle of mass m is then
give by:

F = −m∇Φ. (6)

This theory of gravitation successfully describes almost all of the gravitational phenomena
that are observable in our solar system. However, it is not compatible with Einstein’s
theory of Special Relativity. The reason for this is that the field Φ exhibits an infinite
speed of propagation: a change in ρ instantly causes Φ to change everywhere in space
simultaneously. Coupling this type of theory to Special Relativity introduces many
paradoxes.

Finding a way to reconcile his theory of Special Relativity with Newton’s theory of
gravity took Einstein 10 years. The crucial observation that permitted him to find a
relativistic theory of gravitation is the principle of equivalence. All bodies in a gravitational
field accelerate at the same rate regardless of their mass. Einstein realised that this
phenomenon could be explained if freely falling bodies follow the geodesics of a curved
geometry with metric g. This postulate replaces the equation (6).

The curved metric g encodes the gravitational field. Einstein’s field equations:

Ricg −
1

2
Rg =

8πG

c2
T (7)

relate the curvature of the geometry to the density of matter, encoded in T , and are the
replacement for (5).

In this course, we shall study some of the mathematical underpinnings of the theories
of special and general relativity, as they are now understood. We will start off by
studying the linear wave equation. For our purposes, this is a slightly simplified version of
Maxwell’s equations. Through the study of the wave equation, we will be lead to a study
of the Lorentzian geometry of Minkowski space. We will then introduce the concepts of
curvature, which will allow us to formulate Einstein’s equations. We will finally move on
to discuss the solvability of Einstein’s equations.



Chapter 1

The Wave Equation and Special Relativity

1.1 The wave equation from Maxwell’s equations

In this course we are going to take a PDE based approach to relativity. We will begin
with exploring special relativity in the context of the wave equation:

−∂
2u

∂t2
+ c2∆u = 0.

This provides a convenient proxy for the study of Maxwell’s equations. We could instead
study Maxwell’s equations directly, but since these are a system of PDEs for 6 components
of the electromagnetic field they can be a bit unwieldy.

In fact, Maxwell’s equations are closely related to the wave equation, as our first result
will establish:

Lemma 1.1. Let us denote ST := R3 × (−T, T ). Suppose E,B ∈ C2(ST ) satisfy
Maxwell’s equations. Then each component of E,B satisfies the wave equation:

−∂
2Ei
∂t2

+ c2∆Ei = 0

−∂
2Bi
∂t2

+ c2∆Bi = 0

in ST , where c = (µ0ε0)−
1
2 .

Proof. We start with (2) and differentiate in time to find

−∂
2B

∂t2
−∇× ∂E

∂t
= 0.

Using (4) to replace the term involving Ė, we have

−∂
2B

∂t2
− 1

µ0ε0
∇× (∇×B) = 0.

Now, a standard vector calculus identity tells us that ∇× (∇×A) = ∇ (∇ ·A)−∆A
for any C2 vector field A. Making use of this, together with (3), we deduce the result.

1



2 Chapter 1 The Wave Equation and Special Relativity

Exercise(∗). Complete the proof by showing that the components of E obey the wave
equation.

Later on in the course we shall be able to show a converse to this result, namely
that we can find a solution of Maxwell’s equations by solving the wave equation for each
component.

At this stage, it’s useful to assume that we are using units in which c = 1. For
example, we can take the second as our unit of time and the light-second as our unit of
length. This is convenient as it saves us carrying around a constant in our formulae. If
you want to replace c it’s always possible to do so by thinking about what units various
quantities ought to carry.

1.2 The Cauchy problem for the wave equation

For the rest of this chapter, we shall be discussing solutions of the wave equation. We
will start by considering the Cauchy problem. In general, the Cauchy problem for a
PDE consists of specifying some data on a given surface and then trying to find a unique
solution of the PDE in a neighbourhood of that surface. We will discuss this much more
thoroughly when we come to the Cauchy-Kovalevskaya theorem. For now, let us consider
what data we might expect to have to specify on the surface Σ0 := R3 × {0} in order to
find a unique solution of the wave equation:

− ∂2u

∂t2
+ ∆u = 0 (1.1)

in ST := R3×(−T, T ). In order to see what data might be necessary to solve this problem,
we can try and write u as a formal1 power series in t about t = 0. That is, to try and
find coefficients un so that the formal power series:

u(x, t) =

∞∑
n=0

un(x)
tn

n!

solves (1.1). Putting this series into the equation, we find that we can cancel the terms
order by order if:

−un+2(x) + ∆un(x) = 0, n = 0, 1, . . .

In other words, once we have specified u0(x) = u(x, 0) and u1(x) = ut(x, 0), at least
in principle we can find the rest of the terms in the formal power series by repeated
differentiation. In other words, we expect that the correct Cauchy data for the wave
equation on Σ0 are the values of u|Σ0

and ut|Σ0
.

The formal power series argument above, while suggestive, is not terribly useful. For
the solutions we shall ultimately be interested in, the series expansion above will not
converge, so any arguments based on manipulating these series are rather suspect. We
need a better tool before we can understand solutions of the wave equation. In particular,
we require some a priori estimates for the solutions. Recall from the Theory of PDE

1in this context, ‘formal’ means that we will ignore issues of convergence.



1.2 The Cauchy problem for the wave equation 3

course that an a priori estimate is a an estimate that we can deduce directly from the
equation, without having to write down a solution, i.e. they are estimates that must hold
for all solutions. In the Theory of PDE course, the main a priori estimates we used were
the Maximum Principle for Laplace’s equation and for the heat equation. For the wave
equation no maximum principle exists, instead we make use of energy estimates.

Theorem 1.1 (Basic energy estimate for the wave equation). Let ST := R3 × (−T, T )
and Σt = R3 × {t}. Suppose that u ∈ C2(ST ) solves (1.1) in ST , and that there exists R
such that u(x, t) = 0 for |x| > R. Then if we define

E[u](t) :=
1

2

∫
Σt

(
u2
t + |∇u|2

)
dσ =

1

2

∫
R3

(
ut(x, t)

2 + |∇u(x, t)|2
)
dx,

we have
dE[u]

dt
= 0.

Proof. The assumptions on u(x, t) imply that we can restrict the range of the integration
in E to B2R(0) and that that we can differentiate E(t) with respect to time and pass the
time derivative under the integral2 to obtain

dE[u]

dt
=

∫
B2R(0)

(ututt + ∇u ·∇ut) dx

=

∫
B2R(0)

(ututt −∆uut) dx+

∫
∂B2R(0)

ut∇u · n dσ

Here we have used the vector calculus identity ∇ · (f∇g) = ∇f ·∇g + f∆g and then
applied the divergence theorem. The first integral vanishes, because the integrand is
proportional to utt − ∆u which is zero since u obeys the wave equation. The second
integral vanishes because u = 0 for |x| > R. The result follows.

Later on, we shall show that the assumption that solutions vanish outside a sufficiently
large ball is in fact a reasonable one, because solutions to the wave equation exhibit finite
speed of propagation. In the context of relativity, this is an analogue of the statement that
no signal may travel faster than the speed of light.

From this result, we can immediately deduce that a solution of the wave equation is
indeed uniquely determined by our proposed Cauchy data, namely u|Σ0

and ut|Σ0
.

Corollary 1.2. Suppose u, v ∈ C2(ST ) solve (1.1) in ST , and that there exists R such
that u(x, t) = v(x, t) = 0 for |x| > R. Suppose further that:

u|Σ0
= v|Σ0

, ut|Σ0
= vt|Σ0

.

Then u = v in ST .

2Check that you understand why this is true. You may wish to look at the appendix of the notes for
the course MA3G1.



4 Chapter 1 The Wave Equation and Special Relativity

Proof. Consider w = u − v. This solves (1.1) in ST and is in C2(ST ). Moreover,
w|Σ0

= wt|Σ0
= 0. Thus E[w](0) = 0. By Theorem 1.1 we have that E[w](t) = 0 for all

−T < t < T . As a consequence, we have |∇w| = |wt| = 0 on ST , which together with
the fact that w vanishes for large x implies that w = 0 on ST .

Our energy estimate has shown that specifying u and ut on a surface of constant
time is enough to ensure the solution to the Cauchy problem, if it exists, is unique. In
fact, the energy estimate gives us a statement of continuity: the L2−norms of ut(·, t) and
|∇u| (·, t) are controlled by the initial data. More precisely, we say that two solutions
u, v as in Corollary 1.3 are ε−close in the energy norm at time t if:

E[u− v](t) ≤ ε.

We clearly have

Corollary 1.3. Suppose u, v ∈ C2(ST ) solve (1.1) in ST , and that there exists R such
that u(x, t) = v(x, t) = 0 for |x| > R. Suppose further that u and v are initially ε−close
in the energy norm. Then they remain ε−close for all times t ∈ (−T, T ).

We can improve the control over the solution to control higher derivatives:

Exercise 1.1. Let ST := R3 × (−T, T ) and Σt = R3 × {t}. Fix k ∈ N. Suppose that
u ∈ C2+k(ST ), solves the wave equation (1.1) in ST , and that there exists R such that
u(x, t) = 0 for |x| > R. Define u0 := u|Σ0

and u1 := ut|Σ0
.

a) By deriving an equation for ∇iu for i = 1, 2, 3 show that3

1

2

∫
Σt

(
|∇ut|2 +

∣∣∇2u
∣∣2) dσ =

1

2

∫
R3

(
|∇u1|2 +

∣∣∇2u0

∣∣2) dx
for −T < t < T .

b) Deduce that:

1

2

∫
Σt

(∣∣∣∇kut

∣∣∣2 +
∣∣∣∇k+1u

∣∣∣2) dσ =
1

2

∫
R3

(∣∣∣∇ku1

∣∣∣2 +
∣∣∣∇k+1u0

∣∣∣2) dx.
for −T < t < T .

We have thus established that a solution, if it exists, to the Cauchy problem for the
wave equation is unique and moreover that the solution depends continuously (in an
appropriate sense) on the initial data. The final aspect of well posedness that remains to
prove is that a solution does in fact exist. Rather than prove this now, we shall postpone
our discussion to a later date, and just state a well posedness result.

3Here
∣∣∇2u

∣∣2 =
∑
i,j ∇i∇ju∇i∇ju, etc.
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Theorem 1.4 (Well posedness of the wave equation). Suppose that u0, u1 ∈ C∞c (R3).
Then there exists a unique solution u ∈ C∞(R3 × R) to the Cauchy problem:{

−utt + ∆u = 0 in R3 × R,
u = u0, ut = u1 on R3 × {0}.

Moreover, if supp ui ⊂ BR(0), for i = 1, 2, then supp u(·, t) ⊂ BR+|t|(0).

Remarks: we have stated the theorem for smooth functions. Finite regularity versions
of this theorem can be stated, however, if we work with spaces of Ck functions, then we
have to assume more regularity on the initial data than we are able to recover for the
solution. We say that the Ck−norms are not propagated by the wave equation. This is
closely related to the absence of a maximum principle for the wave equation (see Exercise
1.2). The natural function spaces to consider are in fact the Hk spaces, whose norms are
propagated by the equations4.

Notice that the support of the function grows at most linearly in time. This is related
to the finite speed of propagation. Finally, we have stated a result which is global in t, i.e.
we do not restrict to a time interval (−T, T ). Obviously our result implies similar results
on ST .

Exercise 1.2. Let R3
∗ := R3 \ {0}, S∗,T := R3

∗ × (−T, T ) and |x| = r. You may assume
the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave equation

on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST , with

u(0, t) = f ′(t).

4You will have met these spaces if you took MA4A2: Advanced PDEs. Otherwise you may ignore
this comment.



6 Chapter 1 The Wave Equation and Special Relativity

*d) By considering a suitable sequence of functions f , or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for large |x|.

1.3 Minkowski Spacetime

In the Theory of PDE course, we constructed solutions to the Cauchy problem for the
heat equation on R3: {

ut = ∆u in (0, T )× R3,
u = u0 on {0} × R3.

Physically, the function u(t, ·) corresponds to the temperature at time t of an infinite
uniform body whose initial temperature is given by the function u0. In order to write the
heat equation out in full, we pick an orthonormal basis for R3, say {ei}i=1,2,3. Such a
choice is called a frame. Once we have chosen a frame, we can define the partial derivatives
in the ei directions. For any function f ∈ C1(R3), we write:

∂f

∂xi
(x) =

d

ds
f(x + sei)

∣∣∣∣
s=0

.

The Laplacian acting on a function u is then given by

∆f(x) = gij
∂2f

∂xi∂xj
(x) = gij

∂

∂xi

[
∂f

∂xj

]
(x).

Here, I am using summation convention, so there is an implicit summation over i, j = 1, 2, 3.
I have also introduced a new tensor, the Euclidean cometric tensor, whose components
are given by:

gij =

{
1 i = j,
0 i 6= j.

As a result, when we perform the implicit summation, the only terms that survive are
the diagonal ones and we have:

∆f(x) =
∂2f

∂x1∂x1
(x) +

∂2f

∂x2∂x2
(x) +

∂2f

∂x3∂x3
(x) (1.2)

Now, in the physical explanation of what u represents, I made no reference to any
particular frame. The heat equation (1.2), however, makes explicit reference to the
coordinates xi associated to the frame. To reconcile these two facts, we can show that if
we change our orthonormal basis, we must find that the heat equation is unchanged.

Suppose e′i is another basis for R3. We must have that

ei = e′jΛ
j
i
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for some real numbers Λj
i. Now, let us consider how changing basis affects the partial

derivatives of a function f : R3 → R. Starting from the definition of the partial derivative,
we have

∂f

∂xi
(x) =

d

ds
f(x + sei)

∣∣∣∣
s=0

=
d

ds
f
(
x + se′jΛ

j
i

)∣∣∣∣
s=0

(1.3)

= Λj i
d

ds
f
(
x + te′j

)∣∣∣∣
s=0

= Λj i
∂f

∂x′j
(x)

where we have used the chain rule to go from the second to the third line. Since Λij don’t
depend on x we can differentiate again and we find

∂2f

∂xi∂xj
(x) = ΛkiΛ

l
j

∂2f

∂x′k∂x′l
(x)

We see then that the heat equation has the same form with respect to the basis {e′i} as it
did for the basis {ei} if and only if

Λkig
ijΛlj = gkl. (1.4)

Thinking of Λi
j and gij as the components of two matrices, this is equivalent to the

matrix equation:
ΛΛT = I,

which we recognise as the condition that Λ ∈ O(3), i.e. Λ is orthogonal. In other words,
the heat equation takes the same form with respect to any orthonormal frame for R3. This
reflects a physical symmetry of the underlying problem: the invariance under rotations
and reflections of a uniform body filling all of space.

We could in fact have taken the form of the heat equation to define the orthonormal
frames. In this approach, we would say that a basis for R3 is orthonormal if and only if
the heat equation takes the form

∂u

∂t
(x) =

∂2u

∂x1∂x1
(x) +

∂2u

∂x2∂x2
(x) +

∂2u

∂x3∂x3
(x)

with respect to this basis. In principle, we could hope to make physical measurements to
determine the form of the heat equation, so this connects a mathematical construction
(an orthonormal frame) to the physics of heat propagation.

The wave equation and the Lorentz group

Now we come to the equation we are actually interested in, the wave equation. The
aim is, in a similar way to our brief discussion above, to look at the symmetries of the
wave equation. The first thing we do is to drop the distinction between time and space.
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Trivially, we can consider a point (t,x) ∈ R× R3 as belonging to R4, which we wish to
think of as the space-time manifold (what this means will become clearer as the course
progresses). We introduce a basis for spacetime:

~e0 =


1
0
0
0

 , ~e1 =


0
1
0
0

 , ~e2 =


0
0
1
0

 , ~e3 =


0
0
0
1

 .

Defining x0 := t, we can write any point in R4 as

~X := (x0,x) = xµ~eµ

where we take the convention that greek indices µ, ν, etc. are summed over 0, . . . , 3. In
order to write the wave equation concisely, we introduce a (0, 2)−tensor with components
ηµν called the metric tensor, given by:

ηµν =


−1 µ = ν = 0

1 µ = ν = 1, 2, or 3,
0 µ 6= ν.

(1.5)

Notice that {~eµ} is an orthonormal basis for η. The metric tensor has an inverse, a
(2, 0)−tensor with components ηµν satisfying

ηµσησν = δµν .

Here δµν is the usual Kronecker delta, defined by

δµν =

{
1 µ = ν
0 µ 6= ν.

We can then write the wave equation very concisely as

−utt + ∆u = ηµν
∂2u

∂xµ∂xν
= 0.

We’ll sometimes use the notation

�u = ηµν
∂2u

∂xµ∂xν
,

in the same way that ∆ is used for the Laplacian. The operator � is known as the
d’Alembertian or wave operator.

Definition 1. We define the Minkowski spacetime, E1,3, to be R4 equipped with the
metic tensor η ∈ T 0

2(R4).
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1.3.1 Lorentz transformations

As we did for the heat equation above, it is instructive to consider what happens when
we choose another basis (or frame) for R4. Suppose that {~eµ′} is a new basis for R4. We
of course have

~eµ = ~eν
′Λνµ,

for a set of real numbers Λνµ. The same calculation as (1.3) shows that for any f which
is differentiable in a neighbourhood of X ∈ E1,3 we have

∂f

∂xµ
( ~X) = Λνµ

∂f

∂x′ν
( ~X).

This means that the numbers
∂f

∂xµ
( ~X)

transform like a (0, 1)−tensor under a change of basis. It’s convenient to write this as

∇µf :=
∂f

∂xµ
,

so that the wave equation can be written

∇µ∇µu = ηµν∇ν∇µu = ∇νηµν∇µu = ∇µ∇µu = 0.

It is standard to suppress the argument to keep the notation clean, but it can be replaced
if necessary.

Since the Λνµ are constant, we see that the form of the wave equation is preserved if

ηµν = Λµση
στΛντ

Thinking of Λµν and ηµν as matrices, we can write this condition as:

Λη−1ΛT = η−1. (1.6)

Definition 2. 1. A basis with respect to which η takes the form (1.5) is called an
inertial frame. Equivalently, an inertial frame is one for which the wave equation
takes the form

− ∂2u

∂x0∂x0
( ~X) +

∂2u

∂x1∂x1
( ~X) +

∂2u

∂x2∂x2
( ~X) +

∂2u

∂x3∂x3
( ~X) = 0

2. A matrix Λ satisfying (1.6) is said to be a Lorentz transformation, and represents
a transformation between inertial frames. The set of all Lorentz transformations
O(1, 3) forms a group under matrix multiplication, called the Lorentz group.

The connection between an inertial frame and the wave equation allows us, in principle,
to determine whether a frame is inertial or not by making physical measurements of some
quantity obeying the wave equation.
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Lemma 1.2. The following conditions are equivalent to (1.6):

Λ−1 = η−1ΛT η.

and
ΛT ηΛ = η.

Proof. Multiplying (1.6) on the right by η, we have

Λη−1ΛT = η−1 ⇐⇒ Λ
(
η−1ΛT η

)
= I ⇐⇒ Λ−1 = η−1ΛT η.

since Λ is a square matrix. For the second condition, multiply the first on the right by Λ
and on the left by η to see

Λ−1 = η−1ΛT η ⇐⇒ η = ηη−1ΛT ηΛ = ΛT ηΛ.

Since the three conditions are equivalent, we can take any of them to define the
Lorentz group.

Example 1. The Lorentz group contains the orthogonal group O(3) as a subgroup. To
see this, consider the set of matrices of the form

Λ =

(
1 01×4

04×1 R3×3

)
where R3×3 ∈ O(3). It is straightforward to verify that Λ ∈ O(1, 3).

The Lorentz group is a Lie group5. We can think of the Lorentz group as a Lie
subgroup of GL(4) (since by Lemma 1.2 Lorentz transformations are invertible).

Theorem 1.5. The Lorentz group is a Lie subgroup of GL(4), and its Lie algebra, denoted
by o(1, 3) is the set of matrices ` satisfying

`η−1 + η−1`T = 0.

Proof. Consider the map f : GL(4)→ Sym(4× 4) given by

f(A) = Aη−1AT .

Clearly O(1, 3) is the preimage of η−1, so it will be enough to show that η−1 is a regular
point of the map f . To see this, we calculate

df |A = (dA)η−1AT +Aη−1(dA)T

= (dA)A−1η−1 + η−1
[
(dA)A−1

]T
5Don’t worry if you’ve not met these before. All it means is that in addition to having a group

structure, O(1, 3) can be made into a manifold, in such a way that the group operations are continuous.
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for A ∈ f−1(η−1). To show that the derivative map is surjective, we must show that for
any point A ∈ f−1(η−1) and any symmetric matrix S ∈ Sym(4× 4) we can find a matrix
B such that

BA−1η−1 + η−1
[
BA−1

]T
= S

For this, we can simply take B = 1
2SηA. Thus η

−1 is a regular point of f , and we deduce
that O(1, 3) is a closed subgroup of GL(4) and hence is a Lie subgroup. To complete the
proof, we recall that the Lie algebra of a matrix Lie group is simply the tangent space
at the identity, i.e. o(1, 3) = TIO(1, 3). From the regular value theorem we know that
TIO(1, 3) = Ker df |I , which corresponds precisely to those matrices ` satisfying

`η−1 + η−1`T = 0.

The group O(1, 3) has four connected components. The connected component contain-
ing the identity is a subgroup of O(1, 3) called the proper orthochronous Lorentz group
and is denoted SO+(1, 3). There are two important Lorentz transformations which do
not belong to SO+(1, 3). These have matrices6:

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Using T, P we can write O(1, 3) as the disjoint union of connected cosets:

O(1, 3) = SO+(1, 3) ∪ T
(
SO+(1, 3)

)
∪ P

(
SO+(1, 3)

)
∪ PT

(
SO+(1, 3)

)
.

We’ve thus reduced the problem of understanding O(1, 3) to the problem of under-
standing SO+(1, 3). Any element of SO+(1, 3) may be written as

Λ = e` =
∞∑
n=0

`n

n!

for some ` ∈ o(1, 3), where the exponential here is the matrix exponential.

Example 2. We can take

` =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

6Check that these satisfy (1.6)
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We check that

`η−1 + η−1`T =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



=


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

+


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 = 0.

Clearly if ` ∈ o(1, 3), then so is −s`. The matrix exponential of −s` is straightforward to
calculate using the fact that

`2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and `3 = `. We find

e−s` =
∞∑
n=0

(−s)n`n
n!

= I − `
∞∑
n=0

s2n+1

(2n+ 1)!
+ `2

∞∑
n=1

s2n

(2n)!

= I − ` sinh s+ `2(cosh s− 1)

=


cosh s − sinh s 0 0
− sinh s cosh s 0 0

0 0 1 0
0 0 0 1


This transformation is called a boost in the x direction of rapidity s.

Let us see how the boost of rapidity s changes our coordinates. Recall that our
transformation relates the old basis to the new basis by

~eµ = ~eν
′Λνµ,

Suppose we have a point ~X ∈ R4 with coordinates xµ relative to the old basis and x′µ

relative to the new basis. We have:

~X = xµ~eµ = xµΛνµ~eν
′ = x′ν~eν

′,

so that
x′ν = Λνµx

µ.

Thus we have:

x′0 = x0 cosh s− x1 sinh s,

x′1 = −x0 sinh s+ x1 cosh s,

x′2 = x2,

x′3 = x2.
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We can take this to mean that the frame defined by ~eµ′ is moving at a speed v = tanh s
along the positive x-direction, relative to the frame defined by ~eµ. Notice that |v| < 1.
Thus two inertial frames related by a boost of this kind cannot have a relative speed
faster than the speed of light.

Classifying vectors

The metric η allows us to define an inner product for vectors in Minkowski space. We
define

η
(
~X, ~Y

)
= xµyµηµν .

By construction, this is invariant under a Lorentz transformation to a new frame.

Exercise 1.3. Show that if Λνµ is the matrix of a Lorentz transformation and

x′ν = Λνµx
µ, y′ν = Λνµy

µ.

then
x′µy′µηµν = xµyµηµν .

In particular, for any vector ~X in Minkowski space, we have an invariant quantity
η
(
~X, ~X

)
which is the same no matter which inertial frame we calculate it in. Unlike a

traditional inner product, this quantity does not need to be positive. We classify non-zero
vectors according to the sign.

Definition 3. A non-zero vector ~X ∈ E1,3 is

i) Timelike if η
(
~X, ~X

)
< 0,

ii) Null, or lightlike if η
(
~X, ~X

)
= 0,

iii) Spacelike if η
(
~X, ~X

)
> 0.

A vector is causal if it is timelike or null.
We say that a C1−curve γ : (a, b) → E1,3 is timelike/null/spacelike/causal if its

tangent vector γ̇(s) is timelike/null/spacelike/causal for every s ∈ (a, b).

You should think of a future directed timelike vector as representing the instantaneous
velocity of a particle travelling at less than the speed of light, while a future directed null
vector represents the instantaneous velocity of a particle travelling at the speed of light.
A timelike curve should be thought of as an allowable trajectory for a massive particle.

Since a Lorentz transformation does not change the quantity η
(
~X, ~X

)
, we see that if

a vector is timelike/null/spacelike with respect to one frame it is timelike/null/spacelike
with respect to every frame. Similarly, the condition of being past/future directed is
independent of frame. In Figure 1.1 we show the surfaces η

(
~X, ~X

)
= ±1, 0, which consist

of vectors of constant Minkowski norm.
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Figure 1.1 The surfaces η
(
~X, ~X

)
= 1 (one sheeted hyperboloid) η

(
~X, ~X

)
= −1 (two sheeted

hyperboloid) and η
(
~X, ~X

)
= 0 (cone)

Exercise 1.4. Using P,T and the transformations of Examples 1, 2 or otherwise:

a) Suppose that ~X ∈ E1,3 is a unit timelike vector, i.e. η
(
~X, ~X

)
= −1. Show that there

exists an inertial frame {~eµ}µ=0,...,3, such that writing ~X = xµ~eµ, we have

xµ = (1, 0, 0, 0).

Deduce that if ~X is timelike and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then ~Y is spacelike.

b) Suppose that ~X ∈ E1,3 is a null vector, i.e. η
(
~X, ~X

)
= 0. Show that there exists an

inertial frame {~eµ}µ=0,...,3 such that writing ~X = xµ~eµ, we have

xµ = λ(1, 1, 0, 0).

for some λ > 0. Deduce that if ~X is null and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then either

~Y is either spacelike or parallel to ~X.

c) Suppose that X ∈ E1,3 is a unit spacelike vector, i.e. η
(
~X, ~X

)
= 1. Show that there

exists an inertial frame {~eµ}µ=0,...,3 compatible with the time orientation such that
writing ~X = xµeµ, we have

xµ = (0, 1, 0, 0).

Deduce that if ~X is spacelike and ~Y 6= 0 satisfies η
(
~X, ~Y

)
= 0, then ~Y can be timelike,

null or spacelike.

It is also useful to classify some surfaces7 according to their causal properties. We
define

7for us a surface has three dimensions
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Definition 4. We say that a surface Σ ⊂ E1,3 is

i.) Timelike if at every point in Σ there is a timelike tangent vector.

ii.) Null if at every point in Σ there is a null tangent vector, but no timelike tangent
vector.

iii.) Spacelike if every vector tangent to Σ is spacelike.

We have the following useful result, which can be proven by choosing a suitable
orthonormal basis.

Lemma 1.3. i.) If Σ is timelike, then locally there exists a spacelike vector field which
is normal to the tangent plane (with respect to η).

ii.) If Σ is spacelike, then locally there exists a timelike vector field which is normal to
the tangent plane (with respect to η).

1.3.2 Causal geometry

We can define a relation between timelike vectors ~T1, ~T2 by:

~T1 ∼ ~T2 ⇐⇒ η(~T1, ~T2) < 0. (1.7)

Exercise 1.5. Show that the relation ∼ between timelike vectors defined in (1.7) is an
equivalence relation. [Hint: the final part of Exercise 1.4 a) may be useful]

Definition 5. A time orientation for the Minkowski spacetime is an equivalence class of
timelike vectors [~T ]∼. We say that a causal vector, X, is future directed if η( ~X, ~T ) < 0 and
past directed if η( ~X, ~T ) > 0 for any ~T ∈ [~T ]∼. We say that an inertial frame {~eµ}µ=0,...,3

is compatible with the time orientation ~T if ~e0 is future directed.
Suppose an inertial frame {~eµ}µ=0,...,3 is compatible with the time orientation ~T , and

that {~eµ′}µ=0,...,3 is related to {~eµ}µ=0,...,3 by a Lorentz transformation Λ. We say that Λ
preserves the time orientation if {~eµ′}µ=0,...,3 is compatible with the time orientation. We
define the orthochronous Lorentz group, O+(1, 3), to be the subgroup of O(1, 3) consisting
of all of the Lorentz transformations which preserve the time orientation.

Lemma 1.4. We can decompose the orthochronous Lorentz group as:

O+(1, 3) = SO+(1, 3) ∪ P(SO+(1, 3)).

Proof. We first show that transformations in SO+(1, 3) preserve time orientation. Suppose
for contradiction that {~eµ′}µ=0,...,3 is not compatible with the time orientation [~T ]∼, so
that η(~e0

′, ~T ) ≥ 0 and that the bases are related by

~eµ = ~eν
′Λνµ,

with Λ ∈ SO+(1, 3). This implies that there exists a continuous map Γ : [0, 1]→ O(1, 3)
with Γ(0) = I,Γ(1) = Λ. Consider the map f : [0, 1]→ R given by

f(s) = η
(
~eν
′Γν0(s), ~T

)
.
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U

I+(U)

U

J+(U)

Figure 1.2 The chronological (left) and causal (right) future of a set U

U

D+(U)

Figure 1.3 The future Cauchy development of a set U

We have that f is continuous, f(0) < 0 and f(1) ≥ 0, so there exists s0 ∈ [0, 1] such
that f(s0) = 0. Since Γ ∈ SO+(1, 3), we know that ~eν ′Γν0(s0) is a unit timelike vector,
however any non-zero vector orthogonal to the timelike vector ~T must be spacelike, which
gives a contradiction.

Finally, we observe that P preserves the time orientation and T does not. Together
with the decomposition of O(1, 3), we obtain the result.

Obviously, we can define a future directed timelike/causal curve by requiring that the
tangent vector is future directed timelike/causal at all points on the curve. This allows
us to talk about the future and past of a subset U ⊂ E1,3. We will define three important
sets:

Definition 6. 1. The chronological future of U ⊂ E1,3, denoted I+(U), is the set of all
points p ∈ E1,3 which can be reached from U by a future directed timelike curve.

2. The causal future of U ⊂ E1,3, denoted J+(U), is the set of all points p ∈ E1,3 which
can be reached from U by a future directed causal curve.

3. The future Cauchy development, or domain of dependence of U , denoted D+(U) is the
set of all points p ∈ E1,3 such that every past inextensible timelike curve through p
intersects U .

1.4 Lorentz geometry and the wave equation

1.4.1 Doppler shifts

One simple calculation we can do with the machinery that we’ve built up in the last
section allows us to explain the phenomenon of the Doppler shift. We know this best from
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the field of acoustics: the engine of a speeding car sounds higher pitched as it approaches
us than it does as it drives away. The Doppler shift also occurs for light waves. Light
coming from an object moving towards us is ‘blue-shifted’, meaning the frequency of
the electromagnetic radiation increases. Light coming from an object moving away is
‘red-shifted’. This fact is behind the dreaded radar guns used to enforce speed limits.

To see how the geometrical picture we’ve built up can help us understand this
phenomenon, let us fix an inertial frame {~eµ}µ=0,...,3 and consider the following function8

u~k : E1,3 → C
X 7→ eiη( ~X,~k) = eix

µkµ

where ~k is a constant vector. We have that

∇µu~k = ikµu~k

so that
�u~k = −kµkµu~k.

If we choose ~k to be a null vector, so that kµkµ = 0, then uk is a solution of the wave
equation. These are the plane wave solutions. In this frame, writing xµ = (t,x), we see

uk = e−ik
0t+ik·x

so that solution in this frame is seen to be a wave with frequency k0 propagating in the
direction n = k

k0
.

Now, since our solution is written in a manifestly Lorentz invariant form, we know
that u~k is given by the same expression, regardless of which inertial frame we choose.
As a result, if we instead choose an inertial frame {~eµ′}µ=0,...,3, then we would view the
solution as a wave with frequency k′0 propagating in the direction n′ = k

k0
. Suppose that

the frames are related by the boost transformation of Example 2. Then we have that

k′0 = k0 cosh s− k1 sinh s,

k′1 = −k0 sinh s+ k1 cosh s,

k′2 = k2,

k′3 = k2.

Thus we see that viewed in the two different frames, the frequency and the wavenumber in
the x1 direction differ. We can simplify the situation by assuming that k2 = k3 = 0 and
k1 = k0, so that our boost is in the direction of propagation. Then we have k′2 = k′3 = 0
and

k′0 = k′1 = k0e−s.

8If you prefer to work with real solutions of the wave equation, we are always free to take the real
part.
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Recalling that the rapidity s corresponds to a relative velocity between the two frames of
v = tanh s, we deduce that the frequency in the frame {~eµ′}µ=0,...,3 is given in terms of
the frequency in the frame {~eµ}µ=0,...,3 by

k′0 = k0

√
1− v
1 + v

Thus, if v > 0, an observer at rest in the primed frame will measure a lower frequency
relative to an observer at rest in the unprimed frame. This is because the observer in
the primed frame is moving in the positive x0−direction relative to an observer in the
unprimed frame, so sees a red shifted wave.

1.4.2 The energy-momentum tensor

Our motivation for introducing the Lorentz group was to understand symmetries of the
wave equation. We found that the wave equation looks the same in any inertial frame.
A very deep principle of theoretical physics says that symmetries give rise to conserved
quantities. In the case of the wave equation, this fact is demonstrated by the existence of
a tensor, the energy-momentum tensor, which has some very useful properties.

Definition 7. Suppose U ⊂ E1,3 is open. Given ψ ∈ C2(U), we define a symmetric
(0, 2)−tensor, the energy momentum tensor with components given by

Tµν [ψ] := ∇µψ∇νψ −
1

2
ηµν∇σψ∇σψ.

Theorem 1.6. The energy momentum tensor has the following properties:

1. We have a formula for the divergence:

∇µTµν [ψ] = (�ψ)∇νψ

2. Fix an inertial frame {~eµ}µ=0,...,3. The 00−component of T is the local energy density

T00[ψ] =
1

2

[
(∇0ψ)2 + |∇ψ|2

]
3. Fix an inertial frame {~eµ}µ=0,...,3. If ~V = V µ~eµ is any future directed unit timelike

vector, then:

V 0
[
(∇0ψ)2 + |∇ψ|2

]
≥ V µTµ0[ψ] ≥ 1

4V 0

[
(∇0ψ)2 + |∇ψ|2

]
Proof. 1. We calculate

∇µTµν [ψ] = ∇µ
(
∇µψ∇νψ −

1

2
δµν∇σψ∇σψ

)
= (∇µ∇µψ)∇νψ +∇µψ∇µ∇νψ −

1

2
∇ν (∇µψ∇µψ)

= (∇µ∇µψ)∇νψ +∇µψ∇µ∇νψ − (∇ν∇µψ)∇µψ
= (�ψ)∇νψ.
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2. Again, a straightforward calculation gives us:

T00[ψ] = ∇0ψ∇0ψ +
1

2

(
−∇0ψ∇0ψ +∇iψ∇iψ

)
=

1

2

[
(∇0ψ)2 + |∇ψ|2

]
3. Since ~V is timelike, future directed, and unit, we have V 0 > 0 and

(V 0)2 − |V |2 = 1.

We calculate, similarly to the previous part:

V µTµ0[ψ] = ∇0ψ(V 0∇0ψ + V i∇iψ) +
V 0

2

(
−∇0ψ∇0ψ +∇iψ∇iψ

)
.

Now, we use the Cauchy-Schwarz inequality and Young’s inequality (or the AM-GM
inequality) to deduce

∣∣∇0ψV
i∇iψ

∣∣ ≤ |∇0ψ| |V | |∇ψ| ≤ |V |
2

[
(∇0ψ)2 + |∇ψ|2

]
We therefore have

V 0 + |V |
2

(
(∇0ψ)2 + |∇ψ|2

)
≥ V µTµ0[ψ] ≥ V 0 − |V |

2

(
(∇0ψ)2 + |∇ψ|2

)
Now, since (V 0)2 − |V |2 = 1, we have V 0 − |V | = (V 0 + |V |)−1 and 2V 0 > |V |+ V 0,
which completes the proof.

Remark: Property 2. is sometimes known as the weak energy condition and property
3. as the dominant energy condition.

A useful Corollary is the following

Corollary 1.7. Suppose that ψ ∈ C2(U) solves the wave equation in U , and let ~V be a
C1 vector field9 on U . Defining the vector field:

~V ~J [ψ] = V νTν
µ[ψ]~eµ

we have
∇µ
(
~V Jµ[ψ]

)
= V ΠµνT

µν [ψ]

where
~V Πµν = ∇(µVν)

is the deformation tensor of ~V . ~V ~J is called the energy current associated to the vector
field ~V .

9This means that with respect to a basis for E1,3 we may write ~V = V µeµ, where V µ ∈ C1(U).
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Proof. We can calculate, using part 1. of Theorem 1.6:

∇µ
(
~V Jµ

)
= ∇µ (V νTν

µ) = (∇µV ν)Tν
µ + V ν∇µ (Tν

µ)

= ∇µVνTµν + V ν(�ψ)∇νψ
= ∇(µVν)T

µν =
~V ΠµνT

µν .

This corollary is particularly useful when the deformation tensor vanishes for ~V . These
vector fields are especially important:

Definition 8. A Killing vector is a vector field such that

~V Π = 0.

Killing vectors are closely related to symmetries of the spacetime. To explore a bit
more fully the Killing vectors, let us pick an orthonormal basis {~eµ} for E1,3 and use it
to identify each point X ∈ E1,3 with its components xµ with respect to this basis. First,
let us note that the constant vector field

~P0 = ~e0,

is a Killing field: in fact we have that ∇µVν = 0 for all µ, ν. Similarly for the constant
vector fields

~Pi = ~ei.

Now, suppose we have a matrix ` ∈ o(1, 3), which can be written in components as `µν .
Then we can define a vector field on E1,3 by:

~V` = xν`µν~eµ.

I claim this is a Killing field. To see this, first note that (V`)
µ = xν`µν , so that

∇µ(V`)ν = ηνσ`
σ
µ

hence

~V`Πµν =
1

2
(ηνσ`

σ
µ + ηµσ`

σ
ν)

=
[
η`+ (η`)T

]
νµ

=
[
η
(
`η−1 + η−1`T

)
η
]
νµ

= 0.

In fact, one can show that any Killing field of the Minkowski spacetime is a linear
combination of fields of the form ~Pµ and ~V`. All of these vector fields are useful, but for
us, the most useful will be the vector field ~P0, which is everywhere timelike. It owes its
existence to the time translation symmetry of the Minkowski spacetime. We will make
use of this vector field to prove the final result of this section:
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U

Σ

Σ′

Figure 1.4 The geometry of Theorem 1.8

Theorem 1.8 (Finite speed of propagation). Suppose that U ⊂ E1,3 is a open, bounded,
set such that the boundary ∂U consists of two smooth compact components Σ, Σ′ which
are both spacelike, and such that Σ′ lies in J+(Σ) (see Figure 1.4). Then if ψ ∈ C2(U)
solves the wave equation in U we have the estimate∫

U

(
(∇0ψ)2 + |∇ψ|2

)
dX ≤ C

∫
Σ

(
(∇0ψ)2 + |∇ψ|2

)
dσ

for a constant C which depends only on the domain U . In particular if ψ, ∂tψ vanish on
Σ, then ψ vanishes throughout U .

Proof. Pick an inertial frame {~eµ} for the wave equation, and choose coordinates ~X = xµ~eµ.
Consider the vector field

~V = e−x
0
~e0

We calculate

∇µVν =

{
e−x

0
µ = ν = 0,

0 otherwise.

We want to consider the current ~V ~J . We have

∇µ
(
~V Jµ[ψ]

)
= e−x

0
T00

We will apply Corollary B.2 (the divergence theorem) to ~V ~J . We find∫
U
∇µ
(
~V ~Jµ[ψ]

)
dx =

∫
Σ

~V Jµ[ψ]tµdσ −
∫

Σ′

~V Jµ[ψ]tµdσ

where ~t is the future directed unit normal10, and dσ is the (positive) surface measure.
Inserting our expressions for ∇µ

(
~V Jµ[ψ]

)
and ~V ~J we have:∫

Σ
e−x

0
T0µt

µdσ =

∫
Σ′
e−x

0
T0µt

µdσ +

∫
U
e−x

0
T00dx (1.8)

Now, since Σ,Σ′ are smooth and compact and U is bounded, we have that there exists a
constant c > 1 such that

0 < c−1 ≤ sup
Σ∪Σ′

t0, sup
U
|x0| ≤ c <∞.

10notice that the signs here are different from what one might expect.
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As a result, we have that∫
Σ
e−x

0
T0µt

µdσ ≤ cec
∫

Σ

(
(∇0ψ)2 + |∇ψ|2

)
dσ

∫
Σ′
e−x

0
T0µt

µdσ ≥ e−c

4c

∫
Σ′

(
(∇0ψ)2 + |∇ψ|2

)
dσ ≥ 0

and ∫
U
e−x

0
T00dX ≥ e−c

∫
U

(
(∇0ψ)2 + |∇ψ|2

)
dxdt

Putting these estimates together with (1.8), we have the result.

Corollary 1.9. Suppose that u ∈ C∞(E1,3) solves the wave equation, and that

(supp u|x0=0)
⋃

(supp ∇0u|x0=0) ⊂ BR(0)

Then
(supp u|x0=T )

⋃
(supp ∇0u|x0=T ) ⊂ BR+|T |(0).

This justifies some of the assumptions made in §1.2, where we considered solutions of
the wave equation vanishing for large |x| at any fixed time x0.

Exercise 2.1. Let U ⊂ E1,3 be open. Define an antisymmetric (0, 2)−tensor field, F on
U with components11

[Fµν ] =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 .

Where Ei, Bi ∈ C1(U). Show that the vacuum Maxwell equations for E,B (with units
such that c2 = ε0µ0 = 1) hold in U if and only if F satisfies the equations

∇µFµν = 0, ∇[µFνσ] = 0,

where for any (0, 3)−tensor Aµνσ we define:

A[µνσ] =
1

6
(Aµνσ +Aνσµ +Aσµν −Aνµσ −Aµσν −Aσνµ) .

Exercise 2.2. Suppose that F is as in Exercise 2.1. Fix an inertial frame {~eµ}. Define

Tµν [F ] = FµσFν
σ − 1

4
ηµνFστF

στ .

Show that T has the following properties
11The convention is that the first index specifies the row, and the second index the column.
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a) We have a formula for the divergence:

∇µTµν [F ] = (∇µFµσ)Fν
σ +

3

2

(
∇[µFνσ]

)
Fµσ

b) The 00−component of T is the local energy density

T00[F ] =
1

2

[
|E|2 + |B|2

]
c) If ~V is any future directed unit timelike vector, then:

V 0
[
|E|2 + |B|2

]
≥ V µTµ0[F ] ≥ 1

4V 0

[
|E|2 + |B|2

]
Hence, or otherwise, deduce that the electromagnetic field exhibits finite speed of propa-
gation.



Chapter 2

Lorentzian geometry

2.1 The metric and causal geometry

In the previous chapter, we studied Minkowski space, motivated by the wave equation.
In that chapter, the metric η (or equivalently, the matrix of coefficients of the wave
equation) was constant. We could pick a basis {~eµ} of constant vectors (i.e. vectors whose
components are independent of xµ) such that ηµν took constant values on E1,3. In this
chapter we shall allow the metric to vary from place to place. The correct setting in
which to do that is the differentiable manifold.

Manifolds

I’ll start by recapping the geometric tools that we shall rely on. We start with an
n−dimensional Ck−manifold,M, where k > 3 can be an integer if the manifold has finite
regularity, k =∞ if the manifold is smooth or k = ω if the manifold is analytic. From
the differentiable structure we can define the tangent bundle TM and the cotangent
bundle T ∗M, and the bundle of (p, q)−tensors, T pqM. We also define the space Xr(M)
of Cr−sections of the tangent bundle for r < k (i.e. Cr−smooth vector fields) and the
space X∗r(M) of Cr−sections of the co-tangent bundle (i.e. Cr−smooth one-forms). You
will need to be familiar with these objects. For a brief introduction to these concepts, see
§A.3 or else the MA3H5 Manifolds course.

Definition 9. LetM be an orientable, n−dimensional Ck−manifold and let r < k. A
Cr−pseudo-Riemannian metric onM is a Cr−smooth (0, 2)−tensor field g, such that
for each p ∈M, g|p is a symmetric, non-degenerate, billinear form on TpM. We say that
M equipped with g is a pseudo-Riemannian manifold. The tensor g is called the metric
tensor.

1.) If g|p has signature (+ . . .+) we say that M equipped with g is a Riemannian
manifold.

2.) If g|p has signature (− + . . .+) we say that M equipped with g is a Lorentzian
manifold.

A spacetime is a four dimensional Lorentzian manifold.

24
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To unpack this definition a little, suppose that we have a local basis of vector fields
{eµ}i=1,...,n defined on some open set U . In other words, we have eµ ∈ Xk−1(U), such
that {eµ|p} span TpM for every p ∈ U . There is a natural basis of one-form fields dual
to {eµ}i=1,...,n, which we write as {eµ}i=1,...,n, and is defined by

eν [eµ] = δνµ

With respect to this basis, we write

g = gµνe
µ ⊗ eν .

Where for each µ, ν we have gµν ∈ Cr(M;R). The condition that g is symmetric implies
that gµν = gνµ, and the non-degeneracy condition implies that the n × n matrix with
components gµν is invertible. The components of the inverse of this matrix, gµν , which
satisfy:

gµνg
µσ = δν

σ.

give the components of a symmetric (2, 0)−tensor, called the co-metic:

g−1 = gµνeµ ⊗ eν .

The metric at each point p gives us a bilinear form on TpM, where we have:

g(X,Y ) = gµνe
µ(X)eν(Y ) = gµνX

µY ν

For any X,Y ∈ TpM Similarly, the cometric gives a bilinear form on T ∗pM, where:

g−1(ω, η) = gµνω(eµ)η(eν) = gµνωµην .

We can use the metric and co-metric to identify TpM and T ∗pM. Suppose X ∈ TpM,
we define the co-vector X[ by:

X[[Y ] = g(X,Y ), ∀ Y ∈ TpM

similarly, if ω ∈ T ∗pM, we define the vector ω] by:

η[ω]] = g−1(ω, η), ∀ η ∈ T ∗pM

We can check that in a local basis, we have X[ = Xµgµνe
ν and ω] = ωµg

µνeν . In this
case, we usually write gµνXµ = Xν and ωµgµν = ων . In a similar way, we can identify all
of the spaces of (p, q)−tensors with the same value of p+ q. Indices are ‘raised’ with gµν

and ‘lowered’ with gµν .
Now, to define the signature we use the fact that a non-degenerate bilinear form can

be diagonalised. In other words, at each point we can find a basis {eµ} such that

gµν = g(eµ, eν) =


−1 µ = ν < r
1 µ = ν ≥ r
0 µ 6= ν
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for some r ∈ {1, . . . , n}. The number r, which tells us how many positive and how many
negative signs appear is independent of the point p at which we diagonalise the metric.

For a Riemannian manifold, the metric is positive definite, each point p ∈ M the
tangent space TpM can be identified with Euclidean space. For a spacetime, at each
point p ∈M the tangent space TpM can be identified with E1,3. A Lorentzian manifold
‘locally looks like Minkowski space’, whereas a Riemannian manifold ‘locally looks like
Euclidean space’.

2.1.1 Examples of pseudo-Riemannian manifolds

We will go through a few examples that will prove useful later in the course.

Example 3. The simplest Riemannian manifold is a n−dimensional real vector space
V equipped with a positive definite inner product 〈, 〉. A real, finite dimensional vector
space is naturally a real analytic manifold, which can be covered by a single coordinate
chart as follows. Set U = V . Pick an orthonormal basis {ei}i=1,...n for V with respect to
the inner product and define:

ϕ : U → Rn
x 7→ (xi)i=1,...,n

where x = xiei.
An element v of TxV can be identified with an element of V in a natural way. Pick a

curve γ : (−ε, ε)→ V with γ(0) = x, γ̇(0) = v. We know from the definition of v that

vi :=
d

dt
ϕi(γ(t))

∣∣∣∣
t=0

are independent of the choice of representative curve, where ϕi is the projection of ϕ onto
the ith component, which is a smooth map from V to R. We identify the tangent vector
v ∈ TxV with the vector v = viei ∈ V . This identification is independent of the choice of
basis, so in a natural way we have identified TxV ' V . Under this identification, we have

∂

∂xi
' ei.

This identification allows us to define a non-degenerate, symmetric (0, 2)−tensor field
from the inner product 〈, 〉. Recall that a (0, 2)−tensor at a point x is an element of
T ∗xV ⊗ T ∗xV , or equivalently a bilinear form defined on TxV . We define

g(v, w) = 〈v,w〉

where v, w ∈ TxV are identified with v,w.
With respect to the basis {∂i}, we have

g

(
∂

∂xi
,
∂

∂xj

)
= 〈ei, ej〉 = δij .
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In order to write g concisely, we can use the dual basis to {∂i} is denoted {dxi}, where

dxi
(

∂

∂xj

)
= δij .

We also introduce the symmetric product of two one-forms, which is an element of
(Tx)0

2V , i.e. a (0, 2)−tensor defined by

ω1ω2 :=
1

2
(ω1 ⊗ ω2 + ω2 ⊗ ω1)

for ω1, ω2 ∈ T ∗xV . This acts on a pair of vectors v1, v2 ∈ TxV as:

ω1ω2(v1, v2) =
1

2
[ω1(v1)ω2(v2) + ω2(v1)ω1(v2)]

With this notation, the metric g can be written:

g = δijdx
idxj

Example 4. A more interesting example of a Riemannian manifold is the unit n−sphere:

Sn =
{
X ∈ Rn+1 : 〈X,X〉 = 1

}
with 〈, 〉 the canonical inner product on Rn+1. The unit n−sphere is naturally a real
analytic Riemannian manifold (in fact it inherits these properties from Rn+1). To cover the
sphere, we require two coordinate charts. We’ll pick an orthonormal basis {Ea}a=1,...n+1

for Rn+1 and we define
U± = Sn \ {±En+1}.

On each patch, we use stereographic projection to map to Rn, which we endow with the
orthonormal basis {ei}.

ϕ± : U± → Rn
XaEa 7→ 1

1∓Xn+1X
iei =: x±

We can invert the transformation by noting that XiXi + (Xn+1)2 = 1 and

|x±|2 =
XiXjδij

(1∓Xn+1)2 =
1− (Xn+1)2

(1∓Xn+1)2 =
1±Xn+1

1∓Xn+1

Thus

ϕ−1
± (x) =

2xi

1 + |x|2
Ei ∓

1− |x|2

1 + |x|2
En+1 (2.1)

From here we conclude:

ϕ∓ ◦ ϕ−1
± : Rn \ {0} → Rn \ {0}

x 7→ x
|x|2

so that the transition functions are indeed real analytic, and Sn is a real analytic manifold.
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The tangent space TXSn can be identified in a natural way with the set:

TXS
n '

{
V ∈ Rn+1 : 〈V ,X〉 = 0

}
.

To see this, consider a tangent vector V ∈ TXSn and choose a curve γ : (ε, ε)→ Sn with
γ(0) = X, γ̇(0) = V . Thinking of γ as a curve in Rn+1, we can identify its initial tangent
vector with V ∈ Rn+1 as in the previous example. We know that the map f : Rn+1 → R
which takes X to |X|2 is smooth, and constant on Sn. By applying the vector γ̇(0) to
this map we deduce that

0 = γ̇(0)[f ] =
d

dt
〈γ(t), γ(t)〉

∣∣∣∣
t=0

= 2 〈γ(0), γ̇(0)〉 = 〈V ,X〉 .

This identification of the tangent space of Sn (an abstract manifold construction) with a
plane in Rn+1 allows us to visualise the two local bases:{

∂

∂xi±

}
i=1...n

that are defined via the coordinate charts. Recall that the vector ∂i at a point X is defined
to be the tangent vector to the ith coordinate axis passing through X. Accordingly, we
can find the bases by differentiating the expression (2.1). We obtain:

∂

∂xi±

∣∣∣∣
X=ϕ−1

± (x)

'

 2

1 + |x|2
δi
j − 4xix

j(
1 + |x|2

)2

Ej ±
4xi(

1 + |x|2
)2En+1

=
[
(1∓Xn+1)δi

j −XiX
j
]
Ej ± (1∓Xn+1)XiEn+1

We see that ∂
∂xi±

span TXSn for all X ∈ U±.
The identification of TXSn with a subspace of Rn+1 gives us a natural way to define

a metric on Sn using the inner product of Rn+1:

g(v, w) = 〈V ,W 〉

where v, w ∈ TXSn are identified with V ,W ∈ Rn+1. We calculate

g

(
∂

∂xi±
,
∂

∂xj±

)
=
[
(1∓Xn+1)δi

k −XiX
k
] [

(1∓Xn+1)δjk −XjXk

]
+ (1∓Xn+1)2XiX

i

= (1∓Xn+1)2δij − 2XiXj(1∓Xn+1) +XiXjX
kXk

+ (1∓Xn+1)2XiX
i

= (1∓Xn+1)2δij

=
4δij(

1 + |x±|2
)2
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We thus have the result that in each stereographic coordinate patch, the standard metric
on the unit sphere is given by

g =
4δij(

1 + |x±|2
)2dx

i
±dx

j
±.

Example 5. Let’s return to the example of Rn+1 equipped with an inner product and
an orthonormal basis {Ea}a=1,...n+1. Suppose we have a point P ∈ Rn \ {0}. We can
uniquely write P = rX, where r > 0 is a real number and X ∈ Sn. In this way we can
identify Rn \ {0} ' (0,∞)× Sn.

We use this observation to cover Rn \ {0} with two coordinate patches:

U± = Rn+1 \ {±rEn+1 : r ≥ 0}

and define the maps

ϕ± : U± → (0,∞)× Rn

P aEa 7→
(
|P | , 1

|P |∓Pn+1P
iei

)
.

In other words, ϕ± maps the point rX to (r,x±), where x± is the stereographic projection
of the point X ∈ Sn. The inverse map is given by

ϕ−1
± (r,x) = r

(
2xi

1 + |x|2
Ei ∓

1− |x|2

1 + |x|2
En+1

)
(2.2)

As before, we can identify the tangent vectors with vectors in Rn+1. A simple calculation
shows that

∂

∂r
'X =

P

|P |
and

∂

∂ni±
' r

{[
(1∓Xn+1)δi

j −XiX
j
]
Ej ± (1∓Xn+1)XiEn+1

}
We can calculate

g

(
∂

∂r
,
∂

∂r

)
= 1, g

(
∂

∂r
,
∂

∂ni±

)
= 0

g

(
∂

∂xi±
,
∂

∂xj±

)
=

4δij(
1 + |x±|2

)2

so that in each patch we have

g = dr2 + r2 4δij(
1 + |x±|2

)2dx
i
±dx

j
±
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which is the metric on Rn+1\{0} written in spherical polar coordinates, with stereographic
coordinates on the sphere. We have shown that Rn+1 \{0} is equivalent, as a Riemannian
manifold, to (0,∞)× Sn endowed with the metric

g = dr2 + r2gSn .

Often the fact that this describes Rn+1 with the origin removed is elided, and one will
talk of the metric on Rn+1 written in polar coordinates.

Example 6. TakeM = R4 with coordinates (x0, xi) = (xµ)µ=0,...,3. As previously, this
gives us a global basis of vector fields ∂µ := ∂

∂xµ . We can endow R4 with a Lorentzian
metric by:

g = ηµνdx
µdxν = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

This is of course the Minkowski spacetime. It is clearly Lorentzian, if we take the basis
eµ = ∂µ, we have

g(eµ, eν) = ηµν .

Example 7. We takeM = R× (0,∞)× S2. This can be given the structure of a real
analytic manifold covered by the coordinate patches

U± = R× (0,∞)× US2

±

where US2

± are the stereographic coordinate patches on S2 previously defined. The
coordinate charts are given by

ϕ± : U± → R× (0,∞)× R2

(t, r,X) 7→ (t, r,x±).

with the notation as in Example 4. We endowM with the metric

g = −
(

1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 + r2 4δABdx

A
±dx

B
±(

1 + |x±|2
)2 ,

where A,B = 2, 3. More concisely, we write

g = −
(

1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 + r2gS2 .

This is a Lorentzian metric, as we can see by exhibiting the following local bases:

e0 =
∂

∂t
−
√

2m

r

∂

∂r

e1 =
∂

∂r

e±A =
1 + |x±|2

2r

∂

∂xA±
.
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A short calculation shows that
g(e±µ , e

±
ν ) = ηµν ,

so that in a neighbourhood of every point inM we can find a local basis with respect to
which the metric is diagonal with entries (−+ ++).

This metric is the Painlevé-Gullstrand form of the Schwarzschild spacetime. It
represents a spacetime containing a black hole region (we shall see what this means
shortly).

2.1.2 Causal geometry for Lorentzian manifolds

We will now update some definitions from the previous Chapter. For the most part,
things go through in a very straightforward fashion.

Definition 10. A non-zero vector X ∈ TpM is

i) Timelike if g (X,X) < 0,

ii) Null, or lightlike if g (X,X) = 0,

iii) Spacelike if g (X,X) > 0.

The definitions of timelike/null/spacelike curves and surfaces generalise from the Minkowski
case in the obvious fashion.

We have to adapt a little the definition of a time orientation in the manifold case.

Definition 11. The manifold M is time orientable if there exists a smooth, nowhere
vanishing timelike vector field. For a time orientable manifold, a choice of time orientation
is a choice of equivalence class of nowhere vanishing timelike vector fields under the
equivalence relation

T1 ∼ T2 ⇐⇒ g(T1, T2) < 0 onM.

With a time orientation [T ]∼, we can define what it means for a vector X ∈ TpM to
be future directed. We say that X is future directed if g(X,T )|p < 0 for any T ∈ [T ]∼.

For a time oriented manifold we can define the notion chronological and causal
future/past and domain of dependence as for the case of Minkowski spacetime.

Example 8. Let us consider the Painlevé-Gullstrand form of the Schwarzschild spacetime,
as in Example 7 above. The surface

Σt = {t} × (0,∞)× S2

is everywhere spacelike: local bases for the vectors tangent to Σt are given by {e±1 , e±2 , e±3 },
which are all spacelike.

The spacetime is time orientable: the vector field

e0 =
∂

∂t
−
√

2m

r

∂

∂r
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is defined everywhere and timelike, we pick the time orientation defined by [e0]∼. In fact,
e0 is the future directed unit normal to Σt.

Consider now a future directed causal curve γ : (−ε, ε)→M. We can write

γ(s) = (t(s), r(s),X(s)) ∈ R× (0,∞)× S2

and the tangent vector is given by:

γ̇(s) = ṫ(s)
∂

∂t
+ ṙ(s)

∂

∂r
+ Ẋ(s)

where we understand Ẋ(s) ∈ TX(s)S
2. We can calculate:

g(γ̇(s), e0) = −ṫ(s) < 0

by the fact that γ is future directed. Now consider

g(γ̇(s), γ̇(s)) = −
(

1− 2m

r(s)

)
ṫ(s)2 + 2

√
2m

r(s)
ṫ(s)ṙ(s) + ṙ(s)2 + r2gS2

(
Ẋ(s), Ẋ(s)

)
,

Now, in order that γ is causal, we must have g(γ̇(s), γ̇(s)) ≤ 0. Suppose now that
r(s) ≤ 2m for some s. Then the only way that we can have g(γ̇(s), γ̇(s)) ≤ 0 is if ṙ(s) ≤ 0.
Thus no future directed causal curve can escape from the region r ≤ 2m. This region is
known as a black hole region of the spacetime. We have shown that

J+
(
{0} × (0, 2m]× S2

)
⊂ [0,∞)× (0, 2m]× S2

In fact, it is fairly straightforward to show that the reverse inclusion holds and that the
two sets are equal.

Exercise 2.3. Consider the infinite cylinder R× S1 and take as coordinates (x, θ) where
θ ∼ θ + 2π.

a) Show that whenM is equipped with the Lorentzian metric

g = −dx2 + dθ2,

it is time-orientable.

b) Now consider the metric

g = − cos θdx2 + 2 sin θdxdθ + cos θdθ2

i) Show that the vector fields defined for θ ∈ [0, 2π) by

X0 = cos
θ

2
∂x − sin

θ

2
∂θ, X1 = sin

θ

2
∂x + cos

θ

2
∂θ.

satisfy
g(X0, X0) = −1, g(X0, X1) = 0, g(X1, X1) = 1.

Deduce that g is a Lorentzian metric.
ii) Let us denote the point x = 0, θ = 0 by p. Suppose that there exists a nowhere

vanishing timelike field T , and without loss of generality assume that g(X0, T )|p <
0. Show that if γ : [0, 1)→ R× [0, 2π) is any smooth curve with γ(0) = p then
g(X0, T )|γ < 0.

iii) By considering the curve γ : s 7→ (0, 2πs), deduce thatM is not time orientable.
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2.2 Affine Connections

We are going to require a means to differentiate vectors (and other tensors). This is a
subtle point, and is not completely straightforward. Suppose γ : (−ε, ε)→M is a curve
and f ∈ C1(M) is a differentiable function, and we wish to differentiate f along γ. We
define

γ̇(0)[f ] = lim
h→0

f(γ(h))− f(γ(0))

h
.

Now suppose that we have a vector field X ∈ X1(M). We might try and define the
derivative of X along γ by:

γ̇(0)[X]
?
= lim

h→0

X|γ(h) − X|γ(0)

h
,

however, there is a problem with this. The two vectors whose difference we want to form
do not belong to the same vector space: one belongs to Tγ(h)M and the other to Tγ(0)M.
We need to decide how to identify the tangent spaces along γ before we can define a
quotient such as this. The tool to do this is provided by an ‘affine connection’.

Definition 12. SupposeM is a Ck manifold. A Cr−affine connection ∇, where r ≤ k−2,
is a map from Xr(M)× Xr+1(M)→ Xr(M) satisfying:

i) For every constant λ ∈ R, Xi ∈ Xr(M), Yi ∈ Xr+1(M) we have

∇X1(Y1 + λY2) = ∇X1Y1 + λ∇X1Y2,

and
∇X1+λX2Y1 = ∇X1Y1 + λ∇X2Y2.

ii) If f ∈ Cr(M;R), X ∈ Xr(M), Y ∈ Xr+1(M), then

∇fXY = f∇XY

iii) If f ∈ Cr+1(M;R), X ∈ Xr(M), Y ∈ Xr+1(M), then

∇X (fY ) = X[f ]Y + f∇XY

We call ∇XY the covariant derivative of Y in the direction X. Suppose we are given
a basis, {eµ} for Xk−1(U), where U ⊂M is open. Then we have the following result

Lemma 2.1. i) An Cr−affine connection ∇ is determined on U by its components
with respect to the basis {eµ}, written Γµνσ ∈ Cr(U ;R) which are defined by

∇eνeσ = Γµνσeµ
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ii) If {e′µ} is a new basis for Xk−1(U), related to the old one by:

eµ = Λνµe
′
ν , Λνµ ∈ Ck−1(U ;R)

then the components of ∇ with respect to the old basis are related to those with respect
to the new basis by

Γρνµ = Λτ νΛσµΓ′κτσ(Λ−1)ρκ + Λτ νe
′
τ [Λκµ] (Λ−1)ρκ

where (Λ−1)ρκΛκτ = δρτ .

Proof. i) Suppose X ∈ Xr(M), Y ∈ Xr+1(M). In U we can uniquely write X = Xµeµ
and Y = Y µeµ for Xµ ∈ Cr(U ;R), Y µ ∈ Cr+1(U ;R). Then in U

∇XY = ∇Xνeν (Y σeσ)

= Xν∇eµ (Y σeσ)

= Xνeν(Y σ)eσ +XνY σ∇eνeσ
= [Xνeν(Y µ) +XνY σΓµνσ] eµ

which uniquely determines ∇XY .

ii) We calculate

∇eνeµ = ∇Λτ νe′τ

(
Λσµe

′
σ

)
= Λτ νΛσµ∇e′τ e′σ + Λτ νe

′
τ [Λσµ] e′σ

=
(
Λτ νΛσµΓ′κτσ + Λτ νe

′
τ [Λκµ]

)
e′κ

=
(
Λτ νΛσµΓ′κτσ(Λ−1)ρκ + Λτ νe

′
τ [Λκµ] (Λ−1)ρκ

)
eρ

where in the last line we use the fact that e′κ = (Λ−1)ρκeρ.

Notice that the second part of the Lemma justifies our restriction r ≤ k − 2, since
this is the best regularity for the functions Γ··· that is consistent with the regularity of
the underlying manifold. It is also important to note that the components Γµνσ do not
transform as the components of some (1, 2)−tensor field on the manifold.

A connection allows us to transport a vector along a curve. In order to do this, we
require the following result:

Lemma 2.2. Let γ : [0, 1]→M be a C2−curve with γ(0) = p, γ(1) = q. Suppose that
∇ is a Cr−affine connection, with r ≥ 1. Given Xp ∈ TpM, there is a unique vector field
X defined along γ such that

∇γ̇(t)X = 0, X|t=0 = Xp. (2.3)

We say that X is the parallel transport of Xp along γ.
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Proof. Let us suppose that γ([0, 1]) ⊂ U , for some open set U on which we can pick a
basis {eµ} for Xk−1(U). If this is not the case, we can split γ into a finite number of
curves for which this is true. If we write X = Xµeµ and Xp = Xµ

p eµ, then the condition
(2.3) becomes

0 = γ̇(t)[Xµ] +Xν γ̇σΓµσν ,

= Ẋµ(t) +Xν(t)γ̇σΓµσν

together with the initial conditionXµ(0) = Xµ
p (0). This is a linear ODE for the coefficients

Xµ(t) with coefficients in C1, hence a unique solution exists for t ∈ [0, 1].

Definition 13. A geodesic or auto-parallel curve with respect to the connection ∇ is a
C2−curve γ : (a, b)→M satisfying

∇γ̇(t)γ̇(t) = λ(t)γ̇(t)

for some λ : (a, b)→ R. By a change of parameterisation it is possible to arrange that
λ = 0, in this case, the parameterisation is called an affine parameterisation.

In a local coordinate chart, for an affinely parameterised geodesic we can write
ϕ ◦ γ(t) = (xµ(t)) ∈ Rn, so that γ̇(t) = ẋµ ∂

∂xµ . Inserting this into the expression for a
parallel transported geodesic, we find that the functions xµ(t) satisfy:

ẍµ + ẋν ẋσΓµνσ = 0. (2.4)

where Γµνσ are the components of the connection with respect to the coordinate induced
basis. From basic ODE theory (Picard-Lindelöf theorem), we have:

Lemma 2.3. SupposeM is a Ck−manifold, where k > 2. SupposeM is equipped with a
C2−affine connection ∇. Given p ∈M, Xp ∈ TpM, there exists an ε > 0 and an affinely
parameterised geodesic curve γ : (−ε, ε)→M such that

γ(0) = p, γ̇(0) = Xp.

Moreover, γ is unique up to extension: If γ′ : (−ε′, ε′) → M is another such affinely
parameterised geodesic where (without loss of generality) ε′ > ε, then γ′(t) = γ(t) for
t ∈ (−ε, ε).

Note: we only have local existence in t because the ODE is not linear (the Γµνσ
depend on x(t) implicitly).

Exercise 2.4. ConsiderM = R3, with a choice of orthonormal basis {ei} with respect
to the Euclidean metric gij = δij . Define a smooth connection on vectors by

(τ)∇eiej = τεkijek

where εijk is totally anti-symmetric with ε123 = 1 and τ ∈ R is a constant. Consider the
curve γ : (−1, 1)→ R3 given by γ(t) = te3. Show that the vector fields

X1 = e1 cos(τx3)− e2 sin(τx3)

X2 = e1 sin(τx3) + e2 cos(τx3)

X3 = e3

are all parallely transported by (τ)∇ along γ.
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An important property of an affine connection is the torsion. This is an anti-symmetric
Cr−regular (1, 2)−tensor field defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ]

where we recall that the commutator of two vector fields is a vector field which acts on
functions as:

[X,Y ] (f) = X(Y f)− Y (Xf).

If T (X,Y ) vanishes, we say that the affine connection ∇ is symmetric.

Exercise 2.5. a) Suppose that f ∈ C1(M;R), show that

T (fX, Y ) = fT (X,Y ), T (X,Y ) = −T (Y,X).

Deduce that if {eµ} is locally a basis with X = Xµeµ, Y = Y µeµ then:

T (X,Y ) = T σµνX
µY νeσ

for some Cr−functions T σµν := eσ [T (eµ, eν)].

b) Show that for the connection defined in Exercise 2.4, the torsion is given by:

T ijk = 2τεijk.

Given a connection ∇, we can define a connection on one-forms. Given X ∈ Xr(M)
and ω ∈ X∗r+1(M), we define ∇Xω by requiring:

(∇Xω) [Y ] = X (ω[Y ])− ω [∇XY ] . (2.5)

for any Y ∈ Xk−1(M).

Exercise 2.6. Show that if f ∈ Ck−1(M), then (2.5) implies

(∇Xω) [fY ] = f (∇Xω) [Y ]

for any Y ∈ Xk−1(M). Deduce that ∇Xω ∈ X∗r(M).

We can locally express the covariant derivative of a one-form using the same component
functions Γµνσ as we used to express the covariant derivative of a vector:

Lemma 2.4. Suppose that {eµ} is a basis for Xk−1(U), where U ⊂M is open, and that
{eµ} is a dual basis. Then in U we have:

∇eνeµ = −Γµνσe
σ

where Γµνσ are defined by
∇eνeσ = Γµνσeµ.
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Proof. Consider

(∇eνeµ) [eτ ] = eν (eµ[eτ ])− eµ [∇eνeτ ]

= eν (δµτ )− eµ [Γκντeκ]

= 0− Γκντe
µ [eκ]

= −Γµντ

Since a one-form is completely determined by it’s action on a basis of vector fields, this
suffices to show the result.

Finally, we can extend the connection to act on arbitrary tensor fields by requiring
that the Leibniz rule applies to tensor products. For example:

∇X (Y ⊗ ω) = (∇XY )⊗ ω + Y ⊗ (∇Xω) ,

with obvious generalisations to arbitrary tensor products of vector fields and one-forms.

Lemma 2.5. Suppose S is a Cr+1 regular (p, q) tensor field, which is written with respect
to a local basis eµ ∈ Xk−1(U) of vector fields as

S = Sµ1,...µpν1...νqeµ1 ⊗ · · · ⊗ eµp ⊗ eν1 ⊗ · · · ⊗ eνq (2.6)

Where Sµ1,...µpν1...νq ∈ Cr+1(U ;R). Then ∇XS is a Cr regular (p, q) tensor field, with
components given in the local basis by:

(∇XS)µ1,...µpν1...νq = Xσeσ
[
Sµ1...µpν1,...νq

]
+XσΓµ1στS

τµ2,...µp
ν1,...νq + . . .+XσΓµjστS

µ1...,µj−1τµj+1...µp
ν1,...νq + . . .

−XσΓτ σν1S
µ1µ2...µp

τ ...νq − . . .−XσΓτ σνjS
µ1...µp

ν1...νj−1τνj+1...νq − . . .
=: Xσ∇σSµ1,...µpν1...νq

We define ∇S to be the (p, q + 1)−tensor field with components ∇σSµ1,...µpν1...νq .

Proof. We simply apply the definition of the covariant derivative to (2.6) and then express
the right hand side in terms of the basis vectors.

2.2.1 The Levi-Civita connection

There are many connections on a given manifold. We want to single out a single connection,
and it turns out that this is possible when we require the connection to be compatible
with our metric and symmetric.

Theorem 2.1 (Fundamental theorem of (pseudo-)Riemannian geometry). SupposeM
is a Ck+1−regular pseudo-Riemannian manifold which carries a Ck−regular metric g,
where k ≥ 1. Then there exists a unique symmetric Ck−1−affine connection, ∇, such that
∇g = 0. This connection is known as the Levi-Civita connection.
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Proof. We prove the statement by an explicit construction. Suppose that X,Y, Z ∈
Xk(M). First note that the symmetry of the connection implies

∇XY −∇YX = [X,Y ] (2.7)

Suppose that we have a symmetric connection satisfying ∇Xg = 0, then we have

X [g(Y, Z)] = ∇X (g(Y,X))

= (∇Xg)(X,Y ) + g (∇XY, Z) + g (Y,∇XZ)

= g (∇XY,Z) + g (Y,∇XZ) (2.8)

similarly

Y [g(Z,X)] = g (∇Y Z,X) + g (Z,∇YX) (2.9)
Z [g(X,Y )] = g (∇ZX,Y ) + g (X,∇ZY ) (2.10)

Taking (2.8)+(2.9)−(2.10), and using (2.7) we have:

X [g(Y,Z)] + Y [g(Z,X)]− Z [g(X,Y )] = 2g (∇XY,Z)− g ([X,Y ] , Z)

+ g ([Y,Z] , X)− g ([Z,X] , Y )

so that, after re-arranging we have

2g (∇XY, Z) = X [g(Y,Z)] + Y [g(Z,X)]− Z [g(X,Y )] (2.11)
+ g ([X,Y ] , Z) + g ([Z, Y ] , X) + g ([Z,X] , Y )

We can calculate the right hand side explicitly in terms of g,X, Y , without needing to
know ∇. Since Z is arbitrary, this uniquely determines ∇XY by the non-degeneracy of g.
Thus if the connection exists, it is unique.

On the other hand, we can use (2.11) to define a connection. It is straightforward to
check that if we do this, that the connection is symmetric and ∇g = 0.

Exercise 2.7. Consider the connection defined in Exercise 2.4. Show that if we define a
Riemannian metric on R3 by g(v,w) = v ·w = viwjδij , then the connection (τ)∇ satisfies

x[g(y, z)] = g
(

(τ)∇xy, z
)

+ g
(
y, (τ)∇xz

)
.

Deduce that (0)∇ is the Levi-Civita connection of g.

Suppose that we have a local basis of vector fields {eµ}. We know that for each µ, ν,
the commutator [eµ, eν ] is a vector field, so it can be written in terms of the basis vector
fields:

[eµ, eν ] = Cσµνeσ,

where Cσµν ∈ Ck−1(M;R) are uniquely determined. Now, let us consider (2.11) applied
to the vector fields X = eµ, Y = eν , Z = eσ, and recall that gµν := g(eµ, eν). We find:

2Γτ µνgτσ = eµ(gνσ) + eν(gσµ)− eσ(gµ,ν)

+ Cτ µνgτσ + Cτ σµgτν + Cτ σνgτµ
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so that multiplying by gσκ (the co-metric) we deduce:

Γκµν =
1

2
gσκ

[
eµ(gνσ) + eν(gσµ)− eσ(gµν) + Cσµν + Cνσµ + Cµσν

]

This expression simplifies in two useful cases:

1. If {eµ} is a local coordinate basis, so that eµ = ∂
∂xµ , then we have Cµνµ ≡ 0 and:

Γκµν =
1

2
gσκ

(
∂gνσ
∂xµ

+
∂gσµ
∂xν

− ∂gµν
∂xσ

)
(2.12)

2. If {eµ} is an orthonormal basis, so that gµν is a set of constants equal to ±1 or 0.
In this case eµ(gνσ) ≡ 0 and we have

Γκµν =
1

2
gσκ (Cσµν + Cνσµ + Cµσν)

Example 9. Recall the Schwarzschild metric in Painlevé-Gullstrand coordinates (Example
7) is a Lorentzian metric onM = R× (0,∞)× S2 given by:

g = −
(

1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 + r2gS2 .

Recall also that we have an orthonormal basis for this matrix given locally by:

e0 =
∂

∂t
−
√

2m

r

∂

∂r

e1 =
∂

∂r

eA =
1

r
bA,

where {bA}A=2,3 is a local orthonormal basis for S2 (the unit round sphere), such that
[bA, bB] = CEABbE for some functions CEAB ∈ C∞(S2;R). We calculate:

[e0, e1] = − 1

2r

√
2m

r

∂

∂r
,

[e0, eA] =
1

r2

√
2m

r
bA,

[e1, eA] = − 1

r2
bA,

[eA, eB] =
1

r2
CEABbE .
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From here, we deduce that:

C1
01 = −C1

10 = − 1

2r

√
2m

r
,

CA0B = −CAB0 =
1

r

√
2m

r
δAB,

CA1B = −CAB1 = −1

r
δAB,

CEAB = −CEBA =
1

r
CEAB.

and all other components of Cµνσ vanish. Since {eµ} is an orthonormal basis, we can
raise and lower indices as in the Minkowski case: we change sign when raising or lowering
a 0 index, but not otherwise. We calculate (for example):

Γ1
10 =

1

2

(
C1

10 − C0
11 + C1

10

)
=

1

2r

√
2m

r
.

Similar calculations lead us to conclude that the non-vanishing components of Γ with
respect to the basis {eµ} are:

Γ1
10 =

1

2r

√
2m

r
, Γ0

11 =
1

2r

√
2m

r
, ΓAB0 = −1

r

√
2m

r
δAB,

ΓAB1 =
1

r
δAB, Γ0

AB = −1

r

√
2m

r
δAB, Γ1

AB =
1

r
δAB,

ΓCAB =
1

r
ΓCAB,

where ΓCAB are the connection coefficients of the Levi-Civita connection of the unit
metric on S2 with respect to the basis {bA}.

We can use these coefficients to directly give the action of the Levi-Civita connection
of g on the basis {eµ}:

∇e0e0 = 0, ∇e1e0 =
1

2r

√
2m

r
e1, ∇eAe0 = −1

r

√
2m

r
eA,

∇e0e1 = 0, ∇e1e1 =
1

2r

√
2m

r
e0, ∇eAe1 =

1

r
eA, (2.13)

and

∇e0eA = 0, ∇e1eA = 0, ∇eAeB = −δAB
(

1

r

√
2m

r
e0 +

1

r
e1

)
+

1

r
ΓCABeC .

Exercise(∗). Repeat for yourself the calculations of the previous example.
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Definition 14. A geodesic of the metric g, is a geodesic of the Levi-Civita connection of
g, i.e. a curve γ : (−ε, ε)→M satisfying

∇γ̇(t)γ̇(t) = λ(t)γ̇(t)

For a suitable choice of parameterisation, the function λ(t) may be chosen to vanish, in
which case we talk of an affinely parameterised geodesic.

The geodesic equations can also be derived from a variational principle. In Riemannian
geometry this is especially useful as geodesics can be shown to locally minimise the distance
between two points. For Lorentzian geometries, the geodesics typically extremise the
length, but do not necessarily minimise it.

Exercise(∗) (If you have studied Lagrangian mechanics). Suppose we work in a coordinate
chart U ⊂M in which the metric takes the form:

g = gµνdx
µdxν .

Show that the affinely parameterised geodesic equations

ẍµ + ẋν ẋσΓµνσ = 0,

where

Γκµν =
1

2
gσκ

(
∂gνσ
∂xµ

+
∂gσµ
∂xν

− ∂gµν
∂xσ

)
can be derived from the Lagrangian:

L =
1

2
gµν ẋ

µẋν .

Exercise 3.1. Suppose that S is a (1, 1)−tensor and R is a (0, 2)−tensor, both at least
C1−regular, which with respect to a local basis {eµ} may be written:

S = Sµνeµ ⊗ eν , R = Rστe
σ ⊗ eτ .

Suppose ∇ is the Levi-Civita connection.

i) With the notation of Lemma 2.5, show that:

∇κ (SµνRστ ) = (∇κSµν)Rστ + Sµν (∇κRστ ) .

ii) how also that
∇κδµσ = 0, ∇κgµν = 0, ∇κgµν .

Conclude that ∇, thought of as a map from (p, q)−tensors to (p, q + 1)−tensors
commutes with contractions and raising and lowering of indices.
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2.2.2 The wave equation

Suppose thatM is a Ck−manifold with a Ck−1−regular Riemannian or Lorentzian metric
g, which has an associated Ck−2−regular Levi-Civita connection ∇. Given f ∈ Ck(M;R),
and X,Y ∈ Xk−1(M) we define:

Hf (X,Y ) := X(Y f)− (∇XY ) f.

Lemma 2.6. Hf is a symmetric, Ck−2−regular (0, 2)−tensor.

Proof. To show that Hf is symmetric, we calculate:

Hf (X,Y )−Hf (Y,X) = X(Y f)− Y (Xf)− [(∇XY )− (∇YX)] f

= [X,Y ]f − [(∇XY )− (∇YX)] f

= T (X,Y )f = 0.

To show that Hf is a tensor, we need to show that for any g ∈ Ck−1(M) we have:

Hf (gX, Y ) = gHf (X,Y ) = Hf (X, gY ).

By the symmetry we can just show the first equality, which follows from

Hf (gX, Y ) = (gX)[Y f ]− (g∇XY )f = gHf (X,Y ).

The regularity of Hf follows from the assumptions on the connection and on f .

The tensor Hf is called the Hessian of f and is sometimes written ∇∇f , so that if
{eµ} is a local basis, we write:

∇µ∇νf = Hf (eµ, eν).

Note carefully that in general

∇µ∇νf 6= ∇eµ∇eνf = eµ(eνf).

Exercise 3.2. In a local coordinate basis,
{
eµ = ∂

∂xµ

}
, show that we can write

Hf (X,Y ) = XµY ν

(
∂2f

∂xµ∂xν
− Γσµν

∂f

∂xσ

)
,

Deduce that for a local coordinate basis

∇µ∇νf =
∂2f

∂xµ∂xν
− Γσµν

∂f

∂xσ

Definition 15. Suppose f ∈ Ck(M;R).

i) If g is Lorentzian, we define the wave operator �g acting on f , written �gf ∈
Ck−2(M;R) is defined to be the trace of Hf with respect to the metric g. With
respect to a local coordinate basis {∂/∂xµ}, this is given by:

�gf := gµν∇µ∇νf = ∇µ∇µf.
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ii) If g is Riemannian, we define the Laplace operator ∆g acting on f , written ∆gf ∈
Ck−2(M;R) to be the trace of Hf with respect to the metric g. With respect to a
local coordinate basis {∂/∂xi}, this is given by:

∆gf := gij∇i∇if = ∇i∇if.

In a local coordinate basis, we have

�gf = gµν
∂2f

∂xµ∂xν
− gµνΓσµν

∂f

∂xσ
, (2.14)

with a similar expression for the Laplace operator:

∆gf = gij
∂2f

∂xi∂xj
− gijΓkij

∂f

∂xk
, (2.15)

When g is Lorentzian, we recognise �g as a hyperbolic differential operator. In the
case where g is Riemannian, the operator ∆g is rather an elliptic differential operator.

It’s often useful to have a more concrete expression for this operator. We can find
one by recalling that the Levi-Civita connection has components that are given in a local
coordinate basis by (2.12):

Γκµν =
1

2
gσκ

(
∂gνσ
∂xµ

+
∂gσµ
∂xν

− ∂gµν
∂xσ

)
Contracting with the co-metric, we have:

gµνΓκµν = gσκ
∂gνσ
∂xµ

gµν − 1

2
gσκ

∂gµν
∂xσ

gµν

Now, recall the following facts regarding differentiating matrices:

dA−1

dt
(t) = −A−1dA

dt
(t)A−1(t).

d

dt
detA(t) = [detA(t)]Tr

(
dA

dt
(t)A−1(t)

)
.

We recognise that we can write

gµνΓκµν = − ∂

∂xµ
gµκ − gσκ√

|g|
∂

∂xσ

√
|g|

where we have defined |g| := |det(gµν)|. Returning to (2.14), we deduce that in local
coordinates:

�gf =
1√
|g|

∂

∂xµ

(√
|g|gµν ∂f

∂xν

)
.

A similar expression of course holds in the case that g is Riemannian:

∆gf =
1√
|g|

∂

∂xi

(√
|g|gij ∂f

∂xj

)
.
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An alternative way to define the Hessian and wave/Laplace operator is instead to
recall that given a function f ∈ Cr(M;R), there is a natural one-form df ∈ X∗r−1(M)
defined by:

df(X) = Xf,

for any X ∈ X(M). With respect to a local basis:

df = (eµf)eµ = (∇µf)eµ.

Since we have a metric g we can associate df with a vector field, sometimes called gradgf ,
which acts on h ∈ C1(M;R) by:

[gradgf ](h) = g−1(df, dh).

In a local basis:
gradgf = gµν(df)νeµ = gµν(eνf)eµ

To define the wave/Laplace operator, we introduce the divergence of a vector field as
follows. If V ∈ Xr(M), then the divergence of V , written divgV ∈ Cr−1(M;R) is given
by:

divgV = eµ
[
∇eµV

]
= ∇µV µ.

Clearly, we have
�gf = divg

(
gradgf

)
.

Exercise 3.3. For V ∈ Xr(M), the divergence of V , written divgV ∈ Cr−1(M;R) is
defined with respect to a local basis by:

divgV := ∇µV µ = eµ
(
∇eµV

)
.

Show that with respect to a local coordinate basis we have:

divgV =
1√
|g

∂

∂xµ

(√
|g|V µ

)
.

Deduce the expression for the wave/Laplace operator with respect to local coordinates,
using:

�gf = divg
(
gradgf

)
.

We can in fact generalise the definition of the wave/Laplace operator to arbitrary
tensors. For example, if S is a C2−regular (1, 1)−tensor, we can define (in a local basis):

�gS = (∇µ∇µSντ ) eν ⊗ eτ .

Example 10. Consider the sphere S2, with the stereographic coordinate charts (U±, ϕ±)
that we previously defined. Recall that the metric on each patch is given by:

gS2 = Ω2δijdx
idxj .
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Where
Ω =

2

1 + |x|2
As a matrix, the components gij are

[gij ] = Ω2

(
1 0
0 1

)
so that |g| = Ω4 and

[gij ] = Ω−2

(
1 0
0 1

)
so that

√
|g|gij = δij . As a consequence, we have

∆S2f = Ω−2∆R2f

where

∆R2f = δij
∂2f

∂xixj

is the standard Laplacian on R2.
Consider the following integral:

I :=

∫
|x|<R

f∆S2f
√
|g|dx =

∫
|x|<R

f∆R2f dx.

Now, we can use the standard divergence theorem on R2 to deduce

I =

∫
|x|=R

f
∂f

∂ν
dσ −

∫
|x|<R

δij
∂f

∂xi
∂f

∂xj
dx.

I claim that if f is a smooth function on S2, then the first term vanishes as R→∞, and
we can conclude: ∫

R2

f∆S2f Ω2dx = −
∫
R2

δij
∂f

∂xi
∂f

∂xj
dx.

We immediately conclude that a harmonic function on S2 (i.e. a function f ∈ C2(S2;R)
satisfying ∆S2f = 0) must necessarily be constant.

To check the vanishing of the boundary term, by considering the transition function
between the two stereographic patches, it’s simple to check that if f is a smooth function
on S2 which is given in one stereographic patch by f(x), then the function f̃(x) = f

(
x
|x|2

)
should be smooth at the origin. Consider

∂f̃

∂xi
(x) =

δij |x|2 − 2xixj

|x|4
∂f

∂xj

(
x

|x|2
)

Setting y = x
|x|2 , and noting that ∂f̃

∂xi
(x) is bounded as x→ 0, we conclude that for large

|y|, we have ∣∣∣∣ ∂f∂xi (y)

∣∣∣∣ ≤ C

|y2|
from which the result easily follows.
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Exercise 3.4. Consider the sphere S2 = {x ∈ R3 : |x| = 1}, and set

U = S2 \ {(−
√

1− t2, 0, t) : t ∈ [−1, 1]},

i.e. the sphere with a line of longitude from north to south pole removed. We define a
coordinate chart (U , ϕ), where ϕ is defined in terms of its inverse by:

ϕ−1 : (0, π)× (−π, π) → U

(θ, φ) 7→

 sin θ cosφ
sin θ sinφ

cos θ

 .

a) Show that with the standard identification of tangent vectors in S2 with vectors in R3

that we have

∂

∂θ

∣∣∣∣
ϕ−1(θ,φ)

' eθ :=

 cos θ cosφ
cos θ sinφ

sin θ

 ,
∂

∂φ

∣∣∣∣
ϕ−1(θ,φ)

' eφ :=

 − sin θ sinφ
sin θ cosφ

0

 .

b) Show that

〈eθ, eθ〉|ϕ−1(θ,φ) = 1,

〈eθ, eφ〉|ϕ−1(θ,φ) = 0,

〈eφ, eφ〉|ϕ−1(θ,φ) = sin2 θ.

where 〈, 〉 is the standard inner product on R3.

c) Deduce that in the θ, φ coordinates:

gS2 = dθ2 + sin2 θdφ2.

d) Show that in these coordinates:

∆gS2
f =

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2

e) Suppose f is a smooth function on S2. Show that:∫ π

θ=0

∫ π

φ=−π
f∆gS2

f sin θdθdφ = −
∫ π

θ=0

∫ π

φ=−π

[(
∂f

∂θ

)2

+
1

sin2 θ

(
∂f

∂φ

)2
]

sin θdθdφ

Example 11. A more interesting example is furnished by the Painlevé-Gullstrand form
of the Schwarzschild Black Hole. Recall that in a coordinate patch we have

g = −
(

1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 + r2Ω2δijdx

idxj ,
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with Ω as above. Writing the components of the metric as a matrix, we have

[gµν ] =


−
(
1− 2m

r

) √
2m
r 0 0√

2m
r 1 0 0

0 0 Ω2 0
0 0 0 Ω2


so that |g| = r4Ω4, and

[gµν ] =


−1

√
2m
r 0 0√

2m
r

(
1− 2m

r

)
0 0

0 0 Ω−2 0
0 0 0 Ω−2


We find

�gf = −∂
2f

∂t2
+

√
2m

r

∂2f

∂t∂r
+

1

r2

∂

∂r

(
r2

√
2m

r

∂f

∂t

)
+

1

r2

∂

∂r

(
[r2 − 2mr]

∂f

∂r

)
+

1

r2
∆S2f.

(2.16)

In the same way that studying the wave equation in Minkowski space helped us to
understand the causal properties (such as signal propagation) for that spacetime, solutions
of the �gu = 0 are of great interest in studying the spacetime (M, g). We will give a
taste of results in this direction, but the study of wave equations on Lorentzian manifolds
is a large field of study with many fascinating recent advances.

Theorem 2.2. Let (M, g) be the Painlevé-Gullstrand form of the Schwarzschild spacetime,
as in Example 7 above. Suppose that f ∈ C2(M;R) vanishes for sufficiently large r at
every fixed time t. Define:

Ef [t] :=
1

2

∫
(2m,∞)×R2

[(
∂f

∂t

)2

+

(
1− 2m

r

)(
∂f

∂r

)2

+
∣∣ /∇f ∣∣2] r2Ω2drdx

where
Ω2 :=

4(
1 + |x|2

)2 , /∇Af =
1

rΩ

∂

∂xA
.

Then we have

dEf
dt

+ 4m2

∫
R2

∂f

∂t

∣∣∣∣2
r=2m

Ω2dx = −
∫

(2m,∞)×R2

�gf
∂f

∂t
r2Ω2drdx.

Proof. We multiply the expression (2.16) by:

−∂f
∂t
r2Ω2
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and integrate over (2m,∞)× R2 with the measure drdx. The first term gives∫
(2m,∞)×R2

∂2f

∂t2
∂f

∂t
r2Ω2drdx =

d

dt

1

2

∫
(2m,∞)×R2

(
∂f

∂t

)2

r2Ω2drdx

The second term we integrate by parts in r to give:

−
∫

(2m,∞)×R2

√
2m

r

∂2f

∂t∂r

∂f

∂t
r2Ω2drdx = +

∫
(2m,∞)×R2

∂

∂r

(
r2

√
2m

r

∂f

∂t

)
∂f

∂t
Ω2drdx

+ 4m2

∫
R2

∂f

∂t

∣∣∣∣2
r=2m

Ω2dx

where we use the fact that f vanishes for sufficiently large r. This term will cancel with
the other mixed derivative term, leaving only the boundary term. Next consider the term
involving two radial derivatives. We have

−
∫

(2m,∞)×R2

1

r2

∂

∂r

(
[r2 − 2mr]

∂f

∂r

)
∂f

∂t
r2Ω2drdx

=

∫
(2m,∞)×R2

[r2 − 2mr]
∂2f

∂t∂r

∂f

∂r
Ω2drdx

=
d

dt

1

2

∫
(2m,∞)×R2

[
1− 2m

r

](
∂f

∂r

)2

r2Ω2drdx

Where we use the fact that f vanishes for sufficiently large r, and that the factor r2−2mr
vanishes at r = 2m to discard boundary terms. Finally, we use the result∫

R2

f∆S2f Ω2dx = −
∫
R2

δij
∂f

∂xi
∂f

∂xj
dx.

to integrate the last term by parts in x and we’re done.

Corollary 2.3. Suppose u1, u2 ∈ C2(M) are two solutions of the wave equation on the
Schwarzschild spacetime, vanishing for sufficiently large r at each fixed t, such that:

u1 = u2,
∂

∂t
u1 =

∂

∂t
u2, on {0} × (2m,∞)× S2

Then u1 = u2 in the region R = [0,∞)× (2m,∞)× S2.

Proof. We apply Theorem 2.2 to u1 − u2. We immediately conclude that Eu1−u2 [t] is
monotone decreasing and positive, however, it is initially zero thus Eu1−u2 [t] = 0 for t ≥ 0.
We conclude that u1 − u2 ≡ 0 in the region R.

In fact, this result follows from a more abstract result that says that a solution of the
wave equation on a Lorentzian manifold is determined in D+(Σ) by its Cauchy data on Σ.
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Proposition 1. Let (M, g) be a smooth, orientable, time orientable, Lorentzian manifold.
Suppose that U ⊂M is a open set with compact closure, whose boundary consists of two
smooth compact components: Σ, Σ′, which are both spacelike and such that U ⊂ D+(Σ).
Suppose that ψ ∈ C2(U) solves the equation:

�gψ = 0 (2.17)

in U . Then if
ψ|Σ = 0, NΣψ|Σ = 0,

Where NΣ is the future unit normal of Σ, we have that ψ = 0 in U .

The proof of this result will mirror (and extend) the proof of Theorem 1.8, the
analogous result for Minkowski space, and will require us to reintroduce some machinery
from the Minkowski proof, now adapted to the manifold case.

Definition 16. Suppose U ⊂ M is open. Given ψ ∈ C2(U), we define a symmetric
(0, 2)−tensor, the energy momentum tensor by

T [ψ] := dψ ⊗ dψ − 1

2
|dψ|g g

or, with respect to a local basis {eµ}:

T [ψ] =

(
(eµψ)(eνψ)− 1

2
gµν(eσψ)(eτψ)gστ

)
eµ ⊗ eν (2.18)

=

(
∇µψ∇νψ −

1

2
gµν∇σψ∇σψ

)
eµ ⊗ eν (2.19)

Exercise 3.5. In the case that (M, g) is the Minkowski spacetime and that {eµ} is
an inertial frame, show that (2.18) agrees with the previous defninition of the energy
momentum tensor.

Theorem 2.4. The energy momentum tensor has the following properties:

1. We have a formula for the divergence:

divgT [ψ] := ∇µTµν [ψ]eν = (�gψ) dψ

2. Suppose V ∈ TpM is a unit timelike vector. Then at p, we have T [ψ](V, V ) ≥ 0, with
equality iff dψ vanishes at p. If {eµ} is any basis for TpM, there exists a constant
C > 0 depending on V and {eµ} such that:

1

C

∑
µ

(eµψ)2 ≤ T [ψ](V, V ) ≤ C
∑
µ

(eµψ)2 .

3. If W ∈ TpM is an unit timelike vector, then:

1

4 |g(V,W )|T [ψ](V, V ) ≤ T [ψ](V,W ) ≤ |g(V,W )|T [ψ](V, V ).
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Proof. 1. We work in a local basis. We have:

∇µTµν = ∇µ
(
∇µψ∇νψ −

1

2
δµν∇σψ∇σψ

)
= �gψ∇νψ +∇µψ∇µ∇νψ −∇ν∇σψ∇σψ
= �gψ∇νψ

2, 3. The proofs of the weak and dominant energy conditions follow directly from the same
proofs in the Minkowski case: We pick an orthonormal basis for TpM in which V = e0,
and then follow the same calculations as before. Since we work only in the tangent
space at a point, all of the same calculations are valid.

We shall require a version of the divergence theorem for a Lorentzian manifold:

Lemma 2.7. SupposeM is a smooth orientable, time orientable, (n+ 1)−dimensional
Lorentzian manifold. Suppose that V ∈ X1(M) is a vector field and that U ⊂ M is an
open set with compact closure, whose boundary Σ = ∂U consists piecewise of smooth
embedded submanifolds and can be written as Σ = Σs ∪Σt where Σs is spacelike and Σt is
timelike. Then we have∫

U
divgV dX =

∫
Σs

g(V,N)dσ −
∫

Σt

g(V,N)dσ,

where vector N is the unit outwards normal (with respect to g). The volume measure dX
and surface measure dσ are positive, and on each coordinate chart are equivalent to the
(n+ 1)−dimensional (resp. n−dimensional) Lebesgue measure.

The final result that we shall require is a statement about the causal structure of
D+(Σ) for a spacelike Σ:

Lemma 2.8. SupposeM is a smooth orientable, time orientable, (n+ 1)−dimensional
Lorentzian manifold. Suppose Σ ⊂ M is a smooth embedded n−dimensional spacelike
submanifold, with D+(Σ) non-empty. Then there exists a function t ∈ C∞(D+(Σ);R),
such that:

i) Σ = {t = 0}.

ii) The level sets of t are spacelike, equivalently gradgt is everywhere causal.

iii) t increases along any future directed causal curve, equivalently −gradgt is future
directed.

Such a t is called a time function for D+(Σ). The proof that such a function exists is
quite subtle and is beyond the scope of the course. It is fairly straightforward to produce
a C0−function which is increasing on any future directed causal curve, and whose level
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sets are achronal (i.e. no two points on a single level set can be connected by a timelike
curve). Showing that this C0−result can be improved to higher regularity is not trivial.1

We now have the pieces we require to prove the proposition.

Proof of Proposition 1. 1. Consider the vector field given in a local basis {eµ} by:
V J [ψ] = Tµ

ν [ψ]V µeν

If ψ solves the wave equation, we have

divg
(
V J [ψ]

)
= Tµν [ψ]V Πµν

where the deformation tensor is given in a local basis by:

V Π := ∇(µVν) =
1

2
(∇µVν +∇νVµ) eν ⊗ eµ.

2. By the assumptions of the proposition together with Lemma 2.8, we have on D+(Σ)
a smooth time function t, and a vector X which is everywhere timelike. We define

V = e−λtX.

We apply the divergence theorem to V J [ψ] on the region U to find:∫
U
divg

(
V J [ψ]

)
dX =

∫
Σ
g
(
V (J [ψ], N

)
dσ −

∫
Σ′
g
(
V (J [ψ], N

)
dσ

where N is the future directed unit normal vector.

3. We calculate:
V Πµν = −λe−λtX(µ∇ν)t+ XΠµνe

−λt

so that locally we have:

divg
(
V J [ψ]

)
= −λTµν [ψ]Xµ∇νt+ Tµν [ψ]XΠµν

4. By the fact that −∇νt is future directed and timelike, we have that −Tµν [ψ]Xµ∇νt
is positive, and controls all derivatives of ψ at each point by part 3 of Theorem
2.4. For sufficiently large λ, making use of the fact that U has compact closure, we
conclude that

divg
(
V J [ψ]

)
≥ e−λtT [ψ](X,X) ≥ C−1T [ψ](X,X)

everywhere in U for some large finite C, by the compactness of U .
1Those interested can find the C0−result in the paper:

“Domain of dependence,” R. Geroch, J.Math.Phys. 11 (1970) 437-439.
The smooth result is in the paper:

“On Smooth Cauchy hypersurfaces and Geroch’s splitting theorem,”paper
A. Bernal, M. Sanchez Commun.Math.Phys. 243 (2003) 461-470
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5. Turning to the surface terms, we have

g
(
V J [ψ], N

)
= T [ψ](V,N)

so again using the compactness of Σ,Σ′, we have:∫
Σ
g
(
V J [ψ], N

)
dσ ≤ C

∫
Σ
T [ψ](X,X)dσ

and ∫
Σ′
g
(
V J [ψ], N

)
dσ ≥ C−1

∫
Σ′
T [ψ](X,X)dσ

6. We conclude that there exists a constant C, independent of ψ such that∫
U
T [ψ](X,X)dX ≤ C

∫
Σ
T [ψ](X,X)dσ.

Now recall that T [ψ](X,X) vanishes at a point if and only if dψ. We see that if
ψ and NΣψ vanish on Σ (and hence dψ = 0 on Σ), we must have df = 0in U and
hence ψ = 0.

Notice that in fact we have a stronger statement than in the proposition, we in fact
have a quantitative estimate for a solution ψ of the wave equation in terms of initial
data. If you attended the advanced PDE course, you will recognise that we have in fact
established H1−control of ψ in the region U in terms of the H1−initial data.

2.3 Curvature

In order to consider the dynamical gravitational field, we want to write down some
equation satisfied by the metric. There are three main goals we have in arriving at this
equation:

1. The equation should be hyperbolic, that is to say it locally has similar properties
to the wave equation.

2. The equation should be geometric, it shouldn’t depend on a particular choice of
basis or coordinate system.

3. The gravitational field should couple to matter in a natural way.

The first condition will ensure that the features we observe in special relativity (such
as finite speed of signal propagation) are not affected by the gravitational field. The
second condition is a mathematical consequence of the equivalence principle. The third
condition, while somewhat vague, is necessary since we expect the gravitational field to
interact with matter in the spacetime.

One possible first guess at how we could achieve these goals would be to assume that
the metric tensor obeys the wave equation:

�gg = F
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where the wave operator is defined on a symmetric 2−tensor in the obvious fashion
(�gh)µν = ∇σ∇σhµν in a local basis, and F should represent some source term for the
gravitational field. Unfortunately, it is trivial that �gg ≡ 0, so this won’t work. It turns
out that the correct object to play the role of ‘�g’ is a term involving the curvature of
the metric. Before we can write down the Einstein equations then, we need to take a bit
of time to define curvatures.

2.3.1 Riemann curvature

Suppose thatM is a Ck−manifold, k ≥ 3, equipped with a Cr-regular pseudo-Riemannian
metric g, where 2 ≤ r < k. The associated Cr−1−regular Levi-Civita connection is ∇.
Given X,Y ∈ Xk−1(M) and a Cs−regular (p, q)−tensor S, with s ≤ r, we define the
Cs−2−regular (p, q) tensor R(X,Y )S by:

R(X,Y )S := ∇X∇Y S −∇Y∇XS −∇[X,Y ]S. (2.20)

Lemma 2.9. The tensor R(X,Y )S has the following properties:

i) It is antisymmetric in X,Y :

R(X,Y )S = −R(Y,X)S

for any X,Y ∈ Xk−1(M) and Cs−regular (p, q) tensor S.

ii) It is f−linear in the first (and hence second) slot:

R(fX1 +X2, Y )S = fR(X1, Y )S +R(X2, Y )S,

for any f ∈ C1(M;R), Xi, Y ∈ Xk−1(M) and Cs−regular (p, q) tensor S.

iii) It is f−linear in S:

R(X,Y )[fS1 + S2] = fR(X,Y )S1 +R(X,Y )S2,

for any f ∈ C2(M;R), X, Y ∈ Xk−1(M) and Cs−regular (p, q) tensors Si.

iv) The following metric compatibility condition holds:

g (R(X,Y )Z,W ) + g (Z,R(X,Y )W ) = 0, ∀ X,Y, Z,W ∈ Xk−1(M;R).

Proof. i) This is immediate by inspection of the definition (2.20).

ii) First note that it is straightforward to see from the definition that

R(X1 +X2, Y )S = R(X1, Y )S +R(X2, Y )S,

which follows from the R-linearity of the connection. It remains to show that
R(fX, Y )S = fR(X,Y )S. For this we calculate

R(fX, Y )S = ∇fX∇Y S −∇Y∇fXS −∇[fX,Y ]S,

= f∇X∇Y S −∇Y (f∇XS)−∇f [X,Y ]−Y (f)XS,

= f∇X∇Y S − f∇Y∇XS − Y (f)∇XS −
(
f∇[X,Y ]S − Y (f)∇XS

)
,

= f
(
∇X∇Y S −∇Y∇XS −∇[X,Y ]S

)
,

= fR(X,Y )S.
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iii) Again, the R−linearity of the connection quickly gives us that

R(X,Y )[S1 + S2] = R(X,Y )S1 +R(X,Y )S2,

so it remains to show that R(X,Y )[fS] = fR(X,Y )S. We calculate:

R(X,Y )[fS] = ∇X∇Y (fS)−∇Y∇X(fS),

= ∇X(f∇Y S + Y (f)S)−∇Y (f∇XS +X(f)S)−∇[X,Y ](fS),

= f∇X∇Y S +X(f)∇Y S + Y (f)∇XS +X(Y f)S

− (f∇Y∇XS + Y (f)∇XS +X(f)∇Y S + Y (Xf)S)

− f∇[X,Y ]S − ([X,Y ]f)S

= fR(X,Y )S + (X(Y f)− Y (Xf)− [X,Y ]f)S

= fR(X,Y )S.

iv) For the final part, we first recall from the definition of the commutator that

X(Y f)− Y (Xf)− [X,Y ]f = 0 (2.21)

for any sufficiently smooth function. We will apply this with f = g(Z,W ). Using
the fact that ∇ is the Levi-Civita connection, we have:

X (Y [g (Z,W )]) = X (g (∇Y Z,W ) + g(Z,∇YW )

= g (∇X∇Y Z,W ) + g (∇Y Z,∇XW ) (2.22)
+ g (∇XZ,∇YW ) + g (Z,∇X∇YW )

Similarly, we have

Y (X [g (Z,W )]) = g (∇Y∇XZ,W ) + g (∇XZ,∇YW ) (2.23)
+ g (∇Y Z,∇XW ) + g (Z,∇Y∇XW )

and
[X,Y ] (g(Z,W )) = g

(
∇[X,Y ]Z,W

)
+ g

(
Z,∇[X,Y ]W

)
(2.24)

Taking (2.22)−(2.23)−(2.24) and noting a cancellation between terms with one
derivative falling on Z and one on W , we arrive at the result.

Corollary 2.5. Suppose X,Y, Z ∈ Xk−1(M), and let {eµ} be a local basis, whose dual
basis is {eµ}. Then if X = Xµeµ, Y = Y µeµ, Z = Zµeµ, we can write:

R(X,Y )Z = Rτ σµνX
µY νZσeτ

Where Rµνστ ∈ Cr−2(M;R) are the components of a (1, 3)−tensor, called the Riemann
tensor, given by:

Rτ σµν = eτ (R(eµ, eν)eσ) .
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Proof. We simply use the linearity results established above to write

R(X,Y )Z = R(Xµeµ, Y
νeν) [Zµeν ]

= XµY νZσR(eµ, eν)eσ

= XµY νZσeτ [R(eµ, eν)eσ] eτ

= Rτ σµνX
µY νZσeτ .

From parts i), iv) of Lemma 2.9, it is straightforward to show that the Riemann
tensor has the following symmetries:

Rτ σµν = −Rτ σνµ, Rτσµν = −Rστµν ,

where we recall that indices are raised and lowered with the metric.

Exercise 3.6. a) Suppose ω ∈ X∗k−1(M) and X,Y, Z ∈ Xk−1(M). By considering (2.21)
with f = ω[Z], and recalling that X (ω[Z]) = (∇Xω)[Z] + ω [∇XZ], show that:

ω [R(X,Y )Z] + (R(X,Y )ω)Z = 0.

b) Deduce that in a local basis, the action of R(X,Y ) on a one-form is given by:

R(X,Y )ω = −Rτ σµνXµY νωτe
σ

c) Show that if S1, S2 are Ck−1−regular tensor fields, then

R(X,Y ) [S1 ⊗ S2] = [R(X,Y )S1]⊗ S2 + S1 ⊗ [R(X,Y )S2] .

d) Deduce that in a local basis, the action of R(X,Y ) on an arbitrary (p, q)−tensor is
given by:

[R(X,Y )S]µ1...µp ν1...νq =

[
Rµ1σµνS

σµ2...µp
ν1...νq + · · ·+RµpσµνS

µ1...µp−1σ
ν1...νq

−Rσν1µνSµ1...µpσν2...νq − · · · −RσνqµνSµ1...µpν1...νq−1σ

]
XµY ν

The exercise above shows that the Riemann tensor on its own is sufficient to determine
the action of R(X,Y ) on an arbitrary tensor.

The Riemann tensor has further symmetries, which are encapsulated in the Bianchi
identities. We will simply state these at this stage.

Theorem 2.6. The following identities hold for any vector fields X,Y, Z,W ∈ Xk−1(M):

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 1st Bianchi identity

[∇WR] (X,Y )Z + [∇XR] (Y,W )Z + [∇YR] (W,X)Z = 0 2nd Bianchi identity
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Proof. The proof is essentially by direct calculation, which can be simplified somewhat by
choosing the vector fields cleverly. See for example the book of Do Carmo, “Riemannian
Geometry”, pp 91, 106.

Corollary 2.7. With respect to a local basis, the first Bianchi identity can be written:

Rτ σµν +Rτ µνσ +Rτ νσµ = 0. (2.25)

This, together with the previously established antisymmetry properties implies:

Rτσµν = Rµντσ

With this in mind, we can write the second Bianchi identity is equivalent to:

∇σRµντλ +∇µRνστλ +∇νRσµτλ = 0. (2.26)

Proof. Writing the 1st Bianchi identity with respect to a local basis, we have:

Rτ σµνX
µY νZσeτ +Rτ σµνY

µZνXσeτ +Rτ σµνZ
µXνY σeτ = 0

relabelling indices, and pulling out factors, this is equivalent to:

(Rτ σµν +Rτ µνσ +Rτ νσµ)XµY νZσeτ = 0

which gives (2.25) since the vector fields X,Y, Z are arbitrary and {eµ} is a basis.
Now, consider the same identity written out four times, with indices all lowered:

0 = Rτσµν +Rτµνσ +Rτνσµ

0 = Rσµντ +Rσντµ +Rστµν

0 = Rµντσ +Rµτσν +Rµσντ

0 = Rντσµ +Rνσµτ +Rνµτσ

Adding these four identities and using the antisymmetry on the first and last pairs of
indices, all of the terms in the first column cancel against terms in the last column, and
we have:

0 = 2Rτµνσ − 2Rνστµ

which gives the result.
For the last part, we can write the second Bianchi identity with respect to the local

basis as:

(∇σRτ λµν)W σXµY νZλeτ +(∇σRτ λµν)XσY µW νZλeτ +(∇σRτ λµν)Y σWµXνZλeτ = 0

Relabelling, this becomes

(∇σRτ λµν +∇µRτ λνσ +∇νRτ λσµ)W σXµY νZλeτ = 0

Thus the second Bianchi identity is equivalent to the vanishing of the bracket above.
Lowering τ and using the interchange symmetry we have:

∇σRµντλ +∇µRνστλ +∇νRσµτλ = 0.
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2.3.2 Ricci and scalar curvature

From the Riemann tensor it is possible to construct other curvature tensors, which capture
some aspect or other of the geometry of the manifold. An important curvature is the Ricci
curvature, which is a Cr−2−regular (0, 2)−tensor, where for X,Y ∈ Tp(M), Ricg(X,Y )|p
is defined as the trace of the endomorphism:

R :
TpM → TpM
Z 7→ R(Z,X)Y

In a local basis, we have

Ricg(X,Y ) = Rτ µτνX
µY ν = RµνX

µY ν ,

where we define:
Rµν := Ricg(eµ, eν).

by the interchange symmetry of the Riemann tensor, the Ricci tensor is symmetric,
Ricg(X,Y ) = Ricg(Y,X).

We also define the scalar curvature, sometimes called the Ricci scalar, Rg, which is
the trace of Ricg with respect to the metric. In local coordinates:

Rg = gµνRµν

Lemma 2.10. The contracted Bianchi identities hold:

divg

(
Ricg −

1

2
Rgg

)
= 0.

Proof. We work in a local basis. Consider the second Bianchi identity in components
(2.26):

∇σRµντλ +∇µRνστλ +∇νRσµτλ = 0.

Contracting with gµτ , we have:

∇σRνλ +∇τRνστλ −∇νRσλ = 0.

Contracting again with gσλ, we obtain:

2∇σRνσ −∇νRg = 0

Dividing by 2 and re-writing this, we have:

∇σ
(
Rνσ −

1

2
Rggνσ

)
= 0,

which is the result.

The tensor field Ricg − 1
2Rgg is often referred to as the Einstein tensor, and denoted

G.
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Example 12. From Example 9 we have all of the information we require to calculate the
Riemann tensor for the Schwarzschild metric in Painlevé-Gullstrand coordinates, with
respect to the orthonormal basis {eµ} given in Example 7. We calculate, for example:

R(e0, e1)e0 = ∇e0∇e1e0 −∇e1∇e0e0 −∇[e0,e1]e0

= ∇e0

(
1

2r

√
2m

r
e1

)
−∇e1 (0)−∇

− 1
2r

√
2m
r
e1
e0

= −
√

2m

r

∂

∂r

(
1

2r

√
2m

r

)
e1 +

1

2r

√
2m

r

1

2r

√
2m

r
e1

=
2m

r3
e1

In this way, we can calculate:

R(e0, e1)e0 =
2m

r3
e1, R(e0, e1)e1 =

2m

r3
e0, R(e0, e1)eA = 0,

R(e0, eA)e0 = −m
r3
eA, R(e0, eA)e1 = 0, R(e0, eA)eB = −m

r3
δABe0,

R(e1, eA)e0 = 0, R(e1, eA)e1 =
m

r3
eA, R(e1, eA)eB = −m

r3
δABe1,

R(eA, eB)e0 = 0, R(eA, eB)e1 = 0, R(eA, eB)eC =
2m

r3
(δBCeA − δACeB) ,

Or in terms of components, we can extract the non-trivial components of the Riemann
tensor:

R0101 = −2m

r3
, R0A0B =

m

r3
δAB,

R1A1B = −m
r3
δAB, RABCD =

2m

r3
(δBDδAC − δADδBC) ,

with all other components either related to these by symmetries of the Riemann tensor,
or else vanishing.

To calculate the Ricci tensor, we have to take the trace over the first and third
indices of the Riemann tensor. Since we work in an orthonormal basis, this is relatively
straightforward, and we find, for example:

R00 = Rµ0µ0 = R1010 + δABRA0B0

= −2m

r3
+
m

r3
δABδ

AB = 0.

Similarly:

R11 = Rµ0µ0 = −R0101 + δABRA1B1

=
2m

r3
− m

r3
δABδ

AB = 0.
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and finally:

RAB = RµAµB = −R0A0B +R1A1B +RCADBδ
CD

= −m
r3
δAB −

m

r3
δAB +

2m

r3
δCD (δCDδAB − δADδBC)

= 0.

We thus conclude that the Ricci tensor (and hence also the scalar curvature) of the
Schwarzschild metric vanishes identically!

Note that the full curvature does not vanish: in fact, we see that the curvature
becomes singular near r = 0, which is the location of the black hole singularity.

2.3.3 Local expressions

We can work out an expression for the various curvatures in terms of the connection
coefficients, and ultimately the components of the metric. To do this, we simply have to
insert expressions for various derivatives.

Lemma 2.11. Suppose {eµ} is a local basis, with commutator coefficients given by:

[eµ, eν ] = Cσµνeσ,

and connection coefficients given by

∇eµeν = Γσµνeσ.

Then we have the following expression for the components of the Riemann tensor:

Rτ σµν = eµ (Γτ νσ) + ΓλνσΓτ µλ − eν (Γτ µσ)− ΓλµσΓτ νλ − Γτ λσC
λ
µν (2.27)

For the Ricci tensor, we have:

Rσν = eµ (Γµνσ) + ΓλνσΓµµλ − eν (Γµµσ)− ΓλµσΓµνλ − ΓµλσC
λ
µν

Proof. We calculate

∇eµ∇eνeσ = ∇eµ
(

Γλνσeλ

)
= eµ

(
Γλνσ

)
eλ + ΓλνσΓτ µλeτ

=
[
eµ (Γτ νσ) + ΓλνσΓτ µλ

]
eτ

Similarly,
∇eν∇eµeσ =

[
eν (Γτ µσ) + ΓλµσΓτ νλ

]
eτ .

We also have

∇[eµ,eν ]eσ = ∇Cλµνeλeσ
= Cλµν∇eλeσ
= ΓµλσC

λ
µνeτ
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Now, recalling that

R(eµ, eν)eσ = ∇eµ∇eνeσ −∇eν∇eµeσ −∇[eµ,eν ]eσ = Rτ σµνeτ

we have the expression above for the Riemann tensor. The expression for the Ricci tensor
follows from contracting on τ, µ.

This expression allows us to calculate the form of the Ricci tensor, thought of as a
(nonlinear) partial differential operator acting on g.

Corollary 2.8. In a local coordinate basis, we can write:

Rασµν =
1

2

(
∂2gαν
∂xµ∂xσ

+
∂2gσµ
∂xν∂xα

− ∂2gαµ
∂xν∂xσ

− ∂2gσν
∂xµ∂xα

)
−ΓλµαΓλνσ+ΓλναΓλµσ. (2.28)

and

Rσν = −1

2
gµα

∂2gσν
∂xµ∂xα

+
1

2

∂

∂xσ
Γνµ

µ +
1

2

∂

∂xν
Γσµ

µ − Γλµ
µΓλνσ (2.29)

+ ΓτλνΓτλσ + ΓτλνΓσ
τλ + ΓτλσΓν

τλ

Proof. 1. As a short hand, we will use ∂α = ∂
∂xα , ∂

2
αβ = ∂2

∂xα∂xβ
. We have to be careful

with the partial derivatives, since unlike covariant derivatives they do not commute
with the raising and lowering of indices. Now recall:

Γαβτ = gατΓτ βτ =
1

2
(∂βgατ + ∂τgαβ − ∂αgβτ )

so that
∂βgατ = Γαβτ + Γτβα (2.30)

As a consequence, we have

gατ∂β (Γτ µν) = ∂β (Γαµν)− (Γαβτ + Γτβα) Γτ µν .

2. Inserting this into the expression (2.27) and recalling that in a coordinate basis we
have Cλµν ≡ 0, we find:

Rασµν = gατR
τ
σµν

= gατ∂µ (Γτ νσ)− gατ∂ν (Γτ µσ) + ΓλνσΓαµλ − ΓλµσΓανλ

= ∂µ (Γανσ)− (Γαµτ + Γτµα) Γτ νσ

− ∂ν (Γαµσ) + (Γαντ + Γτνα) Γτ µσ

+ ΓλνσΓαµλ − ΓλµσΓανλ

= ∂µ (Γανσ)− ∂ν (Γαµσ)− ΓτµαΓτ νσ + ΓτναΓτ µσ
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Inserting the definition of Γ into the first two terms, we calculate

Rασµν =
1

2

(
∂2
µνgασ + ∂2

µσgαν − ∂2
µαgνσ − ∂2

νµgασ − ∂2
νσgαµ + ∂2

ναgµσ
)

− ΓτµαΓτ νσ + ΓτναΓτ µσ

=
1

2

(
∂2
µσgαν + ∂2

ναgµσ − ∂2
µαgνσ − ∂2

νσgαµ
)
− ΓτµαΓτ νσ + ΓτναΓτ µσ

which is (2.28).

3. To find the Ricci tensor, we first differentiate (2.30) to find:

∂2
µσgαν = ∂σ (Γαµν + Γνµα)

∂2
ναgµσ = ∂ν (Γµασ + Γσαµ)

∂2
νσgαµ =

1

2
∂ν (Γασµ + Γµσα) +

1

2
∂σ (Γανµ + Γµνα)

taking the sum of the first two equalities and subtracting the third, we have

∂2
µσgαν + ∂2

ναgµσ − ∂2
νσgαµ = ∂σ (Γνµα) + ∂ν (Γσµα)

+
1

2
[∂σ (Γαµν)− ∂σ (Γµαν) + ∂ν (Γαµσ)− ∂ν (Γµασ)]

Notice that the term in square brackets is antisymmetric in α and µ, so that

gαµ
(
∂2
µσgαν + ∂2

ναgµσ − ∂2
νσgαµ

)
= gµα (∂σ (Γνµα) + ∂ν (Γσµα))

= ∂σ (Γνµ
µ) + ∂ν (Γσµ

µ)

− Γνµα∂σg
µα − Γσµα∂νg

µα

Now, since ∂µgαβ = −gλα (∂σgλτ ) gβτ , we have:

−Γνµα∂σg
µα − Γσµα∂νg

µα = Γν
µα∂σgµα + Γσ

µα∂νgµα

= Γν
µα (Γµσα + Γασµ) + Γσ

µα (Γµνα + Γανµ)

= 2ΓτλνΓσ
τλ + 2ΓτλσΓν

τλ

4. To obtain (2.29) we multiply the expression (2.28) by gαµ and use the result of part
3. above to rewrite three of the four ∂2g terms in terms of Γ

The form that we have put the Ricci tensor in might seem a bit strange: we’ve made
some second derivatives of the metric explicit and others we have written in terms of the
connection components. To explain why we have done this, at this stage it’s useful to
introduce a particular choice of coordinates, known as wave coordinates. Recall that the
wave equation is given in a local coordinate basis by (2.14):

0 = �gf = gµν
∂2f

∂xµ∂xν
− gµνΓσµν

∂f

∂xσ
.
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We say that we are working in wave coordinates if the coordinate functions xα are
themselves solutions of the wave equation, so that �gxα = 0. Since ∂σxα = δασ, we get
the following condition on the connection components when expressed in a local basis
induced by wave coordinates:

0 = −gµνΓαµν = Γαµ
µ. (2.31)

Theorem 2.9. With respect to wave coordinates, the Ricci tensor takes the form:

Rσν = R(w)
σν := −1

2
gµα

∂2gσν
∂xµ∂xα

+ Pσν(g, ∂g) (2.32)

Here P is a homogeneous quadratic form in the first derivatives,

Pσν(g, ∂g) = Pαβγ,λτµσν (g)∂αgβγ∂λgτµ,

where Pαβγ,λτµσν (g) = P λτµ,αβγσν (g) is determined from:

Pαβγ,λτµσν (g)∂αgβγ∂λgτµ = ΓτλνΓτλσ + ΓτλνΓσ
τλ + ΓτλσΓν

τλ. (2.33)

Proof. We simply insert the condition 0 = Γαµ
µ into (2.29), which implies that all of the

terms on the second line vanish. The fact that P is a homogeneous quadratic form in the
first derivatives follows from the fact that Γαβγ is linear in the first derivatives, and that
the right hand side of (2.33) is a symmetric quadratic form in Γαβγ .

This shows that the Ricci tensor (in appropriate coordinates) can be though of as a
quasilinear wave operator acting on the metric tensor.
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Einstein’s equations

3.1 Einstein’s equations and matter models

We are now in a position to write down Einstein’s equations for the gravitational field,
which describe a 4−dimensional Lorentzian manifold (M, g):

Ricg −
1

2
Rg + Λg = T. (3.1)

The left hand side of Einstein’s equations involves terms constructed from the metric g.
The first two terms are familiar from the discussion of the previous chapter. The third
term on the left hand side is a constant multiple of the metric itself. Λ here is a parameter
of the theory known as the cosmological constant. It was introduced by Einstein in
order that the theory would admit solutions corresponding to a stationary universe. The
discovery by Hubble that in fact galaxies are all moving apart caused Einstein to throw
away this term, dismissing it as the “greatest blunder” of his life. Modern measurements
of the Cosmic Microwave Background, and Type Ia Supernovae data suggest that the
cosmological constant term should be present, and that Λ > 0.

The term on the right hand side, T , is the energy-momentum tensor of the matter
present in the spacetime. It is a symmetric, divergence free tensor. In order to close the
system of equations represented by (3.1), we have to specify some model for the matter
present in the spacetime, which describes how the matter evolves in time. Possible matter
models include:

1. Vacuum. For this we set T ≡ 0, so that there is no matter present in the spacetime.
Bothe the Minkowski spacetime, and the Schwarzschild spacetime that we have
already encountered are solutions of the vacuum Einstein equations with Λ = 0.

2. Wave matter The matter content is encoded in a single function ψ satisfying the
wave equation:

�gψ = 0

where �g is the wave operator of the metric g. The energy-momentum tensor is
then given in a local basis by:

Tµν [ψ] = ∇µψ∇νψ −
1

2
gµν∇σψ∇σψ.

63
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3. Electromagnetic. Here the matter content is encoded in an antisymmetric
(0, 2)−tensor, F satisfying the Maxwell equations, which in a local basis take
the form:

∇µFµν = 0, ∇[µFνσ] = 0,

where ∇ is the Levi-Civita connection of g. The energy-momentum tensor is then
given in a local basis by:

Tµν [F ] = FµσFν
σ − 1

4
ηµνFστF

στ .

4. Perfect fluid A perfect fluid is described by a local velocity U ∈ X(M), which is
everywhere a unit timelike vector field, together with a pressure p and a density ρ.
They satisfy the first law of thermodynamics:

U [ρ] + (ρ+ p)divgU = 0,

and Euler’s equation:

(ρ+ p)∇UU + gradgp+ U [p]U = 0,

This gives a closed system once a relation, called an equation of state, p = p(ρ) is
specified. The energy momentum tensor is then given by

Tµν = (ρ+ p)UµUν + pgµν .

All of these matter models are used for various purposes in the study of relativity.
Notice that in general, the equations of motion for the matter fields depend on the metric,
and of course the metric evolves according to Einstein’s equations. This was summed up
by Wheeler as:

“Space acts on matter, telling it how to move. In turn, matter reacts back
on space, telling it how to curve.”1

In general, we have a complicated system of nonlinear, hyperbolic PDEs for the 10
components of the metric and the matter fields. For most of the rest of the course, we will
focus on the vacuum case. This allows us to consider some of the challenges of studying
general relativity in a somewhat simpler setting.

3.2 The linearised Einstein equations

A starting point for the study of any nonlinear PDE is often to study the linearisation
about a known solution. This usually results in a simpler problem, which can be attacked
with standard methods. The knowledge one gains from studying the linearised problem
can then be used to try and tackle the full, nonlinear, problem. We will consider the

1C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation. W. H. Freeman, 1973.
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problem of linearising the vacuum Einstein equations about the Minkowski space. In the
vacuum case, with Λ = 0, the equations reduce to

Ricg = 0.

Recall that Minkowski space is the manifold R4, with coordinates (xµ)µ=0,...3 and the
metric given by:

η = ηµνdx
µdxν = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

Now, since

�ηf = ηµν
∂2f

∂xµ∂xν
,

the coordinates xµ are wave coordinates for the Minkowski metric.
Let us suppose that we have a family of metrics (s)g defined on R4, with (0)g = η

and which depend smoothly2 on s ∈ (−ε, ε). Suppose also that (s)g solves the Einstein
equations, and that the coordinates xµ are wave coordinates for (s)g for every s ∈ (−ε, ε).
This implies that

−1

2
(s)gµα

∂2

∂xµ∂xα

[
(s)gσν

]
+ (s)Γτλν

(s)Γτλσ + (s)Γτλν
(s)Γσ

τλ + (s)Γτλσ
(s)Γν

τλ = 0

and
0 = (s)Γαµµ = (s)gατ (s)gµν

(
∂ν

(s)gµτ −
1

2
∂τ

(s)gµν

)
.

To find the linearised Einstein equations, we differentiate these with respect to s, and
then set s = 0. Recalling that (0)gµν = ηµν and (0)Γτλσ = 0, we deduce that

0 = �ηγµν , (3.2)

0 = ∂µγ
µ
ν −

1

2
∂νγσ

σ, (3.3)

where γµν = d
ds

[
(s)gµν

]∣∣
s=0

, and indices are raised and lowered with η. Equation (3.2)
simply says that the components of γ with respect to the canonical coordinates on
Minkowski space each separately obey the wave equation. By the results of Chapter
1, a unique solution for γµν ∈ C∞(R4) exists, provided we specify smooth initial data:
γµν |x0=0 and ∂0γµν |x0=0. Can we simultaneously satisfy equation (3.3)? This represents
a set of constraints that our solutions to (3.2) must satisfy. In order that the pair of
equations (3.2), (3.3) admit any solutions at all, they must be compatible. That they are
is a result of the following:

Lemma 3.1. Suppose γµν is a smooth solution of (3.2). Then (3.3) holds in R4 if, and
only if:

0 = ∂µγ
µ
ν −

1

2
∂νγσ

σ

∣∣∣∣
x0=0

, (3.4)

0 = ∂0

(
∂µγ

µ
ν −

1

2
∂νγσ

σ

)∣∣∣∣
x0=0

. (3.5)

2In the sense that the components of (s)g, and an appropriate number of their derivatives, with
respect to any coordinate chart are smooth functions of s. The fact that such families of solutions exist
is not a priori obvious, but happens to be true.
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Proof. Let Fν = ∂µγ
µ
ν − 1

2∂νγσ
σ. Equation (3.3) is equivalent to Fν = 0. Notice that Fν

solves the wave equation for each ν:

�ηFν = ∂τ∂
τ

(
∂µγ

µ
ν −

1

2
∂νγσ

σ

)
= ∂µ (�ηγ

µ
ν)− 1

2
∂ν (�ηγσ

σ)

= 0.

Now, by the uniqueness results of Chapter 1, we know that Fν is uniquely determined
by the value of Fν , ∂0Fν on the hyperplane {x0 = 0}. In particular if Fν = ∂0Fν = 0 on
{x0 = 0}, then Fν = 0 in R4.

What this result tells us is that it’s enough to make sure that the constraint equations
are satisfied at the initial time x0 = 0, and the evolution equation (3.2) then ensures that
the constraints propagate in time. The conditions (3.4), (3.5) will not hold for arbitrary
choices of initial conditions γµν |x0=0 and ∂0γµν |x0=0, we need to restrict our choice of
data to ensure that the initial constraints are satisfied.

Let us suppose that we are given φ, βi, hij , kij , for i, j = 1, 2, 3, which we assume to
be smooth functions on R3. We suppose that the initial data for (3.2) is constructed from
these functions in the following fashion:

γ00|x0=0 = φ

γ0i|x0=0 = γi0|x0=0 = βi

γij |x0=0 = hij

∂0γ00|x0=0 = 2kii (3.6)

∂0γ0j |x0=0 = ∂ihij −
1

2
∂jhii +

1

2
∂jφ

∂0γij |x0=0 = −2kij + 2∂(iβj)

Lemma 3.2. The solution γµν to (3.2) with initial conditions (3.6) satisfies (3.3) through-
out R4, and hence is a solution of the linearised Einstein equations, if and only if the
following constraints hold on hij, kij:

0 = ∂i∂jhij − ∂i∂ihjj , (3.7)
0 = ∂ikij − ∂jkii. (3.8)

Proof. We first verify that constraint equation (3.4) is satisfied by our choice of initial
data. Splitting into the time and space components, we first calculate:

∂µγ
µ

0 −
1

2
∂0γσ

σ

∣∣∣∣
x0=0

= −∂0γ00 + ∂iγi0 +
1

2
∂0γ00 −

1

2
∂0γii

∣∣∣∣
x0=0

= −2kii + ∂iβi + kii −
1

2
(−2kii + 2∂iβi)

= 0.
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For the spacelike components we have:

∂µγ
µ
j −

1

2
∂jγσ

σ

∣∣∣∣
x0=0

= −∂0γ0j + ∂iγij +
1

2
∂jγ00 −

1

2
∂jγii

∣∣∣∣
x0=0

= − ∂0γ0j |x0=0 + ∂ihij +
1

2
∂jφ−

1

2
∂jhii

= 0.

Now we have to verify that (3.5) holds, at which point we are done by the previous
Lemma. When we differentiate the constraint in the time direction, we will observe some
components with two x0−derivatives acting on them. To handle these, we use the fact
that �ηγµν = 0, so that in particular:

∂0∂0γµν |x0=0 = ∂j∂jγµν |x0=0

We find that the 0−component of (3.5) gives:

∂0

(
∂µγ

µ
0 −

1

2
∂0γσ

σ

)∣∣∣∣
x0=0

= −∂0∂0γ00 + ∂0∂iγi0 +
1

2
∂0∂0γ00 −

1

2
∂0∂0γii

∣∣∣∣
x0=0

= −1

2
∂i∂iφ+ ∂j

(
∂ihij −

1

2
∂jhii +

1

2
∂jφ

)
− 1

2
∂j∂jhii

= ∂i∂jhij − ∂i∂ihjj
= 0.

Where we use (3.7) in the last line. Finally, to verify the spacelike components of (3.5),
we calculate:

∂0

(
∂µγ

µ
j −

1

2
∂jγσ

σ

)∣∣∣∣
x0=0

= −∂0∂0γ0j + ∂0∂iγij +
1

2
∂j∂0γ00 −

1

2
∂j∂0γii

∣∣∣∣
x0=0

= −∂i∂iβj + ∂i (−2kij + ∂iβj + ∂jβi)

+ ∂jkii −
1

2
∂j (−2kii + 2∂iβi)

= −2 (∂ikij − ∂jkii)
= 0.

We can thus break the initial data down into geometrical objects defined on R3. We
have two symmetric tensors, h and k, which have to obey the constraint equations (3.7),
(3.8). We also have a scalar φ and a vector field β which are freely specifiable. Once we
have specified these objects, there exists a unique solution γ to the equations (3.2) (3.3).
We shall see later that h, k are intrinsic to the initial hypersurface {x0 = 0}, while φ,
β essentially encode information about the choice of coordinates (the wave coordinate
condition doesn’t fix completely fix the coordinates).

3.3 Hypersurface geometry and the constraint equations

[Before reading this section, you should make sure that you’re familiar with the material in §A.3.4]
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A note of caution We will specialise in this section to embedded spacelike sub-
manifolds of Lorentzian manifolds. Many of the results have analogues in the case of
embedded submanifolds of Riemannian manifolds. However, there are a few differences in
sign introduced by the signature, so one should not assume that the formulae given here
are directly valid in that situation.

3.3.1 The induced metric and second fundamental form

Let us suppose that we have a smooth, time oriented, four dimensional Lorentzian manifold
(M, g). Suppose that we are also given a three dimensional manifold Σ. An embedding of
Σ intoM is a smooth map ı ∈ C∞(Σ;M), such that ı is a homeomorphism of Σ onto
ı(Σ) and ı is an immersion, i.e. the push forward map ı∗ acting on vectors is everywhere
injective. As a result of the injectivity of ı∗, we can identify TpΣ with a three-dimensional
subspace Tı(p)ı(Σ) ⊂ Tı(p)M. We say that a vector X ∈ Tı(p)ı(Σ) is tangent to ı(Σ) at
ı(p).

We assume now that an embedding has been fixed.

Definition 17. The metric induced on Σ by g is the pull-back of g to Σ by the embedding
map ı, and we denote the induced metric by h := ı∗g. More concretely, for X,Y ∈ TpΣ,
we define:

h(X,Y ) = g (ı∗X, ı∗Y )

We can translate our definitions of timelike/spacelike/null surfaces to the following:

Lemma 3.3. The surface ı(Σ) is:

i) Timelike at ı(p) if and only if h is a Lorentzian metric at p.

ii) Null at ı(p) if and only if h is a degenerate quadratic form at p.

iii) Spacelike at ı(p) if and only if h is a Riemannian metric at p.

We will mostly focus on the spacelike case, as this is the correct setting for an initial
data surface for Einstein’s equations. For each p ∈ Σ, there is a unique N ∈ Tı(p)M
which is timelike, future directed, of unit length, and orthogonal to Tı(p)ı(Σ). Using
the Canonical Immersion Theorem, Lemma A.8 in §A.3.4, we can assume that N is the
restriction to ı(Σ) of a smooth vector field defined onM. For any V ∈ Tı(p)M, we define:

>V := V + g(N,V )N, ⊥V := −g(N,V )N

so that
V = >V +⊥V

and we have >V ∈ Tı(p)ı(Σ), and ⊥V is orthogonal to Tı(p)ı(Σ). In other words, Tı(p)M
splits into

Tı(p)M = Tı(p)ı(Σ)⊕Nı(p)ı(Σ),

where Nı(p)ı(Σ) =
(
Tı(p)ı(Σ)

)⊥ is the orthogonal complement of Tı(p)ı(Σ) with respect to
g. This is a one-dimensional timelike subspace, representing the normal directions to ı(Σ)
with respect to the metric g.
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We want to look at how the Levi-Civita connection ∇ behaves under this splitting.
For this it will be useful to have the following result:

Lemma 3.4. Let U ⊂ Σ be open, and suppose that ı : Σ ↪→M is an embedding such that
the image is spacelike.

i) Suppose that V1, V2,W ∈ X(M) satisfy V1 = V2 on ı(U). Then

∇V1W = ∇V2W, onı(U).

ii) Suppose that W,V1, V2 ∈ X(M) satisfy W ∈ Tı(p)ı(U) for each p ∈ U and V1 = V2 on
ı(U). Then

∇WV1 = ∇WV2 onı(U).

Proof. i) We have V1 − V2 = 0 on ı(U), so by the fact that ∇ is tensorial in its first
slot, we have that on ı(U):

0 = ∇V1−V2W = ∇V1W −∇V2W

ii) It suffices to prove that if V ∈ X(M) vanishes on ı(U), then ∇WV = 0 on ı(U). Let
us fix some K ∈ X(M) and define f = g(V,K)|ı(U). Clearly ı

∗f = 0. Note also that
there exists a vector field X ∈ X(U) such that ı∗X = W on ı(U). We calculate that
at p ∈ U :

0 = X(ı∗f)|p
= ı∗X(f)|ı(p) = W (f)|ı(p)
= W [g (V,K)]|ı(p)
= g (∇WV,K)|ı(p) + g (V,∇WK)|ı(p)
= g (∇WV,K)|ı(p)

Now, since K was arbitrary, we deduce ∇WV |ı(p) = 0.

Suppose we have vector fields X,Y ∈ X(Σ). By Corollary A.4, about any p ∈ Σ we
can find a neighbourhood U and two vector fields X̃, Ỹ ∈ X(M) such that ı∗X = X̃ and
ı∗Y = Ỹ on ı(U), i.e. such that X̃, Ỹ extend X,Y away from ı(U). The previous Lemma
shows that ∇

X̃
Ỹ
∣∣∣
ı(U)

is independent of the extension, and depends only on X,Y .

Now, we can uniquely decompose:

∇
X̃
Ỹ = >∇

X̃
Ỹ +⊥∇

X̃
Ỹ

where > is the tangential component and ⊥ the normal.

Theorem 3.1. i) Let D : X(Σ)× X(Σ)→ X(Σ) be defined by:

ı∗(DXY ) = >∇
X̃
Ỹ

for all X,Y ∈ X(Σ), where X̃, Ỹ are any (local) extensions of X,Y . Then D is
the Levi-Civita connection of the induced metric h. (Note that the formula above
determines DXY uniquely by the infectivity of ı∗).
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ii) Let k : X(Σ)× X(Σ)→ C∞(Σ;R) be defined by:

k(X,Y ) := ı∗
[
g
(
N,∇

X̃
Ỹ
)]
,

where X̃, Ỹ are any (local) extensions of X,Y . We have that

k(X,Y ) = k(Y,X)

and
k(fX, Y ) = fk(X,Y ) ∀ f ∈ C∞(Σ,R).

Proof. i) We first verify that D is a connection. By the linearity of the orthogonal
projection and the push-forward map, we have

ı∗ (DX1+X2Y ) = >∇
X̃1+X̃2

Ỹ

= >
(
∇
X̃1
Ỹ +∇

X̃1
Ỹ
)

= >∇
X̃1
Ỹ +>∇

X̃1
Ỹ

= ı∗(DX1Y ) + ı∗(DX2Y )

= ı∗(DX1Y +DX2Y )

so by the injectivity of ı∗, we have DX1+X2Y = DX1Y +DX2Y . A similar calculation
shows:

DX(Y1 + Y2) = DXY1 +DXY2.

We have to check the rules for DfXY and DX(fY ) hold. We note that by Corollary
A.3 any f ∈ C∞(Σ;R) can locally be written as f = ı∗f̃ for some f̃ ∈ C∞(M;R).
We calculate:

ı∗(DfXY ) = >∇
f̃ X̃
Ỹ

= >
(
f̃∇

X̃
Ỹ
)

= f̃>∇
X̃
Ỹ = ı∗ (fDXY )

similarly

ı∗(DX [fY ]) = >∇
X̃
f̃ Ỹ

= >
(
f̃∇

X̃
Ỹ + X̃(f̃)Ỹ

)
= >

(
f̃∇

X̃
Ỹ
)

+ X̃(f̃)Y ∗

= ı∗ (fDXY +X(f)Y )

Hence D is an affine connection. It remains to show that it is torsion free and metric.
To verify that D is torsion free, we calculate

ı∗ (DXY −DYX − [X,Y ]) = >
(
∇
X̃
Ỹ −∇

Ỹ
X̃
)
− [X,Y ]∗

= >
(
∇
X̃
Ỹ −∇

Ỹ
X̃
)
−
[
X̃, Ỹ

]
= >

(
∇
X̃
Ỹ −∇

Ỹ
X̃ −

[
X̃, Ỹ

])
= 0.
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Here we have used Lemma A.9. Finally, to check that D respects the induced metric
h, we calculate:

X[h(Y,Z)] = X[ı∗(g(Ỹ , Z̃))] = ı∗[X̃g(Ỹ , Z̃)]

= ı∗
[
g(∇

X̃
Ỹ , Z̃) + g(Ỹ ,∇

X̃
Z̃)
]

= ı∗
[
g(>∇

X̃
Ỹ , Z̃) + g(Ỹ ,>∇

X̃
Z̃)
]

= ı∗
[
g(ı∗(DXY ), Z̃) + g(Ỹ , ı∗ (DXZ))

]
= h (DXY,Z) + h (Y,DXZ) .

ii) We know by Lemma A.9 that [X̃, Ỹ ] is an extension of [X,Y ], so we have [X̃, Ỹ ] is
tangent to ı(Σ), hence g

(
N, [X̃, Ỹ ]

)
= 0. Thus:

0 = g
(
N,∇

X̃
Ỹ −∇

Ỹ
X̃ − [X̃, Ỹ ]

)
= g

(
N,∇

X̃
Ỹ
)
− g

(
N,∇

Ỹ
X̃
)

so that
k(X,Y ) = ı∗

[
g
(
N,∇

X̃
Ỹ
)]

= ı∗
[
g
(
N,∇

Ỹ
X̃
)]

= k(Y,X).

To establish the linearity, we calculate:

k(fX, Y ) = ı∗
[
g
(
N,∇

f̃ X̃
Ỹ
)]

= ı∗
[
f̃g
(
N,∇

X̃
Ỹ
)]

=
(
ı∗f̃
)
ı∗
[
g
(
N,∇

X̃
Ỹ
)]

= fk(X,Y ).

Which establishes the result.

From the second part of this theorem, we deduce that k is a (0, 2)−tensor field defined
on Σ, known as the second fundamental form. Notice that since g(Ỹ , N) = 0 on ı(Σ), we
must have that

0 = X̃
[
g(Ỹ , N)

]∣∣∣
ı(Σ)

=
[
g
(
∇
X̃
N, Ỹ

)
+ g

(
N,∇

X̃
Ỹ
)]∣∣∣

ı(Σ)

So that we have:
k(X,Y ) = −ı∗

[
g
(
∇
X̃
N, Ỹ

)]
, (3.9)

which is known as Weingarten’s equation, and gives an alternative approach to finding k.

Example 13. SupposeM = R4 with coordinates (t, xi)i=1,2,3, and suppose that g is a
Lorentzian metric onM given by:

g = −φ(t, x)2dt2 + hij(t, x)dxidxj ,
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where φ > 0 and hij is symmetric and positive definite for all (t, x). Consider Σ = R3

with coordinates (yi)i=1,2,3 and consider the map

ı : Σ ↪→ M
(yi) 7→ (0, yi).

So that ı(Σ) = {t = 0}. Now, we note that if f ∈ C∞(M;R), then ı∗f(y) = f(0, yi), so
that pulling back a function fromM to Σ simply consists of restricting f to {t = 0}. By
considering the coordinate curves, we can also see that on {t = 0} we have:

ı∗
∂

∂yi
=

∂

∂xi
.

This suggests that the vector fields ∂
∂xi

are a suitable extension of ∂
∂yi

.
Considering the pull-back of g to Σ, we find:

h

(
∂

∂yi
,
∂

∂yj

)∣∣∣∣
y

= g

(
∂

∂xi
,
∂

∂xj

)∣∣∣∣
ı(y)

= hij(0, y)

so that
h := ı∗g = hij(0, y)dyidyj .

To find the second fundamental form, we first note that the future directed unit normal
is:

N =
1

φ

∂

∂t
,

which again admits an obvious extension away from {t = 0}. We calculate the second
fundamental form as:

k

(
∂

∂yi
,
∂

∂yj

)∣∣∣∣
y

= g

(
N,∇ ∂

∂xi

∂

∂xj

)∣∣∣∣
ı(y)

= g

(
1

φ

∂

∂t
,Γµij

∂

∂xµ

)∣∣∣∣
ı(y)

= −φΓtij
∣∣
ı(y)

= −φ
2
gtµ
(
∂giµ
∂xj

+
∂gjµ
∂xi

− ∂gij
∂xµ

)∣∣∣∣
ı(y)

= − 1

2φ(0, y)

∂hij
∂t

(0, y).

Thus the second fundamental form represents the ‘first time derivative’ of the induced
metric. We might expect that the induced metric and the second fundamental form would
represent the correct ‘Cauchy data’ for Einstein’s equations, and we shall indeed see that
this is the case.
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3.3.2 The Gauss and Codazzi-Mainardi equations

The induced metric and second fundamental form carry information about how the surface
Σ is ‘glued into’ the Lorentzian manifold (M, g). If the manifold satisfies some equations
(for example Einstein’s equations) then we expect that this is reflected in the information
induced by g on Σ by the embedding map ı. We shall see in this section that certain
components of the curvature of g at ı(Σ) can be written in terms of h and k. This in
turn will imply that when we impose conditions on g, this will be reflected as conditions
on h, k.

Theorem 3.2 (Gauss’ Equation). Let (M, g) be a smooth, time oriented spacetime, and
let Σ be a three-dimensional manifold. Suppose that ı : Σ ↪→M is an embedding of Σ such
that ı(Σ) is spacelike. Suppose U ⊂ Σ is open. Let X,Y, Z,W ∈ X(U) have extensions
X̃, Ỹ , Z̃, W̃ ∈ X(M) away from ı(U). Then:

ı∗
[
g
(
∇R(X̃, Ỹ )Z̃, W̃

)]
= h

(
DR(X,Y )Z,W

)
(3.10)

− k(X,Z)k(Y,W ) + k(X,W )k(Y,Z),

holds in U , where ∇R, DR are the curvature operators corresponding to ∇, D respectively.

Proof. We will use the splitting of the connection ∇ induced by the embedding, as
described in Theorem 3.1.

1. First note that
∇
Ỹ
Z̃ = >∇

Ỹ
Z̃ − g(∇

Ỹ
Z̃,N)N. (3.11)

Replacing Ỹ with
[
X̃, Ỹ

]
, and taking the inner product with W̃ , we have that on

ı(U):
g
(
∇[X̃,Ỹ ]Z̃, W̃

)
= g

(
>∇[X̃,Ỹ ]Z̃, W̃

)
= g

(
ı∗D[X,Y ]Z, ı∗W

)
so that

ı∗
[
g
(
∇[X̃,Ỹ ]Z̃, W̃

)]
= h

(
D[X,Y ]Z,W

)
(3.12)

2. Differentiating (3.11) in the X̃ direction and acting with >, we have:

>
(
∇
X̃
∇
Ỹ
Z̃
)

= >
(
∇
X̃
>∇

Ỹ
Z̃
)
− g(∇

Ỹ
Z̃,N)∇

X̃
N + X̃

[
g(∇

Ỹ
Z̃,N)

]
N

We note that on ı(U), the first term is equal to ı∗DXDY Z, by Theorem 3.1 i), and
the last term is in the normal direction. Now, let us take the inner product with W̃
and pull-back by ı to obtain:

ı∗
[
g
(
∇
X̃
∇
Ỹ
Z̃, W̃

)]
= ı∗

[
g
(
>
(
∇
X̃
∇
Ỹ
Z̃
)
, W̃
)]

= ı∗
[
g
(
>
(
∇
X̃
>∇

Ỹ
Z̃
)
, W̃
)]
− ı∗

[
g(∇

Ỹ
Z̃,N)g

(
N,∇

X̃
, W̃
)]

= h(DXDY Z,W ) + k(Y,Z)k(X,W ) (3.13)

Here, we have used the definition of k from Theorem 3.1 i), together with Wein-
garten’s equation (3.9) to deal with the second term on the right hand side.
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3. Now, we simply use the definition of ∇R:

∇R(X̃, Ỹ )Z̃ = ∇
X̃
∇
Ỹ
Z̃ −∇

Ỹ
∇
X̃
Z̃ −∇[X̃,Ỹ ]Z̃.

Taking the inner product of this equation with W̃ , and pulling back by ı, we deduce:

ı∗
[
g
(
∇R(X̃, Ỹ )Z̃, W̃

)]
= ı∗

[
g
(
∇
X̃
∇
Ỹ
Z̃, W̃

)]
− ı∗

[
g
(
∇
Ỹ
∇
X̃
Z̃, W̃

)]
− ı∗

[
g
(
∇[X̃,Ỹ ]Z̃, W̃

)]
= h(DXDY Z,W ) + k(Y,Z)k(X,W )

− h(DYDYX,W )− k(X,Z)k(Y,W )

− h
(
D[X,Y ]Z,W

)
= h

(
DR(X,Y )Z,W

)
− k(X,Z)k(Y,W ) + k(X,W )k(Y,Z),

where we have used (3.12), (3.13) to pass from the first equality to the second
equality. This is the result we require.

Notice that the right hand side of Gauss’ equation involves only geometric objects
defined on the surface Σ. The left hand side is a quantity defined on the full spacetime.
Note also that while all of the components of the Riemann tensor of h can appear on the
right hand side, on the left hand side we can only realise purely tangential components of
the Riemann tensor of g.

Gauss’ equation tells us that the curvature of (M, g) in tangential directions to ı(Σ)
is reflected both in the intrinsic curvature of Σ, thought of as a Riemannian manifold
with metric h, as well as in the second fundamental form, which is sometimes referred to
as the extrinsic curvature. This difference between intrinsic and extrinsic curvature is an
important distinction even in the study of surfaces in R3. For example, a cylinder in R3

has no intrinsic curvature (the induced metric is flat) but it does have extrinsic curvature.
We shall also require another result relating the curvature of g to the intrinsic data

h, k on Σ. This result involves components of the Riemann tensor of g which are not
entirely tangential, but involve contraction with a normal direction.

Theorem 3.3 (Codazzi-Mainardi equation). Let (M, g) be a smooth, time oriented
spacetime, and let Σ be a three-dimensional manifold. Suppose that ı : Σ ↪→ M is
an embedding of Σ such that ı(Σ) is spacelike and take U ⊂ Σ an open subset. Let
X,Y, Z ∈ X(U) have extensions X̃, Ỹ , Z̃ ∈ X(M) away from ı(U) and suppose that
N ∈ X(M) agrees with the future directed unit normal on ı(U). Then:

ı∗
[
g
(
∇R(X̃, Ỹ )Z̃,N

)]
= [DXk] (Y,Z)− [DY k] (X,Z), (3.14)

holds in U

Proof. 1. Recall (3.11) from the proof of Gauss’ equation

∇
Ỹ
Z̃ = >∇

Ỹ
Z̃ − g(∇

Ỹ
Z̃,N)N. (3.15)
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Replacing Ỹ with
[
X̃, Ỹ

]
, and taking the inner product with N , we have that on

ı(U):
g
(
∇[X̃,Ỹ ]Z̃,N

)
= g(∇[X̃,Ỹ ]Z̃,N)

so that
ı∗
[
g
(
∇[X̃,Ỹ ]Z̃,N

)]
= k ([X,Y ], Z) = k(DXY −DYX,Z) (3.16)

where we use the definition of k from Theorem 3.1 and the fact that D is torsion-free.

2. Differentiating (3.15) in the X̃ direction and forming the inner product with N , we
have:

g
(
∇
X̃
∇
Ỹ
Z̃,N

)
= g

(
∇
X̃
>∇

Ỹ
Z̃,N

)
− g

(
∇
Ỹ
Z̃,N

)
g
(
∇
X̃
N,N

)
+ X̃

[
g
(
∇
Ỹ
Z̃,N

)]
(3.17)

Now, note that since g(N,N) = −1 on ı(Σ), and X̃ is tangent to ı(Σ), we have

0 = X̃ [g(N,N)]
∣∣∣
ı(Σ)

= 2g
(
∇
X̃
N,N

)∣∣
ı(Σ)

,

so that the second term on the right of (3.17) vanishes on ı(Σ). Pulling (3.17) back
by ı, we thus have:

ı∗
[
g
(
∇
X̃
∇
Ỹ
Z̃,N

)]
= k (DY Z,X) +X [k(Y, Z)] (3.18)

3. Now, we use the definition of ∇R:

∇R(X̃, Ỹ )Z̃ = ∇
X̃
∇
Ỹ
Z̃ −∇

Ỹ
∇
X̃
Z̃ −∇[X̃,Ỹ ]Z̃.

Taking the inner product of this equation with N , and pulling back by ı, we deduce:

ı∗
[
g
(
∇R(X̃, Ỹ )Z̃,N

)]
= ı∗

[
g
(
∇
X̃
∇
Ỹ
Z̃,N

)]
− ı∗

[
g
(
∇
Ỹ
∇
X̃
Z̃,N

)]
− ı∗

[
g
(
∇[X̃,Ỹ ]Z̃,N

)]
= k (DY Z,X) +X [k(Y,Z)]

− k (DXZ, Y )− Y [k(Y,Z)]

− k(DXY −DYX,Z)

= X [k(Y,Z)]− k (DXZ, Y )− k(Z,DXY )

− (Y [k(Y,Z)]− k (DY Z,X)− k(Z,DYX))

= [DXk] (Y,Z)− [DY k] (X,Z).

Here we have used (3.16), (3.18) to pass from the first inequality to the second,
and the definition of ∇Xk, ∇Y k for the final equality. This is the expression we
require.
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The calculations in this section are somewhat involved, but the basic idea is to use and
reuse the splitting of the connection into tangential and normal parts that we discussed
in Theorem 3.1. The main things to take away are the equations (3.10), (3.14) which
allow us to relate certain components of the curvature of g to the objects induced on Σ
by ı, namely h and k.

3.3.3 The Einstein constraint equations

Now, since we have expressed certain components of the Riemann tensor of g in terms
of the quantities h, k, it is natural that imposing conditions on the Riemann tensor of g
will impose conditions on h and k. In particular, if we assume that the metric g satisfies
Einstein’s equations, we shall see that certain relations must hold between h and k. These
are the Einstein constraint equations.

Let us suppose U ⊂ Σ is open and that {ei}i=1,2,3, where ei ∈ X(U), form a local
basis which is orthonormal with respect to h. We can assume that there exist ẽi ∈ X(M)
which extend ei away from ı(U). Setting ẽ0 = N , we have that {ẽµ}µ=0,...,3 is a basis on
some neighbourhood of ı(U) ⊂M, which is orthonormal at each point of ı(U).

Let us now take traces of the Gauss equation (3.10) to relate the Ricci curvature of g
to quantities defined on Σ. We have:

ı∗
[
g
(
∇R(ẽi, Ỹ )Z̃, ẽj

)
δij
]

= ı∗
[
g
(
∇R(ẽµ, Ỹ )Z̃, ẽν

)
ηµν
]

+ ı∗
[
g
(
∇R(ẽ0, Ỹ )Z̃, ẽ0

)]
= ı∗

[
Ricg(Ỹ , Z̃)

]
+ ı∗

[
g
(
∇R(ẽ0, Ỹ )Z̃, ẽ0

)]
.

On the other hand, we have

ı∗
[
g
(
∇R(ẽi, Ỹ )Z̃, ẽj

)
δij
]

= δijh
(
DR(ei, Y )Z, ej

)
− δijk(ei, Z)k(ej , Y ) + δijk(ei, ej)k(Y, Z)

= Rich(Y, Z)− δijk(ei, Z)k(ej , Y ) + (Trhk) k(Y,Z)

So that:

ı∗
[
Ricg(Ỹ , Z̃)

]
+ ı∗

[
g
(
∇R(ẽ0, Ỹ )Z̃, ẽ0

)]
= Rich(Y,Z)− δijk(ei, Z)k(ej , Y ) + (Trhk) k(Y, Z)

Einstein’s equations don’t impose a condition on the left hand side of this equation, so
we trace again over the Y, Z slots. We have:

ı∗ [Ricg(ẽk, ẽl)] δ
kl + ı∗

[
g
(∇R(ẽ0, ẽk)ẽl, ẽ0

)
δkl
]

= ı∗ [Ricg(ẽk, ẽl)] δ
kl + ı∗

[
g
(∇R(ẽ0, ẽσ)ẽτ , ẽ0

)
ηστ
]

+ ı∗
[
g
(∇R(ẽ0, ẽ0)ẽ0, ẽ0

)]
= ı∗ [Ricg(ẽk, ẽl)] δ

kl + ı∗ [Ricg(ẽ0, ẽ0)]

= ı∗ [Rg + 2Ricg(ẽ0, ẽ0)] ,
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where we have made use of the symmetries of the Riemann tensor in several places. We
also have:

Rich(ek, ek)δ
kl − δijδklk(ei, ek)k(ej , el) + (Trhk) k(ek, el)δ

kl

= Rh − |k|2h + (Trhk)2

Let us suppose that g satisfies Einstein’s equations, with some energy-momentum
tensor T . Notice that on ı(Σ):

Rg + 2Ricg(ẽ0, ẽ0) = 2

(
Ricg −

1

2
Rgg

)
(ẽ0, ẽ0) = 2T (ẽ0, ẽ0) + 2Λ.

Now, T (ẽ0, ẽ0) is the energy density of the matter fields, as measured by an observer
whose instantaneous velocity is given by ẽ0. We introduce ρ ∈ C∞(Σ;R), the local energy
density of matter fields on Σ, defined by:

ρ := ı∗ [T (ẽ0, ẽ0)] .

Then, putting everything together, we have the first Einstein constraint equation:

Rh − |k|2h + (Trhk)2 = 2ρ+ 2Λ (3.19)

In particular, in the vacuum case with vanishing cosmological constant, we have:

Rh − |k|2h + (Trhk)2 = 0.

We can perform a similar procedure with the Codazzi-Mainardi equation (3.14). We
have:

ı∗
[
g
(
∇R(X̃, ẽi)ẽj , ẽ0

)]
δij = ı∗

[
g
(
∇R(X̃, ẽµ)ẽν , ẽ0

)
ηµν
]

+ ı∗
[
g
(
∇R(X̃, ẽ0)ẽ0, ẽ0

)]
= ı∗

[
Ricg

(
X̃, ẽ0

)]
We also have:

[DXk] (ei, ej)δ
ij − [Deik] (X, ej)δ

ij = X [TrhK]− divhk (X) ,

where we are using that D is the Levi-Civita connection of h and the fact that ei is an
orthonormal basis for h. Since ẽ0 is normal to ı(Σ), we have that on ı(Σ):

Ricg

(
X̃, ẽ0

)
=

(
Ricg −

1

2
Rgg

)
(X̃, ẽ0) = T (X̃, ẽ0).

Now −T (·, ẽ0), which we think of as a one-form, is the momentum flux density of the
matter fields, as measured by an observer whose instantaneous velocity is given by ẽ0. We
introduce J ∈ X∗(Σ), the local momentum flux density of matter fields on Σ, defined by:

J := −ı∗ [T (·, ẽ0)] .

Putting this together with the Codazzi-Mainardi equation, we deduce the second Einstein
constraint equation:

divhk − d (TrhK) = J.

In particular, in the vacuum case with vanishing cosmological constant, we have:

divhk − d (TrhK) = 0.
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Exercise 3.7. Recall the Schwarzschild metric in Painlevé-Gullstrand coordinates (Ex-
amples 7, 9, 12) is a Lorentzian metric onM = R× (0,∞)× S2 given by:

g = −
(

1− 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 + r2gS2 ,

And let us choose the local basis of vector fields {eµ}, as in Examples 7, 9. Let Σ =
(0,∞)× S2 ' R3 \ {0}. Consider the map

ı : Σ ↪→ M
(ρ,X) 7→ (0, ρ,X).

In other words, the suface ı(Σ) is the surface {t = 0}.

a) Show that the future directed unit normal of ı(Σ) is given by:

N = e0 =
∂

∂t
−
√

2m

r

∂

∂r
.

b) Show that the induced metric h is the canonical flat metric on R3 \ {0}:

h = dρ2 + ρ2gS2 .

c) Show that:

k = − 1

2ρ

√
2m

ρ
dρ2 + ρ

√
2m

ρ
gS2 .

[Hint: consider k(bi, bj) for a suitable basis of vector fields on Σ such that ı∗bi = ei,
and use (2.13)]

d*) Under a change of coordinates x = ρX from polar to Cartesian coordinates, you are
given that h and k become:

h = δijdx
idxj ,

k =

√
2m

|x|3
(
δij −

3

2

xixj

|x|2
)
dxidxj .

Show that:
|k|2h − (Trhk)2 = 0,

and
divhk − d (Trhk) = 0.

[Hint: Note that since h is the canonical metric on R3 in Cartesian coordinates,
(divhk)j = ∂ikij and (df)i = ∂if .]
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3.4 The Cauchy problem

For the purposes of studying the vacuum Einstein equations, we can summarise the results
of the previous section in the following theorem:

Theorem 3.4. Let (M, g) be a smooth, time oriented spacetime satisfying the vacuum
Einstein equations with vanishing cosmological constant:

Ricg = 0.

Suppose that Σ is a smooth three dimensional manifold and that ı : Σ ↪→M is a smooth
embedding whose image is everywhere spacelike. Then the metric h and second fundamental
form k induced on Σ by ı satisfy the Einstein constraint equations:

0 = Rh − |k|2h + (Trhk)2 , (3.20)
0 = divhk − d (Trhk) . (3.21)

We want to consider the Cauchy problem for Einstein’s equations. Loosely, we wish to
specify data on some initial hypersurface, and then construct a solution which represents
the evolution of that data into the future. Recall that in the case of a field ψ satisfying
the wave equation, the correct Cauchy data on a spacelike hypersurface, Σ, was ψ|Σ
and NΣψ|Σ. In the case of Einstein’s equations, a natural candidate to take the place
of ψ|Σ is h, the induced metric. By considering Example 13, we can see that a natural
candidate to take the place of NΣψ|Σ is k, the second fundamental form. Theorem 3.4
gives some necessary conditions on h and k such that they represent initial data for
Einstein’s equations. We shall see that these conditions are in fact sufficient.

Definition 18. An admissible triple (Σ, h, k) consists of a smooth 3−dimensional manifold
Σ, equipped with a Riemannian metric h and a symmetric (0, 2)−tensor k satisfying the
Einstein constraint equations (3.20), (3.21).

Examples of admissible triples include3 (R3, δ, 0), the data induced on the surface
{t = 0} in the Minkowski spacetime, as well as the example constructed in Exercise 3.7.

You should think of an admissible triple as giving the ‘initial conditions’ for Einstein’s
equations. In contrast to the case of the wave equation, there is a subtlety in defining
what we mean by a solution with this initial data. This comes about because we don’t
know a priori the spacetime manifoldM on which we shall solve Einstein’s equations.
The correct notion of solution is given by:

Definition 19. Suppose (Σ, h, k) is an admissible triple. A development of (Σ, h, k) is a
Lorentzian manifold (M, g), together with an embedding map ı : Σ ↪→M such that

i) g satisfies the vacuum Einstein equations inM:

Ricg = 0

3Here δ = δijdx
idxj is the flat metric on R3
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ii) h is the metric induced by g on Σ under the embedding map ı.

iii) k is the second fundamental form of the embedding ı.

iv) M is the future Cauchy development of ı(Σ): i.e. D+(Σ) =M.

By ‘solving’ Einstein’s equations with a certain admissible triple as initial data, we
mean finding a development of the triple. Before we are able to state the well posedness
of Einstein’s equations, we need one more ingredient. In order to say that a PDE problem
is well posed, we not only require that a solution exists for given initial data, but that
moreover it is unique. In the case of Einstein’s equations, this is somewhat subtle, because
the ‘solution’ we construct is a geometrical object. We know that the same geometric
object can be described in several different ways.

To motivate our next definition, consider M = (0,∞) × (−π, π) with coordinates
(r, θ), endowed with the metric

g = dr2 + r2dθ2.

On the other hand, consider M′ = R2 \ {x ≤ 0, y = 0} where (x, y) are the usual
coordinates on R2. We endowM′ with the flat Riemannian metric:

g′ = dx2 + dy2.

There is a map between these two manifolds, given by:

 : M → M′
(r, θ) 7→ (r sin θ, r cos θ)

The map  is smooth, bijective and has smooth inverse, hence  is a diffeomorphism.
Moreover, we can verify that

∗g′ = g.

We say that  is an isometry. Although (M, g) and (M′, g′) are different manifolds, we
nevertheless think of them as describing the same underlying geometry, but in different
coordinates.

The solutions that we construct to Einstein’s equations will be unique up to transfor-
mations of this kind, and extensions.

Definition 20. An isometric embedding from (M, g) to (M′, g′) is an embedding  :
M ↪→M′ such that ∗g′ = g.

We are now ready to state the main result of this course:

Theorem 3.5 (Choquet-Bruhat–Geroch). Given an admissible triple (Σ, h, k), there
exists a unique development (M, g, ı) which is maximal in the sense that if (M̃, g̃, ı̃) is
any other development of (Σ, h, k), then there exists an isometric embedding  : M̃ ↪→M
such that:

 ◦ ı̃ = ı.
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The full proof of this theorem is beyond the scope of the course, but is contained in
the book of Choquet-Bruhat4. We shall offer a sketch of the proof, which follows a similar
structure to our discussion of the linearised problem around Minkowski space.

Sketch proof: 1. We assume there exist global coordinates5 (xi) on Σ and extend them
to coordinates (t, xi) onM := (−ε, ε)×Σ. Recall from Theorem 2.9 that Einstein’s
equations inM are equivalent to the system of quasilinear wave equations:

− 1

2
gµα

∂2gσν
∂xµ∂xα

+ Pσν(g, ∂g) = 0 (3.22)

provided that the wave coordinate condition holds:

Γαµ
µ = 0. (3.23)

2. By some standard results in the study of nonlinear wave equations, there exists a
unique solution to (3.22) with the initial conditions:

g|t=0 = −dt2 + h (3.24)
∂tg|t=0 = −2k (3.25)

provided ε > 0 is sufficiently small. Notice that g|t=0 is Lorentzian by construction.

3. We define Fα := Γαµ
µ, and then show that if (3.22) is satisfied, then Fα satisfies a

(linear) system of wave equations:

�gF
α + (A · F )α = 0.

By similar methods to those used in the proof of Proposition 1 we can show that if
Fα|t=0 = ∂tF

α|t=0 = 0, then Fα ≡ 0.

4. We next demonstrate that the condition Fα|t=0 = ∂tF
α|t=0 = 0, then Fα ≡ 0 is

equivalent to the constraint equations holding on h, k. By restricting to the future
domain of dependence of {0} × Σ we have constructed a development of (Σ, h, k).

5. To establish local uniqueness we show that given any development of (Σ, h, k) it
is possible to construct wave coordinates such that (3.24), (3.25) hold. By the
uniqueness of solutions of (3.22), we deduce that given any two developments there
is a neighbourhood of the initial surface in each which can mapped onto one another
by an isometry.

6. The final stage is to establish the existence of a single maximal development.
Historically, this was the final part of the result to be established. The issue here is
that while we know that in a neighbourhood of Σ two developments are isometric,
constructing a larger development in which both embed isometrically is difficult.

4“General Relativity and the Einstein Equations”, Yvonne Choquet-Bruhat, Oxford 2009. See Chapter
VI, §7, 8, 9

5This is not a significant restriction by the finite speed of propagation property for hyperbolic PDE.
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(M1, g1) (M2, g2)

(M, g)

ı1 ı2

ı̃

21

(Σ, h, k)

U1 U2

ı

Figure 3.1 Two developments (Mi, gi, ıi) of an admissible triple, and the maximal development
(M, g, ı).

The situation is shown in Figure 3.1. Here we have two developments (M1, g1, ı1),
(M2, g2, ı2) of an admissible triple (Σ, h, k). By the previous part we can deduce
that there is a neighbourhood U1 ⊂M1 of ı1(Σ), and a neighbourhood U2 ⊂M2

of ı2(Σ) which are mapped isometrically onto one another by ı̃. The uniqueness
theorem states that there exists a larger development, (M, g, ı) such that (Mi, gi)
is isometrically embedded into (M, g) by the maps i. Moreover, the map i ◦ ıi
which embeds Σ intoM should be the same as ı.

In the original paper of Geroch and Choquet-Bruhat6 the construction of the
maximal development was accomplished by an appeal to Zorn’s Lemma (and hence
the full Axiom of Choice). Recently the proof has been ‘deZornified’ by Sbierski7.

While the theorem establishes the existence of a maximal development, it doesn’t tell
us anything about what the obstacles to extending the solution beyond that development
are. For example, the maximal global development of (R3, δ, 0), is the whole of Minkowski
space to the future of {t = 0}: a future complete manifold (i.e., any future directed
timelike curve can be extended indefinitely). By contrast, the maximal development of
the data constructed in Exercise (3.7) is the region of the Schwarzschild space-time in

6“Global aspects of the Cauchy problem in general relativity”, Yvonne Choquet-Bruhat, Robert
Geroch, Comm. Math. Phys. 14 (1969) p329

7“On the Existence of a Maximal Cauchy Development for the Einstein Equations - a Dezornification”,
Jan Sbierski, arXiv:1309.7591
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Painlevé-Gullstrand coordinates to the future of {t = 0}. This is not future complete, as
future directed timelike curves can meet the curvature singularity at r = 0.

Much of the current research activity in Mathematical Relativity concerns the global
properties of solutions which start from initial data ‘close’ to the data of an explicitly
known solution. For example, one of the crowning achievements of recent work is the
following result:

Theorem 3.6 (Christodoulou–Klainerman, ’92). Suppose that we start with an admissible
triple (R3, h, k), with

||h− δ||a + ||k||b < ε,

for ε > 0 sufficiently small, where ||·||a , ||·||b are suitable norms8. Then the maximal
development is future complete, and asymptotic to the Minkowski spacetime.

This result is important because it asserts that for a sufficiently ‘small’ gravitational
field, i.e. a field which is initially sufficiently close to flat space, no singularities form in
the evolution. In particular, no black holes are formed.

By contrast, an analogous result is not known for the case of the Schwarzschild black
hole discussed above. It is believed that data sufficiently close to the Schwarzschild data
constructed in Exercise 3.7 will evolve to give a spacetime containing a region similar to
the exterior region, r > 2m, of Schwarzschild, however this is at present an unproven
conjecture.

8In fact, weighted Sobolev norms.



Appendix A

Some background results

A.1 Linear algebra

A.1.1 Vectors and co-vectors

Suppose we have a vector v ∈ V , belonging to an n−dimensional real1 vector space and
let B := {ei}i=1,...n be a basis for V . We can write

v =

n∑
i=1

viei,

where vi ∈ R are the uniquely determined components with respect to the basis B.
The dual space V ∗ is the n−dimensional real vector space of linear maps ω : V → R.
Such maps are sometimes called one-forms or covectors. We can define the dual basis
B∗ := {ei}i=1,...n uniquely by the requirement

ei(ej) = δij , i, j = 1, . . . , n,

where

δij =

{
1, i = j,
0, i 6= j,

is the Kronecker delta. For any ω ∈ V ∗ we can write

ω =

n∑
i=1

ωie
i,

1for simplicity. Similar constructions exist over other fields.

84
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so that

ω(v) =

n∑
i=1

ωie
i

 n∑
j=1

vjej

 ,

=
n∑

i,j=1

ωiv
jei(ej) =

n∑
i,j=1

ωiv
jδij ,

=

n∑
i=1

ωiv
i.

A.1.2 Tensors

The tensor product

Suppose V,W are real vector spaces of dimensions n,m respectively. From them, we can
form a new vector space: the tensor product, denoted V ⊗W . The space V ⊗W consists
of formal sums of the form

v1 ⊗w1 + . . .+ vk ⊗wk,

with vp ∈ V , wp ∈W for p = 1, . . . , k. The tensor product ⊗ is bilinear, obeying:

v ⊗ (w1 + λw2) = v ⊗w1 + λ (v ⊗w2) ,

(v1 + λv2)⊗w = v2 ⊗w + λ (v2 ⊗w2) .

If {ei}i=1,...,n and {fa}a=1,...,m are bases for V,W respectively, then we have a natural
basis:

{ei ⊗ fa}i=1,...,n; a=1,...,m

for V ⊗W .

The space T pq(V )

From a real n−dimensional vector space V , we can naturally form a (p+q)n−dimensional
vector space T pq(V ) by taking the tensor product of p copies of V and q copies of V ∗:

T pq(V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
p copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q copies

.

An element of T pq(V ) is called a (p, q)−tensor, or a tensor of rank (p, q). A basis
B := {en}i=1,...n induces a basis on T pq(V ):

Bp
q =

{
ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq

}
ik,jl=1,...,n

.

With respect to this basis, we can write any (p, q)−tensor T ∈ T pq(V ) in terms of its
components:

T =

n∑
i1,...,ip,j1,...,jq=1

T i1...ipj1...jqei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq .

Often the distinction between a tensor and its components is elided, so one will speak of
‘the tensor Tij ’.
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A.1.3 Change of basis

Suppose we have a basis B := {ei}i=1,...,n and we wish to instead work with a new basis,
say B′ := {e′i}i=1,...,n. By virtue of the fact that B′ is a basis, we must be able to write

ei =
n∑
j=1

e′jΛ
j
i, (A.1)

for some real numbers Λj i with i, j = 1, . . . n. Equally, we can write

e′i =
n∑
k=1

ekΛ̃
k
i, (A.2)

for some other real numbers Λ̃j i with i, j = 1, . . . n. Substituting (A.1) into (A.2) we find

ei =
n∑
j=1

(
n∑
k=1

ekΛ̃
k
j

)
Λj i =

n∑
k,j=1

ekΛ̃
k
jΛ

j
i

Since ei are linearly independent, we conclude that

n∑
j=1

Λ̃kjΛ
j
i = δki.

A similar calculation inserting (A.2) into (A.1) shows that

n∑
j=1

ΛkjΛ̃
j
i = δki,

so that thinking of Λi
j and Λ̃ij as the components of a matrix, we have Λ−1 = Λ̃. In

this way, we can identify the set of basis transformations with the group GL(n,R) of
invertible linear transformations (or equivalently matrices) on Rn.

Suppose that v ∈ V has components vi with respect to the basis B, and components
v′i with respect to the basis B′. We can relate these two sets of components by

v =
∑
i

eiv
i =

n∑
i,j=1

e′jΛ
j
iv
i =

n∑
i=1

e′jv
′j .

Using the linear independence of B′, we deduce

v′j =
n∑
i=1

Λj iv
i, (A.3)

so that the components of v change by matrix multiplication on the left by Λ (thinking
of vi as a column vector).
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Now let’s look at how the dual bases transform. Associated to B and B′ are the dual
bases B∗ = {ei}i=1,...n and B′∗ = {e′i}i=1,...n defined by

ei(ej) = δij , e′i(e′j) = δij , i, j = 1, . . . , n.

I claim that the dual bases are related by the relation:

e′i =
n∑
j=1

Λije
j .

To show this, it is enough to check that e′i(e′j) = δij . We have:

e′i(e′j) =

n∑
j=1

Λike
k

(
n∑
k=1

elΛ̃
l
j

)
,

=

n∑
k,l=1

ΛikΛ̃
l
je
k(el),

=
n∑
k=1

ΛikΛ̃
k
j = δij .

We can invert the relationship between the bases using the fact that Λ̃ is the matrix
inverse of Λ, to find:

ei =
n∑
j=1

Λ̃ije
′j .

Suppose that ω ∈ V ∗ has components ωi with respect to the basis B∗, and components
ω′i with respect to the basis B′∗. We can relate these two sets of components by

ω =
∑
i

ωie
i =

n∑
i,j=1

ωiΛ̃
i
je
′j =

n∑
i=1

ω′je
′j

Using the linear independence of B′∗, we deduce

ω′j =
n∑
i=1

ωiΛ̃
i
j , (A.4)

so that the components of v change by matrix multiplication on the right by Λ̃ (thinking
of ωi as a row vector).

Extending these arguments to the space T pq(V ), we deduce

Lemma A.1. Under the change of basis (A.1), the components of a tensor T ∈ T pq(V )
transform according to:

T ′i1...ipj1...jq =
n∑

k1,...,kp,l1,...,lq=1

T k1...kp l1...lqΛ
i1
k1 · · ·ΛipkpΛ̃l1j1 · · · Λ̃lq jq .
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We say that an upstairs index is covariant and a downstairs index is contravariant,
reflecting the different transformation laws for the two types of index under a change of
basis B for V . For each space T pq(V ), the transformation law gives a representation of
the group GL(n,R).

Exercise A.1. a) Suppose that a tensor T ∈ T 1
1(V ) has components T ij = λδij with

respect to a given basis B. Show that T has the same components with respect to
any other basis. Deduce that the Kronecker delta is invariant under a change of
coordinates.

b) Suppose that v ∈ V , with components vi and ω ∈ V ∗ with components ωj . Show that
the numbers

T ij := viωj ,

transform as the components of a (1, 1)−tensor. In this way we can build tensors of
higher rank from lower rank tensors.

c) Suppose that T ∈ T 0
2(V ) has components Tij . Show that the numbers

T ij := Tji,

transform as a (0, 2)−tensor. Deduce that

T(ij) :=
1

2
(Tij + Tji) , and T[ij] :=

1

2
(Tij − Tji) ,

transform as the components of (0, 2)−tensors. We call the tensors with components
T(ij) and T[ij] the symmetric and antisymmetric part of T respectively.

Contracting indices

Let’s suppose we have a tensor T ∈ T 1
2(V ), so that its components can be written T ijk.

Let us consider the following set of numbers:

Sk :=
n∑
j=1

T jjk.

Now, let us see how Sk transforms when we change our basis. We have

T ′ijk =
∑

p,q,r=1,...,n

T pqrΛ
i
pΛ̃

q
jΛ̃

r
k,

so that

S′k :=

n∑
j=1

T ′jjk =

n∑
j,p,q,r=1

T pqrΛ
j
pΛ̃

q
jΛ̃

r
k,

=
n∑

p,q,r=1

T pqrδ
q
pΛ̃

r
k =

n∑
pr=1

T pprΛ̃
r
k,

=

n∑
r=1

SrΛ̃
r
k.
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In other words, the set of numbers Sk transforms in the same way as the components of
a covector. This means that the map

n∑
i,j,k=1

T ijkei ⊗ ej ⊗ ek 7→
n∑

i,j=1

T iije
j ,

is defined independently of the basis with respect to which we express the tensors. We
can calculate the sum over components in any basis that we like, and we will still have
the same covector as a result. This map is known as a contraction over indices. More
generally we have

Lemma A.2. Suppose T ∈ T pq(V ) has components T i1...ipj1...jq with respect to some
basis B for V . The numbers2

T i1...,̂ir,...,ipj1...,ĵs,...,jq =
n∑

ir,js=1

T i1...ipj1...,jqδ
ir
js ,

transform in the same fashion as the components of a (p− 1, q − 1)−tensor. As a result,
this defines a natural map T pq(V )→ T p−1

q−1(V ) which does not depend on the choice of
basis. This map is called ‘contraction of the r’th covariant and s’th contravariant indices’.

Summation convention

If we examine the various formulae that appear in this section, we will notice certain
patterns. In particular:

• Whenever an index appears exactly once on the left hand side of an equation, the
same index appears exactly once on the right hand side, and this index is not
summed over. These indices are called ‘free indices’.

• Whenever an index appears exactly twice, it occurs once in the upstairs position
and once in the downstairs position and is summed over from 1 to n. These indices
are called ‘dummy indices’.

• No index appears more than twice.

These features are the basis for a very powerful notation known as Einstein’s summation
convention. The basic idea is very simple: we follow the rules as stated above, and we
simply leave out any summation signs. Since the summations only appear when we see
a repeated index pair with one up and one down, we can always put them back in if
we want to. The great power of this convention is that so long as we stick to the rules,
the objects we form will always have predictable transformation rules under a change of

2 îr means omit this index
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basis3. For example, if T ∈ T 3
1(V ) and S ∈ T 0

2(V ), then

Pl = T jklSjk =
n∑

j,k=1

T jklSjk,

transform as the components of a covector.

A.1.4 Metric tensors

When looking at vectors on Rn, a useful concept is that of the inner product (sometimes
called the dot product). If we take B to be the canonical basis for Rn, then the inner
product of two vectors v,w ∈ Rn is

v ·w =

n∑
i=1

viwi.

It would be nice to write this using summation convention, however we have the problem
that both indices are upstairs, so we can’t simply drop the sum. To fix this, we introduce
a new (0, 2)−tensor, g, called the metric tensor. We define g to have components with
respect to the canonical basis:

gij =

{
1 i = j,
0 i 6= j.

Notice that under a change of basis gij will change in general. This is in contrast to δij
which is the same with respect to any basis. They are different tensors, even though in
this basis it looks like they have the same components: the position of indices matters!
Having defined g, we can write the inner product of two vectors as

v ·w = gijv
iwj .

More generally, we will say that a metric tensor is a symmetric, non-degenerate,
(0, 2)−tensor. A (0, 2)−tensor is symmetric if gij = gji and non-degenerate if

gijv
iwj = 0 for all wj =⇒ vi = 0.

This condition is equivalent to requiring the matrix with components gij to be invertible.
We denote the components of the inverse of gij by gij . These satisfy

gijgjk = gkjg
ji = δik. (A.5)

Exercise A.2. Verify that if the numbers gij are the unique solution of (A.5) then they
indeed transform as the components of a (2, 0)−tensor. This tensor is called the cometric.

3In this regard, summation convention is similar to Newspeak:

“In the end we shall make thoughtcrime literally impossible, because there will be no words
in which to express it.”

1984, George Orwell
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The metric tensor allows us to identify V and V ∗ as follows. An element v ∈ V with
components vi is identified with the element v[ with components

vi := gijv
j .

Similarly, an element ω ∈ V ∗ with components ωi is identified with the element ω] ∈ V
with components

ωi = gijωj .

The notation ], [ is inspired by musical notation and is designed to recall ‘raising’ and
‘lowering’ an index. The identification between V and V ∗ induced by g is occasionally
called, somewhat whimsically, the musical isometry. This obviously extends to higher
rank tensors, and allows us to identify elements of T pq(V ) with elements of T p′q′(V ) so
long as p + q = p′ + q′. By convention, when writing the components of two tensors
identified via g, we use the same core letter, relying on the raised and lowered indices to
indicate which space the tensor belongs to. When we have a metric tensor, we will often
speak of a rank k–tensor, without specifying the index structure.

A.1.5 The orthogonal groups

Given a metric tensor, g, we naturally have a bilinear form on V , defined by

g(v,w) = gijv
iwi = viwi = viw

i.

By a Gram-Schmidt type of process, it is possible to construct a basis B = {ei}i=1,...,n

such that for some r ∈ {1, . . . , n+ 1} we have

g(ei, ej) = gij =


−1 i = j, j < r,

1 i = j, j ≥ r,
0 i 6= j.

(A.6)

Exercise A.3. Adapt the Gram-Schmidt process to show that there always exists a basis
such that (A.6) holds.

We call such a basis, B, an orthonormal basis. With respect to an orthonormal basis,
the metric tensor g (thought of as a matrix) is diagonal, with entries ±1. The number of
positive and negative signs is fixed, independent of which orthonormal basis we choose,
by Silvester’s law of inertia. The number of positive and negative signs is known as the
signature of the metric, and is usually written as (+,+,+) or (−,−,+,+), or alternatively
as (r, s), where r is the number of negative signs and s the number of positive. There are
two cases that are most often studied. If all entries are positive, we say the metric has
Riemannian signature, and in this case it defines a positive-definite inner product on V .
If we have one negative entry and the rest positive, or one positive and the rest negative,
we say the metric has Lorentzian signature. This is the case of interest for special and
general relativity.

Exercise A.4. Consider R3 with its canonical basis. Find an orthonormal basis for the
metric whose components are given by

g12 = g21 = g33 = 1, all other components 0.
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and write down the signature of the metric.

Having established that every metric admits at least one orthonormal basis, a natural
question arises concerning other orthonormal bases. Suppose we have a basis B with
respect to which g has components given by (A.6). Let B′ be a new basis which is also
orthonormal, and suppose Λij is the matrix corresponding to this change of basis. Then
by the transformation law for components of T 0

2(V ), we have that

g′ij = Λ̃kiΛ̃
l
jgkl,

so that if g′ij = gij , we deduce:

gij = Λ̃kiΛ̃
l
jgkl. (A.7)

Exercise(∗). Show that (A.7) holds if and only if:

gij = ΛkiΛ
l
jgkl, (A.8)

If Λi
j satisfies either (A.7) or (A.8), we say that the corresponding transformation

is orthogonal. Orthogonal transformations form a group, which can be identified with
a subgroup of GL(n,R). We denote this group by O(r, s), where (r, s) is the signature
of the metric tensor g. In the case that r = 0, we have O(0, n) ≡ O(n), the standard
orthogonal group. To see this, we note that

ΛkiΛ
l
jδkl =

(
ΛTΛ

)
ij
.

The group at the heart of Special Relativity is O(1, 3), which is sufficiently important
that it has its own name, the Lorentz group.

A.2 Review of differentiation in Rn

We will review some material about differentiation, and fix some notation that will
(hopefully) be familiar if you attended the Manifolds course.

Suppose U is an open subset of Rn and suppose we have a function f ∈ C1(U). This
implies that at each point in x there exists a linear map df |x : Rn → R such that if
V ∈ Rn is any vector, and s is sufficiently small, we have

f(x + sV ) = f(x) + s df |x V + o(s).

The linear map df |x is called the differential of f at x. Geometrically, we should think
of the vector V in this formula as having its base at x. We call the space of such vectors
TxU , which is isomorphic, as a vector space, with R3. Since df |x is a linear map from
TxU to R, it belongs to the dual space of TxU , which we denote T ∗xU . Given any vector
V ∈ TxU , we can define the directional derivative of f along V at x to be:

V [f ](x) := df |x V = lim
s→0

f(x + sV )− f(x)

s
.
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A.2.1 Working in coordinates

Now, suppose {ei}i=1,...,n is a basis for Rn, and let {ej}i=1,...,n be the dual basis for (Rn)∗,
defined by

ei(ej) = δij .

We define the functions
xi : R3 → R

x 7→ ei(x)

for i = 1, . . . , n. It follows4 that we can write:

x = xiei. (A.9)

For any vector V ∈ T ∗xU , we have

dxi
∣∣
x

(V ) = V [xi](x) = lim
s→0

ei(x + sV )− ei(x)

s
= ei(V ).

In other words, we have dxi = ei.
Now consider a function f which is continuously differentiable in a neighbourhood of

x ∈ U , and let us look at V [f ](x), the directional derivative of f along V . We can write
V = V iei, so that

V [f ](x) = df |x (V iei) = V i df |x (ei) = V iei[f ](x). (A.10)

In other words, to calculate the directional derivative along an arbitrary direction, it is
enough to know the three directional derivatives ei[f ](x). These directional derivatives
are useful enough that we give them a special symbol. We write

∂

∂xi
f(x) := ei[f ](x) =

d

ds
f(x + sei)

∣∣∣∣
s=0

.

This of course agrees with our usual notion of partial derivative. We can go further
though, and declare that the object ∂

∂xi
is itself a vector, which we can identify with ei

i.e. we have:
∂

∂xi
= ei ∈ TxU.

We will often find it useful to write as shorthand:

∂

∂xi
:= ∂i

Of course, we have:
dxi(∂j) = δij .

Returning to (A.10), we write

V [f ](x) = V iei[f ](x) = ei(V )ei[f ](x) =
∂f

∂xi
dxi
∣∣∣∣
x

(V )

4Check this. You may need to refer to §A.1
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so that we can write

df |x =
∂f

∂xi
dxi
∣∣∣∣
x

.

Because we have respected the Einstein summation convention, the right hand side of
this formula is independent of the choice of basis that we originally made (as, of course it
must be).

Exercise A.5. a) Suppose that we consider a new basis {e′i} for R3. Show that the set
of numbers

∂f

∂xi
,

transform in the same way as the components of a co-vector.

b) Fix x ∈ U and suppose that V ,W ∈ TxU are two vectors such that for any f ∈ C1(U)
we have

V [f ](x) = W [f ](x).

Show that V = W .

A.3 Differential geometry

We will briefly review the basic definitions of a manifold, the tangent bundle and higher
rank tensor bundles.

A.3.1 Manifolds

Definition 21. A Ck-atlas of a second countable, Hausdorff, topological spaceM is a
collection of charts {(Uα, φα)} which satisfy:

i) Each Uα ⊂M is an open subset ofM, and the Uα coverM.

ii) ϕα is a homeomorphism from Uα onto an open subset of Rn.

iii) If Uα ∩ Uβ 6= ∅, then

ϕαβ := ϕβ ◦ ϕ−1
α : ϕα (Uα ∩ Uβ)→ ϕβ (Uα ∩ Uβ)

is a Ck−diffeomorphism between subsets of Rn, that is to say that ϕ−1
αβ exists and

both ϕαβ and ϕ−1
αβ are Ck-functions on their respective domains. The functions ϕαβ

are called transition functions.

We say that two Ck-atlases {(Uα, ϕα)} and {(Vα, ψα)} forM are compatible if their
union is again a Ck-atlas. Clearly compatibility defines an equivalence relation.

Definition 22. A Ck-manifold is a second countable, Hausdorff, topological spaceM,
equipped with an equivalence class of Ck-atlases. The dimension of the manifold is n,
where we understand the charts as mapping into Rn.
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We can define in an exactly analogous way, a smooth (C∞) or real analytic5 (Cω)
atlas (and hence manifold) by requiring that the transition functions be smooth or real
analytic diffeomorphisms between open subsets of Rn. We will always assume that k ≥ 1,
which means that objects such as the tangent space are well defined.

Obviously if we have a Ck-manifold, we can always extract from it a Ck′-manifold for
k′ < k by picking a representative Ck-atlas and considering it’s equivalence class among
Ck
′-atlases. There is a pitfall for the unwary in that these two manifolds, although based

on the same topological space, are not the same. It is, however, common practice to leave
the regularity of the manifold unstated in many circumstances so one should be careful.

Example 14. Let U ⊂ Rn be an open set with the subset topology. This is certainly a
second countable, Hausdorff, topological space. We can equip U with a trivial Cω-atlas,
given by {(U, id)}. Thus U , with the equivalence class of atlases defined by the trivial
atlas, is a real analytic manifold.

Example 15. We define S1 to be the second countable, Hausdorff6, topological space
R/∼◦ , where

x∼◦y ⇐⇒ ∃ n ∈ Z s.t. x = y + 2πn.

We can define an atlas as follows. Let 0 ≤ α < 2π. We set Uα = S1 \ [α]∼◦ , and define

ϕα : Uα → (0, 2π)
[x]∼◦ 7→ θ − α

where θ is the unique real number satisfying θ∼◦x and α < θ < α + 2π. Suppose
0 ≤ α < α′ < 2π. We have that

ϕα (Uα ∩ Uβ) = (0, 2π) \ {α′ − α}
ϕβ (Uα ∩ Uβ) = (0, 2π) \ {2π + α− α′}

and

ϕαβ(s) =

{
s+ 2π + α− α′ 0 < s < α′ − α,
s− α′ + α α′ − α < s < 2π.

This can be easily verified to be a real analytic diffeomorphism, so that A = {Uα, ϕα}α∈[0,2π)

is a real analytic atlas for S1. Taking A to define an equivalence class of Cω-atlases, we
can make S1 into a real analytic manifold.

A.3.2 Mappings between manifolds, and their derivatives

Smooth functions

Suppose that we have two manifoldsM,N , which are both at least Ck-regular7 and are
equipped with representative atlases {(Uα, ϕα)}, {(Vβ, ψβ)}. Consider a function:

f :M→N .
5A function f is real analytic if there is a neighbourhood of every point on which f can be expressed

as a convergent Taylor series.
6you should check that this is true
7From now on, we’ll abuse notation and allow ‘k =∞’ and ‘k = ω’ in statements like this.
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We say that f is Ck-smooth if for any α, β, the function

ψβ ◦ f ◦ ϕ−1
α : Uα → Vβ

is Ck, understood in the usual way for maps between subsets of Rn and Rm. We denote
by Ck(M;N ) the set of all Ck-smooth maps fromM to N .

Exercise(∗). Show that this definition is independent of the choice of atlases. That is, if
we choose a different atlas {(U ′α, ϕ′α)} forM which is compatible with {(Uα, ϕα)}, our
definition of Ck(M;N ) agrees for both.

Exercise A.6. a) Show that the identity map on a Ck-manifold,M, always belongs to
Ck(M;M).

b) Show that if f, g ∈ Ck(M;R), we have fg ∈ Ck(M;R), where we define the product
pointwise fg(p) = f(p)g(p).

c) Suppose M1,M2,M3 are all at least Ck regular, and that f ∈ Ck(M1;M2), g ∈
Ck(M2;M3). Show that g ◦ f ∈ Ck(M1;M3).

d) LetM be a Ck-manifold of dimension n and let πi : Rn → R be the projection onto
the ith coordinate. Suppose that (Uα, ϕα) is a chart. Show that

ϕiα = πi ◦ ϕα : Uα → R

is Ck-smooth.

Example 16. Take S1 and R2 with their real analytic structures as previously defined.
We define a map

f : S1 → R2,
[x]∼◦ 7→ (sinx, cosx).

First, note that this is well defined regardless of which representative x for [x]∼◦ we
choose. Now consider the functions

id ◦ f ◦ ϕ−1
α : (0, 2π) → R2,

θ 7→ (sin(θ + α), cos(θ + α)).

which are clearly real analytic. Thus, f ∈ Cω(S1;R2).

The tangent and co-tangent space at a point

Now that we have defined our Ck-smooth functions, we can define the tangent vectors
to the manifoldM at a point p ∈M . There are various ways of doing this, some more
concrete than others. We’ll give the definition here, and then show how this definition
fits with our intuition from the case of Rn.

We say that a Ck-smooth map γ : (−ε, ε) →M is a curve in M. Fix p ∈ M. We
define the tangent space at p, TpM to be the space of curves inM with γ(0) = p, modulo
the equivalence relation:

γ1 ∼ γ2 if
d

dt
[f ◦ γ1] (t)

∣∣∣∣
t=0

=
d

dt
[f ◦ γ2] (t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R).
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Each element of TpM (i.e. each equivalence class of curves under ∼) is called a tangent
vector at p, and we write [γ]∼ = γ̇(0). For any tangent vector V ∈ TpM, and function
f ∈ Ck(M;R), we define the directional derivative of f along V at p to be:

V [f ](p) :=
d

dt
[f ◦ γ] (t)

∣∣∣∣
t=0

for any γ such that γ̇(0) = V . This is a useful way to think of a tangent vector at p. It is
a direction in which we can differentiate a function.

We can endow TpM with a vector space structure using the following result:

Lemma A.3. Let (Uα, ϕα) be a chart with p ∈ Uα. The chart induces a canonical
identification between TpM and Rn.

Proof. Let us set ϕα(p) = x. Suppose we are given two curves γ1, γ2 with γi(0) = p. We
can use the fact that ϕ−1

α ◦ ϕα = idUα to see that

d

dt
[f ◦ γ1] (t)

∣∣∣∣
t=0

=
d

dt
[f ◦ γ2] (t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R)

holds if and only if

d

dt

[
f ◦ ϕ−1

α ◦ ϕα ◦ γ1

]
(t)

∣∣∣∣
t=0

=
d

dt

[
f ◦ ϕ−1

α ◦ ϕα ◦ γ2

]
(t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R)

which is true if and only if

d

dt

[
f̃ ◦ γ̃1

]
(t)

∣∣∣∣
t=0

=
d

dt

[
f̃ ◦ γ̃2

]
(t)

∣∣∣∣
t=0

for all f̃ ∈ Ck (ϕα(Uα);R) .

Where for i = 1, 2 we have defined

γ̃i : (−ε, ε) → ϕα(Uα),
t 7→ (ϕα ◦ γi)(t)

which is a curve in a subset of Rn. As a result, we can simply apply the chain rule to
deduce that γ1 ∼ γ2 if and only if we have equality of the directional derivatives:

V1[f ](x) = V2[f ](x), for all f ∈ Ck(ϕα(Uα);R),

where Vi = ˙̃γ(0) are the tangent vectors to the curves γ̃i, in the usual sense of curves in
Rn. By Exercise A.5 this holds if and only if V1 = V2. Thus, with each equivalence class
[γ]∼ we can associate a unique vector in Rn via the coordinate chart (Uα, ϕα). Conversely,
from V ∈ Rn, we can construct the curve

γV (t) = ϕ−1
α (x + V t)

Which satisfies ˙̃γV (0) = V . Thus, the chart (Uα, ϕα) induces a canonical identification of
TpM with Rn.
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We deduce from this Lemma the important result:

Theorem A.1. Given γi : (−ε, ε) → M with γi(0) = p for i = 1, 2 and λ ∈ R, there
exists a curve γ such that

d

dt
[f ◦ γ] (t)

∣∣∣∣
t=0

=
d

dt
[f ◦ γ1] (t)

∣∣∣∣
t=0

+ λ
d

dt
[f ◦ γ2] (t)

∣∣∣∣
t=0

for all f ∈ Ck(M;R). Clearly, this defines [γ]∼ = γ̇(0) uniquely. We then write

γ̇1(0) + λγ̇2(0) := γ̇(0)

This provides us with a definition of addition of tangent vectors and scalar multiplica-
tion. With these definitions, TpM is a real vector space of dimension n.

Proof. We may simply take (with the notation of the Lemma)

γ(t) = γV (t)

where
V = ˙̃γ1(0) + λ ˙̃γ2(0).

This gives us a vector space isomorphism between TpM and Rn.

We can use this canonical identification induced by (Uα, ϕα) to provide us with a
basis for TpM for each p ∈ Uα. We pick a basis {ei}i=1,...,n for Rn and define(

∂

∂xi

)
p

= (∂i) := γ̇ei(0).

We say that
{(

∂
∂xi

)
p

}
is a coordinate basis for TpM.

The reason for this notation is made clear by the following result

Lemma A.4. Suppose f ∈ Ck(M;R) and let (Uα, ϕα) be a chart with p ∈ Uα and
ϕα(p) = x. We define f̃ = f ◦ ϕ−1

α , which is a Ck function defined on some open set
about x = xiei. We then have:(

∂

∂xi

)
p

[f ](p) =

(
∂f̃

∂xi

)
(x)

where on the right hand side, we simply have the partial derivative of f̃ as a function on
Rn.

Proof. We simply calculate using the definitions:(
∂

∂xi

)
p

[f ](p) =
d

dt
[f ◦ γei ]

∣∣∣∣
t=0

=
d

dt

[
(f ◦ ϕ−1

α )(x + eit)
]∣∣∣∣
t=0

=

(
∂f̃

∂xi

)
(x).
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Now that we have the vector space TpM, we are free to construct its dual, and the
higher rank tensor spaces associated with it. Particularly important is the dual space
T ∗pM, known as the co-tangent space at p. The cotangent space is the natural place in
which the differential of a function lives:

Definition 23. Given f ∈ Ck(M;R), we define the differential of f at p, df |p to be the
linear map

df |p : TpM → R,
V 7→ V [f ](p).

We can define a basis for T ∗pM from the coordinate basis for TpM by duality. We
define dxi

∣∣
p
∈ T ∗pM by the requirement that

dxi
∣∣
p

[(
∂

∂xj

)
p

]
= δij .

With this definition we have

df |p =

(
∂

∂xi

)
p

[f ](p) dxi
∣∣
p

The tangent and co-tangent bundles

In the previous subsection, we restricted our attention to vectors and co-vectors defined
at a single point. More often than not, rather than considering a vector at a single point
we want to consider a vector field, where we have a vector defined at each point. Before
discussing vector fields, we introduce the tangent bundle. This is the disjoint union over
the tangent spaces at each point in the manifold:

TM =
⊔
p∈M

TpM =
⋃
p∈M
{p} × TpM.

We shall show that a Ck-atlas forM induces a Ck−1-atlas for TM, so that the tangent
bundle may be given a manifold structure in a natural fashion. Suppose {(Uα, ϕα)} is
a Ck-atlas forM. Pick a chart (Uα, ϕα). We know that at each point p ∈ Uα the chart
induces a canonical identification between TpM and Rn. A tangent vector V ∈ TpM is
identified uniquely with a vector V ∈ Rn. We now define:

Ûα =
⊔
p∈Uα

TpM

and
ϕ̂α : Ûα → ϕα(Uα)× Rn,

(p, V ) 7→ (ϕα(p),V ).

Clearly ϕ̂α maps Ûα bijectively onto an open subset of R2n. We define a topology on
TM by declaring that A ⊂ TM is open if and only if ϕ̂α

(
A ∩ Ûα

)
is open in R2n for

any α. One can verify that this definition turns TM into a second countable, Hausdorff,
topological space.



100 Appendix A Some background results

Lemma A.5. The collection {(Ûα, ϕ̂α)} is a Ck−1-atlas for TM.

Proof. By construction, ϕ̂α maps Ûα homeomorphically onto an open subset of R2n and
moreover the sets Ûα cover TM. It remains to show that the transition functions are
Ck−1-diffeomorphisms between subsets of R2n. I claim that we have

ϕ̂αβ : ϕα(Uα ∩ Uα)× Rn → ϕβ(Uα ∩ Uα)× Rn,
(x,Vα) 7→ (ϕαβ(x), Dϕαβ|x (Vα)).

To see this, recall that if ϕα(p) = x, then Vα ∈ Rn corresponds to V ∈ TpM under the
identification induced by ϕα implies that V = γ̇(0) for the curve

γ : (−ε, ε) → M,
t 7→ ϕ−1

α (x + tVα).

Recall also that, going in the other direction, if V ∈ TpM, then under the identification
induced by ϕβ it corresponds to the vector Vβ ∈ Rn defined by

Vβ =
d

dt
(ϕβ ◦ γ)(t)

∣∣∣∣
t=0

for any γ : (−ε, ε)→M such that γ(0) = p and γ̇(0) = V . Combining these two facts,
we have that

Vβ =
d

dt
(ϕβ ◦ ϕ−1

α )(x + tVα)

∣∣∣∣
t=0

=
d

dt
(ϕαβ)(x + tVα)

∣∣∣∣
t=0

= Dϕαβ|x (Vα).

Now, since ϕαβ is a Ck-diffeomorphism, Dϕαβ is a Ck−1 map into the space of invertible
matrices, thus the transition function ϕ̂αβ is a Ck−1-diffeomorphism.

As a consequence, we have:

Theorem A.2. The tangent bundle naturally inherits the structure of a Ck−1-manifold
of dimension 2n.

An entirely analogous construction can be performed in which we glue together the
co-tangent spaces to define the co-tangent bundle, T ∗M. This again inherits the structure
of a Ck−1-manifold of dimension 2n fromM. The only difference in our development
above is that the relevant transition functions are given by8:

ϕ̂∗αβ : ϕα(Uα ∩ Uα)× (Rn)∗ → ϕβ(Uα ∩ Uα)× (Rn)∗ ,

(x,ωα) 7→ (ϕαβ(x), Dϕ−1
αβ

∣∣∣∗
x

(ωα)).

8recall that the adjoint of a linear map Λ : V → V is a linear map Λ∗ : V ∗ → V ∗ whose action on
ω ∈ V ∗ is given by:

(Λ∗ω) [v] = ω [Λv] , for all v ∈ V.
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Glueing together tensor products of TpM and T ∗pM in the same manner, we can construct
tensor bundles of arbitrary rank.

Definition 24. SupposeM is at least k + 1 regular.

i) A Ck−vector field is a Ck−map X :M→ TM such that at every point p ∈M, we
have X(p) ∈ Tp(M). The set of all Ck−vector fields is denoted X(M), or Xk(M) if
the regularity is not obvious from context.

ii) A Ck−one-form is a Ck−map ω :M→ T ∗M such that at every point p ∈ M, we
have ω(p) ∈ T ∗p (M). The set of all Ck−one-form fields is denoted X∗(M), or X∗k(M)
if the regularity is not obvious from context.

Notice that there is a natural paring Xk(M)× X∗k(M)→ Ck(M;R) defined by

p ∈M 7→ ω|p
(
X|p

)
.

We can extend the definition to higher rank tensor fields in the obvious fashion.
Suppose thatM is a Ck−manifold and that ϕ : U ⊂ M→ U ⊂ Rn is a coordinate

chart, and pick a basis {ei} for Rn. At each point, we have a basis for TpM given by{(
∂

∂xi

)
p

}
.

For each i, the map
∂
∂xi

: U → TU ⊂ TM
p 7→

(
∂
∂xi

)
p

defines a Ck−1−vector field on U , i.e.
∂

∂xi
∈ Xk−1(U).

This vector field is also sometimes written ∂i. In a similar fashion, dual to these vector
fields we have the one-forms

dxi ∈ X∗k−1(U)

satisfying

dxi
(

∂

∂xj

)
= δij .

We know that at each point p ∈ U that {(∂i)p}i=1,...,n, {dxi
∣∣
p
}i=1,...,n span TpM, T ∗pM

respectively. As a consequence, any Cr−smooth (p, q)−tensor field with r ≤ k− 1 can be
written locally as

T = Tµ1,...µpν1,...νq
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµp
⊗ dxν1 ⊗ · · · ⊗ dxµq

Where Tµ1,...µpν1,...νq : U → R are Cr−functions, called the components of T in the
coordinate chart (ϕ,U). Using the chain rule, it is straightforward to demonstrate that
the condition that the components are Cr−smooth is independent of the coordinate chart,
provided r ≤ k − 1.
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A.3.3 Derivations and commutators

Definition 25. A Cr−derivation on the Ck−manifoldM is an R−linear map

D : Cs+1(M;R)→ Cs(M;R)

for any s ≤ r, which satisfies

i) D(f1 + λf2) = Df1 + λDf2,

ii) D(f1f2) = f1Df2 + f2Df1,

for all fi ∈ Cs+1(M;R), λ ∈ R.

A vector field V ∈ Xr(M) naturally defines a Cr−derivation. We can check that

DV f(p) := Vp[f ] =
d

dt
f ◦ γ(t)

∣∣∣∣
t=0

where γ(0) = p, γ̇(0) = Vp satisfies the conditions above. Conversely, we can identify a
Cr−derivation with a Cr−vector field. To see this, we first note that any C1−function
in Rn may be written locally about a point y as

g(x) = g(y) + gi(x)(xi − yi),
where gi ∈ C0(Rn) with gi(y) = ∂g

∂xi
(y). Now consider a point p ∈ M and a coordinate

chart (U , ϕ) with p ∈ U and ϕ = (ϕ1, . . . , ϕn). We deduce that any function f ∈ C1(M;R)
may be written for q in a neighbourhood of p as:

f(q) = f(p) + fi(q)(ϕ
i(q)− ϕi(p))

for some fi ∈ C0(M;R) with fi(p) = ∂
∂xi

∣∣
p

[f ]. Applying an arbitrary derivation to this
formula, we deduce that

Df = (ϕi − ϕi(p))Dfi + fiDϕ
i

Evaluating this formula at p we deduce:

Df(p) = fi(p)Dϕ
i(p) =

∂

∂xi

∣∣∣∣
p

[f ]Dϕi(p) = V |p [f ]

where V |p ∈ TpM is the tangent vector given in local coordinates by:

V |p = Dϕi(p)
∂

∂xi

∣∣∣∣
p

Defining V ∈ Xr(U) by

V := Dϕi
∂

∂xi

we have
D = DV .

We have shown that in a neighbourhood of any point there exists a V such that D = DV .
Since a vector field is uniquely determined by its action on functions, V is uniquely fixed
by this condition.
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Lemma A.6. LetM be a Ck manifold. Suppose X,Y ∈ Xr(M) for r < k. There exists
a unique vector field [X,Y ] ∈ Xr−1(M) defined by the condition:

[X,Y ]f = X(Y f)− Y (Xf), ∀f ∈ Cr(M;R)

Proof. By the previous discussion, it suffices to check that the operation [X,Y ]f defines
a Cr−1−derivation. We calculate

[X,Y ](f1 + λf2) = X(Y (f1 + λf2))− Y (X(f1 + λf2))

= X(Y f1)− Y (Xf1) + λ [X(Y f2)− Y (Xf2)]

= [X,Y ]f1 + λ[X,Y ]f2,

using the R−linearity of the action of a vector field on a function. We also find

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY g + gY f)− Y (fXg + gXf)

= fX(Y g) + (Xf)(Y g) + (Xg)(Y f) + gX(Y f)

− [fY (Xg) + (Y f)(Xg) + (Y g)(Xf) + gY (Xf)]

= f [X(Y g)− Y (Xg)] + g [X(Y f)− Y (Xf)]

= f [X,Y ]g + g[X,Y ]f

Hence the operation f 7→ [X,Y ]f is a derivation, to which we can associate the unique
vector field [X,Y ].

Exercise(∗). Working in a coordinate patch, U so that we can write

X = Xi ∂

∂xi
, X = Y i ∂

∂xi
,

for Xi, Y i ∈ Cr(U ;R), show that

[X,Y ] =

(
Xi∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
.

A.3.4 Immersions and embeddings

Push forward, pull back

For this section, we shall make the assumption that all manifolds and objects that we
discuss are smooth. We return to the situation we considered earlier, where we have two
smooth manifolds N ,M, of dimension n, n+ d respectively. Suppose we have a function
φ ∈ C∞(N ;M). The mapping φ naturally induces relations between various geometric
objects defined on the two manifolds N ,M. We start with the pull back of a function by
φ. Suppose f ∈ C∞(M;R), we define the pull back of f by φ, written φ∗f ∈ C∞(N ;R)
by

φ∗f := f ◦ φ.
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Now let us consider vectors. Suppose X ∈ TpN , and that γ ∈ C∞((−ε, ε),N ) satisfies
γ(0) = p, γ̇(0) = X. We can define a curve, γ̃ ∈ C∞((−ε, ε),M) by:

γ̃ := φ ◦ γ

We define the push-forward of X by φ, written φ∗X ∈ Tφ(p)M by:

φ∗X = ˙̃γ(0).

Lemma A.7. Suppose that X ∈ X(N ), f ∈ C∞(M;R) and φ ∈ C∞(N ,M). Fix p ∈ N .
Then:

X(φ∗f)|p = [(φ∗X) f ]|φ(p) ,

and
fφ∗X|φ(p) = φ∗ [(φ∗f)X]|φ(p)

Proof. Fix p ∈ N . Suppose that γ satisfies γ(0) = p, γ̇(0) = X|p. From the definition of
a vector acting on a function, we have:

X(φ∗f)|p =
d

ds
(φ∗f) ◦ γ(s)

∣∣∣∣
s=0

=
d

ds
(f ◦ φ) ◦ γ(s)

∣∣∣∣
s=0

=
d

ds
f ◦ (φ ◦ γ)(s)

∣∣∣∣
s=0

=
d

ds
f ◦ γ̃(s)

∣∣∣∣
s=0

= (φ∗X) f |φ(p)

For the second part, suppose that g ∈ C∞((M);R), and calculate using the previous
result:

[f (φ∗X) g]|φ(p) = f(φ(p))X(φ∗g)|p
= (φ∗f) (p) X(φ∗g)|p
= [(φ∗f)X(φ∗g)]|p
= φ∗ [(φ∗f)X] g|φ(p)

Now, suppose that ω ∈ T ∗φ(p)M is a one-form. We can define the pull-back of ω by φ,
written φ∗ω ∈ TpN by:

[φ∗ω] (X) = ω (φ∗X) , ∀ X ∈ TpN .

These definitions readily extend to allow us to define the push forward of any (p, 0)−tensor,
and the pull-back of any (0, q)−tensor. Notice that the push forward and pull-back at
each point p are linear maps between vector spaces.
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Exercise(∗). Suppose f ∈ C∞(M;R) and φ ∈ C∞(N ,M). Show that:

d (φ∗f) = φ∗df.

Notation: Where the choice of map φ is clear from context, we will write f∗ = φ∗f ,
X∗ = φ∗X, etc.

Definition 26. We say that a map ı ∈ C∞(N ;M) is a smooth immersion if the push
forward map:

ı∗ : TpN → Tφ(p)M

is an injective linear map for each p ∈ N . We say that ı is a smooth embedding if moreover
ı is injective. In this case, we write ı : N ↪→M.

If we have that ı ∈ C∞(N ;M) is an immersion, then for each p ∈ N , we can identify
TpN ' Tı(p)ı(N ), where Tı(p)ı(N ) is a linear subspace of Tφ(p)M.

Canonical immersions and extensions

Lemma A.8 (Canonical Immersion Theorem). Suppose ı : N ↪→M is an immersion,
and fix p ∈ N . There exist coordinate charts (U , ϕ) and (V, ψ) for N andM respectively,
with ϕ(p) = 0, such that

ψ ◦ ı ◦ ϕ−1 : ϕ(U) → ψ(V),
(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

Proof. Let us fix (U , ϕ) to be a coordinate chart for N centred at p, i.e., ϕ(p) = 0. Now
consider any (V, ψ), a coordinate chart forM centred at ı(p), and set f = ψ ◦ ı ◦ ϕ−1.
We will denote by (xi)i=1,...n the coordinates on ϕ(U) ⊂ Rn, and by (ya)a=1,...,n+d the
coordinates of ψ(V) ⊂ Rn+d.

The fact that ı is an immersion implies that Df(0) is injective, so by a linear
transformation on Rn+d, we may assume

Df(0) =
(
In×n 0d×n

)
.

Now set
h(y1, . . . , yn+d) = f(y1, . . . yn) + (0, . . . , 0, yn+1, . . . , yn+d),

defined on some neighbourhood of 0 in Rd+n. Clearly h(0) = 0 and Dh(0) = I(n+d)×(n+d),
so by restricting the domain to a subset if necessary, we can assume that h is smoothly
invertible. We can easily verify that on a sufficiently small neighbourhood of 0, the map
h−1 ◦ f takes (x1, . . . , xn) to (x1, . . . , xn, 0, . . . , 0), so by redefining ψ to be ψ ◦ h and
shrinking U ,V as necessary, we are done.

From here, we can derive various extension Lemmas which allow us to locally extend
objects defined on ı(N ) to a neighbourhood inM in a smooth fashion. Obviously such
extensions are highly non-unique.
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Corollary A.3. Suppose ı : N → M is an immersion, and let p ∈ N . There exists a
neighbourhood W of p in M such that for any f ∈ C∞(N ;R) we can find a function
f̃ ∈ C∞(M;R) with f = ı∗f̃ in W.

Proof. For p ∈ N we have local coordinate charts (U , ϕ), (V, ψ) centred at p, ı(p) such
that ı is given by the canonical immersion. Pick W b ϕ(U), and define W = ϕ−1(W ).
Let χT : U → [0, 1] be a smooth cut-off function equal to unity on W and vanishing near
the boundary of ϕ(U). We define f = f ◦ ϕ−1 and finally we set f̃ = 0 onM\ V, and
f̃ = f̃ ◦ ψ, for

f̃(y1, . . . yn+d) = χN (yn+1, . . . , yn+d)χT (y1, . . . , yn)f(y1, . . . , yn).

Here χN : Rd → [0, 1] is a smooth cut-off function, equal to 1 at the origin and supported
on a sufficiently small set that

supp (χN (yn+1, . . . , yn+d)χT (y1, . . . , yn)) ⊂ ψ(V).

Let U ⊂ N be an open set, and X ∈ X(U). We say that X̃ ∈ X(M) is an extension
of X away from ı(U) if X(f∗) = ı∗

[
X̃(f)

]
in U for any φ ∈ C∞(M;R). Equivalently,

X∗ = X̃ on ı(U).

Corollary A.4. Suppose ı : N → M is an immersion and let p ∈ N . There exists a
neighbourhood W of p in N such that for any X ∈ X(N ) we can find X̃ ∈ X(M) which
is an extension of X away from ı(W).

Proof. Take the same charts as in the previous proof, so that (xi) are local coordinates
on N and (ya) are local coordinates onM. We have that:

X =
n∑
i=1

Xi ∂

∂xi
,

for Xi ∈ C∞(U ,R). By the previous result, there exists W ⊂ N containing p, and
X̃i ∈ C∞(N ;R) such that ı∗X̃i = Xi. Defining X̃ ∈ X(M) by:

X̃ =
n∑
i=1

X̃i ∂

∂yi

we have the desired extension away from ı(W).

This allows us to prove the following result

Lemma A.9. Suppose X,Y ∈ X(N ), and pick p ∈ N . Let X̃, Ỹ ∈ X(M) be extensions
of X,Y away from ı(U) for some neighbourhood U of p. Then

[
X̃, Ỹ

]
is an extension of

[X,Y ] away from ı(U).
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Proof. We calculate in U :([
X̃, Ỹ

]
(φ)
)∗

=
[
X̃
(
Ỹ (φ)

)]∗
−
[
Ỹ
(
X̃ (φ)

)]∗
= X

([
Ỹ (φ)

]∗)
− Y

([
X̃ (φ)

]∗)
= X (Y (φ∗))− Y (X (φ∗))

= [X,Y ] (φ∗)

whence we are done.

Diffeomorphisms

We say that the map φ ∈ C∞(N ;M) is a diffeomorphism if φ−1 exists and belongs to
C∞(M;N ). A diffeomorphism allows us to identify TpN ' Tφ(p)M for all p ∈ N .

We can construct a family of diffeomorphisms takingM to itself from a vector field
X ∈ X(M). For this, we require the following result:

Lemma A.10. Let X ∈ X(M), and suppose p ∈M. Then there exists a parameterised
curve γ ∈ C∞((a, b);M), where a < 0 < b, satisfying:

γ(0) = p, γ̇(s) = X|γ(s) .

This is called an integral curve of X starting at p, and is unique up to extension.

Proof. Take a coordinate chart (ϕ,U) with p ∈ U , and write X = Xi ∂
∂xi

, for Xi ∈
Ck(U ;R), and set ϕ ◦ γ(s) = x(s) = (xi(s)). The condition on γ becomes:

ẋi(s) = Xi ◦ ϕ−1(x(s)), x(0) = ϕ(p),

which is an ordinary differential equation, with Lipshitz right hand side, whose solutions
are unique up to extension. By this local uniqueness property, the curve is defined
independent of the coordinate chart, and is unique up to extension.

Lemma A.11. Suppose that X ∈ X(M) has the property that for each p ∈M, the integral
curve of X through p, written γp can be extended so that it belongs to Ck((−ε, ε);M) for
some ε independent of p. Then the map

Xφs : p 7→ γp(s)

is a diffeomorphism, referred to as the one parameter family of diffeomorphisms induced
by X.

A.4 Matrix Lie Groups

This section is meant to give a very brief introduction to Lie groups. We bypass a lot of
important theory and focus our attention on the matrix Lie groups. As a result, some
of the definitions are not standard, but allow us to get to our goal more quickly. It is
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certainly no substitute for a proper study of the beautiful topic of Lie groups. Think of
the approach here as ‘good enough’ for our purposes.

We’ll start by extending the familiar definition of a group to encompass an additional
requirement, that of differentiability.

Definition 27. A group is a set G, together with a binary operation · such that

i) a · b ∈ G for all a, b ∈ G [Closure]

ii) (a · b) · c = a · (b · c) for all a, b ∈ G [Associativity]

iii) There exits e ∈ G such that e · a = a · e = a for all a ∈ G [Existence of an identity]

iv) For each a ∈ G there exists b ∈ G such that a · b = b · a = e [Existence of an inverse]

The identity element is unique, as is the inverse, and we write b = a−1 if a · b = b · a = e.
A Lie group is a group, where the set G has a smooth9 structure making it into a

manifold in such a way that the operations · and ()−1 are smooth.

The many of the most important Lie groups are groups of matrices:

Example 17. Consider the set GL(n) of invertible n× n real matrices. This is naturally
a group with the group operation of matrix multiplication. Thinking of GL(n) as an
open subset of Rn2 with the standard real analytic structure, GL(n) is also a manifold
in a natural way. Matrix multiplication and inversion are smooth with respect to this
structure, as can be seen by writing out the operations in components.

In fact, this example (and its subgroups) will be sufficiently rich to cover the situations
that we are interested in for this course. We define in the obvious way

Definition 28. A Lie subgroup of a Lie group G is a subgroup H of G endowed with a
topology and smooth structure making it into a Lie group in such a way that the inclusion
map is an immersion. A matrix Lie group is an embedded Lie subgroup of GL(n).

An important (and deep result) tells us when a subgroup of a Lie group is in fact a
Lie subgroup:

Proposition 2 (Closed subgroup theorem). If H is a subgroup of G which is closed (in
the topology of G), then H is an embedded Lie subgroup of G.

This gives us the following result

Lemma A.12. Suppose that H is a subgroup of GL(n) with the property that for any
sequence An ∈ H with An → A ∈ Mat(n × n) component-wise, either A ∈ H or
A 6∈ GL(n). Then H is a matrix Lie group.

Example 18. 1. GL+(n) = {A ∈ GL(n) : detA > 0} is a matrix Lie group

2. SL(n) = {A ∈ GL(n) : detA = 1} is a matrix Lie group
9It turns out that we can assume that the manifold is Cω without any loss of generality.



A.4 Matrix Lie Groups 109

3. O(n) = {A ∈ GL(n) : ATA = I} is a matrix Lie group

4. The set of matrices A ∈ GL(2) of the form

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ Q,

is a subgroup of GL(2), but not a matrix Lie group.

A.4.1 The matrix exponential

A very useful tool to understand the structure of matrix Lie groups is the matrix
exponential. Before we define the matrix exponential, it’s first useful to introduce a norm
on Mat(n× n), called the operator norm. We define

||A||op. = sup
x∈Rn,x 6=0

||Ax||
||x||

where ||·|| is the usual Euclidean norm. We clearly have that for any non-zero x ∈ Rn:

||Ax|| ≤ ||A||op. ||x|| .

we deduce that

||(A+B)x|| ≤ ||Ax|| + ||Bx|| ≤ ||A||op. ||x|| + ||B||op. ||x||

so that
||A+B||op. ≤ ||A||op. + ||B||op. .

so the triangle inequality is satisfied by this norm. The other criteria for ||·||op. to define
a norm are straightforward to verify.

We can also show by a simple induction that

||Anx|| ≤ ||A||nop. ||x||

holds for any x and thus
||An||op. ≤ ||A||nop. .

Definition 29. The matrix exponential of an element A ∈Mat(n× n) is defined to be

Exp A = eA :=

∞∑
k=0

An

n!
. (A.11)

Exercise(∗). i) Show that the sum on the right hand side of (A.11) converges in the
operator norm for any A (and hence with respect to any other norm onMat(n×n)).
Show also that (

eA
)T

= eA
T
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ii*) Show that the matrix exponential is a real analytic function Mat(n× n)→ GL(n),
where both spaces inherit the canonical real analytic structure of Rn2 , and show
that

d

dt
etA = AetA = etAA

and
etAesA = e(t+s)A = esAetA

for t, s ∈ R. Deduce that (
eA
)−1

= e−A.

iv) Show that

lim
n→∞

(
1 +

1

n
A

)n
= eA,

v) Deduce that if Γ : (−ε, ε)→ GL(n) is a C1−curve with Γ(0) = I and Γ̇(0) = A, we
have

lim
n→∞

[
Γ

(
1

n

)]n
= eA

A.4.2 The Lie algebra

With the matrix exponential in our pocket, we are ready to define the Lie algebra of a
matrix Lie group.

Definition 30. The Lie algebra h of a matrix Lie group H is defined to be the set of all
matrices a ∈Mat(n× n) such that eta ∈ H for all t ∈ R.

Theorem A.5. Let h be the Lie algebra of a matrix Lie group H. Then

i) a ∈ h⇔ a ∈ TIH, i.e. a is in the Lie algebra if and only if there exists a C1−curve
Γ : (−ε, ε)→ H with Γ(0) = I and Γ̇(0) = a.

ii) h is a vector subspace of Mat(n× n), i.e. if a, b ∈ h then a+ λb ∈ h

iii) h is closed under the matrix commutator, i.e. if a, b ∈ h then [a, b] = ab− ba ∈ h

Proof. i) “⇒” is trivial, take Γ(t) = eta. For “⇐”, we use the fact that Γ
(
t
n

)
∈ H for

any t ∈ R and n a sufficiently large integer to deduce that[
Γ

(
t

n

)]n
∈ H

for n sufficiently large. We know

lim
n→∞

[
Γ

(
t

n

)]n
= eta

which is invertible, so by the closeness of H, we have eta ∈ H and we’re done.
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ii) Suppose a, b ∈ h and fix λ ∈ R. Consider the curve Γ : (−ε, ε)→ H given by

Γ(t) = etaetλb

This is clearly C1 and we readily calculate that

Γ(0) = I, Γ̇(0) = a+ λb,

so that a+ λb ∈ h.

iii) Now consider the curve Γ : (−ε, ε)→ H given by

Γ(t) =


e
√
tae
√
tλbe−

√
t(a+b) t > 0

I t = 0

e
√
−tbe

√
−tλae−

√
−t(a+b) t < 0

This is smooth for t 6= 0. Expanding for t small and positive, we have

Γ(t) =

[
I +
√
ta+

1

2
ta2 + o(t)

] [
I +
√
tb+

1

2
tb2 + o(t)

] [
I −
√
t(a+ b) +

1

2
t(a+ b)2 + o(t)

]
= I + t

{
1

2

[
a2 + b2 + (a+ b)2

]
+ ab− a(a+ b)− b(a+ b)

}
+ o(t)

= I +
t

2
{ab− ba}+ o(t)

Noting that we can obtain the expansion for t small and negative by interchanging
t↔ −t and a↔ b, we deduce that Γ is in fact C1 with Γ̇(0) = 1

2 [a, b].

Thus the Lie algebra of a matrix Lie group is naturally a vector space endowed with
an antisymmetric bilinear operation [, ], which moreover satisfies the Jacobi identity

[[a, b] , c] + [[b, c] , a] + [[c, a] , b] = 0

One can abstractly define a Lie algebra to be a vector space endowed with such an
operation, but the concrete realisation as a space of matrices endowed with the matrix
commutator is the most useful for us.

A.4.3 The orthogonal group

As a brief example, we will give a brief treatment of the orthogonal group. Recall

O(n) = {A ∈ GL(n) : ATA = I}.

Let us find the Lie algebra, o(n). Suppose Γ : (−ε, ε)→ O(n) with Γ(0) = I. We have

Γ(t)TΓ(t) = I, t ∈ (−ε, ε)

so we can differentiate this condition to find

Γ̇(t)TΓ(t) + Γ(t)T Γ̇(t) = 0, t ∈ (−ε, ε)
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so that, setting t = 0 we deduce that if Γ̇(0) = a ∈ o(n) we must have

aT + a = 0

so that a is antisymmetric. Conversely, suppose that a is antisymmetric. We have(
eta
)T

= eta
T

= e−ta =
(
eta
)−1

,

so that eta ∈ O(n). Thus o(n) is precisely the set of antisymmetric matrices.
We should be careful here. Although eta ∈ O(n) whenever a ∈ o(n), not every element

of O(n) can be written as the exponential of an antisymmetric matrix. We know that
if A ∈ O(n) a simple calculation shows that detA = ±1. The determinant of a matrix
is a continuous real valued function, so on any continuous curve Γ : (a, b) → O(n) the
determinant must be constant. In particular for a ∈ o(n) we have:

det
(
eat
)

= 1.

In fact, we can show that by exponentiating elements of o(n) it is possible to construct
any element of SO(n).

Exercise(∗). Let

a1 =

 0 0 0
0 0 −1
0 1 0

 , a2 =

 0 0 1
0 0 0
−1 0 0

 , a3 =

 0 −1 0
1 0 0
0 0 0


Show that

[ai, aj ] = εijkak,

where εijk is the totally antisymmetric tensor with ε123 = 1. Show also that:

eθa1 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and find similar expressions for eθa2 , eθa3 . Deduce that by exponentiating o(3) we can
produce a matrix representing an arbitrary rotation, i.e. an arbitrary element of S0(3).
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Bonus material

B.1 Integration in E1,3 and the divergence theorem

We will need to integrate over surfaces embedded in E1,3 and relate these surface integrals
to volume integrals using the divergence theorem in the usual way. We would like the
expressions we write down to be invariant under a change of frame. This is slightly
complicated when the metric has Lorentzian signature. The main issue is that the notion
of outwards unit normal becomes tricky when vectors can have zero norm.

First, suppose we have an open set U ⊂ E1,3 and that f : U 7→ R is a function defined
on U . Picking an inertial frame {~eµ}, we naturally have that f̃ : (xµ) 7→ f(xµ~eµ) is a
map from some subset of Ũ ⊂ R4 to R. We say that f is measurable if f̃ is Lebesgue
measurable. Consider now

I[f ] :=

∫
Ũ
f̃(x)dx

where dx is the standard Lebesgue measure on R4. Now consider a different choice of
inertial frame {~eµ′}. We define f̃ ′ : (x′µ) 7→ f(x′µ~eµ

′), which maps Ũ ′ ⊂ R4 to R. We
have

f̃(x) = f̃ ′(Λx)

Where Λ ∈ O(1, 3) is the matrix representing the change of basis. Now, we have

I ′[f ] =

∫
Ũ ′
f̃ ′(x)dx =

∫
Ũ
f̃(y) |det Λ| dy =

∫
Ũ
f̃(y)dy = I[f ]

where we change variables xµ = Λµνy
ν and use that |det Λ| = 1. Thus, we can define∫
U
fdX := I[f ],

and this definition is independent of the inertial frame.
Next, let us introduce the alternating tensor. This is a (0, 4)−tensor, defined to be

totally antisymmetric (i.e. antisymmetric under exchange of any pair of indices), and
such that in a given inertial frame we have

ε0123 = 1.

113
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Under a Lorentz transformation with metric Λµν , the alternating tensor transforms as1

εµνστ = (det Λ)ε′µνστ ,

so that provided we restrict the transformations to belong to SO(1, 3), this tensor is
invariant.

Now suppose that we have a surface Σ which may be written as Σ = ϕ(U) for a
smooth parameterisation ϕ:

~ϕ : U ⊂ R3 → Σ ⊂ E1,3

(y1, y2, y3) 7→ ϕµ(y)eµ

The choice of parameterisation naturally gives an orientation to the surface. At any point,
the ordered set of vectors {

∂~ϕ

∂y1
,
∂ ~ϕ

∂y2
,
∂ ~ϕ

∂y3

}
defines an oriented basis for TΣ.

The vector surface measure of Σ with respect to this parameterisation is the vector
measure (defined on a subset of R3):

dS ~ϕµ = εµνστ
∂ϕν

∂y1

∂ϕσ

∂y2

∂ϕτ

∂y3
dy

Where dy is the standard Lebesgue measure on R3.
For example, suppose we consider the plane Σ = {t = 0}, which we can parameterize

by the map:
~ϕ : U ⊂ R3 → Σ ⊂ E1,3

(y1, y2, y3) 7→ yiei

so that ϕ0(y) = 0, ϕi(y) = yi. Then we have that for this parameterisation

dSϕ0 = dy, dSϕi = 0.

Exercise(∗). a) Show that if F : W → U is an orientation preserving diffeomorphism
between subsets of R3 then∫

y∈U
V µ(~ϕ(y))dS ~ϕµ =

∫
y∈W

V µ(~ϕ ◦ F (y))dS(~ϕ◦F )
µ .

b) Show that if P is the orientation reversing diffeomorphism P : W → U given by
y → −y, then we have∫

y∈U
V µ(~ϕ(y))dS ~ϕµ = −

∫
y∈W

V µ(~ϕ ◦ P (y))dS(~ϕ◦P )
µ .

Deduce that ∫
y∈U

V µ(~ϕ(y))dS ~ϕµ

depends only on the orientation of Σ and not on the choice of parameterisation.
1Check that you understand why this is!
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With the vector surface measure, we can define the flux of a sufficiently smooth vector
field V through Σ: ∫

Σ

~V · d~S :=

∫
y∈U

V µ(~ϕ(y))dS ~ϕµ

The flux of ~V through Σ does not depend on the choice of parameterisation, but it does
depend on the orientation for the surface Σ. By taking a partition of unity to localise ~V
in coordinate patches2, we can define the flux through any oriented surface3 Σ ⊂ E1,3.

If Σ is an orientable surface which is everywhere spacelike or timelike, we can define a
scalar measure on Σ, which we’ll denote by dσ:∫

Σ
fdσ =

∫
Σ
f ~N · d~S

where ~N is a unit normal of Σ with respect to η (i.e. η( ~N, ~N) = ±1) with the direction
chosen such that NµdSϕµ is a positive measure on U ⊂ R3 for each parameterisation
respecting the orientation. Notice that if Σ is not either everywhere spacelike or timelike
then this definition does not make sense because a null surface does not have a well
defined unit normal. We still have a perfectly reasonable vector measure, but no scalar
measure.

Theorem B.1. Suppose that ~V is a vector field on a bounded domain U ⊂ E1,3, whose
boundary Σ = ∂U is piecewise smooth. Suppose also that V µ ∈ C1(U). Then we have∫

U
∇µV µdX =

∫
Σ

~V · d~S,

where the orientation of Σ is chosen such that if ~K is an outwards pointing vector
transverse to Σ, then

{ ~K, ~V1, ~V2, ~V3}
is a positively oriented basis for TpE1,3 whenever {~V1, ~V2, ~V3} is a positively oriented basis
for TpΣ.

We shall omit the proof here. It can be deduced from the usual divergence theorem
on R4 keeping careful account of changes of sign.

Lemma B.1. With the same set-up as in Theorem B.1, the choice of orientation for Σ
is equivalent to the requirement that

KµdSϕµ

is a positive measure on U ⊂ R3, whenever ~ϕ : U → Σ is a local parameterisation
respecting the orientation.

2This is a technical point, which can usually be avoided. If the surface Σ cannot be smoothly
parameterised by a single coordinate patch then we have to write our vector field ~V as a sum of terms
each of which is supported on a single patch. We can then define the integral of ~V over the surface by
linearity.

3i.e. a surface with a consistent global choice of orientation
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Corollary B.2. Suppose that ~V is a vector field on a bounded domain U ⊂ E1,3, whose
boundary Σ = ∂U is piecewise smooth and can be written as Σ = Σs ∪ Σt where Σs is
spacelike and Σt is timelike. Suppose also that V µ ∈ C1(U). Then we have∫

U
∇µV µdX =

∫
Σs

~V · ~Ndσ −
∫

Σt

~V · ~Ndσ,

where ~N is the unit outwards normal.

Notice here that there is a sign change for the timelike surfaces relative to the spacelike
surfaces.

Example 19. Fix an inertial frame for E1,3. Consider the cylinder C = {xµ : 0 < x0 <
1, |x| < 1}. We have:∫

C
∇µV µdX =

∫
x0=1,x∈B1(0)

V tdx−
∫
x0=1,x∈B1(0)

V tdx+

∫
[0,1]×∂B1(0)

V · n dσdt

where Br(x) is the Euclidean ball of radius r centred at x and n, dσ are the usual outward
directed normal and surface measure of the unit Euclidean sphere.
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