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Abstract

One of the crowning achievements of modern physics is Einstein’s theory of
general relativity, which describes the gravitational field to a very high degree
of accuracy. As well as being an astonishingly accurate physical theory, the
study of general relativity is also a fascinating area of mathematical research,
bringing together aspects of differential geometry and PDE theory. In this
course, I will introduce the basic objects and concepts of general relativity
without assuming a knowledge of special relativity. The ultimate goal of the
course will be a discussion of the Cauchy problem for the vacuum Einstein
equations, including a statement of the relevant well-posedness theorems and
a discussion of their relevance. We will take a ’field theory’ approach to the
subject, emphasising the deep connection between Lorentzian geometry and
hyperbolic PDE. In contrast to the course PX436 General Relativity offered
by the department of physics, we concentrate on the mathematical structure
of the theory rather than its physical implications.

By the end of the module, students should be able to:

e Understand how the Minkowski geometry and Lorentz group arise from
considerations of signal propagation for the scalar wave equation.

e Understand the basics of Lorentzian geometry: the metric; causal clas-
sification of vectors; connection and curvature; hypersurface geometry;
conformal compactifications; the d’Alembertian operator.

e Be able to state the well-posedness theorems for the Cauchy problem for
the Einstein equations and sketch the proof of local well posedness.
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Introduction

A brief history of light

Light moves fast. Famously fast. So fast, in fact, that it’s extremely difficult to observe that
its speed, ¢, is finite. For this reason many people through history have, understandably,
concluded that the speed of light is infinite. Debate on the matter dates back at least to
the ancient Greeks, and the finiteness of ¢ was only really established towards the end of
the 17" century.

The first definitive experimental proof that light has a finite speed was given by Rgmer
in 1676. His argument was based on measurements of Jupiter’s moon lo. At some times
in the year, Earth is moving towards Jupiter, while at others it is moving away. Rgmer
observed what we would now call a Doppler shift in the orbital frequency of Io. When
the Earth moves towards Jupiter, the frequency of its orbit appears to increase, while
when Earth is moving away from Jupiter the frequency decreases. By combining his
measurements of the frequency change with estimates of the diameter of Earth’s orbit,
Rgmer argued for a value (in modern units)

c~22x10% ms_l,

which is pretty good considering our modern value of ¢ = 3.00 x 10® ms~!. Although
controversial at first, further measurements confirmed Rgmer’s demonstration that c is
indeed finite.

At the time, there were two competing theories regarding the nature of light. Isaac
Newton favoured the ‘corpuscular theory of light’, according to which light consists of
particles. The competing theory of Huygens instead described light as a wave, propagating
through the ‘luminiferous sether’. It was not until 1804 that Young undertook his famous
‘twin slits’ experiment and demonstrated the wave character of light.

The next step in understanding light came as part of one of the great achievements
of 19" century physics. This was the unification in the early 1860s, by Maxwell, of the
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A brief history of light v

electrical and magnetic forces. Maxwell’s equations in a vacuum have the form:

V.E=0, (1)
B
V.B =0, (3)
OE 1
=~V xB=0. 4
ant MOVX 0 ()

Here E, B are the electric and magnetic fields and g, €9 are two constants, known as
the permeability and permittivity of free space. From these constants, we can form
a combination, (epjup)~ 2, which somewhat suggestively has dimensions of speed. One
of Maxwell’s great contributions was to show that the system of PDEs (1-4) admits
propagating wave solutions, with speed ¢ = (60“0)*%, and to identify these electromagnetic
waves with light.

Exercise(x). Consider a system of particles of mass m; at positions ;(¢) € R3. Suppose
that the particle j exerts a force Fj; on the particle ¢, where F;; = Fj;(r; — ;) depends
only on the relative separation of the particles. Show that Newton’s equation of motion

for the system:
Cl2’l"i

is invariant under the Galilean boost r; — 7;(t) + vt.

As a means of describing the nature of light, Maxwell’s equations were a triumph.
Their interpretation gave rise to certain puzzles, however. There is a definite speed, c,
present in Maxwell’s equations. What should this speed be measured relative to? It had
been known since Galileo and Newton that the laws of mechanics do not define a definite
frame of reference: two identical mechanical systems moving at a constant speed relative
to one another cannot be distinguished. Not so for Maxwell’s equations: changing to a
different frame moving at a constant speed by the Galilean boost which leaves Newton’s
mechanics invariant does not preserve the Maxwell equations.

One possible resolution to this issue was to postulate the existence of the ‘aether’,
some fluid-like substance through which light moves (and relative to which the speed of
light is ¢). This however gives rise to more questions. If light propagates as waves in
some aether, what are its properties? How does it interact with moving bodies? Is it like
a fluid, flowing around solid objects and dragged along by them when they move? Or
does it flow through matter without interacting with it?

Several experiments were made towards the end of the 19th century to try and answer
these questions. The most well known of these was the Michelson-Morley experiment,
which aimed to measure the speed of the earth relative to the aether. To do this, they
measured the speed of light at various times of day and at different times of the year.

If light does behave like water waves on some background fluid, then one would expect
to see directional and seasonal variation in the speed of light, with it apparently moving
faster in the direction of the ‘aether wind’. No such effect was observed by Michelson and



vi Introduction

Morley. Several people helped resolve this paradox, with particular contributions due to
Fitzgerald, Lorentz and Poincaré, who between them showed that it’s possible to make
a change of coordinates preserving the form of Maxwell’s equations and representing
a shift to a frame in uniform motion, but only if one transforms both time and space
variables simultaneously. In 1905, Einstein was able to derive these transformations from
the relativity postulate (that physics is the same in two frames which are in uniform
relative motion) and the constancy of the speed of light. The resulting theory of space
and time is known as Special Relativity.

Gravity and General Relativity

At the start of the 20th century, the prevailing theory of gravitation was that of Newton.
In this theory, the gravitational field is represented by a function, ®, which solves the
Poisson equation:

A® = 47Gp, (5)

with p(x,t) the density of matter. The gravitational force on a particle of mass m is then
give by:
F=-mVo. (6)

This theory of gravitation successfully describes almost all of the gravitational phenomena
that are observable in our solar system. However, it is not compatible with Einstein’s
theory of Special Relativity. The reason for this is that the field ® exhibits an infinite
speed of propagation: a change in p instantly causes ® to change everywhere in space
simultaneously. Coupling this type of theory to Special Relativity introduces many
paradoxes.

Finding a way to reconcile his theory of Special Relativity with Newton’s theory of
gravity took Einstein 10 years. The crucial observation that permitted him to find a
relativistic theory of gravitation is the principle of equivalence. All bodies in a gravitational
field accelerate at the same rate regardless of their mass. Finstein realised that this
phenomenon could be explained if freely falling bodies follow the geodesics of a curved
geometry with metric g. This postulate replaces the equation (6).

The curved metric g encodes the gravitational field. Einstein’s field equations:

Ricy — %Rg = 87CT—2GT (7)
relate the curvature of the geometry to the density of matter, encoded in T, and are the
replacement for (5).

In this course, we shall study some of the mathematical underpinnings of the theories
of special and general relativity, as they are now understood. We will start off by
studying the linear wave equation. For our purposes, this is a slightly simplified version of
Maxwell’s equations. Through the study of the wave equation, we will be lead to a study
of the Lorentzian geometry of Minkowski space. We will then introduce the concepts of
curvature, which will allow us to formulate Einstein’s equations. We will finally move on
to discuss the solvability of Einstein’s equations.



Chapter 1

The Wave Equation and Special Relativity

1.1 The wave equation from Maxwell’s equations

In this course we are going to take a PDE based approach to relativity. We will begin
with exploring special relativity in the context of the wave equation:

Pu

———— +c*Au=0.

ot2
This provides a convenient proxy for the study of Maxwell’s equations. We could instead
study Maxwell’s equations directly, but since these are a system of PDEs for 6 components
of the electromagnetic field they can be a bit unwieldy.

In fact, Maxwell’s equations are closely related to the wave equation, as our first result

will establish:

Lemma 1.1. Let us denote St := R® x (=T,T). Suppose E,B € C?(St) satisfy
Mazwell’s equations. Then each component of E, B satisfies the wave equation:

— o2 +c AEi =0
o’B;
- 6752 +c ABl =0

NI

in S, where ¢ = (ppep) ™ 2.
Proof. We start with (2) and differentiate in time to find

0’B OE
e Vg =0

Using (4) to replace the term involving E, we have

’B 1

Now, a standard vector calculus identity tells us that V x (V. x A) =V (V-A) - AA
for any C? vector field A. Making use of this, together with (3), we deduce the result. [

1



2 Chapter 1  The Wave Equation and Special Relativity

Exercise(x). Complete the proof by showing that the components of E obey the wave
equation.

Later on in the course we shall be able to show a converse to this result, namely
that we can find a solution of Maxwell’s equations by solving the wave equation for each
component.

At this stage, it’s useful to assume that we are using units in which ¢ = 1. For
example, we can take the second as our unit of time and the light-second as our unit of
length. This is convenient as it saves us carrying around a constant in our formulae. If
you want to replace c it’s always possible to do so by thinking about what units various
quantities ought to carry.

1.2 The Cauchy problem for the wave equation

For the rest of this chapter, we shall be discussing solutions of the wave equation. We
will start by considering the Cauchy problem. In general, the Cauchy problem for a
PDE consists of specifying some data on a given surface and then trying to find a unique
solution of the PDE in a neighbourhood of that surface. We will discuss this much more
thoroughly when we come to the Cauchy-Kovalevskaya theorem. For now, let us consider
what data we might expect to have to specify on the surface ¥o := R3 x {0} in order to
find a unique solution of the wave equation:

d%u

in Sy := R3 x (=T, T). In order to see what data might be necessary to solve this problem,
we can try and write v as a formal' power series in ¢ about ¢ = 0. That is, to try and
find coefficients u,, so that the formal power series:

u(x,t) = Z un(x)%
n=0

solves (1.1). Putting this series into the equation, we find that we can cancel the terms
order by order if:
—Upt2(x) + Auy(x) =0, n=0,1,...

In other words, once we have specified ug(z) = u(x,0) and u;(x) = u(z,0), at least
in principle we can find the rest of the terms in the formal power series by repeated
differentiation. In other words, we expect that the correct Cauchy data for the wave
equation on Xy are the values of u|EO and “t‘zo-

The formal power series argument above, while suggestive, is not terribly useful. For
the solutions we shall ultimately be interested in, the series expansion above will not
converge, so any arguments based on manipulating these series are rather suspect. We
need a better tool before we can understand solutions of the wave equation. In particular,
we require some a priori estimates for the solutions. Recall from the Theory of PDE

Lin this context, ‘formal’ means that we will ignore issues of convergence.



1.2 The Cauchy problem for the wave equation 3

course that an a priori estimate is a an estimate that we can deduce directly from the
equation, without having to write down a solution, i.e. they are estimates that must hold
for all solutions. In the Theory of PDE course, the main a priori estimates we used were
the Maximum Principle for Laplace’s equation and for the heat equation. For the wave
equation no mazimum principle exists, instead we make use of energy estimates.

Theorem 1.1 (Basic energy estimate for the wave equation). Let Sy := R3 x (=T,T)
and ¥; = R3 x {t}. Suppose that u € C*(St) solves (1.1) in St, and that there exists R
such that u(xz,t) =0 for |x| > R. Then if we define

E(t) = ;/E (u + |Vul?) do = ;/R (e, ) + |V, 0)2) d,

we have

dEu]
dt

=0.

Proof. The assumptions on u(x,t) imply that we can restrict the range of the integration
in E to Bogr(0) and that that we can differentiate E(¢) with respect to time and pass the
time derivative under the integral® to obtain

dE|u]
dt

= / (ugue + Vu - Vuy) da
Bar(0)

= / (wpugy — Auuy) do + / wVu-ndo
Bar(0) dB3r(0)

Here we have used the vector calculus identity V - (fVg) = Vf-Vg+ fAg and then
applied the divergence theorem. The first integral vanishes, because the integrand is
proportional to u; — Aw which is zero since u obeys the wave equation. The second
integral vanishes because u = 0 for |x| > R. The result follows. O

Later on, we shall show that the assumption that solutions vanish outside a sufficiently
large ball is in fact a reasonable one, because solutions to the wave equation exhibit finite
speed of propagation. In the context of relativity, this is an analogue of the statement that
no signal may travel faster than the speed of light.

From this result, we can immediately deduce that a solution of the wave equation is
indeed uniquely determined by our proposed Cauchy data, namely uly, and ufy, .

Corollary 1.2. Suppose u,v € C?(St) solve (1.1) in St, and that there exists R such
that u(z,t) = v(x,t) =0 for |x| > R. Suppose further that:

U‘EO = ’U’EO ? ut‘zo = ,Ut‘zo .

Then uw=1v in St.

2Check that you understand why this is true. You may wish to look at the appendix of the notes for
the course MA3G1.



4 Chapter 1  The Wave Equation and Special Relativity

Proof. Consider w = u — v. This solves (1.1) in Sy and is in C?(S7). Moreover,
wly, = wi|s, = 0. Thus E[w](0) = 0. By Theorem 1.1 we have that E[w](t) = 0 for all
—T <t <T. As a consequence, we have |Vw| = |w¢| = 0 on S7, which together with
the fact that w vanishes for large x implies that w = 0 on Sp. O

Our energy estimate has shown that specifying v and u; on a surface of constant
time is enough to ensure the solution to the Cauchy problem, if it exists, is unique. In
fact, the energy estimate gives us a statement of continuity: the L?—norms of u(-,t) and
|Vul| (-, t) are controlled by the initial data. More precisely, we say that two solutions
u,v as in Corollary 1.3 are e—close in the energy norm at time t if:

Elu—](t) <e.
We clearly have

Corollary 1.3. Suppose u,v € C?(St) solve (1.1) in St, and that there exists R such
that u(z,t) = v(z,t) =0 for |z| > R. Suppose further that u and v are initially e—close
in the energy norm. Then they remain e—close for all timest € (=T,T).

We can improve the control over the solution to control higher derivatives:

Exercise 1.1. Let St := R3 x (=T,T) and ¥; = R? x {t}. Fix k € N. Suppose that
u € C?TF(Sr), solves the wave equation (1.1) in Sr, and that there exists R such that
u(z,t) = 0 for |z| > R. Define up := uly, and u1 := wly, .

a) By deriving an equation for V;u for i = 1,2, 3 show that?

1 2 2 12 1 2 2 2
2/Et(|vut| + V2| >d0—2/RS<\Vu1| + | V2uol”) da
for T <t<T.

b) Deduce that:

s (v Yar =3 [ (9] + 9t ) e

for - T'<t<T.

We have thus established that a solution, if it exists, to the Cauchy problem for the
wave equation is unique and moreover that the solution depends continuously (in an
appropriate sense) on the initial data. The final aspect of well posedness that remains to
prove is that a solution does in fact exist. Rather than prove this now, we shall postpone
our discussion to a later date, and just state a well posedness result.

3Here }VQU}Q =2, ViVjuViV;u, etc.
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Theorem 1.4 (Well posedness of the wave equation). Suppose that ug,u; € C°(R3).
Then there exists a unique solution u € C*®°(R3 x R) to the Cauchy problem:

—uy + Au =10 in R3 x R,
u=1up, U=u on R3 x {0}.

Moreover, if supp u; C Bgr(0), fori=1,2, then supp u(-,t) C Bry(0).

Remarks: we have stated the theorem for smooth functions. Finite regularity versions
of this theorem can be stated, however, if we work with spaces of C* functions, then we
have to assume more regularity on the initial data than we are able to recover for the
solution. We say that the C*—norms are not propagated by the wave equation. This is
closely related to the absence of a maximum principle for the wave equation (see Exercise
1.2). The natural function spaces to consider are in fact the H* spaces, whose norms are
propagated by the equations?.

Notice that the support of the function grows at most linearly in time. This is related
to the finite speed of propagation. Finally, we have stated a result which is global in t, i.e.
we do not restrict to a time interval (=77, 7). Obviously our result implies similar results
on St.

Exercise 1.2. Let R3 :=R3\ {0}, Sir :=R3 x (=T, T) and |z| = r. You may assume
the result that if uw = u(r,t) is radial, we have

0% 2 Ju
Au(|z|,t) = Au(r,t) = ﬁ(rat) + ;E(T,t)

a) Suppose u(z,t) = 2v(r,t) for some function v. Show that u solves the wave equation
on R2 x (0,7) if and only if v satisfies the one-dimensional wave equation

L v
ot?2  orz
on (0,00) x (=T,T).
b) Suppose f,g € C%(R). Deduce that

Jr+t) , glr=1

u(zx,t) =

is a solution of the wave equation on S, 7 which vanishes for large |z|.
c¢) Show that if f € C2(R) is an odd function (i.e. f(s) = —f(—s) for all s) then

fr+t)+ fr—1)
2r

u(z,t) =
extends as a C? function which solves the wave equation on S, with

u(0,t) = f'(t).

4You will have met these spaces if you took MA4A2: Advanced PDEs. Otherwise you may ignore
this comment.
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*d) By considering a suitable sequence of functions f, or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup (Ju] + |wi]) < Csup (juf + [u)
0

T

holds for all solutions u € C?(Sr) of the wave equation which vanish for large |z|.

1.3 Minkowski Spacetime

In the Theory of PDE course, we constructed solutions to the Cauchy problem for the
heat equation on R3:
ug=Au  in (0,T) x R3,
{ U = Ug on {0} x R3.

Physically, the function u(¢,-) corresponds to the temperature at time ¢ of an infinite
uniform body whose initial temperature is given by the function ug. In order to write the
heat equation out in full, we pick an orthonormal basis for R3, say {e;}i—123. Such a
choice is called a frame. Once we have chosen a frame, we can define the partial derivatives
in the e; directions. For any function f € C*(R3), we write:

gjﬁ (x) = % (T + se;)

s=0
The Laplacian acting on a function u is then given by

g 0 50 [0F
Af(@) = g](?xié?wj () = g]axi [W} (@)

Here, I am using summation convention, so there is an implicit summation over ¢, j = 1,2, 3.
I have also introduced a new tensor, the Euclidean cometric tensor, whose components

are given by:
iy 1 i=3j
i )
g { 0 i#j

As a result, when we perform the implicit summation, the only terms that survive are
the diagonal ones and we have:

0% f 0’ f 0’ f
Af(x) = —== () + 555 () + === (= 1.2
/(@) E)xlaxl( ) 8x28x2( ) 83038:53( ) (12)
Now, in the physical explanation of what u represents, I made no reference to any
particular frame. The heat equation (1.2), however, makes explicit reference to the
coordinates x* associated to the frame. To reconcile these two facts, we can show that if
we change our orthonormal basis, we must find that the heat equation is unchanged.

Suppose €/ is another basis for R3. We must have that

e, = e;-A]i
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for some real numbers A7;. Now, let us consider how changing basis affects the partial
derivatives of a function f : R® — R. Starting from the definition of the partial derivative,
we have

of _d .
() = flatse)|
d .
=f (z + sejA;) _ (1.3)
= N, if(zz:—i—te’-)
" ds o
- Of
— A9
A L Ol ()

where we have used the chain rule to go from the second to the third line. Since A’ j don’t
depend on x we can differentiate again and we find

0% f
0zi0xI

0% f

(x) = AkiAle(m)

We see then that the heat equation has the same form with respect to the basis {e}} as it
did for the basis {e;} if and only if

AR gl AL = gM (1.4)

Thinking of Aij and ¢¥ as the components of two matrices, this is equivalent to the
matrix equation:

AT =1,

which we recognise as the condition that A € O(3), i.e. A is orthogonal. In other words,
the heat equation takes the same form with respect to any orthonormal frame for R®. This
reflects a physical symmetry of the underlying problem: the invariance under rotations
and reflections of a uniform body filling all of space.

We could in fact have taken the form of the heat equation to define the orthonormal
frames. In this approach, we would say that a basis for R? is orthonormal if and only if
the heat equation takes the form

Oy = (@) 4 2O @)+ O @)

—(x) = ——— () + === () + =—5=—=(=

ot Oxtox! 0x20x2 0x30x3

with respect to this basis. In principle, we could hope to make physical measurements to

determine the form of the heat equation, so this connects a mathematical construction
(an orthonormal frame) to the physics of heat propagation.

The wave equation and the Lorentz group

Now we come to the equation we are actually interested in, the wave equation. The
aim is, in a similar way to our brief discussion above, to look at the symmetries of the
wave equation. The first thing we do is to drop the distinction between time and space.
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Trivially, we can consider a point (¢,2) € R x R? as belonging to R*, which we wish to
think of as the space-time manifold (what this means will become clearer as the course
progresses). We introduce a basis for spacetime:

1 0 0 0
o 0 o — 1 & — 0 z 0
D - 0 ) ]. - O ) 2 - 1 M 3 - O
0 0 0 1
Defining 2 := ¢, we can write any point in R* as
X =) = zte),
where we take the convention that greek indices p, v, etc. are summed over 0,...,3. In

order to write the wave equation concisely, we introduce a (0, 2)—tensor with components
N called the metric tensor, given by:

-1 p=v=20
N = 1 p=v=12 or3, (1.5)
0 W # v

Notice that {€,} is an orthonormal basis for 7. The metric tensor has an inverse, a
(2,0)—tensor with components n¥ satisfying

77“07]01/ =o0",.

Here 6*, is the usual Kronecker delta, defined by

sh— 1 w=v
v 0 u#v.

We can then write the wave equation very concisely as

9%u
—uy + Au =" ———— =
t+ n OxHoxY
We’ll sometimes use the notation
0%u
Ou =M ———
Ly

in the same way that A is used for the Laplacian. The operator [ is known as the
d’Alembertian or wave operator.

Definition 1. We define the Minkowski spacetime, E13, to be R* equipped with the
metic tensor € T5(R).
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1.3.1 Lorentz transformations

As we did for the heat equation above, it is instructive to consider what happens when
we choose another basis (or frame) for R%. Suppose that {€,'} is a new basis for R%. We
of course have

€y =&,/N,,
for a set of real numbers A”,,. The same calculation as (1.3) shows that for any f which
is differentiable in a neighbourhood of X € E!3 we have

of of

%(X) = A”M&EW (X).
This means that the numbers of
(X
it X
transform like a (0, 1)—tensor under a change of basis. It’s convenient to write this as
of
Vil = G

so that the wave equation can be written
VIV, u ="V, V,u =V n''Vyu =V, Vi = 0.

It is standard to suppress the argument to keep the notation clean, but it can be replaced
if necessary.
Since the AY,, are constant, we see that the form of the wave equation is preserved if

nuu — A,uo_noTAz/T
Thinking of A#, and 7, as matrices, we can write this condition as:
Ap~IAT =57t (1.6)

Definition 2. 1. A basis with respect to which 1 takes the form (1.5) is called an
inertial frame. Equivalently, an inertial frame is one for which the wave equation
takes the form

__Pu
020020

9%
02012

9%u
Ozxlozx!

(X) + (X) + (X) +
2. A matrix A satisfying (1.6) is said to be a Lorentz transformation, and represents
a transformation between inertial frames. The set of all Lorentz transformations

0O(1,3) forms a group under matrix multiplication, called the Lorentz group.

The connection between an inertial frame and the wave equation allows us, in principle,
to determine whether a frame is inertial or not by making physical measurements of some
quantity obeying the wave equation.
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Lemma 1.2. The following conditions are equivalent to (1.6):
A—l — n_lATT].

and
ATpA =1,

Proof. Multiplying (1.6) on the right by 1, we have
A IAT =7t —= A (nilATT]) =1 < Al =ytATy.

since A is a square matrix. For the second condition, multiply the first on the right by A
and on the left by 7 to see

At =nIATy —= p=ngp ATHA = ATyA.
O]

Since the three conditions are equivalent, we can take any of them to define the
Lorentz group.

Example 1. The Lorentz group contains the orthogonal group O(3) as a subgroup. To
see this, consider the set of matrices of the form

I O1x4
A =
< O4x1  R3xs >
where R3x3 € O(3). It is straightforward to verify that A € O(1,3).

The Lorentz group is a Lie group®. We can think of the Lorentz group as a Lie
subgroup of GL(4) (since by Lemma 1.2 Lorentz transformations are invertible).

Theorem 1.5. The Lorentz group is a Lie subgroup of GL(4), and its Lie algebra, denoted
by 0(1,3) is the set of matrices ¢ satisfying

T =0
Proof. Consider the map f : GL(4) — Sym(4 x 4) given by

f(A) = Ap~tAT,

1 1

Clearly O(1,3) is the preimage of ™, so it will be enough to show that " is a regular

point of the map f. To see this, we calculate

df| 4 = (A~ A" + An~ ' (dA)"

— (dA)A Iy [(da) AT

®Don’t worry if you’ve not met these before. All it means is that in addition to having a group
structure, O(1,3) can be made into a manifold, in such a way that the group operations are continuous.
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for A€ f~1(n~!). To show that the derivative map is surjective, we must show that for
any point A € f~1(n~!) and any symmetric matrix S € Sym(4 x 4) we can find a matrix
B such that

BA Y 4y [BAT] =5

For this, we can simply take B = %SnA. Thus ! is a regular point of f, and we deduce
that O(1,3) is a closed subgroup of GL(4) and hence is a Lie subgroup. To complete the
proof, we recall that the Lie algebra of a matrix Lie group is simply the tangent space
at the identity, i.e. 0(1,3) = T7O(1,3). From the regular value theorem we know that
T70(1,3) = Ker df|;, which corresponds precisely to those matrices ¢ satisfying

T =0

O

The group O(1, 3) has four connected components. The connected component contain-
ing the identity is a subgroup of O(1,3) called the proper orthochronous Lorentz group
and is denoted SO™(1,3). There are two important Lorentz transformations which do
not belong to SOT(1,3). These have matrices:

-1 0 0 O 1 0 0 O
0 1 00 0 -1 0 O
r= 0 01 0 | F= 0 0 -1 0
0 0 01 0 0 0 -1

Using T, P we can write O(1,3) as the disjoint union of connected cosets:
0(1,3) = SO*(1,3)UT (SO*(1,3)) UP (SO™(1,3)) UPT (SO™(1,3)) .

We'’ve thus reduced the problem of understanding O(1,3) to the problem of under-
standing SO (1,3). Any element of SO (1,3) may be written as

for some ¢ € 0(1,3), where the exponential here is the matrix exponential.

Example 2. We can take

O O = O
o O O
o O O O
o O O O

Check that these satisfy (1.6)
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We check that

010 0 100 0 100 0 010 0
x| 1000 0 100 0 10 0 1000
b+t 0000 o o107l 0 010 0000
000 0 0 00 1 0 00 1 000 0
0 10 0 0 -1 0 0
[ roo0 ) [0 00| _,
=1 0o 00 o0 0o 0 00|
0 00 0 0 0 00

Clearly if ¢ € 0(1,3), then so is —sf. The matrix exponential of —s/ is straightforward to
calculate using the fact that

1 0 0 O
02— 01 0 O
o 0 0 0 O
0 0 0O
and £3 = ¢. We find
v o ( ngn 2n+1 o0
€ _Z =1- Ez:: 2n +1)!

n=0
=] — ¢sinhs + £*(coshs — 1)

coshs —sinhs 0 0

_ —sinhs coshs 0 O
- 0 0 10
0 0 01

This transformation is called a boost in the z direction of rapidity s.

Let us see how the boost of rapidity s changes our coordinates. Recall that our
transformation relates the old basis to the new basis by

e, =&,/N,,
Suppose we have a point X € R* with coordinates z* relative to the old basis and z/*

relative to the new basis. We have:

—

X =ate, = z'A 6/ = 2Ve),
so that
"V = At
Thus we have:
2 = 2%cosh s — 2! sinh s,
' = —2%sinh s + 2! cosh s,
$I2 — 1127

B _ 2

8]
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We can take this to mean that the frame defined by €,/ is moving at a speed v = tanh s
along the positive z-direction, relative to the frame defined by €),. Notice that |v| < 1.
Thus two inertial frames related by a boost of this kind cannot have a relative speed
faster than the speed of light.

Classifying vectors

The metric n allows us to define an inner product for vectors in Minkowski space. We
define

7 (X' 37) = Y .
By construction, this is invariant under a Lorentz transformation to a new frame.

Exercise 1.3. Show that if A”, is the matrix of a Lorentz transformation and
JL‘/V — Al/ulﬂu7 ylu — Al/“y,u.

then
x/uylunm[ — xuy“nuw

In particular, for any vector X in Minkowski space, we have an invariant quantity
i (X: , X ) which is the same no matter which inertial frame we calculate it in. Unlike a

traditional inner product, this quantity does not need to be positive. We classify non-zero
vectors according to the sign.

Definition 3. A non-zero vector X € E'3 is
i) Timelike if 7 ()Z',X) <0,
i) Null, or lightlike if 7 (X’)?) —0,

iii) Spacelike if 7 ()?, X') > 0.

A vector is causal if it is timelike or null.

We say that a Cl—curve v : (a,b) — E!3 is timelike/null/spacelike/causal if its
tangent vector §(s) is timelike/null/spacelike/causal for every s € (a,b).

You should think of a future directed timelike vector as representing the instantaneous
velocity of a particle travelling at less than the speed of light, while a future directed null
vector represents the instantaneous velocity of a particle travelling at the speed of light.
A timelike curve should be thought of as an allowable trajectory for a massive particle.

Since a Lorentz transformation does not change the quantity 7 ()_f , X ), we see that if

a vector is timelike/null/spacelike with respect to one frame it is timelike/null /spacelike
with respect to every frame. Similarly, the condition of being past/future directed is

independent of frame. In Figure 1.1 we show the surfaces 7 (X , X ) = +1, 0, which consist

of vectors of constant Minkowski norm.
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Figure 1.1 The surfaces n X, X ) =1 (one sheeted hyperboloid) n (X X ) = —1 (two sheeted

hyperboloid) and 7 (X, X) =0 (cone)

Exercise 1.4. Using P, T and the transformations of Examples 1, 2 or otherwise:

a)

Suppose that X € E'3 is a unit timelike vector, i.e. n ()2 , X ) = —1. Show that there

exists an inertial frame {€},},—o,. 3, such that writing X = x#e,, we have
z#* =(1,0,0,0).

Deduce that if X is timelike and Y # 0 satisfies 7 ()2 ) 17) =0, then Y is spacelike.

Suppose that X € E'3 is a null vector, i.e. n (X, X) = 0. Show that there exists an

inertial frame {€},},—o,. 3 such that writing X = xte,, we have
z* = )\(1,1,0,0).

for some A > 0. Deduce that if X is null and Y # 0 satisfies n ()_f ) ?) = 0, then either
Y is either spacelike or parallel to X.

Suppose that X € EN3 is a unit spacelike vector, i.e. n <X, X) = 1. Show that there
exists an inertial frame {€,},—o,.. 3 compatible with the time orientation such that

writing X = x*e,, we have
" =1(0,1,0,0).

Deduce that if X is spacelike and Y # 0 satisfies n <X , ?) =0, then Y can be timelike,

null or spacelike.

It is also useful to classify some surfaces’ according to their causal properties. We

define

“for us a surface has three dimensions
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Definition 4. We say that a surface ¥ C E!3 is
i.) Timelike if at every point in ¥ there is a timelike tangent vector.

ii.) Null if at every point in ¥ there is a null tangent vector, but no timelike tangent
vector.

iii.) Spacelike if every vector tangent to X is spacelike.

We have the following useful result, which can be proven by choosing a suitable
orthonormal basis.

Lemma 1.3. i) If ¥ is timelike, then locally there exists a spacelike vector field which
is normal to the tangent plane (with respect to n).

ii.) If X is spacelike, then locally there exists a timelike vector field which is normal to
the tangent plane (with respect to n).

1.3.2 Causal geometry

We can define a relation between timelike vectors 1:1, fg by:
Ty~Ty <= (T, Th) <O0. (1.7)

Exercise 1.5. Show that the relation ~ between timelike vectors defined in (1.7) is an
equivalence relation. [Hint: the final part of Exercise 1.4 a) may be useful]

Definition 5. A time orientation for the Minkowski spacetime is an equivalence class of
timelike vectors [T].. We say that a causal vector, X, is future directed if n(X,T) < 0 and
past directed if n(X,T) > 0 for any T € [T].. We say that an inertial frame {€u}pu=0,..3
is compatible with the time orientation T if &, is future directed.

Suppose an inertial frame {€,},—o,.. 3 is compatible with the time orientation f, and
that {€,'},=o,...3 is related to {€,},=0,.. 3 by a Lorentz transformation A. We say that A
preserves the time orientation if {é’u’}uzo’“_,g is compatible with the time orientation. We
define the orthochronous Lorentz group, OT(1,3), to be the subgroup of O(1, 3) consisting
of all of the Lorentz transformations which preserve the time orientation.

Lemma 1.4. We can decompose the orthochronous Lorentz group as:
07 (1,3) = SO (1,3) UP(SO™(1,3)).

Proof. We first show that transformations in SO (1, 3) preserve time orientation. Suppose
for contradiction that {€,,'},=o,. 3 is not compatible with the time orientation [T]., so
that n(éy’,T) > 0 and that the bases are related by

- A W
€, = e,/ N,

with A € SO™(1,3). This implies that there exists a continuous map I': [0, 1] — O(1,3)
with I'(0) = I,T'(1) = A. Consider the map f : [0,1] — R given by

7(s) = (&/T70(s),T) .
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. () ) JHU)

U U

- DHU) N
U

Figure 1.3 The future Cauchy development of a set U

We have that f is continuous, f(0) < 0 and f(1) > 0, so there exists sy € [0, 1] such
that f(so) = 0. Since I' € SO™ (1, 3), we know that &,'T"(sg) is a unit timelike vector,
however any non-zero vector orthogonal to the timelike vector T must be spacelike, which
gives a contradiction.

Finally, we observe that P preserves the time orientation and T does not. Together
with the decomposition of O(1,3), we obtain the result. O

Obviously, we can define a future directed timelike/causal curve by requiring that the
tangent vector is future directed timelike/causal at all points on the curve. This allows
us to talk about the future and past of a subset U C EM3. We will define three important
sets:

Definition 6. 1. The chronological future of U C E}3, denoted I (U), is the set of all
points p € EV3 which can be reached from U by a future directed timelike curve.

2. The causal future of U C EL3, denoted J+(U), is the set of all points p € E? which
can be reached from U by a future directed causal curve.

3. The future Cauchy development, or domain of dependence of U, denoted Dt (U) is the
set of all points p € E3 such that every past inextensible timelike curve through p
intersects U.

1.4 Lorentz geometry and the wave equation

1.4.1 Doppler shifts

One simple calculation we can do with the machinery that we’ve built up in the last
section allows us to explain the phenomenon of the Doppler shift. We know this best from
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the field of acoustics: the engine of a speeding car sounds higher pitched as it approaches
us than it does as it drives away. The Doppler shift also occurs for light waves. Light
coming from an object moving towards us is ‘blue-shifted’, meaning the frequency of
the electromagnetic radiation increases. Light coming from an object moving away is
‘red-shifted’. This fact is behind the dreaded radar guns used to enforce speed limits.
To see how the geometrical picture we’ve built up can help us understand this
phenomenon, let us fix an inertial frame {€,},—o,...3 and consider the following function®

ug EM® — C
X - eir](X,k):em“ku

where k is a constant vector. We have that

VNUE = Zk:#ul;

so that

Oup = —kukfug.
If we choose k to be a null vector, so that k,k* = 0, then uy is a solution of the wave
equation. These are the plane wave solutions. In this frame, writing z* = (¢, ), we see

—ikOt+ik-
up =e ikYt+ik-x

so that solution in this frame is seen to be a wave with frequency k° propagating in the
direction n = %

Now, since our solution is written in a manifestly Lorentz invariant form, we know
that ug is given by the same expression, regardless of which inertial frame we choose.
As a result, if we instead choose an inertial frame {é'#’}uzo7.,,’3, then we would view the
solution as a wave with frequency k"0 propagating in the direction n’' = % Suppose that

the frames are related by the boost transformation of Example 2. Then we have that

k9 = kY cosh s — k' sinh s,
k' = —kYsinh s + k' cosh s,
k/? — k‘2,

L3 — 12

Thus we see that viewed in the two different frames, the frequency and the wavenumber in
the z! direction differ. We can simplify the situation by assuming that k? = k3 = 0 and
k' = k°, so that our boost is in the direction of propagation. Then we have k2 = k'3 = 0
and

k,/O — k,/l — k,Oe—S.

81f you prefer to work with real solutions of the wave equation, we are always free to take the real
part.
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Recalling that the rapidity s corresponds to a relative velocity between the two frames of
v = tanh s, we deduce that the frequency in the frame {€,'},—o,. 3 is given in terms of
the frequency in the frame {€},},—o,.. 3 by

k,O:kO 1—v
\/ 1+wv

Thus, if v > 0, an observer at rest in the primed frame will measure a lower frequency
relative to an observer at rest in the unprimed frame. This is because the observer in
the primed frame is moving in the positive 2°—direction relative to an observer in the
unprimed frame, so sees a red shifted wave.

1.4.2 The energy-momentum tensor

Our motivation for introducing the Lorentz group was to understand symmetries of the
wave equation. We found that the wave equation looks the same in any inertial frame.
A very deep principle of theoretical physics says that symmetries give rise to conserved
quantities. In the case of the wave equation, this fact is demonstrated by the existence of
a tensor, the energy-momentum tensor, which has some very useful properties.

Definition 7. Suppose U C E!3 is open. Given ¢ € C%(U), we define a symmetric
(0,2)—tensor, the energy momentum tensor with components given by

1
Tuu[w] = V,ﬂpvﬂyb - §UMVVJ¢VUT/%
Theorem 1.6. The energy momentum tensor has the following properties:

1. We have a formula for the divergence:
VT[] = (O¢Y) Vo

2. Fiz an inertial frame {€,},—o,...3. The 00—component of T is the local energy density
1
Toolt] = 5 | (Vou)” + Vo

3. Fiz an inertial frame {€,},—0,...3. If V= V#e, is any future directed unit timelike
vector, then:

VO [(Vou)? + V] 2 VI Tolu] 2 g [(Vou)? + V0]

Proof. 1. We calculate
1
VMT“V[QM = vu <V“¢Vﬂ/f - 25”VVJ¢V”¢>

= (V") Vb + VAV, — 2V, (Vi VH9)
= (Vuv’%) Vo + VWJVMVVTZJ - (vuv;ﬂ/}) Vi
= (Dd]) V.
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2. Again, a straightforward calculation gives us:

Toolt] = VouVot + 5 (~VorVow + VapV'y)

= & [(Vow? +1wu?]

3. Since V is timelike, future directed, and unit, we have V° > 0 and
(V02— V[P =1.

We calculate, similarly to the previous part:

. 0 .
VAT oly] = Vo (VOVaw + VIVib) + o (Vo Vot + Vit Vi),

Now, we use the Cauchy-Schwarz inequality and Young’s inequality (or the AM-GM
inequality) to deduce

14

[VouV Viu| < [Voul [V] V%] < 2 [(Tou)” + VP

We therefore have

VO |V
2

Ve-|v|

((Vow)? + 196P) = VPTolw] = =—

((Vov)” + vl
Now, since (V)2 — |[V|* =1, we have VO — |V| = (VO + |V|)~! and 2V° > |V| + VO,
which completes the proof.

O]

Remark: Property 2. is sometimes known as the weak energy condition and property
3. as the dominant energy condition.
A useful Corollary is the following

Corollary 1.7. Suppose that ¢ € C%(U) solves the wave equation in U, and let V be a
C' wector field® on U. Defining the vector field:

Vg = VYT e,

we have

Vi (V1) = VI T ]

where

" = ViV

is the deformation tensor of V. VJ is called the energy current associated to the vector

field V.

9This means that with respect to a basis for E'*® we may write V = V*e,, where V* € C'(U).
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Proof. We can calculate, using part 1. of Theorem 1.6:

Vi (TI) = Vi (V'TF) = (V)T 4+ V29, (1)
= VLV T 4 V(R V0
=V VT = VI, T,
O

This corollary is particularly useful when the deformation tensor vanishes for V. These
vector fields are especially important:

Definition 8. A Killing vector is a vector field such that
VI = 0.

Killing vectors are closely related to symmetries of the spacetime. To explore a bit
more fully the Killing vectors, let us pick an orthonormal basis {€,} for E1® and use it
to identify each point X € E13 with its components z* with respect to this basis. First,
let us note that the constant vector field

-'BO = éba
is a Killing field: in fact we have that V,V,, = 0 for all p,v. Similarly for the constant

vector fields

—

P = é;.

Now, suppose we have a matrix ¢ € o(1,3), which can be written in components as ¢*,.
Then we can define a vector field on E!3 by:

V= a"0,E,.
I claim this is a Killing field. To see this, first note that (V;)* = zV#4, so that

VM(W)Z/ = 77,}0[0#

hence

VeH = ; (Mol + Mpat’y)
[ ?+ (nl) ]
=[n

(E?] + n 1€T) 77] v =0.

In fact, one can show that any Killing field of the Minkowski spacetime is a linear
combination of fields of the form 15“ and V,. All of these vector fields are useful, but for
us, the most useful will be the vector field ]30, which is everywhere timelike. It owes its
existence to the time translation symmetry of the Minkowski spacetime. We will make
use of this vector field to prove the final result of this section:
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Z/

b

Figure 1.4 The geometry of Theorem 1.8

Theorem 1.8 (Finite speed of propagation). Suppose that U C EY3 is a open, bounded,
set such that the boundary OU consists of two smooth compact components X, ¥/ which
are both spacelike, and such that X' lies in J*(X) (see Figure 1.4). Then if 1 € C*(U)
solves the wave equation in U we have the estimate

[ (9o 4190 ax < ¢ [/ (0w +19u) do

for a constant C which depends only on the domain U. In particular if 1, 0y3p vanish on
3, then ¢ vanishes throughout U.

Proof. Pick an inertial frame {€},} for the wave equation, and choose coordinates X = xte,.
Consider the vector field

— _.0_,
V=e"e¢

We calculate

. e w=v=0,
VMV,,—{ 0

otherwise.

We want to consider the current V.J. We have
Vi (VI 1]) = e Tho
We will apply Corollary B.2 (the divergence theorem) to V7. We find
/Uvﬂ (V'f“[w]) dz = /EVJ“[w]tha—//vJ“[w]tuda

where £ is the future directed unit normal'®, and do is the (positive) surface measure.

Inserting our expressions for V, (VJ S [1/1]> and V' .J we have:

/ e Tythdo = / e Tyuthdo + / e Tyoda (1.8)
by > U

Now, since X, ¥/ are smooth and compact and U is bounded, we have that there exists a
constant ¢ > 1 such that

0<ct<supt? sup|z?| < e < .
DB U

Dpotice that the signs here are different from what one might expect.
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As a result, we have that
—z0 n c 2 2
/e Touttdo < ce / ((Vm/}) + |V )da
b b

e*C

0
e ¥ Ty, ttdo >
/E’ On - 4C

/Z/ ((VOW + |V¢\2) do >0

and

/ e ToodX > e ° / ((vm/;)? + \VW) dzdt
U U
Putting these estimates together with (1.8), we have the result. t

Corollary 1.9. Suppose that u € C*®(E!?) solves the wave equation, and that

(supp uljo_g) U (supp Voul,o_y) C Br(0)

Then
(supp ulo_p) | (supp Voul,o_q) € Bryr)(0).

This justifies some of the assumptions made in §1.2, where we considered solutions of
0

the wave equation vanishing for large || at any fixed time z”.
Exercise 2.1. Let U C E'3 be open. Define an antisymmetric (0, 2)—tensor field, F' on
U with components!!

0 —-FE, —-Ey —Ej
E1 0 B3 —B2
Ey —Bs 0 By
Es By —-B; 0

[Fw] =

Where E;, B; € C1(U). Show that the vacuum Maxwell equations for E, B (with units
such that ¢? = eopp = 1) hold in U if and only if F satisfies the equations

VuFh, =0, VF =0,
where for any (0,3)—tensor A,,, we define:

1
A[,uzla] = 6 (Auua + AI/O’;,L + Aauu - Al/ua - Auau - Aauu) .

Exercise 2.2. Suppose that F'is as in Exercise 2.1. Fix an inertial frame {€),}. Define
g 1 oT
Tw|F) = FueF,° — ZTIHVFO—TF .

Show that T has the following properties

1The convention is that the first index specifies the row, and the second index the column.
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a) We have a formula for the divergence:

3
V,.T",[F] = (V,F's) F,° + 3 (Vo) F'°

b) The 00—component of T is the local energy density

TwlF] = 5 (1B +|B?]

c) If V is any future directed unit timelike vector, then:

1
VO [|BP +1BP| 2 V' T0lF] = 15 [1BI + |BP]

Hence, or otherwise, deduce that the electromagnetic field exhibits finite speed of propa-

gation.



Chapter 2

Lorentzian geometry

2.1 The metric and causal geometry

In the previous chapter, we studied Minkowski space, motivated by the wave equation.
In that chapter, the metric 7 (or equivalently, the matrix of coefficients of the wave
equation) was constant. We could pick a basis {€},} of constant vectors (i.e. vectors whose
components are independent of ) such that 7, took constant values on EL3. In this
chapter we shall allow the metric to vary from place to place. The correct setting in
which to do that is the differentiable manifold.

Manifolds

I’ll start by recapping the geometric tools that we shall rely on. We start with an
n—dimensional C*—manifold, M, where k > 3 can be an integer if the manifold has finite
regularity, k = oo if the manifold is smooth or k£ = w if the manifold is analytic. From
the differentiable structure we can define the tangent bundle T'M and the cotangent
bundle 7% M, and the bundle of (p, g)—tensors, TP, M. We also define the space X, (M)
of C"—sections of the tangent bundle for r < k (i.e. C"—smooth vector fields) and the
space X} (M) of C"—sections of the co-tangent bundle (i.e. C"—smooth one-forms). You
will need to be familiar with these objects. For a brief introduction to these concepts, see
§A.3 or else the MA3H5 Manifolds course.

Definition 9. Let M be an orientable, n—dimensional C*—manifold and let r < k. A
C"—pseudo-Riemannian metric on M is a C"—smooth (0, 2)—tensor field g, such that
for each p € M, ¢ p 1s a symmetric, non-degenerate, billinear form on T, M. We say that
M equipped with g is a pseudo-Riemannian manifold. The tensor g is called the metric
tensor.

1) If g|, has signature (+...+) we say that M equipped with g is a Riemannian
manifold.

2.) If g|p has signature (— + ...+) we say that M equipped with g is a Lorentzian
manifold.

A spacetime is a four dimensional Lorentzian manifold.

24
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To unpack this definition a little, suppose that we have a local basis of vector fields
{eu}i=1,...,n defined on some open set U. In other words, we have e, € X;_;(U), such
that {e,[,} span T, M for every p € U. There is a natural basis of one-form fields dual
to {eu}i=1,...n, which we write as {e};—1, . n, and is defined by

e’len] = 0%,
With respect to this basis, we write
g = guue‘u ® ey.

Where for each p, v we have g, € C"(M;R). The condition that g is symmetric implies
that g, = guu, and the non-degeneracy condition implies that the n x n matrix with
components g,,, is invertible. The components of the inverse of this matrix, g, which
satisfy:

o

gul/gﬂg =0,°.
give the components of a symmetric (2,0)—tensor, called the co-metic:

gt = g"e, @ ey.

The metric at each point p gives us a bilinear form on 7, M, where we have:
g(X,Y) = guye“(X)e”(Y) = gMVX‘uYU
For any X,Y € T, M Similarly, the cometric gives a bilinear form on 7,; M, where:

9 w,n) = g™ wleu)n(en) = g wuny.

We can use the metric and co-metric to identify 7, M and T; M. Suppose X € T,M,
we define the co-vector X by:

X'[Y]=g(X,Y), ¥V YeT,M
similarly, if w € Ty M, we define the vector Wt by:
nw =g (w,n), VY neTzM

We can check that in a local basis, we have X = XHgue” and wh = wuge,. In this
case, we usually write g, X* = X, and w,¢g"” = w”. In a similar way, we can identify all
of the spaces of (p, g)—tensors with the same value of p + ¢. Indices are ‘raised” with g"”
and ‘lowered’ with g,,,,.

Now, to define the signature we use the fact that a non-degenerate bilinear form can
be diagonalised. In other words, at each point we can find a basis {e,} such that

-1 p=v<r
g/“’:g(euvez/): 1 p=v=r
0 p# v
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for some r € {1,...,n}. The number r, which tells us how many positive and how many
negative signs appear is independent of the point p at which we diagonalise the metric.

For a Riemannian manifold, the metric is positive definite, each point p € M the
tangent space T),M can be identified with Euclidean space. For a spacetime, at each
point p € M the tangent space T, M can be identified with E!3. A Lorentzian manifold
‘locally looks like Minkowski space’, whereas a Riemannian manifold ‘locally looks like
Euclidean space’.

2.1.1 Examples of pseudo-Riemannian manifolds

We will go through a few examples that will prove useful later in the course.

Example 3. The simplest Riemannian manifold is a n—dimensional real vector space
V' equipped with a positive definite inner product (,). A real, finite dimensional vector
space is naturally a real analytic manifold, which can be covered by a single coordinate
chart as follows. Set & = V. Pick an orthonormal basis {e;};—1, . for V with respect to
the inner product and define:

p U = R
T (xz)izl,...,n

where x = z'e;.
An element v of T,V can be identified with an element of V' in a natural way. Pick a
curve v : (—e,e) = V with v(0) = x, ¥(0) = v. We know from the definition of v that

. d .
vti= —'(y(t
¢ (1) »
are independent of the choice of representative curve, where ' is the projection of ¢ onto
the i*" component, which is a smooth map from V to R. We identify the tangent vector
v € T,V with the vector v = v'e; € V. This identification is independent of the choice of
basis, so in a natural way we have identified T,V ~ V. Under this identification, we have

0
ozt

~ €;.
This identification allows us to define a non-degenerate, symmetric (0, 2)—tensor field
from the inner product (,). Recall that a (0,2)—tensor at a point x is an element of

TV @ T3V, or equivalently a bilinear form defined on T,V. We define

g(”? w) = <’U, w>

where v, w € T,V are identified with v, w.
With respect to the basis {0;}, we have

o 0
g ((%ﬂ" 8xﬂ) = (€;, ej) = 0;j.
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In order to write g concisely, we can use the dual basis to {9;} is denoted {dx'}, where

We also introduce the symmetric product of two one-forms, which is an element of
(T)%V, ie. a (0,2)—tensor defined by

1
wiwz 1= 5 (w1 @ wa + wp ®w)

for wi,wy € T;V. This acts on a pair of vectors vy, vy € T,V as:

1

wiwe(v1,v9) = 3 [w (v1)wa(v2) + wa(vr)wi(v2)]

With this notation, the metric g can be written:
g= 5ijdxid:rj
Example 4. A more interesting example of a Riemannian manifold is the unit n—sphere:
S"={X eR" (X ,X)=1}

with (,) the canonical inner product on R™*!. The unit n—sphere is naturally a real
analytic Riemannian manifold (in fact it inherits these properties from R"*!). To cover the
sphere, we require two coordinate charts. We'll pick an orthonormal basis {FE,}a=1,..n+1
for R"*! and we define

Uy = S"\{+E 11}

On each patch, we use stereographic projection to map to R”, which we endow with the
orthonormal basis {e;}.

©+ Ur — R”
XE, — 71$)}n+1 X'e;, =: x4
We can invert the transformation by noting that X*X; 4+ (X"™1)2 = 1 and

| |2 Xin&ij 1— (Xn+1)2 14 xntl
€T = = =
T A F X g xer)? 1F X

Thus ' )
22" 1— |z
1+ " 1+ |z n 21)

From here we conclude:

propr’ ¢ R*\{0} — R"\{0}

j[®

so that the transition functions are indeed real analytic, and S™ is a real analytic manifold.
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The tangent space Tx S™ can be identified in a natural way with the set:
TxS" ~{V eR" :(V,X)=0}.

To see this, consider a tangent vector V' € Tx S™ and choose a curve v : (¢,e) — S™ with
7(0) = X, 4(0) = V. Thinking of ~y as a curve in R"*! we can identify its initial tangent
vector with V' € R"*! as in the previous example. We know that the map f: R*T! = R
which takes X to | X|? is smooth, and constant on S”. By applying the vector 4(0) to
this map we deduce that

0=50)f]1= 5 (v(®):~(1) i
=2(7(0),%(0)) = (V, X).

This identification of the tangent space of S™ (an abstract manifold construction) with a
plane in R™*! allows us to visualise the two local bases:

0
(95(}2: i=1...n

that are defined via the coordinate charts. Recall that the vector 0; at a point X is defined
to be the tangent vector to the i** coordinate axis passing through X. Accordingly, we
can find the bases by differentiating the expression (2.1). We obtain:

0 2 j 4 n dx;
P =\ T T T 2 I N2
Ox’y X=p7'(x) 1+ ]ac\ (1 + ‘.’1’,"2) (1 + ‘(B’2>

=[QF X6 - X, X E; £ (1 F X" X, B

En+1

We see that 831' span T'x S™ for all X € Us.
i

The identification of Tx S™ with a subspace of R"*! gives us a natural way to define
a metric on S™ using the inner product of R"*!:
g(v,w) = (V, W)

where v, w € Tx S™ are identified with V., W € R"*!. We calculate

o 0
g (8% M) — [(1 T X"k — XiX’“} (1 F X165 — XX ]
+

+ (1 ¥ Xn+1>2XiXi
= (1 F Xn+1)252‘j — 2Xin(1 F Xn+1) + XinXka
+ (1F X" )2 X
= (1 + Xn+1)25z‘j
46,5

2
(1+ |z
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We thus have the result that in each stereographic coordinate patch, the standard metric
on the unit sphere is given by

485 o
g=——""2—daldal.

(1+ 2P)

Example 5. Let’s return to the example of R**! equipped with an inner product and
an orthonormal basis {E,}q=1,.n+1. Suppose we have a point P € R" \ {0}. We can
uniquely write P = r X, where r > 0 is a real number and X € S™. In this way we can
identify R™ \ {0} ~ (0,00) x S™.

We use this observation to cover R™ \ {0} with two coordinate patches:

Uy =R \{£rE,+1:7 >0}
and define the maps

©+ Us — (0,00)X]Rn

PaEa — <’P| y Wﬁ]’”&) .

In other words, ¢+ maps the point rX to (r, @), where x4 is the stereographic projection
of the point X € S™. The inverse map is given by

. 2" 1— |z
i (rx)=r E; ¥ 5Eni1 (2.2)

1+\a:]2 1+ ||

As before, we can identify the tangent vectors with vectors in R"*1. A simple calculation

shows that 3 p
—~ X = —
or |P|

and

~r{[QF X" - X, X/ Ej £+ (1 F X" X;Epir}

ont.
o 0 o 0

g( o d ) gy
i a0 | 2
07 00k ) (14 [asf?)

so that in each patch we have

We can calculate

A8 o
g=dr’ +r’———dal.da’;
(14 1esF)
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which is the metric on R™*1\ {0} written in spherical polar coordinates, with stereographic
coordinates on the sphere. We have shown that R"*1\ {0} is equivalent, as a Riemannian
manifold, to (0,00) x S™ endowed with the metric

g =dr?+r2ggn.

Often the fact that this describes R®*! with the origin removed is elided, and one will
talk of the metric on R”*! written in polar coordinates.

Example 6. Take M = R?* with coordinates (2%, z%) = (2#),—¢, 3. As previously, this
gives us a global basis of vector fields 0, := %. We can endow R* with a Lorentzian
metric by:

g = ndr’ds” = —(dz°)* + (dz')? + (d2?)? + (dz®)?

This is of course the Minkowski spacetime. It is clearly Lorentzian, if we take the basis
ey = Oy, we have
g(em 61/) = Nuv-

Example 7. We take M =R x (0,00) x S2. This can be given the structure of a real
analytic manifold covered by the coordinate patches

Us =R x (0,00) x U

where Z/lf2 are the stereographic coordinate patches on S? previously defined. The
coordinate charts are given by

ot Ur — R x(0,00) x R?
(t7T7X) = (t,r,mi).

with the notation as in Example 4. We endow M with the metric

2 2 46 gpdzdda

g=- <1 - m) 2 + 2\/> R tdr + dr? 4 2 ABTECTS
T 'S 2
(1+|5Ui| )

where A, B = 2,3. More concisely, we write

2 2
g=— <1 — m> A2 + 24/ “dtdr + dr? + r2ggs.
T T

This is a Lorentzian metric, as we can see by exhibiting the following local bases:

0 2m 0
0=~V 7 ar
0
61—5
ej:1+’$i’2i

2r 8xﬁ'
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A short calculation shows that

g(el:i:7 e:yi:) = Nuv,

so that in a neighbourhood of every point in M we can find a local basis with respect to
which the metric is diagonal with entries (— + ++).

This metric is the Painlevé-Gullstrand form of the Schwarzschild spacetime. It
represents a spacetime containing a black hole region (we shall see what this means
shortly).

2.1.2 Causal geometry for Lorentzian manifolds

We will now update some definitions from the previous Chapter. For the most part,
things go through in a very straightforward fashion.

Definition 10. A non-zero vector X € T, M is
i) Timelike if g (X, X) <0,

ii) Null, or lightlike if g (X, X) =0,

iii) Spacelike if g (X, X) > 0.

The definitions of timelike /null /spacelike curves and surfaces generalise from the Minkowski
case in the obvious fashion.

We have to adapt a little the definition of a time orientation in the manifold case.

Definition 11. The manifold M is time orientable if there exists a smooth, nowhere
vanishing timelike vector field. For a time orientable manifold, a choice of time orientation
is a choice of equivalence class of nowhere vanishing timelike vector fields under the
equivalence relation

W ~T, <<= g(T1,T2) <0 on M.

With a time orientation [T]., we can define what it means for a vector X € T, M to
be future directed. We say that X is future directed if g(X,T)|, < 0 for any T € [T]~.

For a time oriented manifold we can define the notion chronological and causal
future/past and domain of dependence as for the case of Minkowski spacetime.

Example 8. Let us consider the Painlevé-Gullstrand form of the Schwarzschild spacetime,
as in Example 7 above. The surface

¥ = {t} x (0,00) x S?

is everywhere spacelike: local bases for the vectors tangent to 3; are given by {eli, eét, e3i},
which are all spacelike.
The spacetime is time orientable: the vector field

0 2m 0

60:&_ r or
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is defined everywhere and timelike, we pick the time orientation defined by [eg]~. In fact,
eg is the future directed unit normal to >;.
Consider now a future directed causal curve 7 : (—e¢,€) - M. We can write

v(s) = (t(s),7(s), X (s)) € R x (0,00) x S?

and the tangent vector is given by:

y(s) = i(s)% + f(s)% + X (s)

where we understand X (s) € Tx(s)S 2. We can calculate:

g(¥(s),e0) = —t(s) <0
by the fact that « is future directed. Now consider

30603 (6)) = = (1= 20 Y6 4 2| 5 6)00) + 76 + 20 (X9, X ().

Now, in order that v is causal, we must have g(j(s),7¥(s)) < 0. Suppose now that
r(s) < 2m for some s. Then the only way that we can have g(§(s),¥(s)) < 0isif 7(s) < 0.
Thus no future directed causal curve can escape from the region r < 2m. This region is
known as a black hole region of the spacetime. We have shown that

JT ({0} x (0,2m] x S?) C [0,00) x (0,2m] x S*

In fact, it is fairly straightforward to show that the reverse inclusion holds and that the
two sets are equal.

Exercise 2.3. Consider the infinite cylinder R x S! and take as coordinates (z,) where
0~ 04 2m.
a) Show that when M is equipped with the Lorentzian metric
g = —dz?* + do?,
it is time-orientable.

b) Now consider the metric
g = — cos 0dx? + 2sin Odxdh + cos HdH>
i) Show that the vector fields defined for 6 € [0, 27) by
0 . . 0
Xy = cos Qci)x — sin 589, X1 =sin 5313 + cos 589.
satisfy
g(X(]aXO):_la g(XO,Xl) :Oa g(XlaXl): 1.

Deduce that g is a Lorentzian metric.

ii) Let us denote the point x = 0,6 = 0 by p. Suppose that there exists a nowhere
vanishing timelike field 7', and without loss of generality assume that g(Xo,7')]|, <
0. Show that if v : [0,1) — R X [0,27) is any smooth curve with v(0) = p then
g()(o,T)‘,y < 0.

iii) By considering the curve vy : s +— (0, 27s), deduce that M is not time orientable.
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2.2 Affine Connections

We are going to require a means to differentiate vectors (and other tensors). This is a
subtle point, and is not completely straightforward. Suppose 7 : (—¢,¢) — M is a curve
and f € C1(M) is a differentiable function, and we wish to differentiate f along . We

define
F(0)[f] = lim F0(h) = F(3(0))

h—0 h

Now suppose that we have a vector field X € X;(M). We might try and define the
derivative of X along v by:

. p o Xlym — X

7(0)

9

however, there is a problem with this. The two vectors whose difference we want to form
do not belong to the same vector space: one belongs to T,3) M and the other to T, ) M.
We need to decide how to identify the tangent spaces along v before we can define a
quotient such as this. The tool to do this is provided by an ‘affine connection’.

Definition 12. Suppose M is a C* manifold. A C"—affine connection V, where r < k—2,
is a map from X, (M) x X,41(M) — X, (M) satistying:

i) For every constant A € R, X; € X,(M), Y; € X,11(M) we have
Vx, (Y1 +AY2) = Vx, Y1 + AV, Y,

and
leJr)\XQ}/l = VX1Y1 -+ )\VX2Y2.

i) If f € C"(M;R), X € X,(M), Y € X,41(M), then

VixY = fVxY

i) If f € C"H(M;R), X € X,(M), Y € X,y1(M), then

Vx (fY) = X[f]Y + fVxY

We call VxY the covariant derivative of Y in the direction X. Suppose we are given
a basis, {e,} for X;_1(U), where Y C M is open. Then we have the following result

Lemma 2.1. i) An C"—affine connection V is determined on U by its components
with respect to the basis {e,}, written I'*,; € C"(U;R) which are defined by

Ve, €0 =T 0e,
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i) If {e},} is a new basis for Xj_1(U), related to the old one by:
ep=AN e, A, e CFHUR)

then the components of V with respect to the old basis are related to those with respect
to the new basis by

7, = ATVA"MF'”TU(Afl)p,.i + AT el [A",)] (A1)r,
where (A=) AR, = 6P,

Proof. i) Suppose X € X,(M), Y € X,11(M). In U we can uniquely write X = X*e,
and Y = Yte, for X* € C"(U;R), Y* € C"(U;R). Then in U

VxY =Vxve, (Y%,)
= X"V, (Y%,)
=X",(Y%)es + XYV, €5
= [X"e, (YF) + XVYTH ;] e,

which uniquely determines VxY'.

ii) We calculate

Ve, €y = Var,e (A”He;)
= AT A Ve e, +ATel [N, ] e,
= (AT A7 I g + AT el [A",]) €
(AT AT (AP ATy [A%,] (A)P0) 6,

where in the last line we use the fact that e, = (A71)?e,.

O]

Notice that the second part of the Lemma justifies our restriction r < k — 2, since
this is the best regularity for the functions I".. that is consistent with the regularity of
the underlying manifold. It is also important to note that the components I'*,, do not
transform as the components of some (1,2)—tensor field on the manifold.

A connection allows us to transport a vector along a curve. In order to do this, we
require the following result:

Lemma 2.2. Let 7 : [0,1] = M be a C?—curve with v(0) = p, ¥(1) = q. Suppose that
V is a C"—affine connection, with r > 1. Given X,, € T, M, there is a unique vector field
X defined along v such that

VX =0, Xl|_o = Xp. (2.3)

We say that X is the parallel transport of X, along .
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Proof. Let us suppose that v([0,1]) C U, for some open set U on which we can pick a
basis {e,} for X;_1(U). If this is not the case, we can split v into a finite number of
curves for which this is true. If we write X = X*e, and X, = X}'e,, then the condition
(2.3) becomes
0= HOIX"] + X4V,
= XP(t) + XV (t)37T s,
together with the initial condition X*(0) = X,'(0). This is a linear ODE for the coefficients
XH(t) with coefficients in C'!, hence a unique solution exists for ¢ € [0, 1]. O

Definition 13. A geodesic or auto-parallel curve with respect to the connection V is a
C?—curve v : (a,b) — M satisfying

Vi (t) = At)7(t)
for some A : (a,b) — R. By a change of parameterisation it is possible to arrange that

A =0, in this case, the parameterisation is called an affine parameterisation.

In a local coordinate chart, for an affinely parameterised geodesic we can write
@ ox(t) = (z(t)) € R", so that 4(t) = i#%;. Inserting this into the expression for a

oxk*
parallel transported geodesic, we find that the functions z#(t) satisfy:
4+ 2¥z°T,, = 0. (2.4)

where ', are the components of the connection with respect to the coordinate induced
basis. From basic ODE theory (Picard-Lindel6f theorem), we have:

Lemma 2.3. Suppose M is a C*—manifold, where k > 2. Suppose M is equipped with a
C%—affine connection V. Given p € M, X,, € TyM, there exists an € > 0 and an affinely
parameterised geodesic curve vy : (—e, €) — M such that

Moreover, v is unique up to extension: If v : (—€',€') — M is another such affinely

parameterised geodesic where (without loss of generality) € > €, then v/ (t) = ~(t) for
t € (—e¢,e).

Note: we only have local existence in ¢ because the ODE is not linear (the I'*,,
depend on z(t) implicitly).

Exercise 2.4. Consider M = R3, with a choice of orthonormal basis {e;} with respect
to the Euclidean metric g;; = d;;. Define a smooth connection on vectors by

T k
( )Veiej =TE€E €L

where €;;, is totally anti-symmetric with €103 =1 and 7 € R is a constant. Consider the
curve v : (—1,1) — R3 given by 7(t) = tes. Show that the vector fields

X, = e cos(tz?®) — ey sin(rz?)
X, = e sin(rz?) + ey cos(rz?)

X3 = €3
are all parallely transported by (M'V along .
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An important property of an affine connection is the torsion. This is an anti-symmetric
C"—regular (1,2)—tensor field defined by

T(X,Y)=VxY —VyX —[X,Y]

where we recall that the commutator of two vector fields is a vector field which acts on
functions as:

[(X,Y](f) = X(YVf) =Y (X ).
If T(X,Y) vanishes, we say that the affine connection V is symmetric.
Exercise 2.5. a) Suppose that f € C1(M;R), show that
T(fX,Y) = fT(X,Y), T(X,Y)=-T(Y,X).
Deduce that if {e,} is locally a basis with X = X*e,, Y = Y*e, then:
T(X,Y) =T°,,X Y"e,
for some C"—functions T, := €? [T'(ey, e,)].
b) Show that for the connection defined in Exercise 2.4, the torsion is given by:
Tijk = 2T6ijk.

Given a connection V, we can define a connection on one-forms. Given X € X, (M)
and w € X5 (M), we define Vxw by requiring:

(Vxw) [Y] =X (w[Y]) —w[VxY]. (2.5)
for any Y € Xp_1(M).
Exercise 2.6. Show that if f € C*~1(M), then (2.5) implies
(Vxw) [fY] = f(Vxw)[Y]
for any Y € X;_1(M). Deduce that Vxw € X*(M).

We can locally express the covariant derivative of a one-form using the same component
functions I'*,, as we used to express the covariant derivative of a vector:

Lemma 2.4. Suppose that {e,} is a basis for Xy_1(U), where U C M ‘is open, and that
{e"} is a dual basis. Then in U we have:

Ve, el = —TH, e

where I'"y,, are defined by
Ve, €0 =T qeu.
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Proof. Consider

(Ve,e") [er] = ey (e"[er]) — e [Ve, €]
=€y (5#7_) — et [FHVTCH]
=0—-T",,¢"[es]
= _Iwm'

Since a one-form is completely determined by it’s action on a basis of vector fields, this
suffices to show the result. O

Finally, we can extend the connection to act on arbitrary tensor fields by requiring
that the Leibniz rule applies to tensor products. For example:

Vx (Y ow)=(VxY)®w+Y ® (Vxw),
with obvious generalisations to arbitrary tensor products of vector fields and one-forms.

Lemma 2.5. Suppose S is a C™! reqular (p, q) tensor field, which is written with respect
to a local basis e, € Xp_1(U) of vector fields as

S = Sﬂl"..upul...uqep,l ® tee ® ep,p ® 61/1 ® e ® eyq (26)

Where SHt-tvy, . € C™ L (U;R). Then VxS is a C regular (p,q) tensor field, with
components given in the local basis by:

yeun _ o
(VXS)'ul upl/l-..l/q = X%, [Sﬂl upyl,..,uq]
+ XOF'LHJTSTHQ’“.Npuh...Vq + ...+ XUI‘N]‘UTS!H~~~7#j717'ﬂj+1~-~#pyl7m
oT oTT
- X r ovy S,U«LUQ HpT...Vq T e T X r UVjS'ul “pyl...uj,lTVjJrl...Vq -

. YO Jeee
=: X7V SHbr

q

We define VS to be the (p,q + 1)—tensor field with components Vo Sty g

Proof. We simply apply the definition of the covariant derivative to (2.6) and then express
the right hand side in terms of the basis vectors. O

2.2.1 The Levi-Civita connection

There are many connections on a given manifold. We want to single out a single connection,
and it turns out that this is possible when we require the connection to be compatible
with our metric and symmetric.

Theorem 2.1 (Fundamental theorem of (pseudo-)Riemannian geometry). Suppose M
is a C**t1—regular pseudo-Riemannian manifold which carries a C*—regular metric g,
where k > 1. Then there exists a unique symmetric C*~1—affine connection, V, such that
Vg = 0. This connection is known as the Levi-Civita connection.

ve o
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Proof. We prove the statement by an explicit construction. Suppose that X,Y,Z €
X, (M). First note that the symmetry of the connection implies

VxY - VyX =[X,Y] (2.7)
Suppose that we have a symmetric connection satisfying Vxg = 0, then we have

X[g(Y,2)] = Vx (g(Y, X))
=(Vxg)(X,Y)+9(VxY,Z) +g(Y,VxZ)

=g(VxY,2)+9g(Y,VxZ) (2.8)

similarly
Y[9(Z2,X)]=9(VyZ,X)+g(Z,VyX) (2.9)
Z[g(X,Y)] =g(VzX,Y) +g(X,VzY) (2.10)

Taking (2.8)+(2.9)—(2.10), and using (2.7) we have:

Xg(YV, 2)+Y [9(Z2, X)] = Z[9(X,Y)] =29 (VxY, Z) — g (X, Y], Z)
—|—g([Y,Z],X) —g([Z,X] 7Y)

so that, after re-arranging we have

29(VxY,2) = X [g(Y, 2)| + Y [9(Z, X)] = Z[9(X, Y] (2.11)
+9(X,Y],2)+9(2, Y], X) +¢([2,X],Y)

We can calculate the right hand side explicitly in terms of g, X, Y, without needing to
know V. Since Z is arbitrary, this uniquely determines VxY by the non-degeneracy of g.
Thus if the connection exists, it is unique.

On the other hand, we can use (2.11) to define a connection. It is straightforward to
check that if we do this, that the connection is symmetric and Vg = 0. O

Exercise 2.7. Consider the connection defined in Exercise 2.4. Show that if we define a
Riemannian metric on R? by g(v,w) = v-w = v'w/§;;, then the connection (MV satisfies

2lg(y.2)] =g (VVay.2) +9 (v, VVaz).

Deduce that OV is the Levi-Civita connection of g.

Suppose that we have a local basis of vector fields {e,}. We know that for each p, v,
the commutator [e,, e, ] is a vector field, so it can be written in terms of the basis vector
fields:

lews ev] = C7 eq,
where €7, € C*~1(M;R) are uniquely determined. Now, let us consider (2.11) applied
to the vector fields X =e,,Y =e,,Z = e,, and recall that g,, := g(e,,e,). We find:

QFT/Ll/gTO' = 6/1(91/0’) + 61/(.90';1,) - 60’(9#,1/)
+ CT;U/QTJ + CTngTV + CTanTu



2.2  Affine Connections 39

so that multiplying by ¢?* (the co-metric) we deduce:

1
= 597" [eu (gvo) + 61/(90#) - ea(QW) + Copv + Cuop + Cuow

2

This expression simplifies in two useful cases:

1. If {e,} is a local coordinate basis, so that e, = 89%” then we have C*,, = 0 and:

ko 1 oK 891/0 8gau B ag;w
D = 27 <8:L““ + oxrv  Ox° (2.12)

2. If {e,} is an orthonormal basis, so that g,, is a set of constants equal to &1 or 0.
In this case e,(gvs) = 0 and we have

1
I = 59“ (Copv + Coop + Chow)

Example 9. Recall the Schwarzschild metric in Painlevé-Gullstrand coordinates (Example
7) is a Lorentzian metric on M = R x (0,00) x S? given by:

2 /2
g=— (1 — m> dt® +2 M dtdr +dr? +rlgge.
r r

Recall also that we have an orthonormal basis for this matrix given locally by:

0 2m 0
=5V 7o
0
61—5
eA:}bAa
T

where {bs}a—23 is a local orthonormal basis for S? (the unit round sphere), such that
[ba,bg] = C¥ 4pbEg for some functions C¥ 45 € C*(S?;R). We calculate:

o= L [0
U= o\ or’

1 /2m
= =
[eo, €] 3\ 04
[ ] b
e, e = ——
1,€A T2 A,

1
lea,eB] = ﬁQEABbE.
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From here, we deduce that:

1 2m
Clor=—-Clip=——4/—,
2r r
1 /2m
Chp = —Cy = =1/ —dB,
T T
1
CAp=—-Cp = —;5’43,
1
CF p=—-CFpa= ;QEAB-

and all other components of C*,, vanish. Since {e,} is an orthonormal basis, we can
raise and lower indices as in the Minkowski case: we change sign when raising or lowering
a 0 index, but not otherwise. We calculate (for example):

1
I'yo == (Cho— C%1 + Chy)

2
_1 [
Vo

Similar calculations lead us to conclude that the non-vanishing components of I' with
respect to the basis {e,} are:

1 2 1 2 1 /2
Myp=— ﬂ, oy, =_— ﬁ, Mgy =—= ﬂ5A37

2ry r 2rv r ry r

1 1 /2m 1
g = =645, Mg =——4/—6aB, I up = ~das,

T T T T

1
%5 = ;LCAB7

where I'C 45 are the connection coefficients of the Levi-Civita connection of the unit
metric on S? with respect to the basis {b4}.

We can use these coefficients to directly give the action of the Levi-Civita connection
of g on the basis {e,}:

1 /2m 1 /2m

Veoeo =0, Veleo = % 7617 VeAeo = —; 76147
1 /2m 1
veoel = 0, Velel = Z T@O, VeAel = ;GA, (213)

and
1 /2m 1 1
Veea =0, Veea=0, Veep=—bap (T\/Teo + T‘fl) + -I4pec.

Exercise(x). Repeat for yourself the calculations of the previous example.
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Definition 14. A geodesic of the metric g, is a geodesic of the Levi-Civita connection of
g, i.e. a curve 7 : (—¢,€) = M satisfying

Vi ¥(t) = A@)7(t)

For a suitable choice of parameterisation, the function A(t) may be chosen to vanish, in
which case we talk of an affinely parameterised geodesic.

The geodesic equations can also be derived from a variational principle. In Riemannian
geometry this is especially useful as geodesics can be shown to locally minimise the distance
between two points. For Lorentzian geometries, the geodesics typically extremise the

length, but do not necessarily minimise it.

Exercise(x) (If you have studied Lagrangian mechanics). Suppose we work in a coordinate
chart &/ C M in which the metric takes the form:

g = gudxtdz”.
Show that the affinely parameterised geodesic equations
t + vz TH . =0,

where

Fnuy — 1 oK <ag7/0 4 890# _ ag.“«”)

59 OxH ox? o0x°

can be derived from the Lagrangian:

1
L= 39t

Exercise 3.1. Suppose that S is a (1,1)—tensor and R is a (0,2)—tensor, both at least
C!'—regular, which with respect to a local basis {e,} may be written:

S==5e,®e", R=R, e’ ®e.
Suppose V is the Levi-Civita connection.
i) With the notation of Lemma 2.5, show that:

Vﬂ (SMURO'T) = (VNSMV) RO‘T + S'uu (VKRUT) .
ii) how also that
Vidts =0, vﬁg,uz/ =0, Viegh.

Conclude that V, thought of as a map from (p,q)—tensors to (p,q + 1)—tensors
commutes with contractions and raising and lowering of indices.



42 Chapter 2  Lorentzian geometry

2.2.2 The wave equation

Suppose that M is a C*—manifold with a C*~!—regular Riemannian or Lorentzian metric
g, which has an associated C*~2—regular Levi-Civita connection V. Given f € C*(M;R),
and X,Y € Xj_1(M) we define:

Hy(X,Y) = X(Yf) — (VxY) f.
Lemma 2.6. H; is a symmetric, C¥=2—regular (0,2)—tensor.
Proof. To show that Hy is symmetric, we calculate:

Hp(X,Y)-H; YV, X)= XY [f)-Y(XS) - [(VxY) = (VyX)] f
= [X,Y]f = [(VxY) = (VyX)] f
— T(X,Y)f =0.

To show that Hy is a tensor, we need to show that for any g € C*=Y(M) we have:
Hy(9X,Y) = gHp(X,Y) = Hy(X, gY).
By the symmetry we can just show the first equality, which follows from
Hy(9X,Y) = (¢X)[Y f] = (9VxY)f = gH(X,Y).
The regularity of H; follows from the assumptions on the connection and on f. O

The tensor Hy is called the Hessian of f and is sometimes written VV f, so that if
{e,} is a local basis, we write:

V.Vuf =Hs(ey en).
Note carefully that in general
VuVuf #Ve, Ve, [ = eulenf).
Exercise 3.2. In a local coordinate basis, {eu = %}, show that we can write

P oo of
OxHoxY W oge |7

Hi(X,Y) = XFY"” <

Deduce that for a local coordinate basis

2, af

OxHoz” " dxo

Definition 15. Suppose f € C*(M;R).

V.V f =

i) If g is Lorentzian, we define the wave operator [, acting on f, written Oyf €
C*=2(M;R) is defined to be the trace of Hy with respect to the metric g. With
respect to a local coordinate basis {0/0x*}, this is given by:

Ogf :==g""V, NV, f =VIV,f.
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ii) If g is Riemannian, we define the Laplace operator Ay acting on f, written A,f €
C*k=2(M;R) to be the trace of Hy with respect to the metric g. With respect to a
local coordinate basis {0/dz'}, this is given by:

Agf = gIViVif =V'Vif.
In a local coordinate basis, we have

P upe Of

Oyf = g™ S s (2.14)
with a similar expression for the Laplace operator:
0% f e Of
Bal =9 i — 9T i gk (2.15)

When g is Lorentzian, we recognise [, as a hyperbolic differential operator. In the
case where g is Riemannian, the operator A, is rather an elliptic differential operator.

It’s often useful to have a more concrete expression for this operator. We can find
one by recalling that the Levi-Civita connection has components that are given in a local
coordinate basis by (2.12):

e — 1 oK <agua + 9o _ ag;w)
pr =

27 oz oxV 0x°
Contracting with the co-metric, we have:

gMVI\H, L, = go’K/ 891/0' J 7 1 oK 89“11 uv
a OxH 2 ox°

Now, recall the following facts regarding differentiating matrices:
dA~! dA
t)y=—-A"1—1) A (1).
(1) — (A7)
d aA

77 det A(t) = [det A(t)] Tr < yr (t)A_l(t)> .

We recognise that we can write

. ) q" o
g" Fﬁuu = —@glm - |g| @v |g|

where we have defined |g| := |det(gu)|. Returning to (2.14), we deduce that in local

coordinates: ) 3 of
O,f = ——— w29
i = e (V" )

A similar expression of course holds in the case that g is Riemannian:

_ 19 5 0f
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An alternative way to define the Hessian and wave/Laplace operator is instead to
recall that given a function f € C"(M;R), there is a natural one-form df € X}_;(M)
defined by:

df(X) = X f,

for any X € X(M). With respect to a local basis:

df = (epf)e" = (Vuf)et.

Since we have a metric g we can associate df with a vector field, sometimes called grad, f,
which acts on h € C'(M;R) by:

lgrad, f](h) = g~ (df, dh).
In a local basis:
grad, f = ¢g""(df )ve, = g""(ev fep

To define the wave/Laplace operator, we introduce the divergence of a vector field as
follows. If V € X, (M), then the divergence of V, written div,V € C"~1(M;R) is given
by:

divyV =€t [V, V] =V, V"

Clearly, we have
Oy f = divy (gradgf) .

Exercise 3.3. For V € X, (M), the divergence of V, written div,V € C""1(M;R) is
defined with respect to a local basis by:

divyV =V, VH =€t (V%V) )

Show that with respect to a local coordinate basis we have:

(Vi)

1 0
divyV = ——=—
\/E Ozt
Deduce the expression for the wave/Laplace operator with respect to local coordinates,
using:

g f = divy (gradgf) .

We can in fact generalise the definition of the wave/Laplace operator to arbitrary
tensors. For example, if S is a C?—regular (1,1)—tensor, we can define (in a local basis):

0,8 = (V,VHS" e, @e.

Example 10. Consider the sphere S2, with the stereographic coordinate charts (UT, ¢.)
that we previously defined. Recall that the metric on each patch is given by:

gg2 = 925ijdazid:zj.
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Where
2

1+ |z

As a matrix, the components g;; are

[9¢j]292<(1) (1)>

9] =92< (1) (1] >

so that 1/|g|g” = §“. As a consequence, we have

Agf=Q2Apaf

so that |g| = Q* and

where
0% f

oxtizl

ARQ f — (5”

is the standard Laplacian on R2.
Consider the following integral:

1= /Im|<RfAs2f\/@dw= /

| <

fA]R2 f dx.
R

Now, we can use the standard divergence theorem on R? to deduce

af / - Of Of
I= / Lo - 50 2L 2L gy
\w\:Rfay le|<r Oz Ozl

I claim that if f is a smooth function on S2, then the first term vanishes as R — 0o, and

we can conclude: of of
/sz s2f Q%dx /RQ(S D D dx

We immediately conclude that a harmonic function on S? (i.e. a function f € C?(S%R)
satisfying Ag2 f = 0) must necessarily be constant.

To check the vanishing of the boundary term, by considering the transition function
between the two stereographic patches, it’s simple to check that if f is a smooth function
on S2 which is given in one stereographic patch by f(a), then the function f(z) = f (i>

[

should be smooth at the origin. Consider

of 64 z|* — 2z%27 Of [ x
™) = T 50 \[a
|| x|
Setting y = ﬁ, and noting that g jz (x) is bounded as & — 0, we conclude that for large
ly|, we have
of C
- < —
‘W (y)‘ ~ |y

from which the result easily follows.
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Exercise 3.4. Consider the sphere S? = {x € R? : |x| = 1}, and set

U=\ {(-V1-12,0,t): t € [-1,1]},

i.e. the sphere with a line of longitude from north to south pole removed. We define a
coordinate chart (U, ), where ¢ is defined in terms of its inverse by:

el (0,7) x (=7, ) — u
sin @ cos ¢
(0, 9) — sin 6 sin ¢

cos 6

a) Show that with the standard identification of tangent vectors in S? with vectors in R?
that we have

9 cos 6 cos ¢ P —sinfsin ¢
2 ~ep:= | cosblsing |, % ~ ey = sin @ cos ¢
) sin 6 ¢lo-10.0) 0

b) Show that

(0. €0lp-1(0.0) = 1.
<697 €¢>’@71(0’¢) = 07
<e¢, e¢>’@,1(07¢) = sin2 0.

where (,) is the standard inner product on R3.

¢) Deduce that in the 6, ¢ coordinates:
gg2 = df? + sin® 0d¢>.

d) Show that in these coordinates:

1 0 (. Of 1 0%*f
Ay f=—2 (g2t} L 9/
92/ = Gnp a0 <Sm989> T 5?0947

e) Suppose f is a smooth function on S2. Show that:

T s ) B s T af 2 1 8f 2 .
Ny A

Example 11. A more interesting example is furnished by the Painlevé-Gullstrand form
of the Schwarzschild Black Hole. Recall that in a coordinate patch we have

g=— (1 - ;”) At + 2/ = dtdr + dr? + 17075 do’ da
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with ) as above. Writing the components of the metric as a matrix, we have

[gul/] =

4

so that |g| = r*Q*, and

We find

o | [ s
ot? r Otor

O,f = —

_( _Qﬂ) 2m 0

T T

2m 1 0 0
0 0 92 0
0 0 0 Q2
-1 2m 0 0
VE -z 0 o
0 0 02 0
0 0 0 Q2

18 /zmaf 18 af\ 1

(2.16)

In the same way that studying the wave equation in Minkowski space helped us to
understand the causal properties (such as signal propagation) for that spacetime, solutions
of the Oyu = 0 are of great interest in studying the spacetime (M, g). We will give a
taste of results in this direction, but the study of wave equations on Lorentzian manifolds
is a large field of study with many fascinating recent advances.

Theorem 2.2. Let (M, g) be the Painlevé-Gullstrand form of the Schwarzschild spacetime,
as in Exzample 7 above. Suppose that f € C?(M;R) vanishes for sufficiently large v at

every fixed time t. Define:

1
Ef[ﬂ o 5 /(2m,<>o)><R2

where

Then we have

dt

dEy 2/ of?
4m <
+ Rz Ot

202 drdx

(8 () ) e

__ 4 Li
Q 9aA

Vaf =

Ode = — / fﬁ r?Q2drdz.
(2m,00) xIR2

r=2m

Proof. We multiply the expression (2.16) by:

Of 242
8tQ
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and integrate over (2m,00) x R? with the measure drdz. The first term gives

2 2
/ L{a—fﬁ(ﬂdrdx = dl/ <<9f> r?Q2drdx
(2m,00) x R2 ot? ot dt 2 (2m,00) xR2 ot

The second term we integrate by parts in r to give:

om O2F Of 4 o (., [2maf\ of .,
_ SISO 20 4 — 9 (2, [2mOT) O g2y
/Qm,oo)sz - otoror LT =T /Qm,m)xm o \" Ve ) o e

2
+ 4m? g{ O%dx
]RQ

r=2m

where we use the fact that f vanishes for sufficiently large r. This term will cancel with
the other mixed derivative term, leaving only the boundary term. Next consider the term
involving two radial derivatives. We have

19 (4 Of\ 0f 242
_ 29 (12— 2mn ) Y2044
/(Zm,oo)XR2 r2 Or ([T mr] 87“> 8tr rax

0*f of
_ 2 _ 2
= /(2m,oo)xR2 [r® — 2mr] Stor arQ drdzx

2
= dl/ [1 - Zm] <8f) r2 Q% drdx
dt 2 (2m,00) X R2 T or

Where we use the fact that f vanishes for sufficiently large r, and that the factor r? — 2mr
vanishes at r = 2m to discard boundary terms. Finally, we use the result

o 2 _ 7] J J
/2 fAg fQ dx—/25 i—jdx.

to integrate the last term by parts in  and we’re done. O

Corollary 2.3. Suppose ui,us € C*(M) are two solutions of the wave equation on the
Schwarzschild spacetime, vanishing for sufficiently large v at each fized t, such that:

0
Ty =

ot

up = ug, guz, on {0} x (2m, o0) x S?

ot
Then uy = ug in the region R = [0,00) x (2m,00) x S2.

Proof. We apply Theorem 2.2 to u; — ug. We immediately conclude that E,, _,,[t] is
monotone decreasing and positive, however, it is initially zero thus Ey, _y,[t] = 0 for ¢ > 0.
We conclude that uq; — ug = 0 in the region R. O

In fact, this result follows from a more abstract result that says that a solution of the
wave equation on a Lorentzian manifold is determined in D+ (X) by its Cauchy data on X.
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Proposition 1. Let (M, g) be a smooth, orientable, time orientable, Lorentzian manifold.
Suppose that U C M is a open set with compact closure, whose boundary consists of two
smooth compact components: 3, X!, which are both spacelike and such that U C DT ().
Suppose that ¢ € C?(U) solves the equation:

Hgtp =0 (2.17)

m U. Then if
w‘z =0, NEWZ =0,
Where Ny, is the future unit normal of X, we have that ¥ =0 in U.

The proof of this result will mirror (and extend) the proof of Theorem 1.8, the
analogous result for Minkowski space, and will require us to reintroduce some machinery
from the Minkowski proof, now adapted to the manifold case.

Definition 16. Suppose U C M is open. Given 1 € C?(U), we define a symmetric
(0,2)—tensor, the energy momentum tensor by

TR = db @ di — ¢ vl g

or, with respect to a local basis {e,}:
716] = ((en)(et) = g0 (crt)lent)s”™ ) o e 219
= <VWVW - ;ngngw) e ®e” (2.19)

Exercise 3.5. In the case that (M, g) is the Minkowski spacetime and that {e,} is
an inertial frame, show that (2.18) agrees with the previous defninition of the energy
momentum tensor.

Theorem 2.4. The energy momentum tensor has the following properties:

1. We have a formula for the divergence:
divgT[Y] ==V, TF,[le” = (Og) dip

2. Suppose V € T,M is a unit timelike vector. Then at p, we have T[}](V,V) > 0, with
equality iff dyp vanishes at p. If {e,} is any basis for T, M, there exists a constant
C > 0 depending on 'V and {e,} such that:

S @) STWIW, V) < €Y (o).

3. If W € TyM is an unit timelike vector, then:

1

WTWJ](V» V) STV, W) < [g(V, W) T[Y](V, V).
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Proof. 1. We work in a local basis. We have:

1
VHTMV = V# (V”¢Vu¢ - 25Muvowvaw>

= 0y V¢ + VFV Vi p — V, V9 V71
= Dnglﬂ/)

3. The proofs of the weak and dominant energy conditions follow directly from the same
proofs in the Minkowski case: We pick an orthonormal basis for T, M in which V = €,
and then follow the same calculations as before. Since we work only in the tangent
space at a point, all of the same calculations are valid.

O]

We shall require a version of the divergence theorem for a Lorentzian manifold:

Lemma 2.7. Suppose M is a smooth orientable, time orientable, (n + 1)—dimensional
Lorentzian manifold. Suppose that V € X1(M) is a vector field and that U C M is an
open set with compact closure, whose boundary X = OU consists piecewise of smooth
embedded submanifolds and can be written as ¥ = X5 U Xy where ¥4 is spacelike and ¥y is
timelike. Then we have

o(V,N)do — / 9(V, N)do,

/ div,VdX =
u pI"

s

where vector N is the unit outwards normal (with respect to g). The volume measure dX
and surface measure do are positive, and on each coordinate chart are equivalent to the
(n + 1)—dimensional (resp. n—dimensional) Lebesgue measure.

The final result that we shall require is a statement about the causal structure of
DT (%) for a spacelike X:

Lemma 2.8. Suppose M is a smooth orientable, time orientable, (n + 1)—dimensional
Lorentzian manifold. Suppose ¥ C M is a smooth embedded n—dimensional spacelike
submanifold, with DV (X) non-empty. Then there exists a function t € C*°(D*(X);R),
such that:

i) ¥ ={t=0}.
ii) The level sets of t are spacelike, equivalently grad,t is everywhere causal.

iii) t increases along any future directed causal curve, equivalently —grad,t is fulure
directed.

Such a t is called a time function for D*(X). The proof that such a function exists is
quite subtle and is beyond the scope of the course. It is fairly straightforward to produce
a C%—function which is increasing on any future directed causal curve, and whose level
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sets are achronal (i.e. no two points on a single level set can be connected by a timelike
curve). Showing that this C°—result can be improved to higher regularity is not trivial.!
We now have the pieces we require to prove the proposition.

Proof of Proposition 1. 1. Consider the vector field given in a local basis {e,} by:
VI = TV e,
If 4 solves the wave equation, we have
divy (VI[¥]) = T[] T

where the deformation tensor is given in a local basis by:
1
VII:=V,V,) = 5 (VaVo + Vi Vi) e’ @ e

2. By the assumptions of the proposition together with Lemma 2.8, we have on DT (X)
a smooth time function ¢, and a vector X which is everywhere timelike. We define

V =e MX.

We apply the divergence theorem to V.J[¢)] on the region U to find:

/divg (VJ[¢])dX=/g(V(J[¢],N) da—/ g (Y(JW],N)do
u b pY

where N is the future directed unit normal vector.

3. We calculate:
VH”V —_ _)\e—)\tX(ny)t + XHHVG_/\t

so that locally we have:

divy (VI[W]) = =AML, 0] XHVE + TH [N 11,

4. By the fact that —V"t is future directed and timelike, we have that —T),,[¢]|X*V"t
is positive, and controls all derivatives of ¥ at each point by part 3 of Theorem
2.4. For sufficiently large A, making use of the fact that ¢ has compact closure, we
conclude that

divy (VJ[¥]) > e MTR)(X, X) > C'T[](X, X)

everywhere in U for some large finite C, by the compactness of U.

!Those interested can find the C°—result in the paper:
“Domain of dependence,” R. Geroch, J.Math.Phys. 11 (1970) 437-439.
The smooth result is in the paper:
“On Smooth Cauchy hypersurfaces and Geroch’s splitting theorem,”’paper
A. Bernal, M. Sanchez Commun.Math.Phys. 243 (2003) 461-470
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5. Turning to the surface terms, we have

g (VI N) = T[¥)(V,N)

so again using the compactness of X, Y/, we have:

/g(VJ[i/)],N) do < c/ TW)(X, X)do
by by

and

//g (VJIW],N)do >C* g TW)(X, X)do

6. We conclude that there exists a constant C', independent of 1) such that

/T[zp](X,X)dX < C/ T](X, X)do.
u ¥

Now recall that T[¢](X, X) vanishes at a point if and only if diy. We see that if
1 and Ny vanish on ¥ (and hence di) = 0 on X)), we must have df = 0in & and
hence ¢ = 0.

O

Notice that in fact we have a stronger statement than in the proposition, we in fact
have a quantitative estimate for a solution 1 of the wave equation in terms of initial
data. If you attended the advanced PDE course, you will recognise that we have in fact
established H!'—control of ¢ in the region I/ in terms of the H'—initial data.

2.3 Curvature

In order to consider the dynamical gravitational field, we want to write down some
equation satisfied by the metric. There are three main goals we have in arriving at this
equation:

1. The equation should be hyperbolic, that is to say it locally has similar properties
to the wave equation.

2. The equation should be geometric, it shouldn’t depend on a particular choice of
basis or coordinate system.

3. The gravitational field should couple to matter in a natural way.

The first condition will ensure that the features we observe in special relativity (such
as finite speed of signal propagation) are not affected by the gravitational field. The
second condition is a mathematical consequence of the equivalence principle. The third
condition, while somewhat vague, is necessary since we expect the gravitational field to
interact with matter in the spacetime.

One possible first guess at how we could achieve these goals would be to assume that
the metric tensor obeys the wave equation:

Ugg = F
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where the wave operator is defined on a symmetric 2—tensor in the obvious fashion
(Bgh)uw = VoV shy, in alocal basis, and F' should represent some source term for the
gravitational field. Unfortunately, it is trivial that [;g = 0, so this won’t work. It turns
out that the correct object to play the role of ‘lg’ is a term involving the curvature of
the metric. Before we can write down the Einstein equations then, we need to take a bit
of time to define curvatures.

2.3.1 Riemann curvature

Suppose that M is a C¥—manifold, k > 3, equipped with a C"-regular pseudo-Riemannian
metric g, where 2 < 7 < k. The associated C" ! —regular Levi-Civita connection is V.
Given XY € X;_1(M) and a C*—regular (p,q)—tensor S, with s < r, we define the
C5~2—regular (p, q) tensor R(X,Y)S by:

R(X,Y)S:=VxVyS - VyVxS —Vxy]S (2.20)
Lemma 2.9. The tensor R(X,Y)S has the following properties:
i) It is antisymmetric in X, Y :
R(X,Y)S=—-R(Y,X)S
for any X, Y € X,_1(M) and C*—regular (p,q) tensor S.
i1) It is f—linear in the first (and hence second) slot:
R(fX1+ X2,Y)S = fR(X1,Y)S + R(X2,Y)S,
for any f € CY(M;R), X;,Y € Xp_1(M) and C*—regular (p,q) tensor S.
i) It is f—linear in S:
R(X,Y)[fS1+ S2] = fR(X,Y)S1 + R(X,Y)Ss,
for any f € C2(M;R), XY € Xj,_1(M) and C*—regular (p,q) tensors S;.
iv) The following metric compatibility condition holds:
g(RX, Y)Z,W)+g(Z R(X,Y)W)=0, vV XY, Z,W e X1 (M;R).
Proof. 1) This is immediate by inspection of the definition (2.20).
ii) First note that it is straightforward to see from the definition that
R(X1+ X2,Y)S = R(X1,Y)S + R(X»2,Y)S,

which follows from the R-linearity of the connection. It remains to show that
R(fX,Y)S = fR(X,Y)S. For this we calculate

R(fX,Y)S =V xVyS —VyV;xS - Visxy|S:
= fVxVyS —Vy (fVxS) = Vixy-v(5)xS;
= fVxVyS — fVy VxS - Y(f)VxS — (fVixy)S — Y (f)VxS),
= [ (VxVyS — VyVxS - VixyS),
= fR(X,Y)S.
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iii) Again, the R—linearity of the connection quickly gives us that
R(X, Y)[Sl + SQ] = R(X, Y)Sl + R(X, Y)SQ,
so it remains to show that R(X,Y)[fS] = fR(X,Y)S. We calculate:

R(X,Y)[fS] = VxVy(fS) — VyVx(fS),
= Vx(fVyS+Y(f)S) = Vy(fVxS+ X(f)S) — Vixy|(fS),
= fVxVyS+ X(f)VyS + Y(f)VXS + X(Yf)S
—(fVyVxS+Y(f)VxS+ X(f)VyS+Y(X[)5)
- IVixy)S— (X, Y]f)S
— FROXY)S + (X(Yf) ~ Y(XJ) ~ [X,Y]f) 8
— fR(X.Y)S.

iv) For the final part, we first recall from the definition of the commutator that

XYH-YXf)-[X,Y]f=0 (2.21)

for any sufficiently smooth function. We will apply this with f = g(Z, W). Using

the fact that V is the Levi-Civita connection, we have:

XY [g(ZW)])=X(g(VyZ,W)+g(Z,VyW)

:g(VXVyZ, W) +g(VyZ, wa) (2.22)

+g (sz, VyW) +g (Z, vayw)

Similarly, we have

Y (X [g(ZW)])=9(VyVxZ W)+ g(VxZ,VyW) (2.23)

+g (VyZ, VXW) +g (Z, VyVXW)

and

[X7 Y] (g(Z, W)) =g (V[X,Y]Zv W) +g (Z, V[X,y}W) (2.24)

Taking (2.22)—(2.23)—(2.24) and noting a cancellation between terms with one

derivative falling on Z and one on W, we arrive at the result.

Corollary 2.5. Suppose X,Y,Z € X_1(M), and let {e,} be a local basis, whose dual

basis is {et}. Then if X = Xte,, Y =YVte,, Z = ZVe,, we can write:

R(X,Y)Z = R, X"Y" Z%,

Where RF,5r € C"2(M;R) are the components of a (1,3)—tensor, called the Riemann

tensor, given by:
R 5 =€ (R(ey, ev)eq) .
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Proof. We simply use the linearity results established above to write

R(X,Y)Z = R(X"e,,Y"e,) [ZV¢,)]
= X"Y"Z°R(eu, ev)es
= X'Y"Z%" [R(ey, ev)eq) €r
= R X"Y" 2%,

O]

From parts ¢), iv) of Lemma 2.9, it is straightforward to show that the Riemann
tensor has the following symmetries:

RTU;W = _RTUV,ua RTO/J,V = _Rm—m/v
where we recall that indices are raised and lowered with the metric.

Exercise 3.6. a) Supposew € X;_{(M) and XY, Z € X;_1(M). By considering (2.21)
with f = w[Z], and recalling that X (w[Z]) = (Vxw)[Z] + w [Vx Z], show that:

W[R(X,Y)Z] + (R(X,Y)w) Z = 0.

b) Deduce that in a local basis, the action of R(X,Y’) on a one-form is given by:

R(X,Y)w =R, X'Y"w e’

c¢) Show that if Sy, So are C¥~!—regular tensor fields, then

R(X,Y)[S1® S =[R(X,Y)S1] ® S2 + 51 @ [R(X,Y)Ss] .

d) Deduce that in a local basis, the action of R(X,Y) on an arbitrary (p,¢)—tensor is
given by:

[R(X7 Y)S}Mlmup vi..Vg — RMIO_”VSUMQWN;DVL“V(I + -+ Rupo#ysulmup_laul...u

q
o o v
- R 1/1#1/5“1 upa’l/g...l/q - R z/q,uySul Mpul...uqflo XMY

The exercise above shows that the Riemann tensor on its own is sufficient to determine
the action of R(X,Y’) on an arbitrary tensor.

The Riemann tensor has further symmetries, which are encapsulated in the Bianchi
identities. We will simply state these at this stage.

Theorem 2.6. The following identities hold for any vector fields X, Y, Z, W € Xp_1(M):

R(X,Y)Z+R(Y,Z)X + R(Z,X)Y =0 1% Bianchi identity
[VwR] (X,Y)Z + [VxR])(Y,W)Z + [VyR](W,X)Z =0 2" Bianchi identity
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Proof. The proof is essentially by direct calculation, which can be simplified somewhat by
choosing the vector fields cleverly. See for example the book of Do Carmo, “Riemannian
Geometry”, pp 91, 106. [

Corollary 2.7. With respect to a local basis, the first Bianchi identity can be written:
R o + R o + R yop = 0. (2.25)
This, together with the previously established antisymmetry properties implies:
Rrop = Rywro

With this in mind, we can write the second Bianchi identity is equivalent to:

VoRurn+ VuRyorn + VyRgyurn = 0. (2.26)
Proof. Writing the 1%¢ Bianchi identity with respect to a local basis, we have:

R XYV 2% + R 6, YFZ" X% + R 5, ZF XY e =0
relabelling indices, and pulling out factors, this is equivalent to:
(R + R o + R™yop) XH'Y" 2% =0

which gives (2.25) since the vector fields X,Y, Z are arbitrary and {e,} is a basis.
Now, consider the same identity written out four times, with indices all lowered:

Reopw + Rrjwo + Rrvop
Ropwr + Rovrp + Rorpu
Ryuvro + Ryrov + Ryour
Ryrop + Ruopr + Rupre

0
0
0
0

Adding these four identities and using the antisymmetry on the first and last pairs of
indices, all of the terms in the first column cancel against terms in the last column, and
we have:

0= 2RTMVO’ - 2RV0”7’,U,

which gives the result.
For the last part, we can write the second Bianchi identity with respect to the local
basis as:

(Vo R \uw) WOXHY Y Z; + (Vo R \uw) XTYFPWY Z2er 4+ (Vo R\ ) YOWH XY Ze, = 0
Relabelling, this becomes
(VoR zuw + VuR 2o + VR 2 ) WIXIYY Ze, = 0

Thus the second Bianchi identity is equivalent to the vanishing of the bracket above.
Lowering 7 and using the interchange symmetry we have:

VUR,LLVT)\ + V/LRVUTA + VVRU;LT)\ = 0. O
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2.3.2 Ricci and scalar curvature

From the Riemann tensor it is possible to construct other curvature tensors, which capture
some aspect or other of the geometry of the manifold. An important curvature is the Ricci
curvature, which is a C"~2—regular (0, 2)—tensor, where for X,Y € T,,(M), Ricy(X,Y) b
is defined as the trace of the endomorphism:

M — M

2y o RZX)Y

In a local basis, we have
Ricy(X,Y) = R 7, X'YY = R, X'Y",

where we define:
R, = Ricy(ey, ey).

by the interchange symmetry of the Riemann tensor, the Ricci tensor is symmetric,
Ricy(X,Y) = Ricy(Y, X).

We also define the scalar curvature, sometimes called the Ricci scalar, Ry, which is
the trace of Ricy with respect to the metric. In local coordinates:

Ry =g¢"" Ry,

Lemma 2.10. The contracted Bianchi identities hold:
. ) 1
divy <chg — 2Rgg> = 0.

Proof. We work in a local basis. Consider the second Bianchi identity in components
(2.26):
VO'R[J,V’T)\ + v,uRl/JTA + VVRU/M'A =0.

Contracting with ¢g#™, we have:
VeRux+V Rygrx — VuRs\ = 0.
Contracting again with g°*, we obtain:
2V°R,e —V,R; =0

Dividing by 2 and re-writing this, we have:

1
A\vAd <Ryo’ — 2Rggua> = 07

which is the result. O

The tensor field Ric, — %Rgg is often referred to as the Einstein tensor, and denoted

G.
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Example 12. From Example 9 we have all of the information we require to calculate the
Riemann tensor for the Schwarzschild metric in Painlevé-Gullstrand coordinates, with
respect to the orthonormal basis {e,} given in Example 7. We calculate, for example:

R(eﬂv 61)60 = ve()veleo - velveoeﬂ - v[eo,el]eo

1 /2m
:veo (27‘ 7’€1> —Vel (0) _v_%\/@(ne()
__[ma 1\/% o L f2m L fam
- r Or \ 2r T L™ r 2r r

2m

= 761
r3

In this way, we can calculate:

2m 2m

R(eo,er)eo = —ge1,  Rleo,er)er = —geo,  Rleo,er)ea =0,
m m
Rleo, ea)eo = —gea, Rleo,ea)er =0, Rleo, ea)ep = = 50apeo,
m m
R(e1,ea)eq =0, Rer,ea)er = —gea,  Rler,ea)ep =~ zdaper,
2m
R(ea,ep)eo =0, R(ea,ep)er =0, R(ea,eplec = — 5 (0pcea — dacen),

Or in terms of components, we can extract the non-trivial components of the Riemann
tensor:

2m m
Rowon = =3 Roaop = 7735,43,
m 2m
Riaip = —ﬁéAB; Rapep =~ 5 (6BpdAaCc — 6aDdBC)

with all other components either related to these by symmetries of the Riemann tensor,
or else vanishing.

To calculate the Ricci tensor, we have to take the trace over the first and third
indices of the Riemann tensor. Since we work in an orthonormal basis, this is relatively
straightforward, and we find, for example:

Roo = R*ou0 = Rioto + 6P Raopo

2m  m

— AB _

Similarly:

Ri1 = R"ou0 = —Ro1o1 + P Raip

2
L Y ()
T T
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and finally:

Rap = R*aup = —Roaop + Riaip + Roappd®?

m m 2m

=564 — 5648 + —50°7 (Scpbap — 6andpC)
T r r

=0.

We thus conclude that the Ricci tensor (and hence also the scalar curvature) of the
Schwarzschild metric vanishes identically!

Note that the full curvature does mot vanish: in fact, we see that the curvature
becomes singular near r = 0, which is the location of the black hole singularity.

2.3.3 Local expressions

We can work out an expression for the various curvatures in terms of the connection
coefficients, and ultimately the components of the metric. To do this, we simply have to
insert expressions for various derivatives.

Lemma 2.11. Suppose {e,} is a local basis, with commutator coefficients given by:

[euv el/] = CU,LWeU’
and connection coefficients given by

Ve, €0 = I e
Then we have the following expression for the components of the Riemann tensor:

R o = €4 (T 0e) + T2 00T 0 — €y ([T o) — T2 6T 0 — 73,02 (2.27)
For the Ricci tensor, we have:
Roy = ep (T",5) + T TF iy — ey (D) — T2 o TFy — T30
Proof. We calculate
Ve, Voo = Ve, (e )
=eu (F)‘W) ey + F’\,,UFT,MeT
= len (T700) + T T | s

Similarly,
Ve, Ve, €0 = [e,, (7o) + I’)‘MJFT,,/\] er.

We also have

V[ewey]eg = chweAea
A
=C ,uuve)\ea

A
=T"\,C uv€r
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Now, recalling that
R(ey,ev)es = Ve, Ve, 0 — Ve, Ve, €0 = Vie, e €0 = R opver

we have the expression above for the Riemann tensor. The expression for the Ricci tensor
follows from contracting on T, u. O

This expression allows us to calculate the form of the Ricci tensor, thought of as a
(nonlinear) partial differential operator acting on g.

Corollary 2.8. In a local coordinate basis, we can write:

1 a29041/ 8290,u a2gau 82901/ A A
Raoyuw = 2 (aﬂfﬂax" 0xv9x®  9xvdx°  OxHOT™ ~Doalvo+ vl o (2:28)
and
R — _1 yite} 8290’1/
i 2 Ozt ox™
1 0 10
+ iﬁry,ﬂ + iwrg,ﬂ — T\ T (2.29)
+ FT)\VFTAO' + FT)\VFO'TA + FT)\JFVT/\
Proof. 1. As a short hand, we will use 0, = 8%, 82/3 = %. We have to be careful

with the partial derivatives, since unlike covariant derivatives they do not commute
with the raising and lowering of indices. Now recall:

1
Lopr = gaTFTﬁT - 2 (aﬂgaT + 87'9045 - 6‘1957)

so that
(9/390”— = Faﬁ.,- + F.,-/ga (2.30)

As a consequence, we have
9or 08 (") = 05 (Tapw) — (Tapr + Trpa) I

2. Inserting this into the expression (2.27) and recalling that in a coordinate basis we
have C’\W =0, we find:

Roouw = Jar B oy
= 9arOu (T7ve) = garOy (T o) + T 0ol aun — T uoTana
=0y Tave) = Lapr + Trpa) Moo
— 0y (Papo) + Cavr +Trva) I o
+ T2 0T — T o Tana
= 8u (Faua) -0y (Fa/w) - FwaFTua + FTVaFTua
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Inserting the definition of I' into the first two terms, we calculate

1
Rozcr/,u/ = 5 (aiygacr + aﬁggau - 8,30491/0 - 53ugaa - agggau + agag/,w)

- FT,LLCXFTVO' + FTVO(FT}LO'

(aiagau + 33ag;m - aiagya - 63gga,u) - F‘ruaFTua' + FTVQFT/LO'

1
2

which is (2.28)

3. To find the Ricci tensor, we first differentiate (2.30) to find:

azagau = 80 (Fam/ + Fyua)
algag,ua = al/ (Fuaa + Foa,u)

1 1
8309(1” = 78V (Faou + Fuaa) + 580 (Focup, + Fuua)

2

taking the sum of the first two equalities and subtracting the third, we have

aﬁagal/ + 83aglw - agagau =0y (Fz/ua) + 0y (Foua)
1

+5 (95 Tapw) = 95 (Ppav) + 9y (Tao) = 9y (Tuao)]

Notice that the term in square brackets is antisymmetric in o and u, so that

g ((fwgau + az%ag;w - 8309(:#) = 9" (05 (Tvpa) + 0y Topa))
=0y (qu) + 0y (Fouu)
- Fu,uaacrg“a - Fauaallg'ua

Now, since 3ugo‘5 = — g™ (0,9x7) 977, we have:

_Fuuaaggua - Fouaaug“a = Fuuaaogua + Fo#aaugua
=T, (F,uaa + Faau) + I (F;wa + Fauu)
= 2FT)\VFUT>\ + 2FT)\O'FZ/T>\

4. To obtain (2.29) we multiply the expression (2.28) by g™ and use the result of part
3. above to rewrite three of the four 9?¢ terms in terms of T’
O

The form that we have put the Ricci tensor in might seem a bit strange: we’ve made
some second derivatives of the metric explicit and others we have written in terms of the
connection components. To explain why we have done this, at this stage it’s useful to
introduce a particular choice of coordinates, known as wave coordinates. Recall that the
wave equation is given in a local coordinate basis by (2.14):

Pf  wpa Of

0=0,f = g™ L9
of =9 oz I oo
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We say that we are working in wave coordinates if the coordinate functions z® are
themselves solutions of the wave equation, so that gz® = 0. Since d,2% = 0%,, we get
the following condition on the connection components when expressed in a local basis
induced by wave coordinates:

0=—g"r*,, =T*" (2.31)
Theorem 2.9. With respect to wave coordinates, the Ricci tensor takes the form:

2
RO’V = Rglz) = —lg‘uaia gaz/

59" Griaga T Lov(9:09) (2.32)

Here P is a homogeneous quadratic form in the first derivatives,
Py (g, ag) = ng%)\ﬁru(g)aagﬁ'yakgr,ua
where P;‘f%”“(g) = Pg‘;“’am(g) is determined from:
PPN G) D9 OnGrp = Doas T + Toay T ™ + Ty T, ™A 2.33
ov (g) adByONGTu = L ctlowlse "+ 16l 7. ( . )

Proof. We simply insert the condition 0 = I'*,** into (2.29), which implies that all of the
terms on the second line vanish. The fact that P is a homogeneous quadratic form in the
first derivatives follows from the fact that I',g, is linear in the first derivatives, and that
the right hand side of (2.33) is a symmetric quadratic form in 'y, O

This shows that the Ricci tensor (in appropriate coordinates) can be though of as a
quasilinear wave operator acting on the metric tensor.
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Einstein’s equations

3.1 Einstein’s equations and matter models

We are now in a position to write down Einstein’s equations for the gravitational field,
which describe a 4—dimensional Lorentzian manifold (M, g):

1
Ricy — §Rg +Ag=T. (3.1)

The left hand side of Einstein’s equations involves terms constructed from the metric g.
The first two terms are familiar from the discussion of the previous chapter. The third
term on the left hand side is a constant multiple of the metric itself. A here is a parameter
of the theory known as the cosmological constant. It was introduced by Einstein in
order that the theory would admit solutions corresponding to a stationary universe. The
discovery by Hubble that in fact galaxies are all moving apart caused Einstein to throw
away this term, dismissing it as the “greatest blunder” of his life. Modern measurements
of the Cosmic Microwave Background, and Type Ia Supernovae data suggest that the
cosmological constant term should be present, and that A > 0.

The term on the right hand side, T, is the energy-momentum tensor of the matter
present in the spacetime. It is a symmetric, divergence free tensor. In order to close the
system of equations represented by (3.1), we have to specify some model for the matter
present in the spacetime, which describes how the matter evolves in time. Possible matter
models include:

1. Vacuum. For this we set T' = 0, so that there is no matter present in the spacetime.
Bothe the Minkowski spacetime, and the Schwarzschild spacetime that we have
already encountered are solutions of the vacuum Einstein equations with A = 0.

2. Wave matter The matter content is encoded in a single function v satisfying the
wave equation:

O, =0

where [, is the wave operator of the metric g. The energy-momentum tensor is
then given in a local basis by:

1
T;w["ﬂ = V,uﬂpvlﬂ/) - iguuvawvaw-

63



64 Chapter 3  Einstein’s equations

3. Electromagnetic. Here the matter content is encoded in an antisymmetric
(0,2)—tensor, F satisfying the Maxwell equations, which in a local basis take
the form:

V,.F*, =0, Ve =0,

where V is the Levi-Civita connection of g. The energy-momentum tensor is then
given in a local basis by:

1
TMV[F] = F,uchua - ZnuuFa‘rFUT-

4. Perfect fluid A perfect fluid is described by a local velocity U € X(M), which is
everywhere a unit timelike vector field, together with a pressure p and a density p.
They satisfy the first law of thermodynamics:

Ulpl + (p + p)divyU =0,
and Euler’s equation:
(p+p)VuU + grad,p + Ulp]U = 0,

This gives a closed system once a relation, called an equation of state, p = p(p) is
specified. The energy momentum tensor is then given by

Tw/ = (p +p)UMUV + Pauv-

All of these matter models are used for various purposes in the study of relativity.
Notice that in general, the equations of motion for the matter fields depend on the metric,
and of course the metric evolves according to Einstein’s equations. This was summed up
by Wheeler as:

“Space acts on matter, telling it how to move. In turn, matter reacts back
on space, telling it how to curve.”!

In general, we have a complicated system of nonlinear, hyperbolic PDEs for the 10
components of the metric and the matter fields. For most of the rest of the course, we will
focus on the vacuum case. This allows us to consider some of the challenges of studying
general relativity in a somewhat simpler setting.

3.2 The linearised Einstein equations

A starting point for the study of any nonlinear PDE is often to study the linearisation
about a known solution. This usually results in a simpler problem, which can be attacked
with standard methods. The knowledge one gains from studying the linearised problem
can then be used to try and tackle the full, nonlinear, problem. We will consider the

1C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation. W. H. Freeman, 1973.
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problem of linearising the vacuum Einstein equations about the Minkowski space. In the
vacuum case, with A = 0, the equations reduce to

Ricy = 0.

Recall that Minkowski space is the manifold R*, with coordinates (") u=o0,..3 and the
metric given by:

n = nudrtde’ = —(dz°)? + (dz')? + (do?)? + (dz®)*

Now, since
0*f
dxrozv’
the coordinates x# are wave coordinates for the Minkowski metric.

Let us suppose that we have a family of metrics (¥)¢ defined on R*, with Vg = p
and which depend smoothly? on s € (—¢, €). Suppose also that (s) g solves the Einstein
equations, and that the coordinates z* are wave coordinates for (¥ g for every s € (—¢,€).
This implies that

2
Legpa_ 0"
2 ozt Ox™

an = 77“"

|:(S)gO'V:| + (S)FT)\V(S)FT)\O' + (S)PT/\V(S)FUT)\ + (S)FT)\O'(S)PVT)\ =0

and .

0 — (Ipen _ () gar(s) guv <8V<S) e — 200 gw> ‘
To find the linearised Einstein equations, we differentiate these with respect to s, and
then set s = 0. Recalling that (O)QW = 7w and O\, = 0, we deduce that

0 = Uy Y, (3.2)

0= 0"y — %&/7«707 (3.3)
where v, = % [(s) gwj] |S:07 and indices are raised and lowered with 7. Equation (3.2)
simply says that the components of v with respect to the canonical coordinates on
Minkowski space each separately obey the wave equation. By the results of Chapter
1, a unique solution for 7, € C*®(R%) exists, provided we specify smooth initial data:
Yurl 0o and OoYuw|,0_o- Can we simultaneously satisfy equation (3.3)7? This represents
a set of constraints that our solutions to (3.2) must satisfy. In order that the pair of
equations (3.2), (3.3) admit any solutions at all, they must be compatible. That they are
is a result of the following:

Lemma 3.1. Suppose v, is a smooth solution of (3.2). Then (5.3) holds in R* if, and
only if:

1
O = a#’)/ul, — 561,’)/0—0— y (34)
z9=0
1
0= 0y <8H'y“,, - 28U'yg‘7> (3.5)
20=0

2In the sense that the components of (g, and an appropriate number of their derivatives, with
respect to any coordinate chart are smooth functions of s. The fact that such families of solutions exist
is not a priori obvious, but happens to be true.
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Proof. Let F,, = 0,*, — %&/yg". Equation (3.3) is equivalent to F,, = 0. Notice that F,
solves the wave equation for each v:

1
DWFV = 0,07 <8u7uu - 28u700>
1
= 8# (anyul/) - 581/ (DW’YGU)

=0.

Now, by the uniqueness results of Chapter 1, we know that F}, is uniquely determined
by the value of F},, 9gF, on the hyperplane {z" = 0}. In particular if F, = 9gF, = 0 on
{2° = 0}, then F, = 0 in R%. O

What this result tells us is that it’s enough to make sure that the constraint equations
are satisfied at the initial time 20 = 0, and the evolution equation (3.2) then ensures that
the constraints propagate in time. The conditions (3.4), (3.5) will not hold for arbitrary
choices of initial conditions ¥, |,0_q, and doVuw|,0_y, We need to restrict our choice of
data to ensure that the initial constraints are satisfied.

Let us suppose that we are given ¢, 3;, h;j, kij, for 4, j = 1,2,3, which we assume to
be smooth functions on R3. We suppose that the initial data for (3.2) is constructed from
these functions in the following fashion:

Y00|0—0 = ¢
Yoil oo = Yiolz0—g = Bi
Viglgo—o = hij
0Y00| 40— = 2ki; (3.6)
1 1
0071051 30=0 = Oihij — 505hii + 50;¢
O0vijlo—g = —2kij + 20065
Lemma 3.2. The solution 7, to (3.2) with initial conditions (3.6) satisfies (3.8) through-

out R*, and hence is a solution of the linearised Einstein equations, if and only if the
following constraints hold on h;j, ki;:

0= Biajhij — @Bihjj, (3.7)
0= @k” — 3jku (3.8)

Proof. We first verify that constraint equation (3.4) is satisfied by our choice of initial
data. Splitting into the time and space components, we first calculate:

1 1 1
Oyt o — 530%” = —doY00 + Oivio + 530’700 - 530%1‘

20=0 20=0

1
= —2kii + 0ifi + ki — 5 (=2kii + 20;3;)
=0.
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For the spacelike components we have:

1 1 1
"5 — 595767 = =005 + 9i7ij + 595700 — 505V
2 z9=0 2 2 z9=0
1 1
= = 0070j ;00 + Oihij + 506 — 5 Ojhii

=0.

Now we have to verify that (3.5) holds, at which point we are done by the previous
Lemma. When we differentiate the constraint in the time direction, we will observe some
components with two 20 —derivatives acting on them. To handle these, we use the fact
that (v, = 0, so that in particular:

80807MV’1-O:0 == ajaj'y,uu‘wozo
We find that the 0—component of (3.5) gives:

1 1 1
o (@n’“o - 2&)%”) = —0000700 + 0000 + 53030700 - 53030%1'

20=0 29=0

—La0w+0, (o0~ Sona s 106) - S
211 J LV} 2]” 2] 2].7”

= 0;0;hij — 0;0;h;;

= 0.

Where we use (3.7) in the last line. Finally, to verify the spacelike components of (3.5),
we calculate:

1 1 1
do (@ﬂ“j - 2@‘%”) = —0000%0; + 90ivij + 5900700 — 505007

20=0 20=0

= —82'31'5]‘ + 0; (—Qkij + 82‘5]‘ + @»Bi)
1
+ 0jki; — 533‘ (—2ksi + 20:5;)
= -2 (8216‘” — 8]km)
= 0. O

We can thus break the initial data down into geometrical objects defined on R3. We
have two symmetric tensors, h and k, which have to obey the constraint equations (3.7),
(3.8). We also have a scalar ¢ and a vector field § which are freely specifiable. Once we
have specified these objects, there exists a unique solution ~ to the equations (3.2) (3.3).
We shall see later that h, k are intrinsic to the initial hypersurface {z° = 0}, while ¢,
B essentially encode information about the choice of coordinates (the wave coordinate
condition doesn’t fix completely fix the coordinates).

3.3 Hypersurface geometry and the constraint equations

[Before reading this section, you should make sure that you're familiar with the material in §A.3.4]
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A note of caution We will specialise in this section to embedded spacelike sub-
manifolds of Lorentzian manifolds. Many of the results have analogues in the case of
embedded submanifolds of Riemannian manifolds. However, there are a few differences in
sign introduced by the signature, so one should not assume that the formulae given here
are directly valid in that situation.

3.3.1 The induced metric and second fundamental form

Let us suppose that we have a smooth, time oriented, four dimensional Lorentzian manifold
(M, g). Suppose that we are also given a three dimensional manifold ¥. An embedding of
¥ into M is a smooth map + € C°°(3; M), such that ¢ is a homeomorphism of ¥ onto
1(X) and ¢ is an immersion, i.e. the push forward map . acting on vectors is everywhere
injective. As a result of the injectivity of 2., we can identify 7,3 with a three-dimensional
subspace T;,)1(2) C T,y M. We say that a vector X € T,,yu(X) is tangent to +(X) at

up)-
We assume now that an embedding has been fixed.

Definition 17. The metric induced on X by g is the pull-back of g to X by the embedding
map ¢, and we denote the induced metric by h :=2*g. More concretely, for X,Y € 1,3,

we define:
hMX,Y) =g (1.X,1.Y)

We can translate our definitions of timelike/spacelike /null surfaces to the following:
Lemma 3.3. The surface 1(X) is:
i) Timelike at +(p) if and only if h is a Lorentzian metric at p.
it) Null at o(p) if and only if h is a degenerate quadratic form at p.
i11) Spacelike at 1(p) if and only if h is a Riemannian metric at p.

We will mostly focus on the spacelike case, as this is the correct setting for an initial
data surface for Einstein’s equations. For each p € ¥, there is a unique N € T,,)M
which is timelike, future directed, of unit length, and orthogonal to T,,)2(¥). Using
the Canonical Immersion Theorem, Lemma A.8 in §A.3.4, we can assume that NV is the
restriction to +(X) of a smooth vector field defined on M. For any V' € T, M, we define:

TV =V 4 g(N,V)N, 1V = —g(N,V)N
so that
V=TV+ 1V

and we have TV € T,y1(X), and LV is orthogonal to T,)2(X). In other words, T, M
splits into
TippM = Tp)uU2) & Nypyu(2),

where N,y1(2) = (Tl(p)z(E))L is the orthogonal complement of T ;,)2(X) with respect to
g. This is a one-dimensional timelike subspace, representing the normal directions to (%)
with respect to the metric g.
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We want to look at how the Levi-Civita connection V behaves under this splitting.
For this it will be useful to have the following result:

Lemma 3.4. Let U C X be open, and suppose that v : ¥ — M is an embedding such that
the image is spacelike.

i) Suppose that Vi, Vo, W € X(M) satisfy Vi = Vo on 1(U). Then
VW =V, W, om(U).
i) Suppose that W, Vi, Vo € X(M) satisfy W € T,)1(U) for eachp € U and V1 = Va on

(U). Then
VwVi =V Vs om(U).

Proof. i) We have Vi — V5 = 0 on (i), so by the fact that V is tensorial in its first
slot, we have that on +(U):

0=Vy,_i,W =V, W=V, W

ii) It suffices to prove that if V' € X(M) vanishes on (i), then ViV = 0 on +(U). Let
us fix some K € X(M) and define f = g(V, K)|,. Clearly «*f = 0. Note also that
there exists a vector field X € X(U) such that . X = W on «(U). We calculate that
at pel:

0=X@"fl,
= Z*X(f)|7,(p) = W(f)|1,(p)
=49 (VWV’ K)"L(p)

Now, since K was arbitrary, we deduce VWV|Z(p) =0. O

u(p)

Suppose we have vector fields X,Y € X(X). By Corollary A.4, about any p € ¥ we
can find a neighbourhood U and two vector fields X,Y € X(M) such that 2, X = X and
1Y =Y on o(U), i.e. such that X,Y extend X,Y away from +(U). The previous Lemma

shows that V 217‘ @ is independent of the extension, and depends only on X,Y.
7

Now, we can uniquely decompose:
VY =TVgY + 1VgY
where T is the tangential component and L the normal.
Theorem 3.1. i) Let D: X(X) x X(X) — X(X) be defined by:
w(DxY)=TVzY

for all XY € X(X), where X,Y are any (local) extensions of X,Y. Then D is
the Levi-Civita connection of the induced metric h. (Note that the formula above
determines DxY uniquely by the infectivity of 1.).
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it) Let k: X(X) x X(X) = C*(2;R) be defined by:
k(X,Y) =" [g <N, v;(f/)] ,
where )Z', Y are any (local) extensions of X, Y. We have that
k(X,Y) = k(Y, X)

and

E(FX,Y)=fk(X,Y) ¥V feC®R).

Proof. 1) We first verify that D is a connection. By the linearity of the orthogonal
projection and the push-forward map, we have

1w (Dxy4x,Y) = TVg . 5Y
=T (V)a? + v;(l?)
=TVgY+TVgY
=u(Dx,Y) +u(Dx,Y)
= 1.(Dx,Y + Dx,Y)

so by the injectivity of 1., we have Dx,+ x,Y = Dx,Y + Dx,Y. A similar calculation
shows:

Dx(Y1+Ys) = DxY1 + DxYs.
We have to check the rules for DyxY and Dx(fY’) hold. We note that by Corollary
A3 any f € C*®°(X;R) can locally be written as f = 2* f for some f € C*®(M;R).
We calculate:

similarly
w(Dx[fY]) = TV fY
=T (fv)?ff + )?(f)?)
=T (JVgV) + X(N)y"
=" (fDxY + X(f)Y)

Hence D is an afline connection. It remains to show that it is torsion free and metric.
To verify that D is torsion free, we calculate

w(DxY — DyX — [X,Y]) =T (v;(ff - v;j) XY
=T (V¥ - vpX) - [X. 7]

:T(Vf(?—Vf,j(:— [}??D —0.
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Here we have used Lemma A.9. Finally, to check that D respects the induced metric
h, we calculate:

— h(DxY,Z) +h(Y,DxZ).
ii) We know by Lemma A.9 that [X,Y] is an extension of [X, Y], so we have [X, V] is
tangent to 2(X), hence g (N, [)2,?]) = 0. Thus:

0=g (N, VgV = VpX —[X,7]) =g (N, VgV) — g (N, V5X)

so tha
t K(X,Y) =" [g (N, vi?)] — [g (N, vg)}‘)} — k(Y, X).

To establish the linearity, we calculate:
k(fX,Y) =" [g (N, vfg?)]
- lin(xve7)
- (ff) 7" [g (N, v)?f/)] = FK(X,Y).
Which establishes the result. O

From the second part of this theorem, we deduce that k is a (0, 2N)—tensor field defined
on X, known as the second fundamental form. Notice that since g(Y, N) =0 on «(X), we
must have that

0= X [g(f/, N)}

()
— g (V;(N, 17) tg (N, vi?)}

°2)

So that we have: N
K(X,Y) = —* [g (VXN, Y)} , (3.9)

which is known as Weingarten’s equation, and gives an alternative approach to finding k.

Example 13. Suppose M = R* with coordinates (¢, .Ti)i:LQ,g, and suppose that g is a
Lorentzian metric on M given by:

g = —o(t,x)2dt* + hij(t,z)dz"dx?
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where ¢ > 0 and h;; is symmetric and positive definite for all (¢,z). Consider ¥ = R?
with coordinates (y*);=1,2.3 and consider the map

(I E — M ‘
W) = (0.9
So that 2(X) = {t = 0}. Now, we note that if f € C°°(M;R), then +* f(y) = £(0,y"), so

that pulling back a function from M to ¥ simply consists of restricting f to {t = 0}. By
considering the coordinate curves, we can also see that on {t = 0} we have:

Lo _ 0
oyt Ot
This suggests that the vector fields 8?& are a suitable extension of a?/i'
Considering the pull-back of g to 3, we find:
o 0 o 0
<ayl’8y])‘y g <81L‘7"833]) 2(y) j( y)

so that
h:=1"g= hij(O,y)dyidyj.

To find the second fundamental form, we first note that the future directed unit normal
is:

_19
oot

which again admits an obvious extension away from {t = 0}. We calculate the second
fundamental form as:

15, 15,

y ozt O/ la(y)

10 0
_ (2 .
g(gb@t’r ”&z#)

~#T%
9w (agw L 995 892‘;‘)

1(y)

2 (91’] af]fz 8.’1?“ z(y)
B 1 Ghij
= a0,y o Y

Thus the second fundamental form represents the ‘first time derivative’ of the induced
metric. We might expect that the induced metric and the second fundamental form would
represent the correct ‘Cauchy data’ for Einstein’s equations, and we shall indeed see that
this is the case.
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3.3.2 The Gauss and Codazzi-Mainardi equations

The induced metric and second fundamental form carry information about how the surface
Y is ‘glued into’ the Lorentzian manifold (M, g). If the manifold satisfies some equations
(for example Einstein’s equations) then we expect that this is reflected in the information
induced by g on 3 by the embedding map 2. We shall see in this section that certain
components of the curvature of g at ¢(3) can be written in terms of h and k. This in
turn will imply that when we impose conditions on g, this will be reflected as conditions
on h, k.

Theorem 3.2 (Gauss’ Equation). Let (M, g) be a smooth, time oriented spacetime, and
let X2 be a three-dimensional manifold. Suppose that v : % — M is an embedding of ¥ such
that Z(Z)f\if spacelike. Suppose U C X is open. Let X, Y, Z, W € X(U) have extensions
X,Y,Z,W € X(M) away from +(U). Then:

v [g (VR(X’, Y)Z, W)} = (PR(X,Y)Z,W) (3.10)
holds in U, where VR, PR are the curvature operators corresponding to V, D respectively.

Proof. We will use the splitting of the connection V induced by the embedding, as
described in Theorem 3.1.

1. First note that

VyZ =TVyZ - g(VyZ,N)N. (3.11)
Replacing Y with [)? ) }7}, and taking the inner product with W, we have that on
1(U):
9 (Vs Z W) =9 (TV(57 7. W) = g (1D y 21 IV)
so that

. {g (V[g7?]§, W):| =h (D[)Qy}Z, W) (3.12)
2. Differentiating (3.11) in the X direction and acting with T, we have:
T(VeVeZ) =T (VgTV3Z) ~ (V3 Z, N)VN + X [g(V5Z,N)| N

We note that on (i), the first term is equal to 2. Dx Dy Z, by Theorem 3.1 i), and
the last term is in the normal direction. Now, let us take the inner product with W
and pull-back by 2 to obtain:

" [g (V;(Vf,z, W)] =" {g (T (V)?Vf,§> ,W)]
= [g(T(VgTV52) . W)| = [9(V5Z, N)g (N, V5, W)]
— W(Dx Dy Z,W) + k(Y, Z)k(X, W) (3.13)

Here, we have used the definition of k from Theorem 3.1 i), together with Wein-
garten’s equation (3.9) to deal with the second term on the right hand side.
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3. Now, we simply use the definition of vV R:

VR(X.Y)Z =V3VyZ -VgVgZ - Viz 52

Taking the inner product of this equation with W, and pulling back by 2, we deduce:
7 {g (VR()?,?)Z, WN/>] =" {g (V;(V?Z V[N/)} —* [g (V?V)}Z W)}
= o (V72 W),
=h(DxDyZ, W)+ k(Y, Z)k(X, W)
— h(Dy Dy X, W) — k(X, Z)k(Y,W)
—h (Dixy)Z,W)

=h(PR(X,Y)Z,W)
— k(X, 2)k(Y,W) + k(X,W)k(Y, Z),

where we have used (3.12), (3.13) to pass from the first equality to the second
equality. This is the result we require. O

Notice that the right hand side of Gauss’ equation involves only geometric objects
defined on the surface 3. The left hand side is a quantity defined on the full spacetime.
Note also that while all of the components of the Riemann tensor of h can appear on the
right hand side, on the left hand side we can only realise purely tangential components of
the Riemann tensor of g.

Gauss’ equation tells us that the curvature of (M, g) in tangential directions to (%)
is reflected both in the intrinsic curvature of 3, thought of as a Riemannian manifold
with metric h, as well as in the second fundamental form, which is sometimes referred to
as the extrinsic curvature. This difference between intrinsic and extrinsic curvature is an
important distinction even in the study of surfaces in R3. For example, a cylinder in R?
has no intrinsic curvature (the induced metric is flat) but it does have extrinsic curvature.

We shall also require another result relating the curvature of g to the intrinsic data
h,k on Y. This result involves components of the Riemann tensor of g which are not
entirely tangential, but involve contraction with a normal direction.

Theorem 3.3 (Codazzi-Mainardi equation). Let (M, g) be a smooth, time oriented
spacetime, and let 3 be a three-dimensional manifold. Suppose that v : ¥ — M 1is
an embedding of ¥ such that +(X) is spacelike and take U C ¥ an open subset. Let
X,Y,Z € X(U) have extensions X,Y,Z € X(M) away from (U) and suppose that
N € X(M) agrees with the future directed unit normal on o(U). Then:

v [g (VR(X,?)Z N)} — [Dxk| (Y, Z) — [Dyk] (X, Z), (3.14)
holds in U

Proof. 1. Recall (3.11) from the proof of Gauss’ equation

VeZ =TVsZ — g(VsZ,N)N. (3.15)
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Replacing Y with [)? , }7}, and taking the inner product with N, we have that on
(U):
g (V[)zy]Z, N) =9(Viz 712, N)
so that N
2 [g (v[g 72 N)} — k([X,Y],Z) = k(DxY — DyX,Z)  (3.16)
where we use the definition of k¥ from Theorem 3.1 and the fact that D is torsion-free.

. Differentiating (3.15) in the X direction and forming the inner product with N, we
have:

9(VgVyZ N) =g (VgTV4ZN) ~g(V3Z,N) g (V5N N)
+ X [g (V?Z N)} (3.17)

Now, note that since g(N, N) = —1 on 2(X), and X is tangent to (%), we have

0= X[g(N,N)]| _=2¢g(VgN,N)

sy

u(%)

so that the second term on the right of (3.17) vanishes on #(X). Pulling (3.17) back
by 2, we thus have:

v [g (V)?V?ZV, N)} = k(DyZ,X) + X [k(Y, Z)] (3.18)

. Now, we use the definition of VR:

VR(X,Y)Z =VV3Z -VgV3Z - Vg 32
Taking the inner product of this equation with /N, and pulling back by 2, we deduce:
7 [g (VR()?, Y)Z, N)] — [g (vgvﬂ, N)} . [g (v?vié, Nﬂ

1|9 (Vien 2.V

= k(DyZ,X) + X [k(Y, Z)]
— k(DxZ,Y) Y [k(Y, Z)]
— k(DxY — Dy X, Z)

= X [k(Y, Z)] — k(DxZ.Y) — k(Z, DxY)
—Y[kY,2)-k(DyZ,X)—k(Z,DyX))

— [Dxk) (Y, 2) — [Dyk) (X, 2).

Here we have used (3.16), (3.18) to pass from the first inequality to the second,

and the definition of Vxk, Vyk for the final equality. This is the expression we
require. O
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The calculations in this section are somewhat involved, but the basic idea is to use and
reuse the splitting of the connection into tangential and normal parts that we discussed
in Theorem 3.1. The main things to take away are the equations (3.10), (3.14) which
allow us to relate certain components of the curvature of g to the objects induced on X
by 2, namely h and k.

3.3.3 The Einstein constraint equations

Now, since we have expressed certain components of the Riemann tensor of g in terms
of the quantities h, k, it is natural that imposing conditions on the Riemann tensor of g
will impose conditions on h and k. In particular, if we assume that the metric g satisfies
Einstein’s equations, we shall see that certain relations must hold between h and k. These
are the Finstein constraint equations.

Let us suppose U C ¥ is open and that {e;};=123, where e¢; € X(Uf), form a local
basis which is orthonormal with respect to h. We can assume that there exist ; € X(M)
which extend e; away from «(U). Setting €9 = N, we have that {€,},—o,....3 is a basis on
some neighbourhood of +(i/) C M, which is orthonormal at each point of (/).

Let us now take traces of the Gauss equation (3.10) to relate the Ricci curvature of g
to quantities defined on 3. We have:

7" {g (vR(Ei, 17)2, Ej) (5’7} = {g (vR(Eﬂ, 17)2,51,) n“”} +0* [g (VR(%, 17)2, Eoﬂ
=" {Ricg(f/, 2)} +" {g (vR('éo,f/)ngo)} :
On the other hand, we have
7 [g (VR(a, ?)Z,zj) 5”} = 6h (PR(es, Y)Z, ¢;)

— 69k (es, Z)k(e, Y) + 69 k(e e5)k(Y, Z)
= Ricy (Y, Z) — 67 k(e;, Z)k(e;,Y) + (Trpk) k(Y, Z)

So that:

v [Ricg(?,z)} +1* [g (VR(EO,?)ZV,E())}
= Ricy (Y, Z) — 67 k(e;, Z)k(e;,Y) + (Trpk) k(Y, Z)

Einstein’s equations don’t impose a condition on the left hand side of this equation, so
we trace again over the Y, Z slots. We have:

v [Ricy (&, &) % + 2* [g (Y R(%o, )1, &) 5’“’}
= 1" [Ricy(ey, &)] 0" +1* [g (VR(€0, €5)r, €0) 17| + 1% [g (Y R(€0, €0)e0, €0) ]
= 2" [Ricy (e, €1)] 6™ 4 1* [Ricy (€0, €0)]
=" [Rg + 2Ricg(gg, go)] ,
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where we have made use of the symmetries of the Riemann tensor in several places. We
also have:

Ricy(eg, e)0F — 5968 k(e;, ex)k(ej, e1) + (Trpk) k(e )™
= Ry, — |k} + (Trpk)?

Let us suppose that g satisfies Einstein’s equations, with some energy-momentum
tensor T'. Notice that on ¢(X):

~ ~ 1
Rg + 2Ricg(€0, 60) =2 (Ricg — 2Rgg> (éo, éo) = QT(éo, é()) + 2A.

Now, T'(ép, €p) is the energy density of the matter fields, as measured by an observer
whose instantaneous velocity is given by €y. We introduce p € C*°(X; R), the local energy
density of matter fields on X, defined by:

p:=1"[T (€, ép)] -
Then, putting everything together, we have the first Einstein constraint equation:
Ry, — |k|2 + (Trpk)? = 2p + 2A (3.19)
In particular, in the vacuum case with vanishing cosmological constant, we have:
Ry, — |k[7 + (Trpk)? = 0.

We can perform a similar procedure with the Codazzi-Mainardi equation (3.14). We
have:

o [g (VR(X,a)gj,goﬂ §iI = ¢* [g (VR(X@M)@;,%) nﬂ o [g <VR()~(,€0)EO,EO>}

— ¢ [iey (%.0)]

[Dxk] (ei,e;)0" — [De,k] (X, )6 = X [Tr, K] — divyk (X)),

We also have:

where we are using that D is the Levi-Civita connection of h and the fact that e; is an
orthonormal basis for h. Since €y is normal to #(X), we have that on +(3):

- 1 -~ ~
Ric, (X, eo> = (Ricg - 2Rgg> (X,e0) =T(X,e€p).

Now —T'(-,€p), which we think of as a one-form, is the momentum flux density of the
matter fields, as measured by an observer whose instantaneous velocity is given by e3. We
introduce J € X*(X), the local momentum flux density of matter fields on 3, defined by:

J = =" [T(-,e)].

Putting this together with the Codazzi-Mainardi equation, we deduce the second Einstein
constraint equation:
divpk — d (Trp K) = J.

In particular, in the vacuum case with vanishing cosmological constant, we have:

divpk — d (Trp K) = 0.
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Exercise 3.7. Recall the Schwarzschild metric in Painlevé-Gullstrand coordinates (Ex-
amples 7, 9, 12) is a Lorentzian metric on M = R x (0,00) x S? given by:

2 2
g=— <1——n1>1ﬁ2—k2\/NQduh“+-dr2%—rggs%
T T

And let us choose the local basis of vector fields {e,}, as in Examples 7, 9. Let ¥ =
(0,00) x S§? ~ R3\ {0}. Consider the map

Yy = M
(p, X) = (0,p,X).

?
In other words, the suface 2(X) is the surface {t = 0}.
a) Show that the future directed unit normal of +(X) is given by:

0 2m 0
N=ey=— 22,
co ot r Or

b) Show that the induced metric h is the canonical flat metric on R3 \ {0}:

h = dp® + p*gse.

1 /2m 2m
k== ——dp® + p\| == gse.
20V p p

[Hint: consider k(b;, b;) for a suitable basis of vector fields on ¥ such that +*b; = e;,
and use (2.13)]

c) Show that:

d*) Under a change of coordinates = pX from polar to Cartesian coordinates, you are
given that h and k become:

h = 6;dz"dx?

2m 3wix; Co
k= w < i T3 \zc]2> dx'da’ .
Show that:
K2 = (Trph)® =0,
and

divpk — d (Trpk) = 0.

[Hint: Note that since h is the canonical metric on R3 in Cartesian coordinates,
(divhk)j = 87,,1{?” and (df)l == alf]
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3.4 The Cauchy problem

For the purposes of studying the vacuum Einstein equations, we can summarise the results
of the previous section in the following theorem:

Theorem 3.4. Let (M, g) be a smooth, time oriented spacetime satisfying the vacuum
Einstein equations with vanishing cosmological constant:

Ricy = 0.

Suppose that ¥ is a smooth three dimensional manifold and that 1 : X — M is a smooth
embedding whose image is everywhere spacelike. Then the metric h and second fundamental
form k induced on X by @ satisfy the Einstein constraint equations:

0= Ry, — |k} + (Trpk)?, (3.20)
0 = divyk — d (Trpk) . (3.21)

We want to consider the Cauchy problem for Einstein’s equations. Loosely, we wish to
specify data on some initial hypersurface, and then construct a solution which represents
the evolution of that data into the future. Recall that in the case of a field v satisfying
the wave equation, the correct Cauchy data on a spacelike hypersurface, ¥, was 1|y
and Nx|s,. In the case of Einstein’s equations, a natural candidate to take the place
of 1|y, is h, the induced metric. By considering Example 13, we can see that a natural
candidate to take the place of Nyl is k, the second fundamental form. Theorem 3.4
gives some necessary conditions on h and k£ such that they represent initial data for
Einstein’s equations. We shall see that these conditions are in fact sufficient.

Definition 18. An admissible triple (¥, h, k) consists of a smooth 3—dimensional manifold
¥, equipped with a Riemannian metric h and a symmetric (0,2)—tensor k satisfying the
Einstein constraint equations (3.20), (3.21).

Examples of admissible triples include? (R?,d,0), the data induced on the surface
{t = 0} in the Minkowski spacetime, as well as the example constructed in Exercise 3.7.

You should think of an admissible triple as giving the ‘initial conditions’ for Einstein’s
equations. In contrast to the case of the wave equation, there is a subtlety in defining
what we mean by a solution with this initial data. This comes about because we don’t
know a priori the spacetime manifold M on which we shall solve Einstein’s equations.
The correct notion of solution is given by:

Definition 19. Suppose (X, h, k) is an admissible triple. A development of (X, h, k) is a
Lorentzian manifold (M, g), together with an embedding map 2 : ¥ < M such that

i) g satisfies the vacuum Einstein equations in M:

Ricy =0

SHere § = 0ij dz'dx? is the flat metric on R3
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ii) h is the metric induced by g on 3 under the embedding map 1.
iii) k is the second fundamental form of the embedding 1.
iv) M is the future Cauchy development of +(X): i.e. DT(X) = M.

By ‘solving’ Einstein’s equations with a certain admissible triple as initial data, we
mean finding a development of the triple. Before we are able to state the well posedness
of Einstein’s equations, we need one more ingredient. In order to say that a PDE problem
is well posed, we not only require that a solution exists for given initial data, but that
moreover it is unique. In the case of Einstein’s equations, this is somewhat subtle, because
the ‘solution’ we construct is a geometrical object. We know that the same geometric
object can be described in several different ways.

To motivate our next definition, consider M = (0,00) x (—m,7) with coordinates
(r,0), endowed with the metric

g = dr® +r2db>.

On the other hand, consider M’ = R?\ {z < 0,y = 0} where (z,y) are the usual
coordinates on R2. We endow M’ with the flat Riemannian metric:

g = dr* + dy’.
There is a map between these two manifolds, given by:

7 M = M
(r,0) +— (rsin@,rcosf)

The map 7 is smooth, bijective and has smooth inverse, hence j is a diffeomorphism.
Moreover, we can verify that

79 =g
We say that 7 is an isometry. Although (M, g) and (M’,¢') are different manifolds, we
nevertheless think of them as describing the same underlying geometry, but in different
coordinates.

The solutions that we construct to Einstein’s equations will be unique up to transfor-
mations of this kind, and extensions.

Definition 20. An isometric embedding from (M, g) to (M’,¢’') is an embedding j :
M — M’ such that 7*¢' = g.

We are now ready to state the main result of this course:

Theorem 3.5 (Choquet-Bruhat-Geroch). Given an admissible triple (X, h, k), there

exists a unique development (M, g,1) which is maximal in the sense that if (M, g,7) is
any other development of (X, h, k), then there exists an isometric embedding 3 : M — M
such that:

Joi1=n1.
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The full proof of this theorem is beyond the scope of the course, but is contained in
the book of Choquet-Bruhat*. We shall offer a sketch of the proof, which follows a similar
structure to our discussion of the linearised problem around Minkowski space.

Sketch proof: 1. We assume there exist global coordinates® (z*) on ¥ and extend them
to coordinates (¢,z") on M := (—¢, €) x X. Recall from Theorem 2.9 that Einstein’s
equations in M are equivalent to the system of quasilinear wave equations:

1 o 9%9ov
_ ko "+ P,,(g9,09) =0 3.22
59" oigga T Fov(9,09) (3.22)

provided that the wave coordinate condition holds:

re,#=0. (3.23)

2. By some standard results in the study of nonlinear wave equations, there exists a
unique solution to (3.22) with the initial conditions:

glieg = —dt* + h (3.24)
Ogli—g = —2k (3.25)

provided € > 0 is sufficiently small. Notice that g|,_, is Lorentzian by construction.

3. We define F'* :=I'“,*, and then show that if (3.22) is satisfied, then F'* satisfies a
(linear) system of wave equations:

O,F® + (A- F)* =0,

By similar methods to those used in the proof of Proposition 1 we can show that if
F|,_y = 04F*|,_y =0, then F* = 0.

4. We next demonstrate that the condition F¢|,_, = 0;F|,_, = 0, then F* =0 is
equivalent to the constraint equations holding on A, k. By restricting to the future
domain of dependence of {0} x ¥ we have constructed a development of (X, h, k).

5. To establish local uniqueness we show that given any development of (X, h, k) it
is possible to construct wave coordinates such that (3.24), (3.25) hold. By the
uniqueness of solutions of (3.22), we deduce that given any two developments there
is a neighbourhood of the initial surface in each which can mapped onto one another
by an isometry.

6. The final stage is to establish the existence of a single mazimal development.
Historically, this was the final part of the result to be established. The issue here is
that while we know that in a neighbourhood of ¥ two developments are isometric,
constructing a larger development in which both embed isometrically is difficult.

4“General Relativity and the Einstein Equations”, Yvonne Choquet-Bruhat, Oxford 2009. See Chapter
VI, §7, 8,9
5This is not a significant restriction by the finite speed of propagation property for hyperbolic PDE.
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n J2

(M1,91) . (MQ’Q?_)A_.“

/\

(2, h, k)

Figure 3.1 Two developments (M, g;,;) of an admissible triple, and the maximal development

(M, g,2).

The situation is shown in Figure 3.1. Here we have two developments (M, g1,11),
(Ma, ga,12) of an admissible triple (3, h, k). By the previous part we can deduce
that there is a neighbourhood U; C M;j of 11(2), and a neighbourhood Uy C Mo
of 19(X) which are mapped isometrically onto one another by 7. The uniqueness
theorem states that there exists a larger development, (M, g,1) such that (M;, g;)
is isometrically embedded into (M, g) by the maps j;. Moreover, the map 7; o 1;
which embeds ¥ into M should be the same as 1.

In the original paper of Geroch and Choquet-Bruhat® the construction of the
maximal development was accomplished by an appeal to Zorn’s Lemma (and hence
the full Axiom of Choice). Recently the proof has been ‘deZornified’ by Shierski’. [

While the theorem establishes the existence of a maximal development, it doesn’t tell
us anything about what the obstacles to extending the solution beyond that development
are. For example, the maximal global development of (R3, 4, 0), is the whole of Minkowski
space to the future of {¢ = 0}: a future complete manifold (i.e., any future directed
timelike curve can be extended indefinitely). By contrast, the maximal development of
the data constructed in Exercise (3.7) is the region of the Schwarzschild space-time in

5“Global aspects of the Cauchy problem in general relativity”, Yvonne Choquet-Bruhat, Robert
Geroch, Comm. Math. Phys. 14 (1969) p329

"“On the Existence of a Maximal Cauchy Development for the Einstein Equations - a Dezornification”,
Jan Sbierski, arXiv:1309.7591
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Painlevé-Gullstrand coordinates to the future of {¢t = 0}. This is not future complete, as
future directed timelike curves can meet the curvature singularity at » = 0.

Much of the current research activity in Mathematical Relativity concerns the global
properties of solutions which start from initial data ‘close’ to the data of an explicitly
known solution. For example, one of the crowning achievements of recent work is the
following result:

Theorem 3.6 (Christodoulou-Klainerman, ’92). Suppose that we start with an admissible
triple (R3, h, k), with
1A = 6l| + [IKll, <

for € > 0 sufficiently small, where ||-||,,||'||, are suitable norms®. Then the mazimal

development is future complete, and asymptotic to the Minkowski spacetime.

This result is important because it asserts that for a sufficiently ‘small’ gravitational
field, i.e. a field which is initially sufficiently close to flat space, no singularities form in
the evolution. In particular, no black holes are formed.

By contrast, an analogous result is not known for the case of the Schwarzschild black
hole discussed above. It is believed that data sufficiently close to the Schwarzschild data
constructed in Exercise 3.7 will evolve to give a spacetime containing a region similar to
the exterior region, r > 2m, of Schwarzschild, however this is at present an unproven
conjecture.

8In fact, weighted Sobolev norms.



Appendix A

Some background results

A.1 Linear algebra

A.1.1 Vectors and co-vectors

Suppose we have a vector v € V, belonging to an n—dimensional real® vector space and
let B := {e;}i—1,.n be a basis for V. We can write

n
i
v = g v'e;,
i=1

where v* € R are the uniquely determined components with respect to the basis B.
The dual space V* is the n—dimensional real vector space of linear maps w : V— R.
Such maps are sometimes called one-forms or covectors. We can define the dual basis
B* = {ei}i:17,,,n uniquely by the requirement

ei(ej) zéij, i,j=1,...,n,
where
A 1, i=j
i ) ;
o {0, i+,

is the Kronecker delta. For any w € V* we can write

n

i

w= E w;e’,
i=1

Yor simplicity. Similar constructions exist over other fields.

84
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so that

A.1.2 Tensors
The tensor product

Suppose V, W are real vector spaces of dimensions n, m respectively. From them, we can
form a new vector space: the tensor product, denoted V ® W. The space V ® W consists
of formal sums of the form

V1 QWi + ...+ Vg Q wy,

with v, € V, w, € W for p=1,...,k. The tensor product ® is bilinear, obeying:

v® (wi + Awz) = v @w; + A (v®ws),
(V1 + A\v2) QW =v2 @ W + A (v2 @ w3).

If {ei}i=1,..n and {fa}a=1,..m are bases for V, W respectively, then we have a natural
basis:

{ei ® fa}i:l,...,n; a=1,...m
for Ve W.

The space T7,(V)

From a real n—dimensional vector space V', we can naturally form a (p+ ¢)n—dimensional
vector space TP, (V') by taking the tensor product of p copies of V' and ¢ copies of V*:
°,(V) =V - VeV e ---V*.

~
p copies q copies

An element of T%,(V) is called a (p,q)—tensor, or a tensor of rank (p,q). A basis
B :={ep}i=1,.n induces a basis on T?,(V):

qu:{eil®"‘®€ip®6j1®"‘®6jq}

ik:jlzlvnan'
With respect to this basis, we can write any (p, ¢)—tensor T' € T?,(V) in terms of its
components:
n . . . .
T = Z T“---ijlqueil R ---®ej,® ell®.---®ell,
ilv"'vipvjl:"'qu:l
Often the distinction between a tensor and its components is elided, so one will speak of
‘the tensor T;;’.
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A.1.3 Change of basis

Suppose we have a basis B := {ei}i:17.."n and we wish to instead work with a new basis,

say B :={e}},_, . By virtue of the fact that B’ is a basis, we must be able to write

n
e, = Z e;Aj,', (Al)
j=1
for some real numbers AJ; with 7,5 = 1,...n. Equally, we can write
n ~
e, = Z erAF;, (A.2)
k=1

for some other real numbers A; with i,j = 1,...n. Substituting (A.1) into (A.2) we find
e;, = Z <Z ek/~\kj> Ajz' = Z ekKijji
j=1 \k=1

k,j=1

Since e; are linearly independent, we conclude that
n ~
D AN = 6"
j=1
A similar calculation inserting (A.2) into (A.1) shows that
n ~
> AN =6t
j=1

so that thinking of Aij and Kij as the components of a matrix, we have A~ = A. In
this way, we can identify the set of basis transformations with the group GL(n,R) of
invertible linear transformations (or equivalently matrices) on R™.

Suppose that v € V has components v* with respect to the basis B, and components
v'" with respect to the basis B’. We can relate these two sets of components by

n n
v = E eV = E e;Ajﬂ)Z = g e;v”.
i i=1

ij=1

Using the linear independence of B’, we deduce
V=3 A (A.3)
i=1

so that the components of v change by matrix multiplication on the left by A (thinking
of v* as a column vector).
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Now let’s look at how the dual bases transform. Associated to B and B’ are the dual
bases B* = {e'};,—1_ ., and B"* = {€/'},—1__, defined by
ei(e]-) zéij, e’i(e;.) zéij, ,j=1,...,n.

I claim that the dual bases are related by the relation:
. n . .
e = Z A'jel.
j=1

To show this, it is enough to check that e’ (e};) = ¢’;. We have:
. n . n ~
6/2(6;) = ZAZkek <Z elAlj) s
j=1 k=1

=Y AAjer(e),
k=1

=) AAR =6
k=1

We can invert the relationship between the bases using the fact that A is the matrix

inverse of A, to find:
n
e = E A e,
i=1

Suppose that w € V* has components w; with respect to the basis B*, and components
w'; with respect to the basis B’*. We can relate these two sets of components by

n n

. — L

w = E wie' = E wil'je’ = E wjej
i ij=1 i=1

Using the linear independence of B’*, we deduce
n ~ .
U.)/j == ZMAZ]’, (A4)
i=1

so that the components of v change by matrix multiplication on the right by A (thinking
of w; as a row vector).
Extending these arguments to the space T%,(V'), we deduce

Lemma A.1. Under the change of basis (A.1), the components of a tensor T' € TP, (V)
transform according to:

n
/%1 ...0 § : ky...k i ip. Al Al
T pjlqu = Tr pll...lqA 1k1 A PkpA 1j1 A qjq_
k1,.kp,l1,..lg=1
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We say that an upstairs index is covariant and a downstairs index is contravariant,
reflecting the different transformation laws for the two types of index under a change of
basis B for V. For each space T%,(V'), the transformation law gives a representation of
the group GL(n,R).

Exercise A.1. a) Suppose that a tensor T € T (V) has components T%; = A\§’; with
respect to a given basis B. Show that T has the same components with respect to
any other basis. Deduce that the Kronecker delta is invariant under a change of
coordinates.

b) Suppose that v € V, with components v and w € V* with components wj. Show that
the numbers
T = v'wj,
transform as the components of a (1,1)—tensor. In this way we can build tensors of
higher rank from lower rank tensors.

¢) Suppose that T' € T%(V) has components 7;;. Show that the numbers

Tij = Ty,
transform as a (0, 2)—tensor. Deduce that
1
2
transform as the components of (0,2)—tensors. We call the tensors with components
T;;) and T};;; the symmetric and antisymmetric part of T" respectively.

1
Tiijy = 9 (Tij +Tyi), and Ty = 5 (T — Tji)

Contracting indices

Let’s suppose we have a tensor T' € T'5(V), so that its components can be written Tijk.
Let us consider the following set of numbers:

n
Sk = Z T]jk-
j=1
Now, let us see how S; transforms when we change our basis. We have

"o § : i NG AT
T jk = qu'rA pquA k>
P,gr=1,...n

so that

n n
Spi=> Tp= > TPuMN, AN,

Jj=1 Jpsq,r=1
n n
T T
= g quréqu = g TpprA ks
p,q,r=1 pr=1

= zn: S, A"}
r=1
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In other words, the set of numbers S}, transforms in the same way as the components of
a covector. This means that the map

n n
E lekei Rel Qe — E Tzijej,
i,5,k=1 1,5=1

is defined independently of the basis with respect to which we express the tensors. We
can calculate the sum over components in any basis that we like, and we will still have
the same covector as a result. This map is known as a contraction over indices. More
generally we have

Lemma A.2. Suppose T € T?,(V) has components T’Al"'ipjlqu with respect to some
basis B for V.. The numbers®

n
U1 eeeyiryennylp N — i1..0p S
T Jleesdssendq Z T Jl--qué Js»
ir,Js=1

transform in the same fashion as the components of a (p — 1,q — 1)—tensor. As a result,
this defines a natural map TP (V) — TP~1,_1 (V) which does not depend on the choice of
basis. This map is called ‘contraction of the r’th covariant and s’th contravariant indices’.

Summation convention

If we examine the various formulae that appear in this section, we will notice certain
patterns. In particular:

e Whenever an index appears exactly once on the left hand side of an equation, the
same index appears exactly once on the right hand side, and this index is not
summed over. These indices are called ‘free indices’.

e Whenever an index appears exactly twice, it occurs once in the upstairs position
and once in the downstairs position and is summed over from 1 to n. These indices
are called ‘dummy indices’.

e No index appears more than twice.

These features are the basis for a very powerful notation known as Einstein’s summation
convention. The basic idea is very simple: we follow the rules as stated above, and we
simply leave out any summation signs. Since the summations only appear when we see
a repeated index pair with one up and one down, we can always put them back in if
we want to. The great power of this convention is that so long as we stick to the rules,
the objects we form will always have predictable transformation rules under a change of

24, means omit this index
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basis®. For example, if T € T3;(V) and S € T(V), then
P = T]lejk = Z TjlejIm

jk=1

transform as the components of a covector.

A.1.4 Metric tensors

When looking at vectors on R™, a useful concept is that of the inner product (sometimes
called the dot product). If we take B to be the canonical basis for R™, then the inner
product of two vectors v, w € R" is

n
vVow = E v'w'.
i=1

It would be nice to write this using summation convention, however we have the problem
that both indices are upstairs, so we can’t simply drop the sum. To fix this, we introduce
a new (0,2)—tensor, g, called the metric tensor. We define g to have components with
respect to the canonical basis:

_J1 i =7,
Notice that under a change of basis g;; will change in general. This is in contrast to 52‘],
which is the same with respect to any basis. They are different tensors, even though in

this basis it looks like they have the same components: the position of indices matters!
Having defined g, we can write the inner product of two vectors as

v-w = giv'w’.

More generally, we will say that a metric tensor is a symmetric, non-degenerate,
(0,2)—tensor. A (0,2)—tensor is symmetric if g;; = gj; and non-degenerate if

gl-jviwj =0 for all w/ = o' =0.

This condition is equivalent to requiring the matrix with components g;; to be invertible.
We denote the components of the inverse of g;; by ¢g*/. These satisfy

97 gk = grjg’" = 0. (A.5)

Exercise A.2. Verify that if the numbers ¢ are the unique solution of (A.5) then they
indeed transform as the components of a (2,0)—tensor. This tensor is called the cometric.

3In this regard, summation convention is similar to Newspeak:

“In the end we shall make thoughtcrime literally impossible, because there will be no words
in which to express it.”

1984, George Orwell
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The metric tensor allows us to identify V' and V* as follows. An element v € V with
components v’ is identified with the element v” with components

v; 1= gijvY.

Similarly, an element w € V* with components w; is identified with the element w! € V
with components
w' = g% wj.

The notation f, b is inspired by musical notation and is designed to recall ‘raising’ and
‘lowering’ an index. The identification between V and V* induced by g is occasionally
called, somewhat whimsically, the musical isometry. This obviously extends to higher
rank tensors, and allows us to identify elements of TP,(V') with elements of T% (V) so
long as p+ q = p’ + ¢. By convention, when writing the components of two tensors
identified via g, we use the same core letter, relying on the raised and lowered indices to
indicate which space the tensor belongs to. When we have a metric tensor, we will often
speak of a rank k—tensor, without specifying the index structure.

A.1.5 The orthogonal groups
Given a metric tensor, g, we naturally have a bilinear form on V', defined by
g(v,w) = gijv'w’ = viw; = vw'.

By a Gram-Schmidt type of process, it is possible to construct a basis B = {e;}i=1,..n
such that for some r € {1,...,n + 1} we have

—1 1=17, jJ<r,
g(eiaej) = 0ij = 1 i = j7 .] > T, (A6)
0 i#j.
Exercise A.3. Adapt the Gram-Schmidt process to show that there always exists a basis
such that (A.6) holds.

We call such a basis, B, an orthonormal basis. With respect to an orthonormal basis,
the metric tensor g (thought of as a matrix) is diagonal, with entries +1. The number of
positive and negative signs is fixed, independent of which orthonormal basis we choose,
by Silvester’s law of inertia. The number of positive and negative signs is known as the
signature of the metric, and is usually written as (+, +, +) or (—, —, 4+, +), or alternatively
as (r, s), where r is the number of negative signs and s the number of positive. There are
two cases that are most often studied. If all entries are positive, we say the metric has
Riemannian signature, and in this case it defines a positive-definite inner product on V.
If we have one negative entry and the rest positive, or one positive and the rest negative,
we say the metric has Lorentzian signature. This is the case of interest for special and
general relativity.

Exercise A.4. Consider R? with its canonical basis. Find an orthonormal basis for the
metric whose components are given by

912 = g21 = g33 = 1, all other components 0.
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and write down the signature of the metric.

Having established that every metric admits at least one orthonormal basis, a natural
question arises concerning other orthonormal bases. Suppose we have a basis B with
respect to which g has components given by (A.6). Let B’ be a new basis which is also
orthonormal, and suppose Aij is the matrix corresponding to this change of basis. Then
by the transformation law for components of 7% (V'), we have that

gy = NN g,

so that if g;; = gij, we deduce:
9ij = Kki/ngkz- (A7)

Exercise(x). Show that (A.7) holds if and only if:
o ARAL
gij = NN jgr, (A.8)

If A%; satisfies either (A.7) or (A.8), we say that the corresponding transformation
is orthogonal. Orthogonal transformations form a group, which can be identified with
a subgroup of GL(n,R). We denote this group by O(r,s), where (r, s) is the signature
of the metric tensor g. In the case that r = 0, we have O(0,n) = O(n), the standard
orthogonal group. To see this, we note that

E Al T
A% N o = (A A)ij.
The group at the heart of Special Relativity is O(1, 3), which is sufficiently important
that it has its own name, the Lorentz group.

A.2 Review of differentiation in R"

We will review some material about differentiation, and fix some notation that will
(hopefully) be familiar if you attended the Manifolds course.

Suppose U is an open subset of R™ and suppose we have a function f € C1(U). This
implies that at each point in @ there exists a linear map df|, : R” — R such that if
V € R" is any vector, and s is sufficiently small, we have

fx+sV)=f(x)+s df|, V + ofs).

The linear map df|,, is called the differential of f at x. Geometrically, we should think
of the vector V' in this formula as having its base at &. We call the space of such vectors
T,U, which is isomorphic, as a vector space, with R3. Since df| o 1s a linear map from
T,U to R, it belongs to the dual space of T,U, which we denote T;U. Given any vector
V € T, U, we can define the directional derivative of f along V' at x to be:

f@+sV)— f(@)

S

Vifl(®) = df|, V = lim
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A.2.1 Working in coordinates

Now, suppose {e;}i=1,.., is a basis for R”, and let {el }i=1,...n be the dual basis for (R")*,
defined by 4 '
lef) = 0.

We define the functions

for i =1,...,n. It follows* that we can write:
x=z'e;. (A.9)

For any vector V € T;U, we have

In other words, we have dz® = €.

Now consider a function f which is continuously differentiable in a neighbourhood of
x € U, and let us look at V[f](x), the directional derivative of f along V. We can write
V = V'ie;, so that

Vifl(x) = dfl, (Viei) = V' df|, (e:) = V'eil f](). (A.10)

In other words, to calculate the directional derivative along an arbitrary direction, it is
enough to know the three directional derivatives e;[f](x). These directional derivatives
are useful enough that we give them a special symbol. We write

0
ozt

d
fl@) = elf)(@) = 5 fw+ se)
& s=0
This of course agrees with our usual notion of partial derivative. We can go further
though, and declare that the object 8?& is itself a vector, which we can identify with e;
i.e. we have:

We will often find it useful to write as shorthand:
0
ori %

Of course, we have:

d%l(aj) = (51]
Returning to (A.10), we write

of
ozt

dz'| (V)

T

VIfl(z) = V'eilfl(z) = '(V)ei[f](x) =

4Check this. You may need to refer to §A.1
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so that we can write
of

= 2L dgt
&le

df |

Because we have respected the Einstein summation convention, the right hand side of
this formula is independent of the choice of basis that we originally made (as, of course it
must be).

Exercise A.5. a) Suppose that we consider a new basis {e}} for R3. Show that the set
of numbers
of

oxt’

transform in the same way as the components of a co-vector.

b) Fix & € U and suppose that V., W € T, U are two vectors such that for any f € C*(U)
we have

Show that V = W.

A.3 Differential geometry

We will briefly review the basic definitions of a manifold, the tangent bundle and higher
rank tensor bundles.

A.3.1 Manifolds

Definition 21. A C*-atlas of a second countable, Hausdorff, topological space M is a
collection of charts {(Un, po)} which satisfy:

i) Each U, C M is an open subset of M, and the U, cover M.

ii) ¢q is a homeomorphism from U, onto an open subset of R"™.

iii) If U, NUs # 0, then

Pap =030 0o 0o Ua NUG) = 05 (Us NU)

is a C*—diffeomorphism between subsets of R™, that is to say that gogé exists and

both ¢,3 and (p;é are C*-functions on their respective domains. The functions ¢,z
are called transition functions.

We say that two C*-atlases {(Us, ¢o)} and {(Va,¥a)} for M are compatible if their

union is again a C*-atlas. Clearly compatibility defines an equivalence relation.

Definition 22. A C*-manifold is a second countable, Hausdorff, topological space M,
equipped with an equivalence class of C*-atlases. The dimension of the manifold is n,
where we understand the charts as mapping into R™.
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We can define in an exactly analogous way, a smooth (C™) or real analytic® (C%)
atlas (and hence manifold) by requiring that the transition functions be smooth or real
analytic diffeomorphisms between open subsets of R". We will always assume that k£ > 1,
which means that objects such as the tangent space are well defined.

Obviously if we have a C*-manifold, we can always extract from it a C* -manifold for
k' < k by picking a representative C*-atlas and considering it’s equivalence class among
C* -atlases. There is a pitfall for the unwary in that these two manifolds, although based
on the same topological space, are not the same. It is, however, common practice to leave
the regularity of the manifold unstated in many circumstances so one should be careful.

Example 14. Let U C R” be an open set with the subset topology. This is certainly a
second countable, Hausdorff, topological space. We can equip U with a trivial C*-atlas,
given by {(U,id)}. Thus U, with the equivalence class of atlases defined by the trivial
atlas, is a real analytic manifold.

Example 15. We define S* to be the second countable, Hausdorff’, topological space
R/~,, where
Ty = dn€Zst. x=y+ 2mn.

We can define an atlas as follows. Let 0 < o < 2m. We set Uy, = S1 \ [a]~,, and define

Do - U, — (0,27)
[z]~, — 00—«

where 6 is the unique real number satisfying f~.x and o < 6 < «a + 27w. Suppose
0 < a<a <2r. We have that

Yo Ua NUg) = (0,27) \ {a' — a}
g Ua NUp) = (0,2m) \ {27 + a — '}
and

s+2r+a—ad 0<s<ad —a,
s—ao 4+« o —a<s<2m.

Pap(s) = {

This can be easily verified to be a real analytic diffeomorphism, so that &7 = {Ua, Pa }ac(o,27)
is a real analytic atlas for S'. Taking .7 to define an equivalence class of C*-atlases, we
can make S! into a real analytic manifold.

A.3.2 Mappings between manifolds, and their derivatives
Smooth functions

Suppose that we have two manifolds M, N, which are both at least C*-regular” and are
equipped with representative atlases {(Ua, ¥a)}, {(V3,%3)}. Consider a function:

fM—=N.

5A function f is real analytic if there is a neighbourhood of every point on which f can be expressed
as a convergent Taylor series.

Syou should check that this is true

"From now on, we’ll abuse notation and allow ‘k = 0o’ and ‘k = w’ in statements like this.
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We say that f is C*-smooth if for any a, 3, the function

Yao fopy' 1 Us — Vg

is C*, understood in the usual way for maps between subsets of R” and R™. We denote

by C*(M;N) the set of all C*-smooth maps from M to N.

Exercise(x). Show that this definition is independent of the choice of atlases. That is, if
we choose a different atlas {(U., ¢.,)} for M which is compatible with {(Uq, ¢a)}, our
definition of C*(M;N) agrees for both.

Exercise A.6. a) Show that the identity map on a C*-manifold, M, always belongs to
CH(M; M).

b) Show that if f,g € C*¥(M;R), we have fg € C*(M;R), where we define the product
pointwise fg(p) = f(p)g(p).

c¢) Suppose My, Mg, M3 are all at least C* regular, and that f € C*(My; Ms), g €
Ok(Mg;M;J,). Show that go f € Ck(./\/h;/\/l?,).

d) Let M be a C*¥-manifold of dimension n and let 7¢ : R” — R be the projection onto
the i coordinate. Suppose that (Us, @) is a chart. Show that

wg:wio%:u&—m
is C*-smooth.

Example 16. Take S' and R? with their real analytic structures as previously defined.
We define a map
f St — R?
[*]~, + (sinz,cosz).
First, note that this is well defined regardless of which representative z for [z]., we
choose. Now consider the functions

ido fopy! : (0,2m)
0

- R%
—  (sin(f + «), cos(0 + «)).
which are clearly real analytic. Thus, f € C¥(S!;R?).

The tangent and co-tangent space at a point

Now that we have defined our C*-smooth functions, we can define the tangent vectors
to the manifold M at a point p € M. There are various ways of doing this, some more
concrete than others. We’ll give the definition here, and then show how this definition
fits with our intuition from the case of R™.

We say that a C*-smooth map v : (—€,e) — M is a curve in M. Fix p € M. We
define the tangent space at p, T,,,M to be the space of curves in M with v(0) = p, modulo
the equivalence relation:

_ %[fofm] (1) for all f € C*(M;R).

d
~ .f _—
T~y 1 dt [f © ’Yl] (t) o

t=0
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Each element of T, M (i.e. each equivalence class of curves under ~) is called a tangent
vector at p, and we write [y]. = 4(0). For any tangent vector V' € T, M, and function
f € C*(M;R), we define the directional derivative of f along V at p to be:

d

VIAle) = g lf el

for any ~ such that 4(0) = V. This is a useful way to think of a tangent vector at p. It is
a direction in which we can differentiate a function.
We can endow T, M with a vector space structure using the following result:

Lemma A.3. Let (Uy, o) be a chart with p € U,. The chart induces a canonical
identification between T, M and R™.

Proof. Let us set ¢qo(p) = . Suppose we are given two curves 71, y2 with 7;(0) = p. We
can use the fact that ¢ ! o ¢, = idy, to see that

for all f € C*(M;R)

= C1rol()

T iromie

t=0 t=0
holds if and only if
d —1 d —1 k
%UO@Q ocpao'yl] (t) :%[fogoa ocpao*yQ] (t) for all f € C*(M;R)
t=0 t=0

which is true if and only if

& [Fom] @) g C[Fom] () foral Fe O (palalR).

t=0

Where for i = 1,2 we have defined

Vi (*6’6) @a(ua)v
t (

H
= (Paom)(t)

which is a curve in a subset of R™. As a result, we can simply apply the chain rule to
deduce that y; ~ 79 if and only if we have equality of the directional derivatives:

Vilfl(@) = Valfl(=),  forall f € C*(pa(Ua)iR),

where V; = 5(0) are the tangent vectors to the curves 7;, in the usual sense of curves in
R™. By Exercise A.5 this holds if and only if V3 = V4. Thus, with each equivalence class
[v]~ we can associate a unique vector in R™ via the coordinate chart (Uy, ¢o). Conversely,
from V € R", we can construct the curve

Wt) =5 (x+ V)

Which satisfies 3y,(0) = V. Thus, the chart (U, o) induces a canonical identification of
T, M with R, 0
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We deduce from this Lemma the important result:
Theorem A.1. Given ; : (—e¢,e) = M with v;,(0) = p fori = 1,2 and X\ € R, there
exists a curve v such that
d d d
—[for]@®)| = Z[fomnl®)] +A—[forl@®)
dt t=0 dt t=0 dt t=0
for all f € C*(M;R). Clearly, this defines [y]~ = 7(0) uniquely. We then write
Y1(0) + A2(0) == +(0)

This provides us with a definition of addition of tangent vectors and scalar multiplica-
tion. With these definitions, T, M is a real vector space of dimension n.

Proof. We may simply take (with the notation of the Lemma)

V() = v (t)
where ‘ ‘
V' =71(0) + A7,(0).
This gives us a vector space isomorphism between T, M and R". O

We can use this canonical identification induced by (Uy, @) to provide us with a
basis for T, M for each p € U,. We pick a basis {e;}i=1,... n for R" and define

( (f) — (0) = 4, 0).

We say that {( agi)p} is a coordinate basis for T, M.

The reason for this notation is made clear by the following result

Lemma A.4. Suppose f € C*(M;R) and let (Ua, po) be a chart with p € Uy and
©a(p) = x. We define f = f oy, which is a C* function defined on some open set
about x = x'e;. We then have:

CONCE (gj) .

where on the right hand side, we simply have the partial derivative ofj? as a function on
R™.

Proof. We simply calculate using the definitions:

() 1100 = G 1reel

t=0

= L ((Fopa )+ eit)]

of
- (81“) (@).

t=0
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Now that we have the vector space T, M, we are free to construct its dual, and the
higher rank tensor spaces associated with it. Particularly important is the dual space
Ty M, known as the co-tangent space at p. The cotangent space is the natural place in
which the differential of a function lives:

Definition 23. Given f € C¥(M;R), we define the differential of f at p, df|p to be the
linear map
afl,  TpM — R,
V. = VI[fl(p)

We can define a basis for Ty M from the coordinate basis for 7, M by duality. We
define dmi}p € Ty M by the requirement that

“y [(a)] -

arl, = ( ai) e da],

With this definition we have

The tangent and co-tangent bundles

In the previous subsection, we restricted our attention to vectors and co-vectors defined
at a single point. More often than not, rather than considering a vector at a single point
we want to consider a vector field, where we have a vector defined at each point. Before
discussing vector fields, we introduce the tangent bundle. This is the disjoint union over
the tangent spaces at each point in the manifold:

TM= || M= {p} x oM.
peEM pEM

We shall show that a C*-atlas for M induces a C¥~!-atlas for TM, so that the tangent
bundle may be given a manifold structure in a natural fashion. Suppose {(Un, ¥a)} is
a C*-atlas for M. Pick a chart (U, pa). We know that at each point p € U, the chart
induces a canonical identification between 7T, M and R™. A tangent vector V € T, M is
identified uniquely with a vector V' € R"™. We now define:

Us = | | TLM
PEUa
and N
Do - Uy — @als) x R",

V) = (¢alp), V).
Clearly ¢, maps Us bijectively onto an open subset of R?*. We define a topology on
TM by declaring that A C T'’M is open if and only if @, (A ﬂZ;la) is open in R?" for

any «. One can verify that this definition turns 7'M into a second countable, Hausdorff,
topological space.
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Lemma A.5. The collection {(Uy, $o)} is a C*-atlas for TM.

Proof. By construction, ¢, maps U, homeomorphically onto an open subset of R?>" and
moreover the sets U, cover T M. It remains to show that the transition functions are
C*~1_diffeomorphisms between subsets of R?". I claim that we have

Gap ¢ Calla NU) X R = 05U NUy) x R,
(. Va) = (pap(@), Doasl, (Va))-

To see this, recall that if ¢, (p) = x, then V,, € R" corresponds to V' € T, M under the
identification induced by ¢, implies that V' = 4(0) for the curve

v i (—€€) — M,
t a4+ tV,).

Recall also that, going in the other direction, if V' € T, M, then under the identification
induced by g it corresponds to the vector Vg € R™ defined by

LA

t=0

for any 7 : (—¢,€) — M such that v(0) = p and 4(0) = V. Combining these two facts,
we have that

d _
Vi = S(osoga)@+1Va)

t=0

= & (pas)(a + 1V,)

= DSOa,B‘m (Va)~

t=0

Now, since p,g is a C*-diffeomorphism, Dep,g is a C*=1 map into the space of invertible
matrices, thus the transition function @.s is a C*—1_diffeomorphism. O

As a consequence, we have:

Theorem A.2. The tangent bundle naturally inherits the structure of a C*~'-manifold
of dimension 2n.

An entirely analogous construction can be performed in which we glue together the
co-tangent spaces to define the co-tangent bundle, 7% M. This again inherits the structure
of a C*~l-manifold of dimension 2n from M. The only difference in our development
above is that the relevant transition functions are given by®:

Frs ¢ Pl NU) X (B = pltha 1) x (BT,
(a3vwa) = (@a6($)7 DSO;% - (wa)).

8recall that the adjoint of a linear map A : V — V is a linear map A* : V* — V* whose action on
w € V* is given by:
(Aw) [v] = w[Av], for allv € V.
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Glueing together tensor products of T, M and T; M in the same manner, we can construct
tensor bundles of arbitrary rank.

Definition 24. Suppose M is at least k£ + 1 regular.

i) A C*—vector field is a C*—map X : M — T'M such that at every point p € M, we
have X (p) € T,(M). The set of all C*—vector fields is denoted X(M), or X(M) if
the regularity is not obvious from context.

ii) A C*—one-form is a C*—map w : M — T*M such that at every point p € M, we
have w(p) € T;(M). The set of all C¥—one-form fields is denoted X*(M), or X}(M)

if the regularity is not obvious from context.

Notice that there is a natural paring X(M) x X;(M) — C*(M;R) defined by
peEM— wl, <X]p).

We can extend the definition to higher rank tensor fields in the obvious fashion.
Suppose that M is a C*—manifold and that ¢ : Y € M — U C R™ is a coordinate
chart, and pick a basis {e;} for R”. At each point, we have a basis for 7,M given by

{GE),}

2 U = TUCTM
P = (5

For each 7, the map

defines a C*~!—vector field on U, i.e.

0
— € X1 (U).
Ox* k-1t)
This vector field is also sometimes written 0;. In a similar fashion, dual to these vector
fields we have the one-forms

dx' € X5_(U)

We know that at each point p € U that {(0;)p}i=1,....n, {dﬂfi!p}i:l,...,n span Ty M, Ty M
respectively. As a consequence, any C"—smooth (p, q)—tensor field with 7 < k — 1 can be
written locally as

satisfying

0
Q- ®dr'" @ - @ dxt

1/1,...qu Ot
Where TH1Hr,, .+ U — R are C"—functions, called the components of T" in the
coordinate chart (¢,U). Using the chain rule, it is straightforward to demonstrate that
the condition that the components are C” —smooth is independent of the coordinate chart,
provided r < k — 1.

T = TH1s--Hp
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A.3.3 Derivations and commutators
Definition 25. A C"—derivation on the C¥—manifold M is an R—linear map
D :C*TY(M;R) = C*(M;R)

for any s < r, which satisfies

i) D(fi+Af2) =Dfi+ADfa,

ii) D(fife) = iDf2+ faDfi,
for all f; € CSTHM; R), A € R.

A vector field V' € X, (M) naturally defines a C"—derivation. We can check that

DuS) =l = G on|

where 7(0) = p,¥(0) = V), satisfies the conditions above. Conversely, we can identify a
C"—derivation with a C"—vector field. To see this, we first note that any C'—function
in R™ may be written locally about a point y as

9(x) = g(y) + gi(2) (=" — 4/,
where g; € CO(R") with g;(y) = (ifz (y). Now consider a point p € M and a coordinate
chart (U, @) with p € U and p = (o', ..., ©"). We deduce that any function f € C'(M;R)
may be written for ¢ in a neighbourhood of p as:

@) =)+ fild) (¢ (q) — ' (p))

for some f; € CO(M;R) with fi(p) = 8;8131'
formula, we deduce that

» [f]. Applying an arbitrary derivation to this

Df = (¢ = ¢'(p)Dfi + f; D¢’

Evaluating this formula at p we deduce:

DI() = ip)De(p) = 55| (/1D () = VI, 11

where V|p € T, M is the tangent vector given in local coordinates by:

, 0
V|, = D" :
p=D¥'(p) 55 )
Defining V' € X,.(U) by
.0
V= Dp'—
14 ox*
we have
D= Dy.

We have shown that in a neighbourhood of any point there exists a V' such that D = Dy .
Since a vector field is uniquely determined by its action on functions, V' is uniquely fixed
by this condition.
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Lemma A.6. Let M be a C* manifold. Suppose X,Y € X,(M) for r < k. There exists
a unique vector field [X,Y] € X,_1(M) defined by the condition:

(X, Y]f=X(Y[)-Y(X[), VfeC(MR)

Proof. By the previous discussion, it suffices to check that the operation [X,Y]f defines
a C"~!—derivation. We calculate

(X, Y](fi+Af2) = X(Y(fi +Af2) = Y(X(f1 +Af2))
=XYH)-Y(Xfi)+AXY f2) - Y (X [f2)]
= [X, Y]fl —I—)\[X,Y]fz,

using the R—linearity of the action of a vector field on a function. We also find

[(X,Y](fg9) = X(Y(fg)) =Y (X(f9))
=X(fYg+9Y[f)-Y(fXg+9X[)
= fX(Yg)+(Xf)Yg)+ (Xg)(Yf)+gX(Y[)
—[fY(Xg)+ (Y f)(Xg) + (Y9)(X[)+gY(X[)]
= f[X(Yg) -Y(Xg)|+g[X(Y[f)-Y(X[)
= f[X7 Y]g—i—g[X, Y]f

Hence the operation f — [X,Y]f is a derivation, to which we can associate the unique
vector field [X,Y]. O

Exercise(x). Working in a coordinate patch, U so that we can write

0 0
X=X"— X=Y"—
oz’ oz’
for X* Y € C"(U;R), show that
QY7 0XI\ 0
XY=(X"—-Y"— | —.
X, Y] < or' or' > I

A.3.4 Immersions and embeddings
Push forward, pull back

For this section, we shall make the assumption that all manifolds and objects that we
discuss are smooth. We return to the situation we considered earlier, where we have two
smooth manifolds N, M, of dimension n,n + d respectively. Suppose we have a function
¢ € C®°(N; M). The mapping ¢ naturally induces relations between various geometric
objects defined on the two manifolds N, M. We start with the pull back of a function by
¢. Suppose f € C®(M;R), we define the pull back of f by ¢, written ¢* f € C°(N;R)
by
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Now let us consider vectors. Suppose X € TN, and that v € C((—¢, €), ) satisfies
~v(0) = p, ¥(0) = X. We can define a curve, 5 € C*®((—e¢, €), M) by:

yi=¢oy
We define the push-forward of X by ¢, written ¢.X € Ty, M by:

$.X =7(0).

Lemma A.7. Suppose that X € X(N), f € C°(M;R) and ¢ € C*°(N, M). Fizpe N.
Then:

X(<Z5*f)|p = [(¢X) f”¢>(p) )
and

f¢*X|¢(p) = ¢« [(¢*f)X]‘¢(p)
Proof. Fix p € N. Suppose that ~ satisfies v(0) = p, ¥(0) = X|p. From the definition of
a vector acting on a function, we have:
* d *
X6l = (6" ) 07(s)

= L(rod)onts)

s=0

s=0

= L ro (o)

s=0

5=0
= (0+X) flop)

For the second part, suppose that g € C*°((M);R), and calculate using the previous
result:

1 (0:-X) gl = FOW)X(6°9)],
= (¢"f) (p) X(¢79)l,
= [(¢*f) X(¢"9)ll,
= ¢« [(QS*f)X]g‘qj(p)
]

Now, suppose that w € T(;(p)/\/l is a one-form. We can define the pull-back of w by ¢,
written ¢*w € TyN by:

[p*w] (X) =w ($X), VX eTN.

These definitions readily extend to allow us to define the push forward of any (p, 0)—tensor,
and the pull-back of any (0, ¢)—tensor. Notice that the push forward and pull-back at
each point p are linear maps between vector spaces.
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Exercise(*). Suppose f € C°(M;R) and ¢ € C°(N, M). Show that:
d(¢"f) = ¢"df.

Notation: Where the choice of map ¢ is clear from context, we will write f* = ¢* f,
Xy = ¢ X, etc.

Definition 26. We say that a map + € C*°(N; M) is a smooth immersion if the push
forward map:

Tk * TpN — T¢(p)./\/l

is an injective linear map for each p € N/. We say that ¢ is a smooth embedding if moreover
1 is injective. In this case, we write 1 : N < M.

If we have that + € C°°(N; M) is an immersion, then for each p € N, we can identify
TN =~ T,y u(N), where T,;,2(N) is a linear subspace of Ty, M.

Canonical immersions and extensions

Lemma A.8 (Canonical Immersion Theorem). Suppose 1 : N — M is an immersion,
and fix p € N. There exist coordinate charts (U, p) and (V,1) for N and M respectively,
with ¢(p) = 0, such that

poropTt eU) — ¥V),
(1,...,2n) = (x1,...,20,0,...,0).

Proof. Let us fix (U, ) to be a coordinate chart for N centred at p, i.e., p(p) = 0. Now
consider any (V,), a coordinate chart for M centred at 2(p), and set f =1 o020 L.
We will denote by (x;)i=1,.n the coordinates on ¢(U) C R", and by (Y4)a=1,..n+d the
coordinates of (V) C R+,

The fact that ¢ is an immersion implies that Df(0) is injective, so by a linear

transformation on R"¢ we may assume

Df(O) = ( Inxn  Odxn )

Now set
h(yly cee 7yn+d) = f(yla .- yn) + (Oa .- 'aoayn+1a ... 7yn+d)a

defined on some neighbourhood of 0 in R*". Clearly h(0) = 0 and Dh(0) = Intdyx (n+d)s
so by restricting the domain to a subset if necessary, we can assume that h is smoothly
invertible. We can easily verify that on a sufficiently small neighbourhood of 0, the map
h=1o f takes (z1,...,2,) to (z1,...,Zn,0,...,0), so by redefining 1 to be 9 o h and
shrinking U,V as necessary, we are done. O

From here, we can derive various extension Lemmas which allow us to locally extend
objects defined on 2(N') to a neighbourhood in M in a smooth fashion. Obviously such
extensions are highly non-unique.
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Corollary A.3. Suppose 1 : N — M is an immersion, and let p € N'. There exists a
neighbourhood W of p in M such that for any f € C*®(N;R) we can find a function
feC®M;R) with f =4*f in W.

Proof. For p € N we have local coordinate charts (U, ), (V,1) centred at p,2(p) such
that 4 is given by the canonical immersion. Pick W & ¢ (i), and define W = ¢~ 1(W).
Let x7 : U — [0,1] be a smooth cut-off function equal to unity on W' and vanishing near
the boundary of ¢(U). We define f = f o1 and finally we set f =0 on M\ V, and

f=fou, for

Fn, - ynta) = XN Wntts - Ynr ) XTW1s - Yn) F(Y1s - Yn).
Here xn : R? — [0, 1] is a smooth cut-off function, equal to 1 at the origin and supported
on a sufficiently small set that
supp (XN (Yn+1, - - s Yntd) XT (Y1, - - -, Yn)) C (V).
[

Let U C N be an open set, and X € X(U). We say that X € X(M) is an extension
of X away from «(U) if X(f*) =+* [)?(f)] in U for any ¢ € C*°(M;R). Equivalently,
X, = X on o(U).

Corollary A.4. Suppose 1 : N — M is an immersion and let p € N'. There exists a

neighbourhood W of p in N such that for any X € X(N) we can find X € X(M) which
is an extension of X away from 1(W).

Proof. Take the same charts as in the previous proof, so that (z*) are local coordinates
on N and (y®) are local coordinates on M. We have that:

n Za
X:ZX&U“

=1

for X i e C*°(U,R). By the previous result, there exists W C N containing p, and
X% € C*®°(N;R) such that :* X’ = X?. Defining X € X(M) by:

i=1
we have the desired extension away from 2(W). O
This allows us to prove the following result

Lemma A.9. Suppose X,Y € X(N), and pickp € N. Let X,Y € X(M) be extensions
of X, Y away from 1(U) for some neighbourhood U of p. Then [)N(, EN/] is an extension of
(X, Y] away from 1(U).
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Proof. We calculate in U:

(FF@) =[F(@)] - [Y([W)T

=x([Fo])-v([x@])
=X (Y (") =Y (X (¢7))
= [X, Y] ()
whence we are done. ]

Diffeomorphisms

We say that the map ¢ € C®°(N; M) is a diffeomorphism if ¢~ exists and belongs to
C®(M;N). A diffeomorphism allows us to identify TpN =~ Ty,y M for all p € N

We can construct a family of diffeomorphisms taking M to itself from a vector field
X € X(M). For this, we require the following result:

Lemma A.10. Let X € X(M), and suppose p € M. Then there ezists a parameterised
curve v € C*((a,b); M), where a < 0 < b, satisfying:

7(0) =D, 7(8) = X”y(s)

This is called an integral curve of X starting at p, and is unique up to extension.

Proof. Take a coordinate chart (¢,U) with p € U, and write X = X* aiz, for X? e

C*(U;R), and set @ o y(s) = z(s) = (2%(s)). The condition on v becomes:

i'(s) = X'op Yx(s)),  x(0) = p(p),

which is an ordinary differential equation, with Lipshitz right hand side, whose solutions
are unique up to extension. By this local uniqueness property, the curve is defined
independent of the coordinate chart, and is unique up to extension. O

Lemma A.11. Suppose that X € X(M) has the property that for each p € M, the integral
curve of X through p, written v, can be extended so that it belongs to C*((—e, €); M) for
some € independent of p. Then the map

Xps o p = 7p(s)

s a diffeomorphism, referred to as the one parameter family of diffeomorphisms induced
by X.

A.4 Matrix Lie Groups

This section is meant to give a very brief introduction to Lie groups. We bypass a lot of
important theory and focus our attention on the matrix Lie groups. As a result, some
of the definitions are not standard, but allow us to get to our goal more quickly. It is
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certainly no substitute for a proper study of the beautiful topic of Lie groups. Think of
the approach here as ‘good enough’ for our purposes.

We'll start by extending the familiar definition of a group to encompass an additional
requirement, that of differentiability.

Definition 27. A group is a set G, together with a binary operation - such that

i) a-be G for all a,b € G [Closure]

ii) (a-b)-c=a-(b-c) for all a,b € G [Associativity|
iii) There exits e € G such that e-a =a-e = a for all a € G |Existence of an identity]|
iv) For each a € G there exists b € G such that a-b=b-a = e [Existence of an inverse|

The identity element is unique, as is the inverse, and we write b=a"'ifa-b=b-a =e.
A Lie group is a group, where the set G has a smooth? structure making it into a
manifold in such a way that the operations - and ()~! are smooth.

The many of the most important Lie groups are groups of matrices:

Example 17. Consider the set GL(n) of invertible n x n real matrices. This is naturally
a group with the group operation of matrix multiplication. Thinking of GL(n) as an
open subset of R™ with the standard real analytic structure, GL(n) is also a manifold
in a natural way. Matrix multiplication and inversion are smooth with respect to this
structure, as can be seen by writing out the operations in components.

In fact, this example (and its subgroups) will be sufficiently rich to cover the situations
that we are interested in for this course. We define in the obvious way

Definition 28. A Lie subgroup of a Lie group G is a subgroup H of G endowed with a
topology and smooth structure making it into a Lie group in such a way that the inclusion
map is an immersion. A matriz Lie group is an embedded Lie subgroup of GL(n).

An important (and deep result) tells us when a subgroup of a Lie group is in fact a
Lie subgroup:

Proposition 2 (Closed subgroup theorem). If H is a subgroup of G which is closed (in
the topology of G), then H is an embedded Lie subgroup of G.

This gives us the following result

Lemma A.12. Suppose that H is a subgroup of GL(n) with the property that for any
sequence A, € H with A, — A € Mat(n x n) component-wise, either A € H or
A& GL(n). Then H is a matriz Lie group.

Example 18. 1. GL"(n) = {A € GL(n) : det A > 0} is a matrix Lie group
2. SL(n) ={A € GL(n) : det A = 1} is a matrix Lie group

Tt turns out that we can assume that the manifold is C* without any loss of generality.
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3. O(n) = {A € GL(n) : ATA = I} is a matrix Lie group

4. The set of matrices A € GL(2) of the form

sinf cos@

A_(cosﬁ —sm@)) 0ecQ,

is a subgroup of GL(2), but not a matrix Lie group.

A.4.1 The matrix exponential

A very useful tool to understand the structure of matrix Lie groups is the matrix
exponential. Before we define the matrix exponential, it’s first useful to introduce a norm
on Mat(n x n), called the operator norm. We define

|| Az||
|Al[,, = sup
P pernz20 |7l

where ||-|| is the usual Euclidean norm. We clearly have that for any non-zero x € R™:
1Az < [|Allgp, [|2]] -
we deduce that
(A + B)z|| < [|Az|| + [|Bz|| < [[Allyp, [[z]] + [[Bllgp, [Iz]|

so that
HA—I_BHop S HAHop. + HBHop. :

so the triangle inequality is satisfied by this norm. The other criteria for [|-[|,, to define
a norm are straightforward to verify.
We can also show by a simple induction that

1A z|| < || Allg,, |l

holds for any x and thus
HAH| ‘op. S HAHZp :

Definition 29. The matrix exponential of an element A € Mat(n x n) is defined to be

oo An
A
k=0
Exercise(x). 1) Show that the sum on the right hand side of (A.11) converges in the
operator norm for any A (and hence with respect to any other norm on Mat(n xn)).
Show also that .
() =t
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ii*) Show that the matrix exponential is a real analytic function Mat(n x n) — GL(n),
where both spaces inherit the canonical real analytic structure of R”Q, and show

that

ietA _ AetA _ etAA
dt

and

6tAesA _ e(t—&-s)A _ esAetA

for t,s € R. Deduce that
(eA)_1 =e A

iv) Show that

1 n
lim <1 + A) = 4,
n

n—00

v) Deduce that if ' : (—€,€) — GL(n) is a C'—curve with ['(0) = I and I'(0) = A, we

have "
lim [F <1>] —e4
n—oo n

With the matrix exponential in our pocket, we are ready to define the Lie algebra of a
matrix Lie group.

A.4.2 The Lie algebra

Definition 30. The Lie algebra h of a matrix Lie group H is defined to be the set of all
matrices a € Mat(n x n) such that e'® € H for all t € R.

Theorem A.5. Let b be the Lie algebra of a matriz Lie group H. Then

i) aehs acTiH, i.e. ais in the Lie algebra if and only if there exists a C'—curve
I':(—€e,€) = H withT'(0) =1 and I'(0) = a.

i1) b is a vector subspace of Mat(n x n), i.e. if a,b € h then a+ \b € b
i11) b is closed under the matriz commutator, i.e. if a,b € b then [a,b] = ab—ba € b

Proof. 1) “=7 is trivial, take I'(t) = e'®. For “<”, we use the fact that I (1) € H for
any t € R and n a sufficiently large integer to deduce that

()] e

for n sufficiently large. We know

lim [F <t>] = ¢l®
n—00 n

which is invertible, so by the closeness of H, we have e'® € H and we’re done.
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ii) Suppose a,b € h and fix A € R. Consider the curve I' : (—e,€) — H given by
T(f) = eteetb
This is clearly C' and we readily calculate that
r0)=1, T'(0)=a+\b,
so that a + Ab € .
iii) Now consider the curve I' : (—e, ) — H given by

eVta o ViNb ,—Vi(a+b) >0

=141 =0
ertbertAae—\/jt(a+b) t<0

This is smooth for ¢ # 0. Expanding for ¢ small and positive, we have
1 1 1
D(t) = [I +Vta + 5m? + o(t)} [I + Vb + §tb2 + o(t)} [I —Vt(a+b)+ Sha+ b)% + o(t)
1
:I+t{2 [a® +b% + (a + b)?*] + ab — a(a + b) —b(a+b)} + o(t)

:I—l—%{ab—ba}—i-o(t)

Noting that we can obtain the expansion for ¢ small and negative by interchanging
t <> —t and a «» b, we deduce that I is in fact C! with I'(0) = 3[a, b].
O]

Thus the Lie algebra of a matrix Lie group is naturally a vector space endowed with
an antisymmetric bilinear operation [,], which moreover satisfies the Jacobi identity

[[aab] >C] + Hb7c] ’a] + [[Ca a] ab] =0

One can abstractly define a Lie algebra to be a vector space endowed with such an
operation, but the concrete realisation as a space of matrices endowed with the matrix
commutator is the most useful for us.

A.4.3 The orthogonal group

As a brief example, we will give a brief treatment of the orthogonal group. Recall
O(n) ={AcGL(n): ATA=1T}.
Let us find the Lie algebra, o(n). Suppose I' : (—¢,¢) — O(n) with T'(0) = I. We have
D)IT({#) =1, te(—¢€e)
so we can differentiate this condition to find

D®)IT) + D) IT () =0, te (—¢e)
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so that, setting t = 0 we deduce that if I'(0) = a € o(n) we must have
al +a=0
so that a is antisymmetric. Conversely, suppose that a is antisymmetric. We have
(eta)T _ pta” _ g—ta _ (eta)—l :

so that €' € O(n). Thus o(n) is precisely the set of antisymmetric matrices.

We should be careful here. Although €' € O(n) whenever a € o(n), not every element
of O(n) can be written as the exponential of an antisymmetric matrix. We know that
if A € O(n) a simple calculation shows that det A = +1. The determinant of a matrix
is a continuous real valued function, so on any continuous curve I' : (a,b) — O(n) the
determinant must be constant. In particular for a € o(n) we have:

det (e“t) =1.

In fact, we can show that by exponentiating elements of o(n) it is possible to construct
any element of SO(n).

Exercise(x). Let

0 0 O 0 01 0 -1 0
a1=|( 00 =1 |, a= 0 00], aa=1 0 O
01 0 -1 0 0 0 0 O

Show that
[% aﬂ = €jjk0k,

where €1, is the totally antisymmetric tensor with €123 = 1. Show also that:

1 0 0
=1 0 cos@ —sinb
0 sinf cosfd
and find similar expressions for €92, €3, Deduce that by exponentiating 0(3) we can
produce a matrix representing an arbitrary rotation, i.e. an arbitrary element of S0(3).
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Bonus material

B.1 Integration in E'® and the divergence theorem

We will need to integrate over surfaces embedded in E'3 and relate these surface integrals
to volume integrals using the divergence theorem in the usual way. We would like the
expressions we write down to be invariant under a change of frame. This is slightly
complicated when the metric has Lorentzian signature. The main issue is that the notion
of outwards unit normal becomes tricky when vectors can have zero norm.

First, suppose we have an open set U C E'3 and that f: U + R is a function defined
on U. Picking an inertial frame {€},}, we naturally have that f : (/) — f(at€,) is a
map from some subset of U CR*toR. We say that f is measurable if f is Lebesgue
measurable. Consider now

1)) = /U Fla)dz

where dx is the standard Lebesgue measure on R*. Now consider a different choice of
inertial frame {€,'}. We define f’: (z'*) — f(a/#€,’), which maps U’ C R* to R. We
have

fl) = J'(Ax)

Where A € O(1,3) is the matrix representing the change of basis. Now, we have

1) = [ P = [ f)laecaidy = [ Foay =111

where we change variables x# = A*,y” and use that |det A| = 1. Thus, we can define

/U fdx = 11f),

and this definition is independent of the inertial frame.

Next, let us introduce the alternating tensor. This is a (0,4)—tensor, defined to be
totally antisymmetric (i.e. antisymmetric under exchange of any pair of indices), and
such that in a given inertial frame we have

€o123 = 1.

113
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Under a Lorentz transformation with metric A#,, the alternating tensor transforms as’

Euvor = (det A)

/
E/Lllo"l'?

so that provided we restrict the transformations to belong to SO(1,3), this tensor is
invariant.

Now suppose that we have a surface ¥ which may be written as ¥ = ¢(U) for a
smooth parameterisation ¢:

g UCR® — XY CE!3
W'y y°) = ¢(yeu
The choice of parameterisation naturally gives an orientation to the surface. At any point,

the ordered set of vectors
op 9p 0¢
oyl Oy?’ o3
defines an oriented basis for TX.

The vector surface measure of ¥ with respect to this parameterisation is the vector
measure (defined on a subset of R3):

Where dy is the standard Lebesgue measure on R3.
For example, suppose we consider the plane ¥ = {t = 0}, which we can parameterize
by the map:
g UcCR® — X cCE!
WLyt y?) = e
so that ¢%(y) = 0,¢%(y) = y*. Then we have that for this parameterisation
sy = dy, dsy =0.

Exercise(*). a) Show that if F': W — U is an orientation preserving diffeomorphism
between subsets of R3 then

VA (B(y))dSE = / VI (o F(y))dSFD.
yeU yeWw

b) Show that if P is the orientation reversing diffeomorphism P : W — U given by
y — —y, then we have

m(z F_ _ 30 (FoP)
/y AN / Vi(Go P(y)dS

Deduce that
| viewas;
yelU

depends only on the orientation of ¥ and not on the choice of parameterisation.

LCheck that you understand why this is!
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With the vector surface measure, we can define the flux of a sufficiently smooth vector
field V' through X:

/V-dﬁ::/ VH(@(y))dS?
¥ yelU

The flux of V through ¥ does not depend on the choice of parameterisation, but it does
depend on the orientation for the surface . By taking a partition of unity to localise 1%
in coordinate patches?, we can define the flux through any oriented surface® ¥ ¢ EM3.

If ¥ is an orientable surface which is everywhere spacelike or timelike, we can define a
scalar measure on X, which we’ll denote by do:

/Efda:/zfﬁ'dg

where N is a unit normal of ¥ with respect to 5 (i.e. n(IN, N) = +1) with the direction
chosen such that N#dS} is a positive measure on U C R? for each parameterisation
respecting the orientation. Notice that if 3 is not either everywhere spacelike or timelike
then this definition does not make sense because a null surface does not have a well
defined unit normal. We still have a perfectly reasonable vector measure, but no scalar
measure.

Theorem B.1. Suppose that V is a vector field on a bounded domain U C EL3, whose
boundary ¥ = OU is piecewise smooth. Suppose also that V* € CY(U). Then we have

/ vV, VHdX = / V-dS,
U b))

where the orientation of X is chosen such that if K is an outwards pointing vector
transverse to X, then

{K7 ‘717 %7 ‘73}
s a positively oriented basis for TpEL?’ whenever {171, ‘72, Vg} 15 a positively oriented basis
for T, .

We shall omit the proof here. It can be deduced from the usual divergence theorem
on R* keeping careful account of changes of sign.

Lemma B.1. With the same set-up as in Theorem B.1, the choice of orientation for X
is equivalent to the requirement that

K*dsSg

is a positive measure on U C R3, whenever @ : U — X is a local parameterisation
respecting the orientation.

2This is a technical point, which can usually be avoided. If the surface ¥ cannot be smoothly
parameterised by a single coordinate patch then we have to write our vector field V as a sum of terms
each of which is supported on a single patch. We can then define the integral of V over the surface by
linearity.

3i.e. a surface with a consistent global choice of orientation
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Corollary B.2. Suppose that V is a vector field on a bounded domain U C EY3, whose
boundary ¥ = 0U is piecewise smooth and can be written as ¥ = Xg U Xy where Xg is
spacelike and Xy is timelike. Suppose also that V* € CY(U). Then we have

/v VEIX = V Nda—/ V - Ndo,

where N is the unit outwards normal.

Notice here that there is a sign change for the timelike surfaces relative to the spacelike
surfaces.

Example 19. Fix an inertial frame for E13. Consider the cylinder C = {a# : 0 < 2% <
1, || < 1}. We have:

/ vV, VX = Vidr — / Vidr + / V -ndodt
C 29=1,2€ B (0) 29=1,z€ B (0) [0,1]x8B; (0)

where B, (x) is the Euclidean ball of radius r centred at  and n, do are the usual outward
directed normal and surface measure of the unit Euclidean sphere.
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Affine connection, 33
geodesic, 35
Levi-Civita, 37
Parallel transport, 34
torsion, 36

Atlas of charts, 94

Cauchy development, 16
Causal future, 16

Choquet-Bruhat—Geroch theorem, 80

Index

Domain of dependence, 16
Doppler shift, 18

Einstein equations

linearised, 65

Einstein’s equations, 63
Embedding, 105

isometric, 80

Energy momentum tensor

Christodoulou—Klainerman theorem, 83

Chronological future, 16
Codazzi-Mainardi equation, 74
Commutator, 103
Constraint equations, 77
linearised, 66
Curvature
Bianchi identities, 55
contracted, 57
Ricci tensor, 57
coordinate expression, 60
wave coordinates, 62
Riemann curvature, 53
Riemann tensor, 54
coordinate expression, 60
Scalar curvature, 57

Derivation, 102
development, 79
Diffeomorphism, 107
Differential, 92
Directional derivative, 92

general spacetime, 49
in Minkowski space, 18
other matter models, 63

Finite speed of propagation

general spacetime, 49
in Minkowski space, 21

Galilean boost, v
Gauss’ equation, 73
Geodesic

of a connection, 35
of a metric, 41

Immersion, 105
Induced metric, 68

Killing vector, 20
Kronecker delta, 84

Levi-Civita connection, 37
Lie algebra, 110
Lie group, 108
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Closed subgroup theorem, 108
Lie algebra, 110
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Lie subgroup, 108 initial data, 78
Lorentz group Painlevé-Gullstrand coordinates, 30
as a Lie group, 10 time orientation, 31
coset decomposition, 11 wave equation, 46
Lorentz transformation, 9 Second fundamental form, 70
Proper Orthochronous, 11 Spacelike
Lorentzian manifold, 24 Surface (Minkowski), 15
Vector (General), 31
Manifold, 94 Vector (Minkowski), 13
Curve in, 96 Speed of light
Differential of a function, 99 Experimental determination, iv
Smooth function between, 96
Tangent bundle, 99 Tensor product of vector spaces, 85
Tangent space at a point, 96 Tensors in T%,(V'), 85
coordinate basis, 98 Contracting indices, 88
Tangent vector, 97 Transformation rules
Matrix exponential, 109 covectors, 87
Maximal development, 80 general tensors, 87
Maxwell’s equations, v vectors, 86
in index notation, 22 Time function, 50
Minkowski spacetime Time orientation
divergence theorem, 115 general spacetime, 31
integration, 113 Minkowski spacetime, 15
Metric tensor, 8 Timelike
Surface (Minkowski), 15
Newtonian gravity, vi Vector (General), 31
Null Vector (Minkowski), 13
Surface (Minkowski), 15
Vector (General), 31 Unit sphere 5™, 27

Vector (Minkowski), 13 Vector field, 101

one-form field, 101 diverg§nce, 44
Orthogonal group, 111 extension, 106

Wave coordinates, 62

Wave equation
basic energy estimate, 3
in R3, 1
of a Lorentzian metric, 42
well posedness, 4

Polar coordinates, 29
Pull back
of a function, 103
of a one-form, 104
Push forward of a vector, 104

Rgmer, iv
Riemannian manifold, 24

Schwarzschild spacetime
connection, 39
Curvature, 58
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