
Chapter 4

Sobolev Spaces and PDE (M)

4.1 Sobolev spaces

4.1.1 The spaces W k,p(Ω)

Suppose Ω ⊂ Rn is an open set. For k ∈ Z≥0 and 1 ≤ p ≤ ∞, we say that f ∈ Lp(Ω)
belongs to the Sobolev space W k,p(Ω) if for any |α| ≤ k there exists fα ∈ Lp(Ω) with:

DαTf = Tfα .

We call fα the weak, or distributional derivative of f and write Dαf := fα. We can
equip W k,p(Ω) with the norm:

||f ||Wk,p(Ω) :=
∑
|α|≤k

||Dαf ||Lp(Ω) .

With this norm, W k,p(Ω) is complete, and hence a Banach space. The Sobolev spaces
are particularly well suited to the study of PDE, and form the starting point for many
modern PDE investigations.

We can think of k as telling us how differentiable our function is, while p tells us
how integrable our function is. Roughly speaking spaces with larger k contain smoother
functions, while spaces with larger p contain less ‘spiky’ functions. We shall see that
(roughly speaking) one can trade smoothness for integrability: a function that belongs
to W k,p(Rn) belongs to certain W l,q(Rn) where l < k and p > q. If k and p are large
enough we can even conclude that the function must be classically differentiable.

We will frame the result as concerning the embedding of W k,p(Rn) spaces. Recall that
a Banach space (X, ||·||X) is said to embed continuously into the Banach space (Y, ||·||Y )
if X ⊂ Y and there exists a constant C such that:

||x||Y ≤ C ||x||X , for all x ∈ X.

Theorem 4.1 (Sobolev embedding theorem). Suppose k > l and 1 ≤ p < q <∞ satisfy
(k − l)p < n and:

1

q
=

1

p
− k − l

n
.
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Then W k,p(Rn) embeds continuously into W l,q(Rn).

If kp > n, then W k,p(Rn) embeds continuously into the Hölder space Ck−
[
n
p

]
−1,γ

(Rn),
where [x] is the largest integer less than or equal to x, and

γ =

{ [
n
p

]
− 1 + n

p
n
p 6∈ Z,

any element of (0, 1) n
p ∈ Z.

Here we have introduced the Hölder space Cm,κ(Rn) which consists of f ∈ Cm(Rn)
such that:

||f ||Cm,κ(Rn) :=
∑
α≤m

sup
x∈Rn

|Dαf(x)|+
∑
α=m

sup
x,y∈Rn

|Dαf(x)−Dαf(y)|
|x− y|κ

<∞.

We shan’t attempt to prove the general Sobolev embedding theorems, but will establish a
special case later on.

4.1.2 The space Hs(Rn)

We shall immediately specialise to the case p = 2 and Ω = Rn. This is an important
special case for two reasons. Firstly, W k,2(Ω) is a Hilbert space (in addition to being
a Banach space), and so carries additional structure. Secondly, W k,2(Rn) is very well
adapted to the Fourier transform. To see this, we recall that if f ∈ L2(Rn), then:

T̂f = Tf̂

where f̂ ∈ L2(Rn) is the Fourier-Plancherel transform of f . We immediately obtain an
alternative characterisation of the space W k,2(Rn). A function f ∈ L2(Rn) belongs to
W k,2(Rn) if and only if: ∫

Rn
(1 + |ξ|)2k

∣∣∣f̂(ξ)
∣∣∣2 dξ <∞.

Notice that in this characterisation there is no need to restrict k to be an integer. This
motivates the following definition. For s ≥ 0 we say that f ∈ L2(Rn) belongs to the space
Hs(Rn) provided:

||f ||Hs(Rn) :=

(∫
Rn

(1 + |ξ|)2s
∣∣∣f̂(ξ)

∣∣∣2 dξ) 1
2

<∞.

Hs(Rn) is complete, and moreover is a Hilbert space. We see that if k ∈ Z≥0 then
Hk(Rn) = W k,2(Rn). Also H0(Rn) = L2(Rn).

Exercise 5.8. Suppose s ≥ 0.

a) Show that S ⊂ Hs(Rn).

b) Suppose f ∈ Hs(Rn). Show that given ε > 0 there exists fε ∈ S with:

||f − fε||Hs(Rn) < ε.
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Hint: First find gε ∈ S such that∣∣∣∣∣∣(f̂ − gε)(1 + |ξ|)s
∣∣∣∣∣∣
L2(Rn)

< ε.

c) Show that
||f ||Hs(Rn) ≤ ||f ||Ht(Rn)

for t ≥ s. Deduce that:

||f ||L2(Rn) ≤
1

(2π)n
||f ||Hs(Rn)

Hint: Use Parseval’s formula

d) Show that the derivative Dα is a bounded linear map from Hs+k(Rn) into
Hs(Rn), where k = |α|.

An important feature of the Sobolev spaces Hs(Rn) is that for s sufficiently large,
they embed into Ck(Rn). More previsely:

Theorem 4.2. Suppose that f ∈ Hs(Rn) for some s > k + n
2 , then (possibly after

redefinition on a set of measure zero) f ∈ Ck(Rn). That is, we have:

Hs(Rn) ⊂ Ck(Rn).

Proof. First suppose f ∈ S . Then by the Fourier inversion theorem we have for |α| ≤ k:

Dαf(x) =
1

(2π)n

∫
Rn
eix·ξξαf̂(ξ)dξ.

We estimate with the Cauchy-Schwarz inequality:

|Dαf(x)| = 1

(2π)n

∣∣∣∣∫
Rn
eix·ξξαf̂(ξ)dξ

∣∣∣∣
≤ 1

(2π)n

∫
Rn

∣∣∣ξαf̂(ξ)
∣∣∣ dξ

≤ 1

(2π)n

(∫
Rn

(1 + |ξ|)2s
∣∣∣f̂(ξ)

∣∣∣2 dξ) 1
2

(∫
Rn

|ξα|2

(1 + |ξ|)2s
dξ

) 1
2

Now, since |ξα|2 ≤ ck(1 + |ξ|)2k for some ck > 0, we have that:

1

(2π)n

(∫
Rn

|ξα|2

(1 + |ξ|)2s
dξ

) 1
2

≤ ck
(2π)n

(∫
Rn

1

(1 + |ξ|)2s−2k
dξ

) 1
2

=: Cn,k,s <∞

where we have used s > k + n
2 in order to ensure that the integral converges. We thus

have that:
sup
x∈Rn

|Dαf(x)| ≤ Cn,k,s ||f ||Hs(Rn) . (4.1)

The result follows by the density of S in Hs(Rn).
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[Details of density argument. Unexaminable] Suppose that f ∈ Hs(Rn). We can find
fj ∈ S for j = 1, 2, . . . such that:

||f − fj ||Hs(Rn) <
1

j
.

Since {fj}∞j=1 converges in Hs(Rn), it is necessarily Cauchy, so given ε > 0 there exists J
such that for all j, l > J we have:

||fj − fl||Hs(Rn) < ε.

Applying the estimate (4.1), we deduce that:

sup
x∈Rn

|Dαfj(x)−Dαfl(x)| ≤ Cn,k,sε

Thus {Dαfj}∞j=1 is a Cauchy sequence in the Banach space of bounded continuous
functions with the sup norm. We deduce that there exist f̃α ∈ C0(Rn) such that
Dαfj → f̃α uniformly. By a result in analysis, f̃α = Dαf̃ for f̃ = f̃0. We’ve established
that f → f̃ uniformly, for some f̃ ∈ Ck(Rn). We also know that fj → f in L2(Rn). We
claim that f = f̃ almost everywhere. To see this, suppose ψ ∈ C∞0 (Rn) and consider:

Ij :=

∫
Rn

(f − fj)(x)ψ(x)dx.

By Cauchy-Schwarz we have:

|Ij | ≤ ||f − fj ||L2(Rn) ||ψ||L2(Rn)

so Ij → 0 as j →∞. On the other hand, since fj → f̃ uniformly, we have:

Ij →
∫
Rn

(f(x)− f̃(x))ψ(x)dx.

Thus: ∫
Rn

(f(x)− f̃(x))ψ(x)dx = 0

for any ψ ∈ C∞0 (Rn), which implies f = f̃ almost everywhere.

4.2 PDE Examples

4.2.1 Helmholtz equation

Recall that the inhomogeneous Helmholtz equation is:

∆u+ k2u = f

where f is given and we wish to find u. Suppose that f ∈ Hs(Rn) for some s ≥ 0. We
claim that there is a unique solution u ∈ Hs+2(Rn). The assumptions permit us to take
the Fourier transform of Helmholtz equation so we find:

û(ξ) =
f̂(ξ)

|ξ|2 + k2
.
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Since |ξ|2 + k2 ≥ C(1 + |ξ|2) we deduce that:

||u||Hs+2(Rn) ≤ C ||f ||Hs(Rn) .

Thus we indeed have that u ∈ Hs+2(Rn). Uniqueness follows from the injectivity of the
Fourier transform. Note that if s > n

2 then f ∈ C0(Rn) and u ∈ C2(Rn), so that we in
fact have a classical solution to the PDE.

4.2.2 Spaces involving time

For certain PDE problems it’s useful to separate out the time direction from the spatial
directions. To do this, it’s useful to introduce some new function spaces:

Definition 4.1. Given a Banach space (X, ||·||X), and an interval I ⊂ R, the space
C0(I;X) is the space of continuous functions u : I → X.

If I is open, we define Ck(I;X) for k ≥ 0 inductively as follows. We say u ∈
Ck−1(I;X) belongs to Ck(I,X) if there exists u′ ∈ Ck−1(I;X) such that for each t ∈ I:∣∣∣∣∣∣∣∣u(t+ ε)− u(t)

ε
− u′(t)

∣∣∣∣∣∣∣∣
X

→ 0, as ε→ 0.

A typical example of X will be one of the space Hs(Rn) for s > 0.

4.2.3 The heat equation

Let us now give another example to show how powerful the Fourier transform can be for
solving PDE problems. Let us consider the heat equation on Rn. The problem we shall
consider is, given u0 : Rn → R, determine u : Rn × [0, T )→ R, such that{

ut = ∆u in (0, T )× Rn,
u = u0 on {0} × Rn (4.2)

We suppose that our solution is a continuous mapping from (0, T ) intoH2(Rn), i.e. for each
fixed t we wish u(t, ·) =: u(t) to be an element of H2(Rn). In terms of the function spaces
above u ∈ C0((0, T );H2(Rn)). We will also suppose that u is continuously differentiable
as a mapping from (0, T ) into L2(Rn). In other words, u ∈ C1((0, T );L2(Rn)). Finally,
we wish for the initial condition to make sense, so we also require u ∈ C0([0, T );L2(Rn).

Exercise(∗). Show that if u ∈ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)), then
denoting by û the Fourier transform of u in the spatial variables:

û(t, ξ) = lim
R→∞

∫
BR(0)

u(t, x)e−ix·ξdx,

we have û ∈ C0((0, T );L2(Rn)) ∩ C1((0, T );L2(Rn)).

Let us, then, seek a solution of (4.2) such that

u ∈ C0([0, T );L2(Rn)) ∩ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn))
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Under this assumption we can take the Fourier transform of (4.2) for (t, x) ∈ (0, T )× Rn
to get: {

ût(t, ξ) = − |ξ|2 û(t, ξ) (t, ξ) ∈ (0, T )× Rn,
û(0, ξ) = û0(ξ) ξ ∈ Rn

Now, the PDE has become an ODE for each fixed ξ! This ODE has a unique solution
given for almost every ξ ∈ Rn by:

û(t, ξ) = û0(ξ)e−t|ξ|
2

.

We note that if u0 ∈ L2(Rn), then û0 ∈ L2(Rn) and thus û ∈ C0([0, T );L2(Rn)) ∩
C1((0, T );L2(Rn)). In fact, for t > 0, we have that û(t, ξ) and ût(t, ξ) are rapidly
decaying functions of ξ, in particular they belong to Hs(Rn) for any s ≥ 0, so we have
that u(t, x) is smooth in x. Since u satisfies the equation (∂t)

nu = (∆)nu, we have that
u is smooth in both t and x. We can recover u(t, x) via the inverse Fourier transform
formula:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ. (4.3)

Summarising, we have the following result:

Lemma 4.3. Suppose u0 ∈ L2(Rn). Then (4.2) admits a unique solution u such that

u ∈ C0([0, T );L2(Rn)) ∩ C0((0, T );H2(Rn)) ∩ C1((0, T );L2(Rn))

given by (4.3). In fact,
u ∈ C∞((0, T )× Rn).

Even with very rough initial data, the heat equation instantaneously gives a smooth
solution. This is an example of what is known as parabolic regularity.

Exercise 5.9. Suppose that u0 ∈ L2(Rn) and that u(t, x) is the solution of the
heat equation with initial data u0. Explicitly, u is given by:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ,

for t > 0.

a) Show that:
||u(t, ·)||L2(Rn) ≤ ||u0||L2(Rn) ,

b) Show that:
u(t, x) = u0 ? Kt(x)

where the heat kernel is given by:

Kt(x) =
1

(4πt)
n
2

e−
|x|2
4t .
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c) Suppose that u0 ≥ 0. Show that u ≥ 0, and:

||u(t, ·)||L1(Rn) = ||u0||L1(Rn) .

[Hint: Lemma 1.9 may be useful]

Exercise 5.10. Consider the Schrödinger equation:{
ut = i∆u in (0, T )× Rn,
u = u0 on {0} × Rn (4.4)

Suppose u0 ∈ L2(Rn).

a) Show that (4.4) admits a unique solution u such that

u ∈ C0([0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)),

whose spatial Fourier-Plancherel transform is given by:

û(t, ξ) = û0(ξ)e−it|ξ|
2

.

b) Show that:
||u(t, ·)||H2(Rn) = ||u0||H2(Rn)

*c) For t > 0, let Kt ∈ L1
loc.(Rn) be given by:

Kt(x) =
1

(4πit)
n
2

e
i|x|2
4t ,

where for n odd we take the usual branch cut so that i
1
2 = ei

π
4 . For ε > 0 set

Kε
t (x) = e−ε|x|

2

Kt(x).

i) Show that TKε
t
→ TKt in S ′ as ε→ 0.

ii) Show that if <(σ) > 0, then:∫
R
e−σx

2−ixξdx =

√
π

σ
e−

ξ2

4σ .

iii) Deduce that

K̂ε
t (ξ) =

(
1

1 + 4itε

)n
2

e
−it|ξ|2
1+4itε

iv) Conclude that:
T̂Kt = TK̃t ,

where K̃t = e−it|ξ|
2

.
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*d) Suppose that u ∈ S (Rn). Show that for t > 0:

u(t, x) =

∫
Rn
u0(y)Kt(x− y)dy,

and deduce:
sup

t>0,x∈Rn
|u(t, x)| ≤ 1

(4πt)
n
2

||û0||L1(Rn) .

This type of estimate which shows us that (locally) solutions to the Schrödinger
equation decay in time is known as a dispersive estimate.

4.2.4 The wave equation

Now let us consider the wave equation on Rn. The problem we shall consider is, given
u0, u1 : Rn → R, determine u : Rn × (−T, T )→ R, such that

utt = ∆u in (−T, T )× Rn,
u = u0 on {0} × Rn
ut = u1 on {0} × Rn

(4.5)

We will seek a solution in the space:

Xs := C0((−T, T ), Hs+2(Rn)) ∩ C2((−T, T )×Hs(Rn)).

Fourier transforming in the spatial variable, we have: ûtt(t, ξ) = − |ξ|2 û(t, ξ) (t, ξ) ∈ (−T, T )× Rn,
û(0, ξ) = û0(ξ) ξ ∈ Rn
ût(0, ξ) = û1(ξ) ξ ∈ Rn

Again, this is an ODE for each fixed ξ, and we deduce:

û(t, ξ) = û0(ξ) cos (|ξ| t) + û1(ξ)
sin (|ξ| t)
|ξ|

Notice that if u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn), then we conclude û ∈ Xs. Thus (after
taking the inverse Fourier transform) we have found the unique solution of the wave
equation in Xs.

Let’s specialise to R3. We’d like to write this solution as some sort of convolution,
at least for initial data in the Schwarz class. For this we need to find the (inverse)
Fourier transform of cos (|ξ| t) and sin(|ξ|t)

|ξ| , where we have to understand these functions
as tempered distributions. Let us define, for t > 0 the distribution:

Ut[φ] =
1

4πt

∫
∂Bt(0)

φ(y)dσy

for all φ ∈ S ′, where dσy is the surface measure on the sphere ∂Bt(0). This is a
distribution of compact support, so we can invoke Theorem 3.13 to find the Fourier
transform:

Ût = Tυ̂t
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where:
υ̂t(ξ) = Ut[e−ξ] =

1

4πt

∫
∂Bt(0)

e−iξ·ydσy

We can perform this integral by choosing spherical polar coordinates for y with the axis
aligned with the vector ξ. Doing so, the integral becomes:

υ̂t(ξ) =
1

4πt

∫ π

θ=0

∫ 2π

φ=0
e−i|ξ|t cos θt2 sin θdθdφ

=
t

2

∫ 1

−1
e−i|ξ|tzdz =

t

2

(
e−i|ξ|t

−i |ξ| t
− ei|ξ|t

−i |ξ| t

)

=
sin (|ξ| t)
|ξ|

.

Now, let us return to our expression for u:

û(ξ) = û0(ξ) cos (|ξ| t) + û1(ξ)
sin (|ξ| t)
|ξ|

=
∂

∂t

(
û0(ξ)

sin (|ξ| t)
|ξ|

)
+ û1(ξ)

sin (|ξ| t)
|ξ|

Suppose u0, u1 ∈ S . Then by Theorem 3.10, we have:

u(t, x) =
∂

∂t
Ut ? u0(x) + Ut ? u1(x)

=
∂

∂t

(
1

4πt

∫
∂Bt(0)

u0(x− y)dσy

)
+

1

4πt

∫
∂Bt(0)

u1(x− y)dσy

=
∂

∂t

(
1

4πt

∫
∂Bt(x)

u0(y)dσy

)
+

1

4πt

∫
∂Bt(x)

u1(y)dσy

=
∂

∂t

(
t−
∫
∂Bt(x)

u0(y)dσy

)
+ t−
∫
∂Bt(x)

u1(y)dσy (4.6)

Where for a surface Σ with surface measure σ:

−
∫

Σ
dσ :=

1

|Σ|

∮
Σ
dσ.

Expression (4.6) is known as Kirchoff’s formula. While our derivation assumes
u0, u1 ∈ S , this assumption can be relaxed. This expression tells us some interesting
facts about solutions to the wave equation. First note that the value of u(x, t) depends
only on the initial data on the sphere ∂Bt(x). This is known as the strong Huygens
principle. In particular this shows us that information is propagated at a finite speed by
the wave equation. Secondly, note that the value of u(x, t) depends on derivatives of u0.
This suggests that Ck−regularity is not propagated in wave evolution, although we have
already seen that Hs−regularity is propagated.
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Exercise 5.11. Let R3
∗ := R3 \ {0}, S∗,T := (−T, T ) × R3

∗ and |x| = r. You
may assume the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave

equation on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave

equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST := (−T, T )×
R3, with

u(0, t) = f ′(t).

*d) By considering a suitable sequence of functions f , or otherwise, deduce that
there exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for
large |x|.
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