Chapter 3

The Fourier Transform

3.1 The Fourier transform on L'(R")

The Fourier transform is an extremely powerful tool across the full range of mathematics.
Loosely speaking, the idea is to consider a function on R™ as a superposition of plane waves
with different frequencies. For f € L'(R"), we define the Fourier transform f : R" — C
by:

FIE) = &) = (z)e” ™ Eda.

Rn

Sine | f(z)e™¢| < |f(x)], the integral is absolutely convergent, and £(€) makes sense for
each £ € R™.

Example 12. i) Suppose f € L'(R) is the “top hat” function, defined by:

1 —-1l<z<l,
f(‘””)—{o 2] > 1.

We calculate:

Notice that f(€) is continuous (in fact smooth) on R. We also have f(€) — 0 as
& — o0.

ii) Suppose f € LY(R) is defined by:

e’ z <0,
f(z) = { e ? x> 0.
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Then:

0 00
f() = / e*(1=18) dy: + / (1718 gy
0

. 0 . [e%e)
 Jert-) . o(—1-i)
o 1-dE | —1-ig |,

1 1 2

=i 11 1+
Again, notice that f is smooth and decays for large &.

iii) Consider g € L'(R) given by

1
9(z) = 14 22
We have: ‘
. o) efz:vg J

We can consider this as a limit of contour integrals:

—iz€
§(6) = lim/ ¢  dr.
v

R—00 R1+Z2

Where vr = {S(z) = 0, |R(z)| < R}. For & > 0, we can close the contour with
a semi-circle in the lower half-plane, and we pick up a contribution from the pole
at z = —i. The contribution from the curved part of the contour tends to zero as

R — o0 by Jordan’s lemma, and we find:

g =met, £>0.

For £ < 0, we close the contour in the upper half-plane, picking up a contribution
from the pole at z =i and again discard the contribution from the curved part of the

contour in the limit. We find:

§(§) =met, £<0.

In conclusion, we have:

ﬂ'e*g

3
w0 -{ = S

iv) Consider now for x € R™ the Gaussian f(x) = e~21 . We calculate:

fo) = [ et

:/ o~ 3 (@=i€)-(2—i€) = 31€” 1,

= ¢ alel’ ( / eé(misl>2dx1> ( / e%@wfn)zdxn)
R R
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By shifting a contour in the complex plane, which is justified since e~ is entire and
rapidly decaying as z approaches infinity along any line parallel to the real axis, we

can show that:

/e_é(“_’fl)zdxl = / e_%”"%d:cl =/27.
R R

We deduce that:
A n 11¢12
f(&) = (2m)¥ 31
Notice that this is (as a function) equal to f up to a factor.

We will make some casual observations at this stage. In all of our examples, we saw
that the Fourier transformed function decays towards infinity. For examples iii), iv) we see
very rapid (exponential) decay of the Fourier transform, while in examples i), ii) the decay
is only polynomial. In all examples the transformed function is continuous. In examples
i), ii), iv) it is in fact smooth, while for iii) the Fourier transform has a discontinuous
first derivative. Reflecting on this, one sees that these two features appear to be dual to
one another: if f is smooth, then f has rapid decay towards infinity. If f decays rapidly
near infinity, then f is smooth. This is in fact a general feature of the Fourier transform
smoothness and decay are dual to one another under the transform.

We shall now make some of these observations more precise.

Lemma 3.1 (Riemann-Lebesgue Lemma). Suppose f € LY(R™). Then f € CO(R") with
the estimate:

sup
EeR™

F©| <1111z (3.1)

and moreover f(£) = 0 as |¢] — oo.

Proof. To establish the continuity of f , we use the continuity of the exponential, together
with the dominated convergence theorem. Let {¢; };";1 be any sequence with §; — & as
J — o00. Recalling the definition of the integral, we have:

fe) = | s,
R”
Now, clearly for x € R™ we have:
f(x)e ™% 5 f(x)e ¢, as j — 0o
so we have pointwise convergence of the integrand. We can also estimate:

@) 9] < | ()]

so the integrand is dominated by an integrable function, since f € L'(R"). Applying the
Dominated Convergence Theorem, we conclude:

A~ ~

f(&5) = f(8), as j — oo.
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This implies that f (£) is continuous. We can readily estimate:

(z)e @ dx
R

f(&)| = sup

¢eRn

sup
¢erRn

< sup [ 17(a)ldo = 1 flsqeny-

£ER™ JR

This establishes the first part of the Lemma. To establish the second part, we make use
of an approximation argument. Chapter 1 that if f € L'(R™), we can approximate f by
an element of C§°(R™). Given € > 0, there exists f. € Cg°(R"™) with

€
If = fellprgny < 5
Now, in the integral for fe we can integrate by parts::
J©) = | fel@)e " da
Rn

= fe(zx) div (gze_mf) dz
R iy

—il¢
= —/ & -Df.(z)e” " dx
112 €
R —i [¢]
so that for each ¢ = 1,...,n we have, by the Cauchy-Schwartz inequality:
2 _ 5 —ix-€
f(©)| = —— - Dfc(z)e " da
n 1 [g]
< S D —itl g 3.2
</ @ fe(z)e T (3.2)

1
< [ Pl

[ IDs@) |

_ 1
¢l

L} (Rr)

From this, we conclude that there exists R > 0 such that if |{| > R, we have
For [£| > R we calculate:

JAGIE

[Ne]leY

F©| =|F© - fue) + &)
< |f©|+|f@© - f©)
f(f)‘ +[f = feHLl(Rn) < €.

<

In the last line, we have used (3.1), together with the linearity of the Fourier transform.

A~

f(é’)‘ — 0. O

Since € > 0 was arbitrary, we have shown that

Remark. The argument above is another example of an approrimation argument where
one first proves the result on a suitably nice dense subset then extends to the full space by
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continuity. In this case, we are using the fact that the Fourier transform is a bounded (hence
continuous) linear operator from LY(R™) to the Banach space of continuous functions
decaying at infinity equipped with the uniform norm. The dense set is C§°(R™) C L*(R™).

Another tactic which we used here was to use integration by parts to exploit the rapid
oscillations in the e™*¢ factor when |€| is large.

One might be tempted to infer from (3.2) that ‘f({)’ < C(+ €))7t While this is

true for each f. approzimating f, in general the constant C will grow larger and larger as
€ — 0, so we cannot quite come to this conclusion.

Exercise 3.4. For £ € R", define e¢(x) = €. Show that Te, € 7', and that:
T, — 0, as || = oo
in the topology! of ..

We shall prove some important properties of the Fourier transform. Recall that
7, f(x) = f(z — y), and introduce the character e,(z) = "¥?.

Lemma 3.2 (Properties of the Fourier transform). i) Suppose f € LY(R"), x € R”,
A>0 and fr(y) = AX"f(A\"Ly). Then

A = Fe) (exf)(E) = 7 f(€) 7€) = e—()f(£)

ii) Suppose f,g € LY(R™). Then f*g € L*(R™) and:

—

Frag(€) = f(£)4(8).

Proof. 1) Writing out the expression for f;({), and changing the integration variable to
z = A1z, we see

WO = | A@e ™ de= | fOTTR)e AT de = | fy)em P dz = f).

Rn

Next, we calculate:

ehe - [

Finally, we have:

Y f(y)e € Vdy = / Fly)e " vdy = 7, f(€).

n n

wl(©) = | fy-a)e rdy = | fz)e €0z = e / f(@)e™ dz = e (€) (),

R" n

where we have used the substitution z =y — x.

!This is defined precisely as the topology of 2'(Q), mutatis mutandis.



46 Chapter 3  The Fourier Transform

ii) First we show that f xg € L'(R"). To see this, we first estimate:

Fro@l=| [ 1ate—vias| < [ 11ate -y

Integrating and applying Fubini’s theorem, we have:

17 llsan < [ ( [ 1wt =) dy) dr

= [ s ([ lote = lds ) ay

= /Rn @Il Ly @y dy = 111l 21 gy 19l L1 ey

Now, we can calculate the Fourier transform:

Fr9 = | frg@eds

-/ ( i f(y)g(as—y)dy) ey

= [ s ([ ata = e ear) ay

- [ twmaeay
= | Jwa©e dy = F(©)a(©)

O
Exercise 3.5. Calculate the Fourier transform of the following functions f €
LY(R):
sinx
a) f(z) = 1422

1
b) f(z) = R for e > 0 a constant.

2
_oE=y)

c) fx) = %e ¢, where o0 > 0, t > 0 and y are constants.
t

1
coshz’

*d) flx) =

We saw with the examples that there is a duality between the deacy of a function
and the regularity of its Fourier transform and vice versa. To make this more precise we
prove the following result, which tells us, roughly speaking, that the Fourier transform
swaps coordinate functions x; multiplying f for derivatives ¢D; acting on f .
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Theorem 3.3. i) Suppose f € CY(R™) and that f,D;jf € L*(R") for all j = 1,...n.
Then

D;f(€) = i&f(9)
i) Suppose (1+ |z|)f € L*(R™). Then f € C*(R™), and:
D;f(€) = ~ix;f(€)

Proof. i) We again appeal to an approximation result. For f € C1(R") with f, D;f €
LY(R™), then for any € > 0 there exists f. € C¢(R"™) such that ||f — fellprmny <€
and ||D;f — Djf€||L1(]R”) < €. Integrating by parts, we readily calculate:

Df€) = | Difx)e ¢ da

=— | fe(x)Dj(e”*")da
Rn
= i¢; /Rn fe(w)e ™ dx
so that ﬁjﬁ(f) = i&; f.(€). Now, we calculate:

D;1(&) = i€ f(©)] = | D3 (€) = DiTete) + i&ifu(&) — i€ £(¢)
<|IDjf = Difell prmny + €N = Sellrmn)
< e(1+¢))
Since € > 0 is arbitrary, we must have that ‘]_Sj\f(f) — zfjf(f)‘ = 0, and the result

follows.

ii) From the condition on f it is clear that z;f € L'(R"), so —z';j? is continuous. It
suffices to prove then that:

A f(E) = —ix; f(€), as k — 0o

for any sequence {h;}2°; C R with hj, — 0. We calculate:

A , ) A . —izihg _ 1
A;lkf(é') - hik (f(é + hk€j) - f(g)) = . f($)e_m.£ <ehk> -

Now for x € R™ we have:

fla)em (

—imjhk _ 1

I ) — —ixjf(x)e_ix'f

as k — oo. Noting that ‘ew — 1‘ =2 }sin%| < 0 for any 8 € R, we have that:

e—’i:l?jhk _ 1

1f<x>e-“'f (hk)' < @)
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where the right hand side is integrable. By the Dominated Convergence Theorem,
we have:

k—o0

i AL 7€) = [ i e = i)

We deduce that f € C'(R™).
O

Exercise 3.6. Suppose f € C}(R") and that f,D,f € L'(R"). Fix ¢ > 0.
Show that there exists f. € C§(R") such that

€
IIf - fe”Ll(Rn) +1ID;f - Djfe”Ll(Rn) < 9

[Hint: First construct, for large R, a smooth cut-off function xg(x) with
xr(z) =1 for |z| < R, xgr(xz) = 0 for |z| > 2R and |Dxgr(z)| < C, where
C' is independent of R.|

Corollary 3.4. i) Suppose f € C¥(R"™) and D*f € L*(R") for |a| < k. Then there is
some constant Cy > 0 depending only on k such that:

(L4 IED*F()] < OS2 1D Fll 1

la|<k

sup
£eRm

i) Suppose (1+ |z|)¥f € L*(R™). Then f € CK(R™) and for any |o| < k we have:

sup

o] <ot
EER™

L1(Rn)

iti) The Fourier transform is a continuous linear map from . into .7 :
F .= 7.

Proof. 1) First we note the algebraic fact that for any k there is some constant C}, such
that?:

L+[E)F < Cr D 167

la| <k

holds for any £ € R™. Repeatedly applying the part i) of Theorem 3.3 we know that:
i?le® f(€) = Df(&).

We therefore have:

A+ |f©] < Y

seso]-o 3 [T

\a|<k la|<k

taking the supremum over £ € R™ and applying the estimate (3.1) we conclude

L+ 1D F)] < G 3 1D ll oy -

| <k

sup
£eRn

Zrecall that £ 1= £01£52 ... gam



i)

iii)
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By iterating part i7) of Theorem 3.3 we have that for |a| < k:
D f(€) = (=)l f(9).

Taking the supremum of the absolute value over £ € R™ and applying the estimate
(3.1) we have:

Do f ‘ < ||z o < ‘ 1 F ‘
gseuR% f(g) = Hl’ fHLl(R ) = ‘ ( + |(ED I L1(R™)
Note that if:
sup (1 +|z))" |f(2)] < K,
xER”
we have: 1
f n:/ f(x)|der < K ——dxr < o0
|| HLl(R ) R”’ ( )| - (1—|—’.’BDN

provided N > n. Thus in particular if f € .# then there exists some constant C),
such that:

@+ )M D] 11 gy < Cn seuRgb(l + |z D f(2)]

for all M € N and all multi-indices a. Applying the previous two parts we conclude
that f € C*°(R") and:

sup(1+16)Y [DPF(©)| < Ot sup (L4 )M D f(a)
EER™|BI<M z€R™ |a|<N

For some constant Cn ar,, depending only on N, M,n. Thus f € .. Moreover, if

{f 721 C & is a sequence with f; — 0 in .%, then fj — 0 in ., so that F is
continuous.

O

Notice that while the Fourier transform maps . to itself, the same is not true of

2(R™). Suppose f € C§°(R™), then provided supp f C K for K a compact set we have:

By

f(6) = /K f(@)e S da

repeatedly differentiating, it is possible to show that f is in fact real analytic, and

hence f cannot vanish on any open set without vanishing everywhere. In particular, f
cannot vanish outside a compact set.

Exercise 3.7. Suppose f € L'(R"), with supp f C Br(0) for some R > 0.

a) Show that f € C°°(R") and for any multi-index:

sup
£eRn

DF(€)] < RVI£] 2y
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b) Show that f is real analytic, with an infinite radius of convergence, i.e.:
A N
f©) = Df(0)>

holds for all £ € R™.

¢) Show that if f (§) vanishes on an open set, it must vanish everywhere.
[Hint: use part i) of Lemma 3.2/

You may assume the following form of Taylor’s theorem. Suppose g € C*¥+1(B,.(0)).
Then for x € B.(0):

a f
g(x) =Y D*fO);+ > Rsle
|| <k T B=k+1
where the remainder Rg(x) satisfies the following estimate in B,(0):
1
Rg(z)| < — max max |D%(y)|.
[Rs(@)] < 57 ma 5 )\ 9(y)|

See §A.1 of the notes for notation.

To complete this section, we are going to establish the invertibility of the Fourier
transform, under some reasonable assumptions on f and f. In particular, this will permit
us to show that F : . — % is in fact a bijection.

Theorem 3.5 (Fourier inversion theorem). Suppose f € LY(R™) N C°(R™) and assume
f € LYR"). Then:
1

(2m)"
Proof. We shall establish the result by looking at the limit € — 0 of

e = <271r>n /[R F(e)ema Wl e,

f@) = | J(©emtde. (33)

in two different ways. Firstly note that for £ € R" we have:

A

F@ye 2 Rl e o feyere.

Moreover, we can estimate

Fe)e- el e

< |7

so that the integrand is dominated by an integrable function. Thus by the Dominated
Convergence Theorem we have:

I(x) — f(&)e™ede, as € — 0.
RTL

(2m)"
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On the other hand, we have, using Fubini’s thorem:
1 ; 12102
I(x) = / ( fy e_lf'ydy> e 21l gimge
(x) G e \ o ()

1 ly—ax|?
= E— T 22 d
A 2 2n)E y
= f * 1/16(33)
where . (x) = e (e Lx) for
s T
P(x) (27‘()% e .

Note that ¢ € LY*(R"), ¢(x) > 0 and

Y(x)dr =1
RTL
so by Theorem 1.13, ¢), we have that:
frie(x) = f(a),
for each = € R™. Equating the two expressions for the limit of I.(z) we are done. O

We can summarise the inversion formula quite neatly by noting that:
F2f = (2m)"f.

An immediate corollary of the above result is that F : % — . is a bijection, and that
F 1. — & is continuous.

Exercise 4.1. Consider the following ODE problem. Given f: R — C, find ¢
such that:

—¢"+¢=" (3-4)

a) Show that if f € ., there is a unique ¢ € . solving (3.4), and give an
expression for ¢.

b) Show that

where
x x <0,

le
Gz) = { lg—x x> 0.

Exercise 4.2. Suppose f € L'(R3) is a radial function, i.e. f(Rz) = f(x),
whenever R € SO(3) is a rotation.
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a) Show that f is radial.

b) Suppose that & = (0,0, (). By writing the Fourier integral in polar coordinates,

show that
fe'e) T 27 )
= / / / f(r)e s 02 sin 0dOdrde.
r=0J0=0 J $=0

¢) Making the substitution s = cosf, and using the fact that f is radial, deduce:

B smr\§|
o= [ 107

for any £ € R™.

3.2 The Fourier transform on L?*(R")

Having defined the Fourier transform acting on functions in L!'(R"), we are going to
extend it to act on more general functions (and eventually distributions). Firstly, we shall
see how the Fourier transform extends very nicely to act on functions in L2(R"). This is
a particularly nice function space because is is a Hilbert space. Let us recall a few facts
about L?(R™). Firstly it is equipped with an inner product:

(f,9)= | flz)g(x)dz
Rn

which induces the norm via:

N

1l z2ny = (f F)

and moreover it is complete, which means that all Cauchy sequences converge in L?(R"™).

Roughly you should think of functions in L?(R™) as being locally better behaved than
those in L'(R™), but with less control on their growth towards infinity. In particular,
|z| 7P € LY(B1(0)) if and only if p < n, while |z| " € L?(B1(0)) if and only if p < n/2,
so locally L! functions may be more singular than locally L2. On the other hand,
|| € LY(R™ \ B1(0)) if and only if p > n, while |x| 77 € L2(R™\ B1(0)) if and only if
p > n/2, so that functions in L? are permitted to decay more slowly towards infinity than
those in L!.

We shall first establish that the Fourier transform maps L'(R™) N L?(R") into L?(R"),
and moreover show that the L? inner product is preserved by the Fourier transform (up
to multiplication by a constant).

Theorem 3.6 (Parseval’s Formula). Suppose f,g € L*(R")NL3(R"). Then f,§ € L2(R™)
and moreover:

..
(f.9) = G (f,9)
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Proof. We will again use a density argument to prove this result. First suppose that
fyg € . Then using the Fourier Inversion Theorem (Theorem 3.5) and Fubini’s theorem
we can calculate:

(f.9) =

1
n - (2n)n

(2m)"

Now suppose that f,g € L'(R") N L2(R"). By Theorem 1.13 part b), there exists a
sequence {f;}52; C C5°(R™) C . such that:

1

and similarly for g. We know that:

sup
£eRn

FO = FO| <15 = Hlpany < -

so that fj — f uniformly on R™. We also have by the calculation above:

Now since f; — f in L?(R"), we have that {f;} is a Cauchy sequence in L?*(R™). Thus
f] is a Cauchy sequence in Lz(R”). By the completeness of L?(R"), we have that fJ
converges in L2(R™) and hence f € L2(R"). Furthermore, we know that

N
(2m)"

since each of the sequences {f;},{g;},{f;}, {d;} converge in L*(R"), we can take the
limit? j — oo to conclude:

= @m)2 |Ifj = fill 2y -

L2(R")

(f5,95) = (f5:95)

..
(f.9)= (%)n(f,g) O

Thus we have shown that the Fourier transform F maps L!(R™) N L?(R") into L?(R™).
Moreover, we have that it is a bounded as an operator from L?(R") to itself, since

A1) .o < P12

3You should check that you understand why this is valid.

L2(R")
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This means that F is a bounded linear map defined on a dense subset of a Banach space.
A general result tells us that the map extends uniquely to a bounded linear map on the
entire space. Rather than invoke an abstract result, we can show this directly.

Corollary 3.7. There is a unique continuous linear operator F : L?(R™) — L%(R™) such
that:
Flf] = FIf],  forall fe LYR"™) NL*[R"Y). (3.5)

We say that F is the extension of the Fourier transform to L?>(R™). It is sometimes known
as the Fourier-Plancherel transform.

Proof. For any f € L*(R"), we can take a sequence {f;}52, C L'(R") N L*(R") with
fi — f in L?(R™) (for example by approximating f with smooth functions of compact
support). By Theorem 3.6 we have that:

J5-5)

P (@m)% (£~ full g2y (3.6)

Now, since f; converges in L*(R"), it is in particular a Cauchy sequence in L*(R").
Equation (3.6) shows that f; is also a Cauchy sequence in L?(R™), hence has a limit,
say F' € L?(R") by the completeness of L?(R™). Suppose {fi}52, C LY(R™) N L*(R") is
another sequence with fj’ — f, and suppose fj — F’. Then we have:

= lim (2#)% Hfj - fJ/'HL2(]Rn) =0

1F = F gy = Jim || = F]], ) = Jim

since both f; and f]’- tend to f. Thus F' depends only f, and not on the sequence f;
which we chosi to approximate f.
We define F[f] = F, i.e.:

FIf] = lim F[f;], where {f;}52, C L'(R") N L*R"), f; — f in L*(R"),
J—00
and the limit is to be understood to be in L?(R™). This certainly satisfies (3.5), since we

can take our approximating sequence to be the constant sequence f; = f for all j when
f € LYR™) N L*(R™). F is clearly linear and moreover, we have that

lim ./r[f]]

Jj—o0

H?[f]HL%R") -

L2(R")

_ jli)nolo L)l 2 ey

so F is bounded and hence continuous®. It remains to show that F is unique. Suppose
that 7 is another continuous linear operator satisfying (3.5). For any f € L?(R"), take

YIf {5352, € L*(R™) is a sequence with f; — f in L*(R™), then
H?[fj] _‘T[f]HLQ(Rn) = ‘|?[f] - f]||L2(R") = (271.)% Hf] - fHLz(R”) =0

so F[f;] = Flf] in L2(R").
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a sequence {f;}22, C L'(R") N L*(R") with f; — f in L*(R™). We have:

Ff] = Jim Ff;] = Jim FIf5] = F/]

j—o0
so that fj = F. O

Exercise 4.3. (*) Suppose that f, g € L?(R"), and denote the Fourier-Plancherel
transform by F. You may assume any results already established for the Fourier
transform.

a) Show that

Hence, or otherwise, deduce that F : L%(R") — L%(R") is a bijection, and
that 7 : L2 (R™) — L?(R") is a bounded linear map.
¢) Show that:

FU© = fim [ S@)e o

with convergence in the sense of L?(R"™).
d) Suppose that f € CY(R") and f,D;f € L*(R"). Show that &F[f](€) €
L?(R™) and: B B
FID; f1(§) = i&F[f1(€)

e) For z € R let:

i) Show that f € L?(R).
ii) Show that:
T -1<é<,
0 g1
f) i) Show that for all x € R™:
|[f % g(@)| < If1l2@ny 9] L2 @ny -
ii) Show that fxg € C°(R") and:
frg=F"[FI] Flgl|

where:
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[Hint for parts a), b), d), f): approximate by Schwartz functions|

Exercise 4.4. Work in R?. For k > 0, define the function:

ekl
Gle) = 47 |x|
a) Show that G € L'(R3).
b) Show that:
A 1
G¢) = —5——
O e

[Hint: use Exercise 4.2, part c)]
Exercise 4.5. Consider the inhomogeneous Helmholtz equation on R3:
~Ap+k*p=f (3.7)
where f € .. Show that there exists a unique ¢ € . satisfying (3.7) given by:
¢(x) = - f(y)G(z —y)dy,

where
eik|m|

G(x)

[Hint: first derive an equation satisfied by gzgj

T dr 7|

Usually one does not labour the distinction between the Fourier transform acting on
L'(R™) and the Fourier-Plancherel transform acting on L?(R™). From now on we shall
use the same notation for both, so that for f € L2(R") we write F[f] = F[f] = f. Since
the two transforms agree wherever both are defined, there is no ambiguity in this. The
majority of the results that we have already established for the Fourier transform extend
to the Fourier-Plancherel transform in a straightforward way, see Fxercise 4.3.

3.3 The Fourier transform on .’

We are now going to extend the Fourier transform in a slightly different way, such that it
acts on distributions. Suppose that f € L'(R"), and ¢ € .. Then since f € C°(R™) and
f decays towards infinity, we have that Tf € .. By Fubini we have:

7= [ dwews= [ ([ wevay) o

- [ 1w ( /| ¢(w)e‘“'ydx) dy

~

= | [f(@)o(x)dw.

R
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Thus for f € L'(R"™) we have that:

Tsl¢] = Ty[9], for all ¢ € ..

Motivated by this, we define:

Definition 3.1. For a distribution v € ., we define the Fourier transform of u, written
€ . to be the distribution satisfying:

a¢] = uld)], forall g € 7.

Notice that the definition makes sense because the Fourier transform maps . to .
continuously. If we tried to use the above definition but with ¢ € Z(R") and u € Z'(R"),
we would run into difficulties because ¢ ¢ Z(R™).

Example 13. a) For £ € R™ we have:
8\5 =Te_,

To see this, we use the definition. For ¢ € & :

Selol = 0ld) = 6(6) = [ e 4o(a)dn =T, Jo

Since ¢ was arbitrary, the distributions are equal.

b) For x € R™ we have:

o~

Te, = (2m)"04.
To see this, we note for ¢ €

—~

T.[6) =Te.[¢] = / eTEH(E)dE = (2m)"d(x) = (2m)"da[6).

Again, as ¢ is arbitrary the distributions are equal. Note that a particular case is
T1 = (27{')"(50.
c) For a a multi-index, denote by X< the map
Xz x™.

Then we have: -
Txe = (2n)"il% D5,

For ¢ € 7
Txeld] = Txe[d] = | €°0(6)dS
= (i)l [ Dog(e)de

Rn
= (2m)"(=) D¢ (0) = (2m)"il*l x (—1)l*l5y [D*¢]
= (2m)"il* D6 [g)]
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Most of the properties of the Fourier transform defined on . are inherited by the
transform defined on .’. We first need to define a couple of operations on .. Recall
that if ¢ € .7, then 7,¢ € . is the translate of ¢, given by 7,¢(y) = ¢(y — x), and
b € .7 is given by ¢(y) = ¢(—y). For u € .7, we define:

meuld] = ulto¢l, U] = uld]

Notice also that if f € C°°(R") is a function of tempered growth, i.e., if for each o and
there exists a constant C, and integer N, such that:

|DYf(2)] < Co(l + |z,  Vz e R™
then ¢f € . when ¢ € . and we can define fu € .’ by
fuld] = ulf o]
Exercise 4.6. Verify that if f € Llloc_ is such that Ty € 7/, then:
7T = Tr,y, and Ty =Ty

Lemma 3.8. Suppose u € .’ is a tempered distribution. Then:

et = T, T = e_y, Doy = ilol xog D% = (—i)l*l Xy
Moreover:
u = (2m)"u,

so that the Fourier transform on .’ is invertible.

Proof. These are all calculations using the corresponding results for .. Take ¢ € .. We
have:

~

eziilg) = exuld] = ulesd] = u [Tad| = ilr_se] = Toulg].
Since ¢ was arbitrary, we have e;u = 7,4. Similarly, we calculate:
7o) = Tould] = ulr—od] = u [e—6] = ile_sd] = e_sulg].
Next we have
Doulg] = Du 8] = (=)l [ Dg]
= (-Dlelu [(=i)I x| = dlelu [Xg)
= illa[xeg) = (i x"q) [¢]
similarly:
D%alg) = (-1)lla[D¢] = (~1)*lu[Dg)]
= (—~Dllufil X ) = (—i)eLxu[g]
= (=) Xu) [g].
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Finally, we have

alg] = ald] = ulg] = u[(2m)"¢] = (2r)"u[4]
Since % = u, we have that the Fourier transform is invertible. ]
Importantly, the Fourier transform is also a continuous linear map ' — ..
Lemma 3.9. The map:

F S =
u

:>QQ

s a linear homeomorphism.

Proof. We already have that F is linear. From the definition of the weak-* topology, a
sequence {u;}32, C . converges to u if

uj[¢] — ulg]

for all ¢ € .. Suppose that we have such a convergent sequence in ./. We calculate:

;0] = uj[g] = ulg] = a[¢].

Thus if u; — u we have F(uj) — F(u). Thus F is continuous. Since F* = (27)%"s, we
have that F is invertible and the inverse is also continuous. O

Remark. Strictly, we have only established that F is sequentially continuous with respect
to the weak-x topology induced on %' by .. Establishing genuine continuity is not difficult,
but would require a full description of the weak-x topology, which takes us a bit beyond the
scope of the course.

Exercise 4.7. Let f: R — R be the sign function
-1 xz <0
and define fr(z) = f(2)1_g gr)(2).

a) Sketch fr(x).

b) Show that:
Ty, — T} in .#" as R — oc.

c¢) Show that:

e~

d) For ¢ € ., show that:
T; [¢] = —2i /000 de + 2 /000 (qﬁ(az)—qﬁ(—x)) cos Rxdx

fR x



60 Chapter 3  The Fourier Transform

e) By applying the Riemann-Lebesgue Lemma, or otherwise, show that for any

v e S
/ Y(x) cos Redr — 0
0
as R — oo.

f) Deduce that
— 1
7y = -2irv. ;)
x

g) Write down Z/};, where H is the Heaviside function:

0 <0
H(x) = { 1 x>0
3.3.1 Convolutions

We have generalised almost all of the properties of the Fourier transform to distributions.
The final result that we shall establish concerns convolutions. Recall that if u € 2'(R")
and ¢ € Z(R") then ux ¢ € C°(R™) is given by:

uxo(xr) =u [quvﬁ] .

Notice that this definition continues to make sense for each z, provided u € .’ and
¢ € 7, although it is no longer clear that the resulting function is smooth. We have the
following results concerning this convolution.

Theorem 3.10. Suppose u € . and ¢ € ./ are given. Then the function:
ux¢:R" = C
has the following properties

a) ux ¢ e C®(R") with
DY(u* @) = DU * ¢ = ux D%.

b) There exist constants N € N, K > 0 depending on u and ¢ such that:

Jux p(a)| < K(1+ o)™

¢) Tuwp € " and moreover:

g = il
d) For any ¢ € %, we have:
(ux @) *xthp = ux (¢ )
e) We have:

Ty = (2m)"¢u



3.3 The Fourier transform on .’ 61

Proof. a) The smoothness of u % ¢ is proven exactly as in Lemma 2.6, ii). The only
modification to the argument required is to note that for ¢ € ., we have

Alp - Di¢p in .7, as h—0.

b) First, we note the following simple inequality which holds for all z,y € R™:
Ltz +yl <1+ faf+ [yl < @+ 2@+ |y).
Next, recall from Lemma 2.11 that there exist N,k € N and C > 0 such that:

]| <C  sup |1+ y)VD*(y)|, forally € 7.
yeR™;|al<k

Applying this inequality with 1) = 7,¢, we calculate:
jux ¢(@)| = |u[rg]| <C sup [(1+]y)VD(y — )]
yeR™;|a|<k
=C sup ’(1—{— |z—|—fL’|)NDO‘¢)(z)}

yER™; || <k

<|C sup |1+ [)VD¥(2)|| (1+ |z])
yER™; || <k

which gives the result on setting:

K=C sup |1+ |z|)ND°‘¢(z)‘ .
yER™;|al<k

¢) Combining the above two results, we have that Ty € .7/, since u* ¢ € L} (R") and

loc.
u * ¢ grows at most polynomially. It therefore makes sense to consider the Fourier

transform. Suppose that ¢ € Z(R"™). We calculate:

Torolt)] = Tuxo M = (2)" Ty 0] Fourier Inversion Thm
= (2m)" / o) (o) de Defn. of T}
= (2m)" / u [720] ¥(—z)da Defn. of u % ¢
— (2m)" / u [p(—a)rd) do Linearity of u
— e [ wi-ajmd] 0

I
—~~
N

=]
S~—
S

IS
—~
<

%
S
S~—

[E—

Defn. of ¢ %
=u [@} =1 [@] Fourier Inversion Thm

} = (éa) [1&] F.T. of convolution



62

Chapter 3  The Fourier Transform

Most of the manipulations here are relatively straightforward. We have used Theorems
3.2, 3.5 in addition to various definitions. The step marked (!!), in which we inter-
changed an integration and an application of u requires some justification. Crudely
this is true because we can replace the integration with an appropriately convergent
Riemann sum and use the linearity and continuity of u. We shall justify this step in
Lemma 3.11. The conclusion of this calculation is that:

Tosld) = (42) [0

This holds for all 1 € Z(R™). Now, since Z(R") is dense in . and F : ¥ — ./ is a
homeomorphism, we have that:

Flo®y) ={d:v e 2@}
is dense in .. Thus, by approximation,
Toslx] = (62) []
holds for any x € . and we’re done.

Note that in the process of proving the previous part, we established that for any

v e P(R"):
[ uxdla)v-)de = u (@5 v)]
which is equivalent to:
(1w 6) % 9(0) = ur (6% ) (0). (38)
Now, note that:

U*Ty¢:7y(u*¢)7 ¢*Ty¢:7y(¢*¢)

as can bee easily seen from the definitions. Applying (3.8) with v replaced by 7,1, we
conclude that:

(ux @) x9(y) = ux (%) (y)-
Since this holds for any ¢ € Z(R") and Z(R") is dense in .¥, we're done.

This result follows by applying part ¢) to u *q@ and repeatedly making use of the
Fourier inversion theorem. We calculate:

T,.5 = ¢ = (2m)"

= (2m)*"(¢u) = (2m)"(¢u)

Since the Fourier transform is a bijection on ./, the result follows.
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In order to complete the proof of the above result, we need to justify the step marked
(") in which a tempered distribution and an integration were interchanged. We will first
prove a result concerning the convergence of Riemann sums, which will enable us to
establish that the (!!) step was justified. Let us suppose that Q C R™ and ' C R™ are
open and that f € C°(2 x ) is uniformly continuous. We will also assume that there is
some R > 0 such that:

supp f(+,y) C [-R, R)" C Q

for each y € /.
Next, we define a dyadic family of partitions of [-R, R)™ into cubes as follows:

R. R, R. R, . .
11 = {[ lel’gk(“—i_l)) X X |:_2;€Zn72k(zn+1)) YIS [_213’21@_1]02}

where k = 0,1,.... The (k + 1) partition is obtained by chopping each cube in the k*"
partition into cubes with half the side length. Clearly for each fixed k:

U, = [-R,R)"

For 7 € I}, we define z, to be the point at the centre of the cube 7. We define the k**
Riemann sum with respect to this partition by:

Z f T, Y |7T’

WEHk

Lemma 3.11. With the definitions as above, (U)

y) - /Q f (. y)da

uniformly in y € Q.

Proof. First note that = +— f(z,y) is continuous and of compact support, hence Riemann
integrable on ). Thus for each fixed y we have:

y) /Q f(y)de

Next consider ¥ > k. We have that Il is a refinement of II, i.e. if 7’ € II;/, then there
is a unique 7 € Il with 7’ C 7. We calculate:

Sk@) = Sw@) = > flamy) = D 3 flaw,y) |7

melly melly o’ el
' Cmw
= § § 1'7” (xﬂ ,y ‘W ‘
melly w er/

' Cm
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here we have used that:

ml= > ||

ﬂ"EHk/
m’'Cr

Now, since f is uniformly continuous, we know that for any € > 0 there exists a 9,
independent of y, such that

‘f(x,y) _f(mlvy)} <€

for all |z — 2’| < ¢. Notice that for 7/ C 7 we have:

/

R
|x x“‘ — 2k+1\/ﬁ

Thus given € > 0, there exists K such that for all £k > K:

€

2RrR)"

[f(@ry) = flar,y)| <
Now suppose k' > k > K. We estimate:

|Sk( Sk” |< Z Z |f T, Y (xﬂ'7y ’ﬂ-‘
WGHkWEHk/
n’'Cr

7| =e
WEHk lis EHk/

m'Cmr

since the sum over the partition simply gives us back the volume of the large cube.
Sending &’ to infinity, we have the result we require. O

This result allows us to establish the result we require:

Corollary 3.12. Suppose u € ', ¢ € S and b € P(R™). Then:

u[ - w(—x)Tng;d:c] = /u [V(—2)7¢] d

Proof. Fix Q, R > 0 such that supp) C [-R, R)" C Q. Define the map:

f: OQxR* —» C
(z,y) = Y(—x)o(y — )

Notice that (14 |y|)V Dy f is uniformly continuous on  x R™ for any a, N. Thus applying
Lemma 3.11 we deduce that:

S — | Y(—z)Tedde, in ..
Rn

By the continuity of u, we deduce that:

k—o00

u { w(—x)quBda:} =u [hm Sk} = klim u [Sk]
Rn — 00
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By the linearity of u, we calculate:

wlSel=u | Y flan ) Inl| = Y ulf@e Nl = DY u [~ 6] x|

melly welly, melly

But x — u [w(—x)mqﬁ] is smooth, hence Riemann integrable, and we have that

Jim 3 )] bl = [ wli-a)rd] de

3.4 The Fourier—Laplace transform on &'(R")

Recall that &'(R™) C ’/(R"™) is a continuously embedded subspace, consisting of the
distributions of compact support. These distributions are precisely those which extend to
continuous linear maps from & (R™) to C (see Theorem 2.10). For these distributions, we
can express the Fourier transform in a very clean fashion.

Theorem 3.13. Suppose that u € &' (R™). Then 4 = Ty for some 0 € C°(R"™) with:
0(&) = ule .

Proof. Suppose that suppu C Bg(0). Pick ¢ € Z(R™) with ¢ = 1 on Bgr1(0), so that
Pu = u. We calculate:

L.~ 1

By Theorem 3.10 €). Thus we have @ = T}, with © = (27) @ 1) € C°°(R™), by Theorem
3.10 a).
Now let ¢ € . be such that d; = 1). We calculate:

5e) = L G*h(€) = *
o(¢) = @) ¥(€) P(¢)
= [reg] = u [@} = ule_¢y] = (Yu)le—¢]
= ule_¢). =

In practice, one does not distinguish between the distribution 4 and the function ©
and one uses the same letter to denote both. Notice that for u € &’(R™), the expression
ule_,] makes sense for z € C™. Moreover, this function is in fact holomorphic on C".
The analytic extension of a Fourier transform from R™ to C" (or a subset thereof) is
sometimes called the Fourier-Laplace transform.
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3.5 Periodic distributions and Poisson’s summation formula
Recall that the translate of a distribution u € 2'(R") is defined by:
Tulp] = u[T—.9] , for all ¢ € Z(R"),

Bearing this in mind, we can make a very natural definition of what it means to be
periodic:

Definition 3.2. We say that a distribution uw € 2'(R™) is periodic if for each g € Z™ we
have:
Tyl = U.

Example 14. a) The distribution u = T, _, is periodic for any g € Z". Suppose g ez
Then:

Tg/Te27fg [gb] = T€27r9 [T*g/qs] = / e27ri9'y¢(y + gl)dy

Rn

_ / e27rig-(z—g/)¢(z)dz _ e—27rig-g’ / 627rig-z¢(z)dz
n R

= T€27rg [(Z)]

b) Suppose v € &' (R™). Then

u = E TgU
g

is periodic. It is straightforward to show that u defines a distribution (see Exercise
below). To check periodicity, we have, for g € Z":

Tgulg] = u[r_g @] = Z Tgv [ng/ﬁb] = Z v [ngfg’d)] = Z Tgt+g'V [¢] = uld)],

geEL™ gEL™ geZ™
where we shift the dummy variable in the sum for the last step.

Exercise 5.1. Suppose v € &’(R") and let:

u = E TgV.

geEL™

Show that if ¢ € Z(R"™) with supp C K for some compact K C R™ then

ulg] =Y rvld),

geA

for some finite set A C Z" which depends only on K. Deduce that u defines a
distribution.
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When dealing with a periodic function f € C°°(R™), many quantities of interest are
averages over a fundamental cell of the periodic lattice:

1 1
q= {:BER":—2 <z < 2,i:1,...,n}
For example:

M(f) = / f(@)de

is the mean value that f attains. We’d like to extend this notion to makes sense for
periodic functions, but we’re presented with a difficulty. The obvious definition would be
to set:

M(u) = ult]

but of course 1, ¢ Z(R") so we’re not able to do this. Instead we will ‘smear out’ the
function 1,. To do this, notice that a crucial property of 1, is the following identity:

Z T, =1,
geEL™

which tells us that 1, generates a partition of unity.

We shall construct a smooth ‘partition of unity’, which will allow us to localise various
objects, and thus render them easier to deal with, and will enable us to define the mean of
a periodic distribution. This is a slightly technical result, but the basic idea is important
and crops up in many areas of analysis.

Lemma 3.14. Let
Q={rzeR":|z;|<1l,i=1,...,n}

be the cube of side length 2 centred at the origin. There exists a function ¥ € C°(R™)
with ¢ > 0 and suppy C Q such that:

Z Tg = 1.
geEZ™

Suppose that u € P'(R™) is periodic, and 1,1’ are both as above. Then:
u[Y)] = uly’]
We then define:
M (u) := u[¢)]
Proof. Note
q= {xGR" ) < ;,izl,...,n}.

By Lemma 1.14, there exists a function ¢y € C§°(Q), with ¢p(x) = 1 for z € g and
g > 0. Consider:

@) =3 to(z - g).

geEZ™
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For any bounded open set €2, we have that

A={geZ":(Q-g)NQ #0}

is finite. For z € (), we have:

geA

so S(z) is smooth. Moreover, for each x € R, there is at least one g € Z" with x — g € q.
Thus S(xz) > 1. We can thus take:

Yo ()
S(z)

P(x) =

This is smooth, positive, supported in ) and moreover:

S () = 5(1) S ole—g) = 1.

geEZ™ geZ"

Now suppose u € 2'(R™) is periodic and 1,1’ are both partitions of unity as above.
We calculate:

ulg) =u | > | = > ur]

geEL™ geEL™

= gl =u @ Y | = ) =

geEL™ geEZLn

We thus have an acceptable definition of the mean of a periodic distribution. Notice
that if u = T’ for some locally integrable periodic function f, then by choosing a sequence
of ¥;’s such that ¢; — 17 in L'(R™), we can show that:

M(Ty) = / f(@)d,

justifying calling M the mean of the distribution.

To see why this technical lemma is useful, let us apply it to show that a periodic
distribution is necessarily tempered, and in fact the periodic distributions we found by
translating a compact distribution are indeed all of the periodic distributions.

Lemma 3.15. Suppose v € &' (R™) is a compact distribution. Then:
u= Z TgU (3.9
geEL™

converges in .. Conversely, suppose that u € 2'(R™) is a periodic distribution. Then
there exists v € &' (R™) such that (3.9) holds and thus u extends uniquely to a tempered
distribution u € ..



3.5 Periodic distributions and Poisson’s summation formula 69

Proof. Let K = suppwv. Since v € &'(R™), by Lemma 2.9 there exists C' > 0, N such
that:

w[g]| <C  sup |DY(x)|, forall ¢ € &(R™).
z€K;|la|<N

Now suppose ¢ € . C &(R"™). We have:

[Tu[gll = |v[T—gdl| <C  sup |[D%(x+g)|.
z€K;|a|<N

Since K is bounded, we have that K C Bgr(0) for some R > 0. We calculate:
I+lgl=1+]z+g—a|<1+R+|z+g/ <1+ R)A+|z+g])

for all x € K, so that:
1+ |x+g|

1<(1+R) T+ 1d]

We conclude that for any M > 1:

C(1+RM N
e (b)Y D% o)
e |a|<

C(1+R)M M
< qu 1+ D~ .
(+ o)™ yeRn;lap‘SN( )™ [D*¢(y)|

[mgv [@]] <

Since ¢ € ., in particular we have:
Cl
[Tgv (]| < —————
! (1+ g™
where C’ depends on v, ¢. Now, since:
> e <
1 )
L (1 1gh™
(see Exercise below) we deduce that for each ¢ € . the sum:
Z 4 [¢)]
geL™

converges. This is precisely the statement that the sum in (3.9) converges in .&".
Now suppose u € 2'(R™) is periodic, and take ¢ as in Lemma 3.14. Suppose
¢ € 2(R") is arbitrary. We have:

ulg) = [ Y v | uldl = D> ulrgipe]. (3.10)
geEZ™ geEZ™

Now, since u is periodic,:

u [Tgd] = Tou [Thg] = u[hT_gd] = (Yu) [T_g¢] = T4(Yu)[¢]
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Now ¢u has compact support, so by Theorem 2.10 extends uniquely to v € &'(R™). Thus

we have:
u= Z TgU
geEL™
which by the first part of the proof converges in ./, thus u € .. O

Exercise 5.2. Recall that for z € R™:

n
lzlly := D lail
i=1

For k € N set: . .
Qk—{geZ”:k—2§\|gyl<k+2}
a) Show that:
#Qr = 2k+1)" - (2k-1)"
so that #Qp < c¢(1 + k)"~ ! for some ¢ > 0.

b) By applying the Cauchy-Schwartz identity to estimate a - b for a = (1,...,1)
and b = (|g1|,--.,|gn|), deduce that:

gll; < Vnlgl

¢) Show that there exists a constant C' > 0, depending only on n such that:

5 L ey
(+lgh = &R

geZ™||gll, <K

holds for all k. Deduce that:

1
—_— < .
Z 1+ g™ o0

geL™

We have shown that a periodic distribution is necessarily tempered. It is therefore
reasonable to ask what one can say about the Fourier transform of a periodic distribution.
In fact, it will turn out that the Fourier transform of a periodic distribution has a very
simple form: it consists of a sum over §-distributions with support on the points of an
integer lattice.

Before we establish this, we will first need a technical result regarding distributions.

Lemma 3.16. Suppose that u € . satisfies:
(e—g —1)u=0 (3.11)

for all ¢ € Z". Then:

U= g Cg627rgv

geEL™
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where cq € C satisfy the bound
legl < K(1+1g)Y
for some K >0, N € Z, and the sum converges in .&".

Proof. First, we claim that suppu C A, with
A={2ng:g€Z"}.

Suppose ¢ € Z(R™) with supp ¢ C R™\A. Then for each ¢’ € Z™, we have (e,g/ — 1)71 ¢ €
&, since ¢ vanishes near any zeros of e_y — 1. Applying the condition (3.11), we deduce:

0= (e_g, — 1) U [(e_g/ — 1)71 ¢} = u[¢]

so u vanishes. Thus suppu C A. 3
Now, let us take ¢ as in Lemma 3.14, and define ¢ (z) = ¢ (%) It’s straightforward
to check that:

Z Torg? = 1, supp? C {z € R" : |z;| < 2w}
geEL™

For g € Z", let us consider v, = (Tgﬂgﬂ)u. This distribution is supported at 2wg, and by
multiplying (3.11) by T2r4¢ we have:
(e_g/ - 1) vg =0

In particular, we have, taking ¢’ = [; for j = 1,...n, where {l;} is the canonical basis for
n.
. (e_i(wj_%gf) - 1) vg = 0.
Now,
(67“’” ~2mes) — 1) = (z; — 2mg;)r(z;)
where k(x;) is non-zero on a neighbourhood of g;. Thus we conclude that:

(x; — 2mgj)vg =0, j=1,...n.

Now suppose ¢ € .. We can write:

n

¢(x) = $(2mg) + Y _(x; — 2mg;)¢;()

=1

where ¢;j(x) € C*°(R"). Since vy has compact support, it extends to smoothly to act on
&(R™) and we calculate:

Ug[¢] = Ug[¢(27rg)] +

J

(xj - 27793’)”9[‘15)'] = Ug[¢(2779)]
1

n
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Returning to the definition of v4, we have:

(TQTrgl/;)u[‘ZS] = (Tnglﬁ)UW(zﬁg)] = U[T%glz]‘s%g (9]
so that ) )
(7_27rg¢)u = U[T27rgw]627rg

Summing over g € Z", we recover:

Z (7'27rg"‘/~’>u = Z (Tng@ U=u= Z Cg02mg

gEL™ geEL™ geZ™
Where
cg = U[Torgt)].

To establish the estimate for ¢4, we recall from Lemma 2.11 that there exist N,k € N
and C > 0 such that:

lufg]] <C  sup |1+ [z))NDY(z)|, forall ¢ €.7.

z€R"; || <k
Applying this to Tgﬂgz/?, we have:

e/ <C sup  |(1+ 2N D*(w - 2rg)|
zeR™;|a|<k

<C sup ‘(1 + |z + 27Tg|)NDa@5(x)‘
zeR™;|a|<k

<O swp (14 o) VD) x (1+ g™
T€R™; || <k
< K(1+gh™

With this bound, it is a straightforward exercise to verify that the sum converges in
. O

Exercise 5.3. Show that if ¢, satisfy:
el < K(1+ g™

for some K > 0 and N € N, then:

Z Cg527rg

gEL™
converges in ..

This now enables us to establish a result regarding the Fourier series of a periodic
distribution.
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Theorem 3.17. Suppose u € P'(R™) is a periodic distribution. Then there exist constants

cq € C such that:
U = Z CgTleyny-
geEL™

with ¢4 are given by:
cg = M(e_argu).

and satisfy the bound:
gl < K(1+ g™ (3.12)

for some K >0, N € Z.

Proof. Since u is periodic, it is tempered by Lemma 3.15. Thus we may take the Fourier
transform. Noting that:
TgU =1U

for all ¢’ € Z™, we have that
efg/’ll =1 — (efg/ — 1)'& = 0.

By Lemma 3.16, we deduce that:

i =(2m)" ) cglang,

geEL™

for some ¢, satisfying (3.12), where the sum converges in /. We can apply the inverse
Fourier transform, making use of the fact that it is continuous on .’ to deduce:

u = E chE%Q,

gEL™

with convergence again in /. To establish the formula for ¢,, we make use of the
comments after Lemma 3.14 to note that:

M(€—271'9T62ﬂ.g/) = /€2Wi(g_g/).xd$ = (Sggl
q
Since u +— M (e_arqu) is a continuous map from .’ to C, we deduce that:

M(e_orgu) = Z ch(e,gTrgTe%g,) =cg.
g'€zn

Remark. Usually one writes the Fourier series for u as:

u = E Cg€2rg,

geEZ™

ignoring the distinction between the function earq and the distribution it defines.
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As a simple example, let us consider the distribution:
u= Z dg-
geEL™

By Lemma 3.15, this defines a periodic distribution, since §, = 7,00 and dp € &’ (R™).
Notice also that if v satisfies the conditions of Lemma 3.14, then since supp vy C {z € R™ :
|zj| <1}, we have that 741(0) = 0 for g € Z" with g # 0. Thus, since > cyn 790 = 1,
we must have ¢(0) = 1. We can then calculate:

Cg = M(e—ngu) = u[we—%rg] = 1#(0)672”90 =1
Thus we have established Poisson’s formula:
2 %= Loy,
geEL™ geEL™
where we understand both sums to converge in .’. This is sometimes written, with an

abuse of notation:
S sl = Y e
geEL™ geEL™

You may want to refer back to (7), which we heuristically justified in the introduction to
the course.

We can specialise various results concerning Fourier transforms to the case of Fourier
series.

Corollary 3.18. i) Suppose u € 2'(R"™) is periodic and may be written as:

u = g CgTey,,-

geZ™

Then Dju € 9'(R") is periodic and has Fourier series:

Dju = Z (2migjcg) ey, -
QGZ"

ii) Suppose f € Li . (R™), then:

loc.

|cq| < ||f||L1(q) ;

and moreover, cg — 0 as |g| — oo.

iii) Suppose f € C"TL(R™) is periodic. Then:

with the sum converging uniformly.
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) Suppose f,h € L2 _(R™) are periodic with Fourier coefficients fg, hy respectively.

Then: e
/f(x)h(a:)da; = Z fohyg.

This is the Fourier series version of Parseval’s formula. Moreover,

f(ID) — Z 696271’1'9-:):

QGZ"
holds, with the sum converging in L*(q).

Proof. 1) Since the Fourier series for u converges in ./, we may differentiate term by
term (as differentiation is a continuous operation from .’ to itself). Since
DjTe = (27T’igj)T

27g €2mg)

the result follows.

ii) Note that if f € L}, . (R"™), then:

loc.

/GQﬁig-xf(x)dm

q

gl =

< / F@)dz = IIfl] 1y -

q

Now, given € > 0, we can approximate® f by a smooth periodic function f,, with
Fourier coefficients ¢, such that

N

I1f = fellprg <

Since D;D;f. € L}, (R"), we have that lg]? ‘c'g‘ < C, for each j =1,...,n so there

loc.

exists R > 0 such that }cg‘ < § for |g| > R. We have:

€
leg = gl <NF = fellpagg) < 3

so we conclude that for |g| > R:
‘ |—‘ f’+/’<E+E_
cgl =leg—cgteg <5+ 5=e
Thus ¢, — 0 as |g| — oo.

iii) Since f € C**1(R"), we have that D*f € L} _(R") for |a| < n+ 1. Applying the
previous two results we conclude that |c,| < K (1 + |g]) ™" for some K > 0. Thus
the partial sums:

Fn(.’L') _ Z CgeQWig-x

gEL™,|g|<n

5See Exercise 5.4
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converge uniformly to some continuous function F' by the Weierstrass M —test. We
have:
Tr= i, . Gl = lin Tr, = Tr
geEL™ |g|<n
since uniform convergence implies convergence in .’. By the injectivity of the
mapping between continuous functions and distributions we conclude f = F.

iv) Suppose f,h € C*>°(R") are periodic. Then:

— Z fge27rig-m’ h(ﬁ) _ Z hg€2m’g-x

gEL™ gEL™

with sup,ezn (14 |g]) | fg| < oo for all N € N, and similarly for hy. We calculate:

/f(l‘) d.f _/ Z fg e~ 2mig-w Z hg/e27rig’-z dr
q q

geL™ g'ezn
Z Z f h / 2mi(g )zdl'
geEL™ g'eL™
=Y > Fohgley =D Fohg
geEL™ g' €L geZn

In particular, we have that:

1112 = ol rzmy -

where for a sequence {ay}4ezn, we define:

2
HagHﬁ(Zﬂ) = Z |ag]

geEZL™

Now suppose f € L _(R™). Given k > 0, we can find f*) with Fourier coefficients

fg Jsuch that:
1

Hf_f( k

Since by Cauchy-Schwarz we have:

Wiy = [1s@lae < ( [ \f(ac)\%zac)é (/ dm)% il

we have that:

1
fg_fg(k)‘ < E)

= Ssu
Hfg 9 Hzoo(zn) QGZBL

Now, f(*) is a Cauchy sequence in L?(q), so {fg(k)} is a Cauchy sequence in £2(Z").
We conclude that fg(k) converges in £2(Z"), however we also know that f*) — f
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in ¢>°(Z"), thus we must have f*) — f in (?(Z"). Taking a similar sequence of

hF) € C>(R™) approximating h with Fourier coefficients hgk), and recalling that:

( ), h(k))Lz(q) — ( Flh), h(k)) ,

the result follows on sending & — oo. The convergence of the Fourier series in L?(q)

follows by showing that the partial sums form a Cauchy sequence in L?(q).
O

Exercise 5.4. Suppose f € L} (R") is a periodic function. Fix € > 0, and let:

loc.

1
Q={zeR":|z;|<1,j=1,...,n}, q:{xeR”:\xj|<2,j:1,...,n}

a) Show that there exists he € C°(R") with:

supp he C Q

such that:
1 Lg = hell o gny <€

Define

fe= Z Tghe

geEL™
b) Show that f. is smooth and periodic.

¢) Show that there exists a constant ¢, depending only on n such that:
||f - f€||LP(q) < cpeE.
Exercise 5.5. Suppose that f : R — R is given by:

f(z) ==z for |z| < L

B% flx+1) = f(z).

Show that:

e S a\n ) X 1\yn+1
flz) = Z ue_zmm = Z (711)7r sin(2mnz),
n=-—oo n=1

with convergence in L2 _ (R).

Exercise 5.6. Suppose f: R — R is given by:

_ _1
f@={ 71 L @) = o).
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a) Show that:

1 — 2 4N 1
N —2mi(2n+l)x _ * 0 (27 (2 1
f(zx) m,nz 2n+1€ an:%2n+1sm[7r(n+ )]

—0o0

With convergence in L? _(R™).

loc.
Define the partial sum:

N—-1
SN@):8§%2ﬂ%;+Dsmpw@n+Uﬂ.

b) Show that:
2 N—1

Sn(z) = 8/0 Z cos [2m(2n + 1)t] dt.
n=0

c¢) Show that:

cos [2m(2n + 1)t] sin 27t = % (sin [27(2n + 2)t] — sin [47nt])

T sindnr Nt
&wmzs/'mlwa
0

And deduce:

2sin 27t

d) Show that the first local maximum of Sy occurs at « = ff, and:

1
1 iN sin4nw Nt 2 [Tsins
> — dt = — ds ~1.179...
SN<4N>_8/O 4mt 71'/0 s O ™

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is
known as Gibbs Phenomenon.

Exercise 5.7. (*) Suppose that A = {A1,...\,} is a basis for R™. We define
the lattice generated by A to be:

A= i Zj)\j 175 € Z
j=1
Define the fundamental cell:
- 1
= ;wa‘/\j gl <5

We say that u € 2'(R™) is A—periodic if:

TgU = U for all g € A.
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Show that there exists 1) € C§°(2ga) such that ¢ > 0 and

ngw =1.

geN
Show that if u € 2'(R") is A—periodic and v, 1)’ are both as in part a), then
1 1
— Y] = —u[y] = M(u
|QA|[] |QA\[] (u)

Define the dual lattice by:
AN ={zeR":g-x€2nZ, Vg € A}

Show that there exists a basis A* = {A],... A} } such that A} - Ay = dj), and
A* is the lattice induced by \*.

Show that if g € A* then e, is A—periodic.

Show that if u € 2'(R") is A—periodic, then:

U= Z gy

geEN*
for some ¢, € C satisfying |c,| < K(1 + |g|)" for some K > 0, N € Z.

Show that if u € 2'(R") is A—periodic, then:

U= Z dgTe,

geN*
where |dy| < K(1+ |g])"V for some K >0, N € Z are given by:

dg = M(e_qu)
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