
Chapter 1

Test functions

Before we introduce distributions, we’re first going to spend a bit of time studying some
nice classes of smooth functions. Let Ω ⊂ Rn be an open set. We denote by Ck(Ω) the
space of all k-times continuously differentiable complex valued functions on Ω, and by

C∞(Ω) =
∞⋂
k=0

Ck(Ω),

the set of smooth functions on Ω.
When dealing with partial derivatives of high orders, the notation can get rather messy.

To mitigate this, it’s convenient to introduce multi-indices . We define a multi-index α to
be an element of (Z≥0)n, i.e. a n−vector of non-negative integers α = (α1, . . . , αn). We
define |α| = α1 + . . .+ αn and

∂|α|f

∂xα
=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn
f,

in other words, we differentiate α1 times with respect to x1, α2 times with respect to x2

and so on. When it’s unambiguous on which variables the derivative acts, we will also
use the more compact notation:

Di :=
∂

∂xi
,

and

Dα :=
∂|α|

∂xα
.

For a vector x ∈ Rn, we will also use the notation:

xα := (x1)α1(x2)α2 · · · (xn)αn

The spaces Ck(Ω) and C∞(Ω) are vector spaces over C, where addition and scalar
multiplication are defined pointwise. If φ1, φ2 ∈ Ck(Ω) and λ ∈ C, we define the maps
φ1 + φ2, λφ1 by

φ1 + φ2 : Ω→ C,
x 7→ φ1(x) + φ2(x),

λφ1 : Ω→ C,
x 7→ λφ1(x).

(1.1)
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Exercise(∗). Show that with the definitions (1.1) the space Ck(Ω) is a vector
space over C, and that C l(Ω) is a vector subspace of Ck(Ω) provided k ≤ l ≤ ∞.

Definition 1.1. If φ ∈ C0(Ω), the support of φ is the set:

suppφ = {x ∈ Ω : φ(x) 6= 0},

where the closure is understood to be relative1 to Ω. That is suppφ is the closure of the
set on which φ is not zero. We say that φ has compact support if suppφ is compact.

For 0 ≤ k ≤ ∞, we define Ck0 (Ω) to be the subset of Ck(Ω) consisting of functions
with compact support. Ck0 (Ω) is a vector subspace of Ck(Ω).

Theorem 1.1. There exists a function ψ ∈ C∞0 (Rn) such that

i) ψ ≥ 0

ii) ψ(0) 6= 0

iii) suppψ ⊂ B1(0) := {x ∈ Rn : |x| < 1}

iv) We have: ∫
Rn
ψ(x)dx = 1.

Proof. First, we note that the function:

χ(t) =

{
0 t ≤ 0

e−
1
t t > 0

is smooth, i.e. χ ∈ C∞(R). Moreover, χ ≥ 0 and χ(1) 6= 0. We define ψ0(x) =

χ
(

1− |x|2
)
. Since the map x 7→ |x|2 is smooth, ψ0 ∈ C∞(Rn). We set:

ψ(x) =
ψ0(x)∫

Rn ψ0(x)dx
.

It is easy to verify that ψ satisfies conditions i)− iv).

Corollary 1.2. For Ω ⊂ Rn open, C∞0 (Ω) is not the trivial subspace {0} ⊂ C∞(Ω).

Proof. Since Ω is open, there exists ε, x such that the ball Bε(x) = {y ∈ Rn : |y − x| < ε}
is contained in Ω. The function y 7→ ψ

[
ε−1(y − x)

]
is easily seen to belong to C∞0 (Ω).

Exercise 1.4. For t ∈ R let:

χ(t) =

{
0 t ≤ 0

e−
1
t t > 0

1If Ω ⊂ Rn is open, and A ⊂ Ω, then the closure of A relative to Ω is the intersection of Ω with the
closure of A as a subset of Rn. Note that the closure of A relative to Ω may not be closed as a subset of
Rn.



Chapter 1 Test functions 3

a) Show that χ ∈ C∞(R).

b) Show that there exists a function ψ ∈ C∞0 (Rn) such that

i) 0 ≤ ψ ≤ 1

ii) suppψ ⊂ B2(0)

iii) ψ(x) = 1 for |x| ≤ 1.

Hint: First construct a positive smooth function χ̃ : R→ [0, 1] such that

χ̃(t) =

{
0 t < −1
1 t > 1

Suppose Ω ⊂ Ω′, where both are open subsets of Rn. If φ ∈ Ck0 (Ω), then we can
extend φ to a function on Ω′ by setting φ = 0 on Ω′ \ Ω. This extended function will
be smooth in Ω′ and we do not alter the support, so in this way we see that Ck0 (Ω) is a
vector subspace of Ck0 (Ω′).

The following result is useful:

Lemma 1.3. Suppose Ω ⊂ Rn is bounded and K ⊂ Ω is compact. Then d(K, ∂Ω) > 0,
where:

d(K, ∂Ω) := inf
x∈K,y∈∂Ω

|x− y| .

Proof. K is compact, so K ⊂ BR(0) for some R > 0. Let ΩR = Ω ∩ BR(0). ΩR is
open and bounded, with K ⊂ ΩR. It suffices to show that d(K, ∂ΩR) > 0. Since ΩR is
bounded, ∂ΩR is compact. Therefore the map:

f : K × ∂ΩR → R≥0,
(x, y) 7→ |x− y| ,

is a continuous map on a compact set, hence it achieves its minimum d at (x0, y0). Suppose
that d = 0, then x0 = y0, but x0 ∈ K ⊂ Ω and y0 ∈ ∂Ω ∈ Ωc a contradiction. Thus d > 0
and we’re done.

Corollary 1.4. If φ ∈ Ck0 (Ω), extend φ to Rn by φ = 0 on Ωc. Define τxφ by:

τxφ : Ω→ C,
y 7→ φ(y − x).

(1.2)

Then there exists ε > 0 such that τxφ ∈ Ck0 (Ω) for all x ∈ Bε(0).

Proof. We have
supp τxφ = suppφ+ x

Since suppφ is compact, supp τxφ is just a translate of a compact set, so is compact as a
subset of Rn. We need to check that supp τxφ ⊂ Ω. We have d(suppφ, ∂Ω) = δ > 0. Set
ε = δ/2. Then we have, by Lemma 1.3

suppφ+Bε(0) ⊂ Ω

but if x ∈ Bε(0), then supp τxφ ⊂ suppφ+Bε(0) and we’re done.
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1.1 The space D(Ω)

So far we have defined the sets C∞(Ω) and C∞0 (Ω) as sets and shown that they have
the algebraic structure of a vector space. We want to discuss notions of convergence and
continuity in these spaces, and for this we shall require a topology. It turns out that the
appropriate topology is somewhat subtle, and to describe it properly would take rather
too long. Appendix B develops the topology in detail, for those who are interested. We
shall simply quote the following result:

Theorem 1.5. The set C∞0 (Ω) can be endowed with a topology τ , such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to τ .

ii) A sequence {φj}∞j=1 ⊂ C∞0 (Ω) tends to zero with respect to the topology τ if there
exists a compact K ⊂ Ω such that suppφj ⊂ K for all j ∈ N and for each multi-index
α we have:

sup
x∈K
|Dαφj | → 0,

as j →∞. Similarly, φj → φ with respect to τ if φj − φ→ 0.

We denote the set C∞0 (Ω) equipped with the topology τ by D(Ω).

Note carefully that although we’ve said what it means for a sequence to converge, this
is not in general enough to specify the topology completely. With some reasonable further
conditions (see the Appendix) we can in fact pick out τ uniquely. For the purposes that
we require, it will be enough to know about convergence of sequences.

Example 1. Suppose φ ∈ D(Ω). Let δ be such that τxφ ∈ D(Ω) for |x| < δ. If
{xl}∞l=1 ⊂ Rn is a sequence with |x| < δ, and xl → 0, then

τxlφ→ φ, as l→∞.

To see why this is so, recall that there exists ε > 0 such that suppφ+B2ε(0) ⊂ Ω. Suppose
that |x| < ε. Then

supp τxφ = suppφ+ x ⊂ suppφ+Bε(0) ⊂ suppφ+B2ε(0) ⊂ Ω.

Thus for i large enough, supp τxlφ ⊂ K := suppφ+Bε(0), where K is a compact subset
of Ω. Now for any multi-index α, Dαφ is a continuous function defined on a compact set,
hence is uniformly continuous. In particular this implies that

sup
K
|Dαφ(y + xl)−Dαφ(y)| → 0, as xl → 0,

which immediately gives us that τxlφ→ φ in D(Ω).
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Example 2. Suppose φ ∈ D(Ω). For h > 0 sufficiently small, we define the forward
difference quotient:

∆h
i φ =

1

h
(τ−heiφ− φ)

with {ei}ni=1 the standard basis on Rn. Then

∆h
i φ→ Diφ, as h→ 0.

By the same argument as for the previous example, there exists a compact K ⊂ Ω such
that supp ∆h

i φ ⊂ K for h sufficiently small. By the mean value theorem, for each x ∈ K,
there exists tx ∈ (0, h) such that

Dα∆h
i φ(x) =

Dαφ(x+ hei)−Dαφ(x)

h
= DiD

αφ(x+ txei)

Fix ε > 0. Since DiD
αφ is continuous on K (hence uniformly continuous), there exists

δ > 0, independent of x such that If tx < δ we have

|DiD
αφ(x+ txei)−DiD

αφ(x)| < ε.

If we take h < δ, then tx < δ for all x and we conclude:

sup
x∈K
|DiD

αφ(x+ txei)−DiD
αφ(x)| < ε,

which implies
sup
x∈K

∣∣∣Dα∆h
i φ(x)−DαDiφ(x)

∣∣∣→ 0 as h→ 0.

Example 3. Fix φ ∈ D(R) with φ(x) 6≡ 0. The sequence:

φj(x) =
1

j
φ(x− j), j = 1, 2, . . .

does NOT converge in D(R). We have that

sup
R
|Dαφ| → 0, as j →∞,

but there is no compact set which contains the support of φj for all j.

For those who are interested, D(Ω) is en example of a locally convex topological vector
space. The topology of D(Ω) is not inherited from a norm or a metric, so this space does
not have a Banach space structure, for example.

1.2 The space E (Ω)

The set C∞(Ω) can also be given a topology in a fairly natural way. Again, we shall
not go into the details of its construction, but simply assert the existence of a suitable
topology.
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Theorem 1.6. The set C∞(Ω) can be endowed with a topology τ , such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to τ .

ii) A sequence {φj}∞j=1 ⊂ C∞(Ω) tends to zero with respect to the topology τ if for every
compact K ⊂ Ω and for each multi-index α we have:

sup
x∈K
|Dαφj | → 0,

as j →∞. Similarly, φj → φ with respect to τ if φj − φ→ 0.

We denote the set C∞0 (Ω) equipped with the topology τ by E (Ω).

Again, specifying the convergent sequences does not uniquely specify the topology, so
for the full construction refer to the Appendix.

Example 4. Recall that C∞0 (Ω) ⊂ C∞(Ω). If {φi}∞i=1 ⊂ C∞0 (Ω) tends to 0 in D(Ω),
then φi → 0 in E (Ω). In fact, we can say more: the inclusion map ι : D(Ω) ↪→ E (Ω) is
continuous.

Example 5. Fix φ ∈ D(R) with φ(x) 6≡ 0, and consider the sequence:

φj(x) = jφ(x− j), j = 1, 2, . . .

This converges to 0 in E (R). For any compact K, suppφj ∩K = ∅ for j sufficiently large,
i.e., the support of φj eventually leaves any compact set. This shows that the topology of
D(Ω) is not simply the induced topology of C∞0 (Ω) thought of as a subspace of E (Ω).

Exercise 1.5. a) Suppose φ ∈ E (Rn). Let {xl}∞l=1 ⊂ Rn be a sequence with
xl → 0. Show that

τxlφ→ φ, as l→∞.

in E (Rn), where τx is the translation operator defined in equation (1.2).

b) Suppose φ ∈ E (Rn), show that

∆h
i φ→ Diφ, as h→ 0,

in E (Rn), where ∆h
i is the difference quotient defined in Example 2.

For those who are interested, E (Ω) is also a locally convex topological space, but the
topology on E (Ω) is induced by a complete translation invariant metric. This makes
E (Ω) into what is known as a Fréchet space. The topology is not induced by a norm, so
it cannot be given a Banach space structure.
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1.3 The space S

The spaces D(Ω) and E (Ω) are both defined on arbitrary open sets in Rn. The final
space of functions that we wish to consider is a subspace of E (Rn) consisting of functions
which are rapidly decreasing near infinity.

Definition 1.2. A function φ ∈ C∞(Rn) is said to be rapidly decreasing if:

sup
x∈Rn

∣∣(1 + |x|)NDαφ(x)
∣∣ <∞

for all multi-indices α and all N ∈ N.

Notice that rapidly decreasing functions and their derivatives decay faster than any
inverse power of |x| as |x| → ∞.

Example 6. i) Suppose φ ∈ C∞0 (Rn), then φ is rapidly decreasing.

ii) The function x 7→ e−|x|
2

is rapidly decreasing.

Theorem 1.7. The set of rapidly decreasing functions can be endowed with a topology τ ,
such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to τ .

ii) A sequence {φj}∞j=1 of rapidly decreasing functions tends to zero with respect to the
topology τ if for every multi-index α and N ∈ N we have:

sup
x∈Rn

∣∣(1 + |x|)NDαφj(x)
∣∣→ 0,

as j →∞. Similarly, φj → φ with respect to τ if φj − φ→ 0.

We denote the set of rapidly decreasing functions equipped with the topology τ by S . This
is often known as the Schwartz class of functions.

As for E (Rn), the topology on S is induced by a complete translation invariant
metric, so that S is a Fréchet space. The topology is not induced by a norm, so it cannot
be given a Banach space structure.

Lemma 1.8. The spaces D(Rn), S and E (Rn) satisfy:

D(Rn) ⊂ S ⊂ E (Rn).

Moreover, the inclusion map is continuous in each case.

Exercise 1.6. a) Show that S is a vector subspace of E (Rn). Show that if
{φj}∞j=1 is a sequence of rapidly decreasing functions which tends to zero in
S , then φj → 0 in E (Rn).
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b) Show that D(Rn) is a vector subspace of S . Show that if {φj}∞j=1 is a
sequence of compactly supported functions which tends to zero in D(Rn)
then φj → 0 in S .

c) Give an example of a sequence {φj}∞j=1 ⊂ C∞0 (Rn) such that

i) φj → 0 in S , but φj has no limit in D(Rn).

ii) φj → 0 in E (Rn), but φj has no limit in S .

Exercise 1.7. a) Suppose φ ∈ S . Let {xl}∞l=1 ⊂ Rn be a sequence with xl → 0.
Show that

τxlφ→ φ, as l→∞.

in S , where τx is the translation operator defined in equation (1.2).

b) Suppose φ ∈ S , show that

∆h
i φ→ Diφ, as h→ 0,

in S , where ∆h
i is the difference quotient defined in Example 2.

1.4 Convolutions

If f , g are functions mapping Rn to C, then we define the convolution of f and g to be:

(f ? g)(x) =

∫
Rn
f(y)g(x− y)dy,

provided the integral exists. This will happen if (for example) f ∈ C0
0 (Rn) and f ∈ C0(Rn).

Lemma 1.9. Suppose f, g, h ∈ S . Then:

f ? g = g ? f, f ? (g ? h) = (f ? g) ? h.

and ∫
Rn

(f ? g)(x)dx =

∫
Rn
f(x)dx

∫
Rn
g(x)dx.

Proof. With the change of variables y = x− z, we have2

(f ? g)(x) =

∫
Rn
f(y)g(x− y)dy =

∫
Rn
f(x− z)g(z)dz = (g ? f)(x)

2If you’re worried about a missing minus sign from the change of variables when n is odd, observe:∫ ∞
−∞

k(x)dx =

∫ −∞
∞

k(−y)d(−y) = −
∫ −∞
∞

k(−y)dy =

∫ ∞
−∞

k(−y)dy.
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Next, we calculate:

[f ? (g ? h)] (x) =

∫
Rn
f(y)

(∫
Rn
g(z)h(x− y − z)dz

)
dy

=

∫
Rn
f(y)

(∫
Rn
g(w − y)h(x− w)dw

)
dy

=

∫
Rn

(∫
Rn
f(y)g(w − y)dy

)
h(x− w)dw

= [(f ? g) ? h] (x)

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f, g, h ∈ S to invoke Fubini’s theorem (Theorem A.5) when
passing from the second to third line. Finally, we calculate:∫

Rn
(f ? g)(x)dx =

∫
Rn

(∫
Rn
f(y)g(x− y)dy

)
dx

=

∫
Rn

(∫
Rn
f(y)g(x− y)dx

)
dy

=

∫
Rn

(
f(y)

∫
Rn
g(z)dz

)
dy

=

∫
Rn
f(x)dx

∫
Rn
g(z)dy.

where again, the fact that f, g ∈ S allows us to invoke Fubini.

The assumption that the functions are Schwartz is certainly overkill in this theorem.
It would be enough, for example, to consider functions in C0

0 (Rn), or even weaker spaces,
provided we can justify the application of Fubini’s theorem.

Exercise 2.1 (*). Suppose that we work over Rn and that f, g, h ∈ S .

a) Show that for any multi-index α, we have that Dαf ∈ Lp(Rn) for 1 ≤ p <∞,
i.e. that

||Dαf ||Lp(Rn) =

(∫
Rn
|Dαf(x)|p dx

) 1
p

<∞.

b) Define
F : Rn × Rn,

(x, y) 7→ f(x)g(y − x).

Show that F ∈ L1(Rn × Rn).

c) For each x ∈ Rn, set

Gx : Rn × Rn,
(y, z) 7→ f(y)g(z)h(x− y − z).

Show that Gx ∈ L1(Rn × Rn).
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1.4.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f ? g is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 1.10. Suppose f ∈ L1
loc.(Rn) and g ∈ Ck0 (Rn) for some k ≥ 0. Then f ? g ∈

Ck(Rn) and
Dα(f ? g) = f ? Dαg,

for any multiindex with |α| ≤ k.

Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof.

Lemma 1.11. a) Suppose f ∈ C0
0(Rn) and {zi}∞i=1 ⊂ Rn is a sequence with zi → 0 as

i→∞. Then for any x ∈ Rn:

i) τzjf(x)→ f(x) as j →∞.

ii)
∣∣τzjf(x)

∣∣ ≤ (supRn |f |)1BR(0)(x), for some R > 0 and all j.

b) Suppose f ∈ C1
0 (Rn) and {hj}∞j=1 ⊂ R is a sequence with hj → 0 as j →∞. Then for

any x ∈ Rn:

i) ∆
hj
i f(x)→ Dif(x) as j →∞.

ii)
∣∣∣∆hj

i f(x)
∣∣∣ ≤ (supRn |Dif |)1BR(0)(x), for some R > 0 and all j.

Proof. a) i) Recall τzjf(x) = f(x − zj). Clearly since zj → 0, f(x − zj) → f(x) as
j →∞ by the continuity of f .

ii) Since zj → 0, there exists some ρ > 0 such that zj ∈ Bρ(0) for all j. Now

supp τzjf = supp f + zj ⊂ supp f +Bρ(0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp τzjf ⊂ BR(0). Thus τzjf = τzjf1BR(0) and we estimate:∣∣τzjf(x)

∣∣ =
∣∣τzjf(x)

∣∣1BR(0)(x) ≤ sup
Rn
|f |1BR(0)(x).

b) Suppose f ∈ C1
0 (Rn) and {hj}∞j=1 ⊂ R is a sequence with hj → 0 as j →∞. Then for

any x ∈ Rn:

i) From the definition of the difference quotient and of the partial derivative:

∆
hj
i f(x) =

f(x+ hjei)− f(x)

h
→ Dif(x), as j →∞.
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ii) Since hj → 0, there is some k > 0 such that |hj | ≤ k for all j. We have:

supp ∆
hj
i f ⊂ supp τ−heif ∪ supp f = (supp f − hjei) ∪ supp f

⊂
(

supp f +Bρ(0)
)
∪ supp f

⊂ BR(0)

for some R > 0 since the union of two bounded sets is bounded. Thus ∆
hj
i f =

∆
hj
i f1BR(0). We also observe that by the mean value theorem, for any h ∈ R,

there exists s ∈ R with |s| < |h| such that

f(x+ hjei)− f(x)

h
= Dif(x+ sei)

thus ∣∣∣∆hj
i f(x)

∣∣∣ ≤ sup
Rn
|Dif | .

Putting these two facts together, we readily find:∣∣∣∆hj
i f(x)

∣∣∣ =
∣∣∣∆hj

i f(x)
∣∣∣1BR(0)(x) ≤ sup

Rn
|Dif |1BR(0)(x).

Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 1.10. 1. First we establish the result for k = 0. We need to show (M)
that if f ∈ L1

loc.(Rn) and g ∈ C0
0(Rn) then f ? g is continuous. To show this, it

suffices to show that f ? g(x− zj)→ f ? g(x) for any sequence {zj}∞j=1 with zj → 0.
Now, note that

f ? g(x− zj) =

∫
Rn
f(y)g(x− zj − y)dy =

∫
Rn
f(y)τzjg(x− y)dy.

Now, sending j →∞, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:∣∣f(y)τzjg(x− y)

∣∣ ≤ sup
Rn
|g|1BR(0)(x− y) |f(y)|

for some R by the previous Lemma. Since f ∈ L1
loc.(Rn) the right hand side is

integrable, and so by the dominated convergence theorem:

lim
j→∞

f ? g(x− zj) =

∫
Rn

lim
j→∞

f(y)τzjg(x− y)dy =

∫
Rn
f(y)g(x− y)dy = f ? g(x).

2. Now suppose that f ∈ L1
loc.(Rn) and g ∈ C1

0 (Rn). Clearly f ? Dig is continuous by
the previous argument. To show f ? g ∈ C1(Rn), it suffices to show that for any
x ∈ Rn and any sequence {hj}∞j=1 ⊂ R with hj → 0 we have:

lim
j→∞

∆
hj
i f ? g(x) = f ? Dig(x).
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Note that

∆
hj
i f ? g(x) =

f ? g(x+ hjei)− f ? g(x)

h

=

∫
Rn
f(y)

(
g(x+ hjei − y)− g(x− y)

h

)
dy

=

∫
Rn
f(y)∆

hj
i g(x− y)dy

so that again we are done provided we can send j →∞ and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to
invoke the DCT and deduce that:

lim
j→∞

∆
hj
i f ? g(x) =

∫
Rn

lim
j→∞

f(y)∆
hj
i g(x− y)dy = f ? Dig(x).

3. The case where f ∈ Ck0 (Rn) with k > 1 now follows by a simple induction.

Exercise 2.2. Show that Theorem 1.10 holds under the alternative hypotheses:

a) f ∈ L1(Rn), g ∈ Ck(Rn) with supRn |Dαg| <∞ for all |α| ≤ k.

b) f ∈ L1(Rn) with supp f compact, g ∈ Ck(Rn).

We have shown that when two functions are convolved, loosely speaking the resulting
function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.

Lemma 1.12. Suppose f ∈ L1
loc.(Rn) and g ∈ Ck0 (Rn) for some k ≥ 0. Then3

supp (f ? g) ⊂ supp f + supp g.

Proof. Recall:

f ? g(x) =

∫
Rn
f(y)g(x− y)dy.

Clearly, if f ? g(x) 6= 0, then there must exist y ∈ Rn such that y ∈ supp f and
x− y = z ∈ supp g. Thus x = y + z with y ∈ supp f and z ∈ supp g. This tells us that:

{x ∈ Rn : f ? g(x) 6= 0} ⊂ supp f + supp g.

Since supp f is closed and supp g is compact, we know that supp f + supp g is closed, thus

supp f ? g = {x ∈ Rn : f ? g(x) 6= 0} ⊂ supp f + supp g,

which is the result we require.
3Strictly speaking, we haven’t defined the support of a measurable function. We can do this in several

ways, but the simplest is to define:

supp f =
⋂
{E ⊂ Rn : E is closed, and f = 0 a.e. on Ec}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.
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Exercise 2.3. a) Prove the following identities for r, s > 0 and x ∈ Rn:

i) Br(x) +Bs(0) = Br+s(x)

ii) Br(x) +Bs(0) = Br+s(x)

iii) Br(x) +Bs(0) = Br+s(x)

Suppose that A,B ⊂ Rn. Show that:

b) If one of A or B is open, then so is A+B.

c) If A and B are both bounded, then so is A+B.

d) If A is closed and B is compact, then A+B is closed.

e) If A and B are both compact, then so is A+B.

Exercise 2.4. Show that if f ∈ Ck0 (Rn) and g ∈ C l0(Rn) then f ? g ∈ Ck+l
0 (Rn).

Conclude that D(Rn) is closed under convolution.

1.4.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 1.13. Suppose φ ∈ C∞0 (Rn) satisfies:

i) φ ≥ 0

ii) suppφ ⊂ B1(0)

iii)
∫
Rn φ(x)dx = 1

Such a φ exists by Theorem 1.1. Define:

φε(y) =
1

εn
φ
(y
ε

)
.

Then:

a) If f ∈ Ck0 (Rn), then φε ? f is smooth, and

Dα (φε ? f)→ Dαf

uniformly on Rn for any multi-index with |α| ≤ k.

b) If g ∈ Lp(Rn) with 1 ≤ p <∞, then φε ? g is smooth, and

φε ? g → g in Lp(Rn).
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c) Suppose f ∈ Ck(Rn) with supRn |Dαf | <∞ for |α| ≤ k, and suppose g ∈ L1(Rn) with
g ≥ 0,

∫
Rn g(x)dx = 1. Set gε(y) = ε−ng

(
ε−1y

)
. Then f ? gε ∈ Ck(Rn), and

Dα (f ? gε) (x)→ Dαf(x)

for any x ∈ Rn for any multi-index with |α| ≤ k.

Proof. a) Note that the rescaling of φ to produce φε is such that a change of variables
gives: ∫

Rn
φε(y)dy = 1.

By Theorem 1.10, we have that Dα(φε ? f) = φε ? D
αf for any |α| ≤ k. Using these

two facts, we calculate:

Dα(φε ? f)(x)−Dαf(x) =

∫
Rn
φε(y)Dαf(x− y)dy −Dαf(x)

∫
Rn
φε(y)dy

=

∫
Rn
φε(y) [Dαf(x− y)−Dαf(x)] dy

=

∫
B1(0)

φ(z) [Dαf(x− εz)−Dαf(x)] dz

where in the last line we made the substitution y = εz, and noted that φ has support in
B1(0), so we can restrict the range of integration. Now, since φ ≥ 0, we can estimate:

|Dα(φε ? f)(x)−Dαf(x)| ≤
∫
B1(0)

φ(z) |Dαf(x− εz)−Dαf(x)| dz

≤ sup
z∈B1(0)

|Dαf(x− εz)−Dαf(x)| ×
∫
B1(0)

φ(z)dx

= sup
z∈B1(0)

|Dαf(x− εz)−Dαf(x)|

since
∫
Rn φ = 1. Now, since Dαf is continuous and of compact support, it is uniformly

continuous on Rn. Fix ε̃ > 0. There exists δ such that for any v, w ∈ Rn with
|x− y| < δ, we have

|Dαf(v)−Dαf(w)| < ε̃

For any x ∈ Rn, taking ε < δ, and v = x + εz, w = x with z ∈ B1(0) we have
|v − w| < δ, so:

|Dαf(x− εz)−Dαf(x)| < ε̃

holds for any x ∈ Rn, z ∈ B1(0). We have therefore shown that for any ε̃ > 0, there
exists δ such that for any ε < δ we have:

sup
x∈Rn

|Dα(φε ? f)(x)−Dαf(x)| < ε̃.

This is the statement of uniform convergence on Rn.
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b) For this proof, we shall require certain facts from Measure Theory. First we require(U)
Minkowski’s Integral Identity (see Exercise 2.5). This states4 that for F : Rn×Rn → C
a measurable function, we have the estimate:

[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

≤
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

Now, following the calculation in the previous proof, we readily have that:

|(φε ? g)(x)− g(x)| ≤
∫
Rn
φ(z) |g(x− εz)− g(x)| dz

Integrating and applying Minkowski’s integral inequality, we have:

||φε ? g − g||Lp(Rn) =

[∫
Rn
|(φε ? g)(x)− g(x)|p dx

] 1
p

≤
[∫

Rn

∣∣∣∣∫
Rn
φ(z) |g(x− εz)− g(x)| dz

∣∣∣∣p dx] 1
p

≤
∫
Rn

[∫
Rn
φ(z)p |g(x− εz)− g(x)|p dx

] 1
p

dz

=

∫
Rn
φ(z) ||τεzg − g||Lp(Rn) dz (1.3)

To establish our result it will suffice to set ε = εj , where {εj}∞j=1 ⊂ R is any sequence
with εj → 0, and show that

∣∣∣∣φεj ? g − g∣∣∣∣Lp(Rn)
→ 0. Note that since

∣∣∣∣τεjzg∣∣∣∣Lp(Rn)
=

||g||Lp(Rn) we have:

φ(z)
∣∣∣∣τεjzg − g∣∣∣∣Lp(Rn)

≤ 2φ(z) ||g||Lp(Rn)

so the integrand is dominated uniformly in j by an integrable function. Now we claim
(another Measure Theoretic / Functional Analysis fact, see Lemma 1.15) that as y
varies, τy : Lp(Rn)→ Lp(Rn) is a continuous family of bounded linear operators. This
means that for each z ∈ Rn we have:

lim
j→∞

∣∣∣∣τεjzg − g∣∣∣∣Lp(Rn)
= 0.

Thus we can apply the Dominated Convergence Theorem (Theorem A.4) to the integral
on the right hand side of 1.3, and conclude that

lim
j→∞

∣∣∣∣φεj ? g − g∣∣∣∣Lp(Rn)
= 0.

4There is more general statement for a map F : X × Y → C, which is measurable with respect to the
product measure µ× ν where (X,µ) and (Y, ν) are measure spaces.
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c) Again, by Theorem 1.10, we have that Dα(f ? gε) = Dαf ? gε for any |α| ≤ k. By a
change of variables, we calculate:

Dα(f ? gε)(x) =

∫
Rn
gε(y)Dαf(x− y)dy =

∫
Rn
g(y)Dαf(x− εz)dz

Now, clearly for each fixed x ∈ Rn:

g(z)Dαf(x− εz)→ g(z)Dαf(x)

for z ∈ Rn as ε→ 0. Furthermore,

|g(z)Dαf(x− εz)| ≤ g(z) sup
Rn
|Dαf |

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

Dα(f ? gε)(x)→ Dαf(x)

∫
Rn
g(z)dz = Dαf(x)

as ε→ 0.

The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 1.14. Suppose Ω ⊂ Rn is open, and K ⊂ Ω is compact. Then there exists
χ ∈ C∞0 (Ω) such that χ = 1 in a neighbourhood of K.

Proof. By Lemma 1.3, there exists ε > 0 such that d(K, ∂Ω) > 4ε. We define Kε =
K+B2ε(0). As the sum of two compact sets, Kε is compact. Moreover, Kε ⊂ Ω. Suppose
φε is as in Theorem 1.13. Consider:

χ := φε ? 1Kε .

We have by Theorem 1.10 that χ ∈ C∞(Rn) and from Lemma 1.12 we deduce:

suppχ = Kε + suppφε ⊂ K +B2ε(0) +Bε(0) = K +B3ε(0) ⊂ Ω.

Thus χ ∈ C∞0 (Ω). Now, suppose x ∈ K +Bε(0). Then x+Bε(0) ⊂ Kε and so:

χ(x) =

∫
Rn
φε(y)1Kε(x− y)dy

=

∫
Bε(0)

φε(y)1Kε(x− y)dy

= φε(y)dy = 1.

Thus χ(x) = 1 for x ∈ K +Bε(0), which is a neighbourhood of K.
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The following exercise and Lemma are included for completeness, as they establish
results required for the proof of Theorem 1.13. The material is not examinable, and
should be considered a ‘bonus’ for those interested in measure theoretic aspects of the
theorem.

Exercise 2.5 (*). Suppose that F : Rn×Rn → R is a positive integrable simple
function,

a) Show that Minkowski’s integral inequality holds for the case p = 1:∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣ dy ≤ ∫
Rn

∫
Rn
|F (x, y)| dydx

b) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1
then:

ab ≤ ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the
concavity of the logarithm

c) With p, q > 1 such that p−1 + q−1 = 1, show that if ||f ||p = 1 and ||g||q = 1
then ∫

Rn
|f(x)g(x)| dx ≤ 1.

Deduce Hölder’s inequality:∫
Rn
|f(x)g(x)| dx ≤ ||f ||p ||g||q , for all f ∈ Lp(Rn), g,∈ Lq(Rn).

d) Set G(y) =
(∫

Rn F (x, y)dx
)p−1

i) Show that if q = p
p−1 :

||G||Lq(Rn) =

∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p−1

Lp(Rn)

ii) Show that:∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

=

∫
Rn

(∫
Rn
G(y)F (x, y)dy

)
dx

iii) Applying Hölder’s inequality, deduce:∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

≤ ||G||Lq(Rn)

∫
Rn
||F (x, ·)||Lp(Rn) dx
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e) Deduce that Minkowski’s integral inequality[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

≤
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

holds for any measurable function F : Rn × Rn → C, where 1 ≤ p <∞.

Lemma 1.15. Suppose p ∈ [1,∞) and g ∈ Lp(Rn). Let {zj}∞j=1 ⊂ Rn be a sequence of(U)
points such that zj → 0 as j →∞. Then:∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)

→ 0.

Proof. 1. First, suppose g = 1Q, where Q = (a1, b1) × (a2, b2) × . . . × (an, bn) is a
n-box, with side-lengths Im = bm − am for m = 1, . . . , n. Now, since when a box
is translated by a vector zj each side is translated by a distance of at most |zj |,
and has area at most I2

max., where Imax is the longest side-length we can crudely
estimate ∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)

≤ 2n |zj | I2
max.

Note that this estimate requires p <∞: it does not hold for p =∞. We conclude
that:

lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)
= 0.

2. Now suppose g = 1A, where A is a measurable set of finite measure. Fix ε > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K ⊂ A and an
open U ⊃ A such that |U \K| < ε. Since U is open, we can write U as a collection
of open n-boxes:

U =
⋃
α∈A

Qα

Since K is compact, it is covered by a finite subset of these:

K ⊂
N⋃
i=1

Qi := B.

Now, note that K ⊂ B ⊂ U , so the symmetric difference A∆B ⊂ U \K. Thus5

||1A − 1B||Lp(Rn) = |A∆B| < ε. By the paragraph 1 above, we know that there
exists J such that for all j ≥ J we have:∣∣∣∣τzj1B − 1B∣∣∣∣Lp(Rn)

< ε

Therefore:∣∣∣∣τzj1A − 1A∣∣∣∣Lp(Rn)
=
∣∣∣∣τzj1A − τzj1B + τzj1B − 1B + 1B − 1A

∣∣∣∣
Lp(Rn)

≤
∣∣∣∣τzj1A − τzj1B∣∣∣∣Lp(Rn)

+
∣∣∣∣τzj1B − 1B∣∣∣∣Lp(Rn)

+ ||1B − 1A||Lp(Rn)

= 2 ||1A − 1B||Lp(Rn) +
∣∣∣∣τzj1B − 1B∣∣∣∣Lp(Rn)

< 3ε
5This is another point at which p 6=∞ is crucial.
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for all j ≥ J . Thus
lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)
= 0.

3. Now suppose g is a simple function, i.e. g =
∑N

i=1 gi1Ai for gi ∈ C and Ai measurable
sets of finite measure. Then we have:

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)
≤

N∑
i=1

|gi|
∣∣∣∣τzj1Ai − 1Ai∣∣∣∣Lp(Rn)

so as j →∞ we have:
lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)
= 0.

4. Now suppose that g ∈ Lp(Rn). Fix ε > 0. Recall that there exists a simple function
g̃ such that ||g − g̃||Lp(Rn) < ε. By the previous part, we can find J such that∣∣∣∣τzj g̃ − g̃∣∣∣∣Lp(Rn)

< ε for all j ≥ J . Now:∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)
=
∣∣∣∣τzjg − τzj g̃ + τzj g̃ − g̃ + g̃ − g

∣∣∣∣
Lp(Rn)

≤
∣∣∣∣τzjg − τzj g̃∣∣∣∣Lp(Rn)

+
∣∣∣∣τzj g̃ − g̃∣∣∣∣Lp(Rn)

+ ||g̃ − g||Lp(Rn)

= 2 ||g − g̃||Lp(Rn) +
∣∣∣∣τzj g̃ − g∣∣∣∣Lp(Rn)

< 3ε

Thus, we conclude that

lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn)
= 0.

and we’re done.
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