Chapter 1

Test functions

Before we introduce distributions, we’re first going to spend a bit of time studying some
nice classes of smooth functions. Let Q@ C R™ be an open set. We denote by C*(2) the
space of all k-times continuously differentiable complex valued functions on €2, and by

C=(Q) = ﬁ cr (),
k=0

the set of smooth functions on €.

When dealing with partial derivatives of high orders, the notation can get rather messy.
To mitigate this, it’s convenient to introduce multi-indices. We define a multi-index « to
be an element of (Z>)", i.e. a n—vector of non-negative integers a = (aq, ..., ). We
define |a| = a1 + ...+ oy, and

olf _ (DN O\ (0 "y
ore  \0ry Oxa Oxy, ’

in other words, we differentiate a1 times with respect to x1, ao times with respect to o
and so on. When it’s unambiguous on which variables the derivative acts, we will also
use the more compact notation:

0
Di = s
8.%
and o
a [0}
DY = — .
ox®

For a vector x € R”, we will also use the notation:
% i () (2) ()

The spaces C*(Q) and C*°(Q) are vector spaces over C, where addition and scalar
multiplication are defined pointwise. If ¢1, ¢ € C*(Q2) and A € C, we define the maps
¢1+ @2, A1 by

g1+ : Q—=C, Adp s =G (1.1)
T ¢1(w) + d2(z), T = A1 (). '
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Exercise(*). Show that with the definitions (1.1) the space C*(f2) is a vector
space over C, and that C*() is a vector subspace of C*(Q) provided k < I < co.

Definition 1.1. If ¢ € C°(Q), the support of ¢ is the set:

supp ¢ = {z € Q: ¢(z) # 0},

where the closure is understood to be relative’ to Q). That is supp ¢ is the closure of the
set on which ¢ is not zero. We say that ¢ has compact support if supp ¢ is compact.

For 0 < k < 0o, we define C¥(Q) to be the subset of C*(Q) consisting of functions
with compact support. CF(Q) is a vector subspace of C*(1Q).

Theorem 1.1. There exists a function 1 € C§°(R™) such that

i) =0
ii) $(0) £ 0
iii) suppy C B1(0) :={x € R" : |z| < 1}
iv) We have:
Y(x)dr = 1.
R"
Proof. First, we note that the function:
0 t<0
t) = B
x(t) { e t>0

is smooth, ie. x € C*°(R). Moreover, x > 0 and x(1) # 0. We define ¢p(z) =
X (1 - \:U|2) Since the map = — |z|? is smooth, 1y € C®(R™). We set:

Yo(x)
Y(r) = ————.
() fRn o(x)dz
It is easy to verify that v satisfies conditions i) — iv). O

Corollary 1.2. For Q@ C R" open, C§°(2) is not the trivial subspace {0} C C*(Q).

Proof. Since Q) is open, there exists €, z such that the ball B.(z) = {y € R" : |y — z| < €}
is contained in Q. The function y — ¢ [e"*(y — z)] is easily seen to belong to C§°(2). O

Exercise 1.4. For t € R let:
0 t<0
t) = B
x(t) { I >0

f Q € R™ is open, and A C Q, then the closure of A relative to  is the intersection of € with the
closure of A as a subset of R™. Note that the closure of A relative to {2 may not be closed as a subset of
R™.

o+ =
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a) Show that x € C*°(R).
b) Show that there exists a function ¢ € C§°(R™) such that
Ho<y<i

ii) suppt C Ba(0)
iii) ¢¥(x) =1 for |z| < 1.

Hint: First construct a positive smooth function x : R — [0, 1] such that
- 0 t<-1
Mw—{], t>1

Suppose Q0 C €, where both are open subsets of R™. If ¢ € Cg(Q), then we can
extend ¢ to a function on ' by setting ¢ = 0 on Q' \ Q. This extended function will
be smooth in ' and we do not alter the support, so in this way we see that Cé“(Q) is a
vector subspace of C¥(Q).

The following result is useful:

Lemma 1.3. Suppose Q C R" is bounded and K C Q) is compact. Then d(K,0Q) > 0,
where:

d(K,00) = xefir;f’eaﬁ |z —yl.

Proof. K is compact, so K C Bg(0) for some R > 0. Let Qr = QN Br(0). Qg is
open and bounded, with K C Qpg. It suffices to show that d(K,0Qr) > 0. Since Qg is
bounded, 025 is compact. Therefore the map:
f : KX@QR—)RE(),
($7y) = ‘LL‘ - y’7
is a continuous map on a compact set, hence it achieves its minimum d at (zg, y9). Suppose

that d = 0, then x¢ = yg, but zg € K C Q and yg € 992 € Q¢ a contradiction. Thus d > 0
and we’re done. O

Corollary 1.4. If ¢ € CE(QQ), extend ¢ to R™ by ¢ =0 on Q°. Define 1,.¢ by:

¢ : Q—C,
y = ¢y — o).

Then there exists € > 0 such that T,¢ € CE(Q) for all x € Be(0).

(1.2)

Proof. We have
SUpp Tz¢ = supp ¢ + x

Since supp ¢ is compact, supp 7,¢ is just a translate of a compact set, so is compact as a
subset of R™. We need to check that supp 7,¢ C Q. We have d(supp ¢, 9Q2) = § > 0. Set
e = /2. Then we have, by Lemma 1.3

supp ¢ + B.(0) C Q
but if x € B(0), then supp 7,¢ C supp ¢ + B(0) and we’re done. O
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1.1 The space Z(Q2)

So far we have defined the sets C*°(£2) and C§°(2) as sets and shown that they have
the algebraic structure of a vector space. We want to discuss notions of convergence and
continuity in these spaces, and for this we shall require a topology. It turns out that the
appropriate topology is somewhat subtle, and to describe it properly would take rather
too long. Appendix B develops the topology in detail, for those who are interested. We
shall simply quote the following result:

Theorem 1.5. The set C§°(€2) can be endowed with a topology T, such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to T.

o

ii) A sequence {¢; 21 C C°(R2) tends to zero with respect to the topology T if there
exists a compact K C € such that supp ¢; C K for all j € N and for each multi-index
a we have:

sup [D%¢;| — 0,
zeK
as j — oo. Similarly, ¢; — ¢ with respect to T if ¢p; — ¢ — 0.

We denote the set C§°(Q2) equipped with the topology T by ().

Note carefully that although we’ve said what it means for a sequence to converge, this
is not in general enough to specify the topology completely. With some reasonable further
conditions (see the Appendix) we can in fact pick out 7 uniquely. For the purposes that
we require, it will be enough to know about convergence of sequences.

Example 1. Suppose ¢ € 2(Q). Let § be such that T,¢ € Z(Q) for |x| < 6. If
{z1}72, CR™ is a sequence with |x| < 6, and x; — 0, then

To, @ — @, as | — oo.

To see why this is so, recall that there exists € > 0 such that supp ¢ + Ba(0) C Q. Suppose
that |x| < e. Then

SUpp Tz¢ = supp ¢ +x C supp ¢ + Be(0) C supp ¢ + Bae(0) C Q.
Thus for i large enough, supp 7,,¢ C K :=supp ¢ + B(0), where K is a compact subset
of Q. Now for any multi-index o, D*¢ is a continuous function defined on a compact set,

hence is uniformly continuous. In particular this implies that

sup |[D*¢(y + x;) — D*¢(y)| — 0, as x; — 0,
K

which immediately gives us that 7,,¢ — ¢ in 2(Q).
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Example 2. Suppose ¢ € 2(2). For h > 0 sufficiently small, we define the forward
difference quotient:

1
Al) = (Tohest — 9)
with {e;}", the standard basis on R™. Then

Alr¢p — Dy, as h — 0.

By the same argument as for the previous example, there exists a compact K C § such
that supp Af-”cb C K for h sufficiently small. By the mean value theorem, for each x € K,
there exists t, € (0,h) such that

_ DY¢(x + he;) — DY¢(x)
N h

DAl () = DD ¢(x + tye;)

Fiz e > 0. Since D;D*¢ is continuous on K (hence uniformly continuous), there exists
6 > 0, independent of x such that If t, < § we have

|D1Da¢(l‘ + txei) — DlDa(b(l’” < €.
If we take h < §, then t, < d for all x and we conclude:

sup |D;D*¢(z + tye;) — DiD¢(z)| <,
zeK

which implies

sup |D*Arg(x) — D*D;p(z)| — 0 as h — 0.
zeK

Example 3. Fiz ¢ € Z(R) with ¢(z) # 0. The sequence:

¢j<x>=}¢<x—j>, i1

does NOT converge in 2(R). We have that
sup |D%p| — 0, as j — oo,
R

but there is no compact set which contains the support of ¢; for all j.

For those who are interested, Z(€2) is en example of a locally convex topological vector
space. The topology of Z(Q2) is not inherited from a norm or a metric, so this space does
not have a Banach space structure, for example.

1.2 The space &(f2)

The set C*°(Q2) can also be given a topology in a fairly natural way. Again, we shall
not go into the details of its construction, but simply assert the existence of a suitable
topology.
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Theorem 1.6. The set C*(Q) can be endowed with a topology T, such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to T.

ii) A sequence {¢; 21 C C>(Q) tends to zero with respect to the topology T if for every
compact K C Q and for each multi-index o we have:

sup |[D%¢;| — 0,
reK

as j — 0o. Similarly, ¢; — ¢ with respect to T if p; — ¢ — 0.
We denote the set C§°(Q2) equipped with the topology T by &(€2).

Again, specifying the convergent sequences does not uniquely specify the topology, so
for the full construction refer to the Appendix.

Example 4. Recall that C§°(2) C C®(Q). If {¢i}2, C CF°(Q) tends to 0 in 2(2),
then ¢; — 0 in &(Q). In fact, we can say more: the inclusion map ¢ : () — &(N) is
continuous.

Example 5. Fiz ¢ € 2(R) with ¢(x) # 0, and consider the sequence:

This converges to 0 in &(R). For any compact K, supp ¢; N K = O for j sufficiently large,
i.e., the support of ¢; eventually leaves any compact set. This shows that the topology of
2(Q) is not simply the induced topology of C3°(2) thought of as a subspace of ().

Exercise 1.5. a) Suppose ¢ € &(R"). Let {z;}7°, C R" be a sequence with
x; — 0. Show that

Te, @ — @, as | — oo.

in &(R™), where 7, is the translation operator defined in equation (1.2).
b) Suppose ¢ € &(R"), show that
Alrp — D;o, as h — 0,
in &(R"), where A” is the difference quotient defined in Example 2.

For those who are interested, &(2) is also a locally convex topological space, but the
topology on &(€2) is induced by a complete translation invariant metric. This makes
& () into what is known as a Fréchet space. The topology is not induced by a norm, so
it cannot be given a Banach space structure.
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1.3 The space .¥

The spaces Z(Q2) and &(2) are both defined on arbitrary open sets in R™. The final
space of functions that we wish to consider is a subspace of &(R™) consisting of functions
which are rapidly decreasing near infinity.

Definition 1.2. A function ¢ € C*°(R") is said to be rapidly decreasing if:

sup }(1 + |33|)ND°‘¢(JU)‘ < 00
zeR™

for all multi-indices o and all N € N.

Notice that rapidly decreasing functions and their derivatives decay faster than any
inverse power of |z| as || — oo.

Example 6. i) Suppose ¢ € C°(R"™), then ¢ is rapidly decreasing.
it) The function x e~lel® s rapidly decreasing.

Theorem 1.7. The set of rapidly decreasing functions can be endowed with a topology T,
such that:

i) The vector space operations of addition and scalar multiplication are continuous with
respect to T.

ii) A sequence {¢; 5241 of rapidly decreasing functions tends to zero with respect to the

topology T if for every multi-inder o and N € N we have:

suﬂs ‘(1 + |:c\)NDa¢j(a:)‘ — 0,
xeR™

as j — o0o. Similarly, ¢; — ¢ with respect to T if ¢pj — ¢ — 0.

We denote the set of rapidly decreasing functions equipped with the topology T by .. This
is often known as the Schwartz class of functions.

As for &(R™), the topology on .# is induced by a complete translation invariant
metric, so that . is a Fréchet space. The topology is not induced by a norm, so it cannot
be given a Banach space structure.

Lemma 1.8. The spaces Z(R"), . and &(R™) satisfy:
2(R") Cc & C &R").
Moreover, the inclusion map is continuous in each case.

Exercise 1.6. a) Show that . is a vector subspace of &(R"). Show that if
{¢; };";1 is a sequence of rapidly decreasing functions which tends to zero in
<, then ¢; — 0 in &(R™).
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b) Show that Z(R") is a vector subspace of .. Show that if {¢;}32; is a
sequence of compactly supported functions which tends to zero in Z(R"™)
then ¢; — 0 in .77

¢) Give an example of a sequence {¢;}72; C C5°(R") such that

i) ¢; = 0in .7, but ¢; has no limit in Z(R").
ii) ¢; = 0in &(R"), but ¢; has no limit in .7

Exercise 1.7. a) Suppose ¢ € .. Let {x;};°; C R" be a sequence with z; — 0.
Show that

Te, @ — @, as | — oo.

in ., where 7, is the translation operator defined in equation (1.2).
b) Suppose ¢ € ., show that
Al¢ — D;o, as h — 0,

in ., where A? is the difference quotient defined in Example 2.

1.4 Convolutions

If f, g are functions mapping R” to C, then we define the convolution of f and g to be:
(f > g)(x) = A fy)g(x —y)dy,
provided the integral exists. This will happen if (for example) f € CJ(R") and f € CO(R,,).

Lemma 1.9. Suppose f,g,h € . Then:

frg=gxf, fx(gxh)=(fxg)*h.
and

/n(f*g)(w)d:v: Rnf(x)dx/ o(z)dz.

n

Proof. With the change of variables y = x — z, we have?

(fxg)(z) = - fy)g(z —y)dy = - flz = 2)g(2)dz = (g * f)(x)

2If you’re worried about a missing minus sign from the change of variables when n is odd, observe:

/:: k(z)de = /:x} k(—y)d(—y) = — /Oo_oo k(—y)dy = /:; k(—y)dy.
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Next, we calculate:

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f, g, h € . to invoke Fubini’s theorem (Theorem A.5) when
passing from the second to third line. Finally, we calculate:

[ o= [ ([ o) i
= [ ([ rwata = ppac) ay
= /Rn (f(y)/ng(Z)dZ> dy

~ [ fa)da / g()dy

where again, the fact that f, g € . allows us to invoke Fubini. O

The assumption that the functions are Schwartz is certainly overkill in this theorem.
It would be enough, for example, to consider functions in CS(R”), or even weaker spaces,
provided we can justify the application of Fubini’s theorem.

Exercise 2.1 (*). Suppose that we work over R™ and that f,g,h € .%.

a) Show that for any multi-index «, we have that D*f € LP(R"™) for 1 < p < oo,
i.e. that

HDafHLp(Rn) = (/]R" |Daf(ar)|pdx> " < .

b) Define
F : R*xR"
(z,y) = f(x)g(y — ).
Show that F' € L'(R™ x R").
¢) For each x € R, set
Gr : R"xR"
(v, 2) = F(Y)g(2)h(x —y = 2).

Show that G, € LY(R"™ x R™).
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1.4.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f x ¢ is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 1.10. Suppose f € L},. (R") and g € CER™) for some k > 0. Then fxg €
C*(R™) and
D(fxg) = fxD%,

for any multiindex with |a| < k.

Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof.

Lemma 1.11. a) Suppose f € CJ(R™) and {z}2,; C R™ is a sequence with z; — 0 as
1 — 00. Then for any x € R":
i) 7o, f(x) = f(x) as j — oc.
it) |72, f(z)| < (supgn |f]) 15,0 (x), for some R >0 and all j.
b) Suppose f € C(R™) and {hj}]?"’:1 C R is a sequence with hj — 0 as j — oco. Then for
any x € R":
i) Af’f(x) — Dif(x) as j — .
ii) ‘A?’f(x)‘ < (supgn |Dif|) 1,0y (), for some R >0 and all j.

Proof. a) i) Recall 7, f(x) = f(x — z;). Clearly since z; — 0, f(z — z;) — f(z) as
j — oo by the continuity of f.

ii) Since z; — 0, there exists some p > 0 such that z; € B,(0) for all j. Now

supp 7, f = supp f + z; C supp f + B, (0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp 7., f C Br(0). Thus 7, f = 7., fl, (o) and we estimate:

|7, f(@)| = |72, f (@) | 1,0 (@) < sup |f1 1B 0)(T).

b) Suppose f € C3(R™) and {h;}32, C R is a sequence with hj — 0 as j — oo. Then for
any ¢ € R™:

i) From the definition of the difference quotient and of the partial derivative:

f(z + hje) — f(x)

A} f(a) = :

— D;f(x), as j — 0o.
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ii) Since hj — 0, there is some k > 0 such that |h;| < k for all j. We have:

h,
supp A;” f C supp 7_pe, f Usupp f = (supp f — hje;) Usupp f
- (suppf + Bp(0)> U supp f
C Bgr(0)

for some R > 0 since the union of two bounded sets is bounded. Thus A?j f=

A?j J1pg,0)- We also observe that by the mean value theorem, for any h € R,
there exists s € R with |s| < |h| such that

f(x + hjei) — f(x)
h

= D;f(z + se;)
thus
Al F(@)] < sup|Dif].
Putting these two facts together, we readily find:
AV F(@)] = | A (@) Lag(o)(x) < sp D1 Ly0)(x).
O
Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 1.10. 1. First we establish the result for £ = 0. We need to show (M)
that if f € L}, (R") and g € CJ(R") then f x g is continuous. To show this, it
suffices to show that fxg(z —2;) = f*g(x) for any sequence {z;}32, with z; — 0.
Now, note that

frgle—z)= [ fWelz—z —ydy= | [f(y)r,9(x—y)dy.
R R

Now, sending j — oo, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed z and all j:

|f)m9(z —y)| < sup 191 150y (@ — ) | f(y)]

for some R by the previous Lemma. Since f € L} (R") the right hand side is

loc.
integrable, and so by the dominated convergence theorem:

lim fxg(x—z) = / lim f(y)Tng(x —y)dy = fW)g(z —y)dy = f*g(x).
j—o0 Rn J—O0 Rn

2. Now suppose that f € Ll (R") and g € C}(R™). Clearly f D;g is continuous by

loc.

the previous argument. To show f x g € C(R"), it suffices to show that for any
z € R" and any sequence {h;}52; C R with h; — 0 we have:

lim A?jf *g(x) = fx D;ig(x).

j—o00
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Note that
_ [rglz+hje) = frg(a)

A fx g(x)

=/, FW)AY g(z — y)dy

so that again we are done provided we can send j — oo and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to
invoke the DCT and deduce that:

lim A?jf *xg(z) = /]R lim f(y)A?jg(a: —y)dy = f* D;g(x).

Jj—00 n j—00
3. The case where f € C¥(R™) with k > 1 now follows by a simple induction. O

Exercise 2.2. Show that Theorem 1.10 holds under the alternative hypotheses:
a) f € LYR"), g € CF(R™) with supg. |[D%g| < oo for all |a| < k.
b) f € L*(R™) with supp f compact, g € C*(R"™).

We have shown that when two functions are convolved, loosely speaking the resulting
function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.

Lemma 1.12. Suppose f € Li. . (R") and g € C¥(R™) for some k > 0. Then3

loc.
supp (f * g) C supp f + suppg.
Proof. Recall:
frg(x) = A fW)g(x —y)dy.

Clearly, if f * g(z) # 0, then there must exist y € R™ such that y € supp f and
x—y=z¢€suppyg. Thus x =y + z with y € supp f and z € suppg. This tells us that:

{x € R": fxg(x) # 0} Csupp f + suppg.

Since supp f is closed and supp g is compact, we know that supp f + supp g is closed, thus

supp fxg ={z € R": fxg(x) # 0} C supp f +suppg,

which is the result we require. O

38trictly speaking, we haven’t defined the support of a measurable function. We can do this in several
ways, but the simplest is to define:

supp f = ﬂ{E CR": Eis closed, and f =0 a.e. on E}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.
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Exercise 2.3. a) Prove the following identities for r,s > 0 and = € R™:

Suppose that A, B C R™. Show that:
b) If one of A or B is open, then so is A + B.
¢) If A and B are both bounded, then so is A + B.
d) If A is closed and B is compact, then A + B is closed.
e) If A and B are both compact, then so is A + B.

Exercise 2.4. Show that if f € CE(R™) and g € C4(R™) then fxg € CET(R™).
Conclude that 2(R™) is closed under convolution.

1.4.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 1.13. Suppose ¢ € C§°(R™) satisfies:
i) >0
i) supp ¢ C B1(0)

i) [pn P(x)de =1

Such a ¢ exists by Theorem 1.1. Define:

1
o) = 50 (2).
Then:
a) If f € CE(R™), then ¢e * f is smooth, and
D (¢ex f) = D°f
uniformly on R™ for any multi-index with |o| < k.

b) If g € LP(R™) with 1 < p < oo, then ¢ x g is smooth, and

Gk g — g in LP(R"™).
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¢) Suppose f € C*(R™) with supgn |D*f| < oo for |a| < k, and suppose g € L*(R™) with
9>0, [png(@)dz =1. Set g.(y) = e "g (e 'y). Then f*g. € C*R"), and

D (f xgc) (x) = D f(x)
for any x € R™ for any multi-index with |o| < k.

Proof. a) Note that the rescaling of ¢ to produce ¢, is such that a change of variables
gives:

Ge (y)dy =1
RTL

By Theorem 1.10, we have that D%(¢. x f) = ¢e *x D f for any |a| < k. Using these
two facts, we calculate:

D%(pe x f)(x) — D*f(z) = - de(y) D f(x — y)dy — D f(x) - be(y)dy
= /o be(y) [D* f(x —y) — D f(z)] dy

- / 6(2) [D* f(x — ez) — D*f(x)] dz
B;1(0)

where in the last line we made the substitution y = €z, and noted that ¢ has support in
B;1(0), so we can restrict the range of integration. Now, since ¢ > 0, we can estimate:

[D%(¢e * f)(x) = D*f(2)] < /B o ¢(2) |D*f(x — e2) = D*f(x)| dz

< swp |Dfe-e) - D) x [ o)
z€B1(0) B1(0)

= sup [D%f(z —ez) — Df(z)|
z€B1(0)

since fRn ¢ = 1. Now, since D f is continuous and of compact support, it is uniformly
continuous on R™. Fix € > 0. There exists § such that for any v,w € R"™ with

|z —y| < §, we have
ID® f(v) — D® f(w)]| < ¢

For any z € R", taking ¢ < 0, and v = = + €z, w = z with z € B;(0) we have
v —w| <4, so:
D f(w— e2) — DO f(x)| < &

holds for any = € R", z € B1(0). We have therefore shown that for any é > 0, there
exists & such that for any € < § we have:

sup [D%(¢c * f)(z) — Df(z)] <€
zeR”

This is the statement of uniform convergence on R™.
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b) For this proof, we shall require certain facts from Measure Theory. First we require
Minkowski’s Integral Identity (see Exercise 2.5). This states? that for F : R® x R® — C
a measurable function, we have the estimate:

[/n pdy];ﬁ/n [/H\F(m,y)!pdy];dx

Now, following the calculation in the previous proof, we readily have that:

/n F(z,y)dz

(¢ x 9) (@) — g(2)| < - ¢(2) |g(x — ez) —g(z)| dz

Integrating and applying Minkowski’s integral inequality, we have:
1
p
6059~ dllsceny = | [ 0 a)(o) sl da]
¢(2) lg(z — ez) — g(x)| dz

P 15
< [ / d:c]
n R”

<[ [ ROICEEE g(:c)l”dx] i

= [ 6l = gl o (13)

To establish our result it will suffice to set € = ¢;, where {ﬁj}]qi . C R is any sequence
with €; — 0, and show that H(bej *g — QHLP(RH) — 0. Note that since HTﬁjzg‘ ‘LP(RH) —
HgHL:D(Rn) we have:

¢(Z) HTejzg - g‘ ‘LP(R") S 2¢(Z) HgHLp(Rn)

so the integrand is dominated uniformly in j by an integrable function. Now we claim
(another Measure Theoretic / Functional Analysis fact, see Lemma 1.15) that as y
varies, 7, : LP(R™) — LP(R") is a continuous family of bounded linear operators. This
means that for each z € R™ we have:

lim HTE =0.

j—00

29— 9| ‘LP(R")

Thus we can apply the Dominated Convergence Theorem (Theorem A.4) to the integral
on the right hand side of 1.3, and conclude that

]lggo |6, * g _gHLP(R”) =0

4There is more general statement for a map F : X x Y — C, which is measurable with respect to the
product measure p X v where (X, u) and (Y, v) are measure spaces.
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¢) Again, by Theorem 1.10, we have that D*(f x g.) = D*f % g, for any |o| < k. By a
change of variables, we calculate:

D g)@) = [ 0D fa— )y = [ gly)D" (o ex)ds

n

Now, clearly for each fixed z € R™:

9(2)D* f(x — e2) = g(2) D f ()

for z € R"™ as ¢ — 0. Furthermore,
9()D° (@ — €2)] < g(z) sup | D"

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

D(f % go) () — D* f(x) / g(2)dz = D* f(z)

n

as € — 0.
O

The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 1.14. Suppose 2 C R" is open, and K C € is compact. Then there exists
X € C§°(Q) such that x =1 in a neighbourhood of K.

Proof. By Lemma 1.3, there exists € > 0 such that d(K,0€2) > 4e. We define K, =
K + Bs(0). As the sum of two compact sets, K, is compact. Moreover, K. C 2. Suppose
®¢ is as in Theorem 1.13. Consider:

X ‘= ¢e*]lK€-

We have by Theorem 1.10 that x € C*°(R") and from Lemma 1.12 we deduce:

supp X = K¢ +supp ¢ C K + Bac(0) + B(0) = K + B3(0) C 2.

Thus x € C§°(?). Now, suppose € K + B((0). Then x + B.(0) C K. and so:

x(z) = . be(Y) k. (z — y)dy
— [ o)t~ iy
<(0)

= ¢e(y)dy = 1.

Thus x(z) =1 for x € K + B(0), which is a neighbourhood of K. O
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The following exercise and Lemma are included for completeness, as they establish
results required for the proof of Theorem 1.13. The material is not examinable, and
should be considered a ‘bonus’ for those interested in measure theoretic aspects of the
theorem.

Exercise 2.5 (*). Suppose that F': R" x R” — R is a positive integrable simple
function,

a) Show that Minkowski’s integral inequality holds for the case p = 1:

/]R" /]R" Fla,y)de| dy < /n/n |F(x,y)| dydz

b) Next prove Young’s inequality: if a,b € R, and p,¢ > 1 with p~t +¢ ! =1
then:

al bl
ab < — + —
P q

Hint: sett = p~', consider the function log[ta? + (1 — t)b] and use the
concavity of the logarithm

c) With p,q > 1 such that p~! 4+ ¢~! = 1, show that if 1fll, =1 and [|g][, =1
then

/n |f(2)g(x)|dx < 1.

Deduce Hélder’s inequality:

/n [f(@)g(@) de <|[fll,llgll,,  forall fe LP(R"), g,e LI(R").

d) Set G(y) = (fgn F(x,y)da:)p_l
i) Show that if ¢ = J25:

p—1

1 g = H IR .
n p(RN

ii) Show that:
P

’ / Pl = / ( 5 G(y)F(ac,y)dy> o

iii) Applying Holder’s inequality, deduce:

' / Pz, )dz

p

<16 pagan) / 1@, o) d
LP(R") Rn
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e) Deduce that Minkowski’s integral inequality

/. " < [ [ ireora]

holds for any measurable function F': R" x R™ — C, where 1 < p < o0.

F(z,y)dx
R’ﬂ

Lemma 1.15. Suppose p € [1,00) and g € LP(R"). Let {2;}72; C R" be a sequence of
points such that z; — 0 as 7 — oo. Then:

|79 — 9] ’LP(R") — 0.

Proof. 1. First, suppose g = 1, where @ = (a1,b1) x (a2,b2) x ... X (apn,by) is a
n-box, with side-lengths I,, = b,,, — a,, for m = 1,...,n. Now, since when a box
is translated by a vector z; each side is translated by a distance of at most |z,
and has area at most I2,,, , where I,;,q, is the longest side-length we can crudely
estimate

2
‘ ‘szg - g‘ ‘LP(Rn) <2n |Zj| Imax'
Note that this estimate requires p < oo: it does not hold for p = co. We conclude
that:
Jlim |79 = 9l gy = 0

2. Now suppose g = 1 4, where A is a measurable set of finite measure. Fix € > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K C A and an
open U D A such that |U \ K| < e. Since U is open, we can write U as a collection

of open n-boxes:
U= U Qa

acd
Since K is compact, it is covered by a finite subset of these:

N
K C UQi .= B.
=1

Now, note that K ¢ B C U, so the symmetric difference AAB C U \ K. Thus®
L4 = 1Bl[p(rny = [AAB| < e. By the paragraph 1 above, we know that there
exists J such that for all j > J we have:

|78 — ]lBHLp(Rn) <€
Therefore:

|72 14 — ]lAHLP(R") =||mla -7+ 715 — 1p+1p - ]lAHLP(]R”)

< Hsz]lA - TZj]lBHLp(Rn) + ”TZJ]IB - ]lBHLP(lR") s = Lall o ey

=214 — ]IBHLP(R”) + HTZjllB o ]IBHLP(R")

< 3e

5This is another point at which p # oo is crucial.
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for all j > J. Thus
Jim |79 = 9| gy = 0

. Now suppose ¢ is a simple function, i.e. g = Zf\; 1 9il 4, for g; € C and A; measurable
sets of finite measure. Then we have:

N
|79 — gHLP(]Rn) < Z; l9il || 72,0, — 14, Lp(R")
=

S0 as j — oo we have:
Jim |79 = || gy = 0

. Now suppose that g € LP(R™). Fix € > 0. Recall that there exists a simple function
g such that |[g — g[;»gn) < €. By the previous part, we can find J such that

Hszg — gHLp(Rn) < e for all j > J. Now:

|79 — gHLP(R") =\l -0+ 70 -9 +35 - gHLP(R")
<||ry9 - TZJ'-&HLP(R”) +|79 - gHLP(R”) +119 = 9l Lo n)
=219 — gll oy + 72,9 — gHLP(R")
< Je

Thus, we conclude that
Jim |9 = 9] 1oy = 0

and we're done. O
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