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Exercise 5.1. Suppose v 2 E 0
(Rn

) and let:

u =

X

g2Zn

⌧gv.

Show that if � 2 D(Rn
) with supp� ⇢ K for some compact K ⇢ Rn then

u[�] =
X

g2A
⌧gv[�],

for some finite set A ⇢ Zn which depends only on K. Deduce that u defines a distribution.

Exercise 5.2. Recall that for x 2 Rn:

||x||
1

:=

nX

i=1

|xi| .

For k 2 N set:

Qk =

⇢
g 2 Zn

: k � 1

2

 ||g||
1

< k +

1

2

�

a) Show that:
#Qk = (2k + 1)

n � (2k � 1)

n

so that #Qk  c(1 + k)n�1 for some c > 0.

b) By applying the Cauchy-Schwartz identity to estimate a · b for a = (1, . . . , 1) and
b = (|g

1

| , . . . , |gn|), deduce that:

||g||
1


p
n |g|

c) Show that there exists a constant C > 0, depending only on n such that:

X

g2Zn

;||g||1K

1

(1 + |g|)n+1

 1 + C
KX

k=1

1

k2

holds for all K 2 N. Deduce that:

X

g2Zn

1

(1 + |g|)n+1

< 1.

Please send any corrections to c.warnick@imperial.ac.uk
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Exercise 5.3. Show that if cg satisfy:

|cg|  K(1 + |g|)N

for some K > 0 and N 2 N, then: X

g2Zn

cg�2⇡g

converges in S 0.

Exercise 5.4. Suppose f 2 Lp
loc.(Rn

) is a periodic function. Fix ✏ > 0, and let:

Q = {x 2 Rn
: |xj | < 1, j = 1, . . . , n}, q =

⇢
x 2 Rn

: |xj | <
1

2

, j = 1, . . . , n

�

a) Show that there exists h✏ 2 C1
(Rn

) with:

supph✏ ⇢ Q

such that:
||f1q � h✏||Lp

(Rn

)

< ✏.

Define
f✏ =

X

g2Zn

⌧gh✏

b) Show that f✏ is smooth and periodic.

c) Show that there exists a constant cn depending only on n such that:

||f � f✏||Lp

(q) < cn✏.

Exercise 5.5. Suppose that f : R ! R is given by:

f(x) = x for |x| < 1

2

, f(x+ 1) = f(x).

Show that:

f(x) =
X

n2Z,n 6=0

i(�1)

n

2⇡n
e2⇡inx =

1X

n=1

(�1)

n+1

n⇡
sin(2⇡nx),

with convergence in L2

loc.(R).

Exercise 5.6. Suppose f : R ! R is given by:

f(x) =

⇢
�1 �1

2

< x  0

1 0 < x  1

2

, f(x+ 1) = f(x).
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a) Show that:

f(x) =
1

⇡i

1X

n=�1

2

2n+ 1

e2⇡i(2n+1)x
=

4

⇡

1X

n=0

1

2n+ 1

sin [2⇡(2n+ 1)x]

With convergence in L2

loc.(Rn
).

Define the partial sum:

SN (x) = 8

N�1X

n=0

1

2⇡(2n+ 1)

sin [2⇡(2n+ 1)x] .

b) Show that:

SN (x) = 8

Z x

0

N�1X

n=0

cos [2⇡(2n+ 1)t] dt.

c) Show that:

cos [2⇡(2n+ 1)t] sin 2⇡t =
1

2

(sin [2⇡(2n+ 2)t]� sin [4⇡nt])

And deduce:
SN (x) = 8

Z x

0

sin 4⇡Nt

2 sin 2⇡t
dt.

d) Show that the first local maximum of SN occurs at x =

1

4N , and:

SN

✓
1

4N

◆
� 8

Z 1
4N

0

sin 4⇡Nt

4⇡t
dt =

2

⇡

Z ⇡

0

sin s

s
ds ' 1.179 . . .

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is known
as Gibbs Phenomenon.

Exercise 5.7. (*) Suppose that � = {�
1

, . . .�n} is a basis for Rn. We define the lattice
generated by � to be:

⇤ =

8
<

:

nX

j=1

zj�j : zj 2 Z

9
=

; .

Define the fundamental cell:

q
⇤

=

8
<

:

nX

j=1

xj�j : |xj | <
1

2

9
=

; .

We say that u 2 D 0
(Rn

) is ⇤�periodic if:

⌧gu = u for all g 2 ⇤.
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a) Show that there exists  2 C1
0

(2q
⇤

) such that  � 0 and
X

g2⇤
⌧g = 1.

b) Show that if u 2 D 0
(Rn

) is ⇤�periodic and  ,  0 are both as in part a), then

1

|q
⇤

|u[ ] =
1

|q
⇤

|u[ 
0
] =: M(u)

c) Define the dual lattice by:

⇤

⇤
:= {x 2 Rn

: g · x 2 2⇡Z, 8g 2 ⇤}

Show that there exists a basis �⇤ = {�⇤
1

, . . .�⇤n} such that �⇤j · �k = �jk, and ⇤

⇤ is the
lattice induced by �⇤.

d) Show that if g 2 ⇤

⇤ then eg is ⇤�periodic.

e) Show that if u 2 D 0
(Rn

) is ⇤�periodic, then:

û =

X

g2⇤⇤

cg�g

for some cg 2 C satisfying |cg|  K(1 + |g|)N for some K > 0, N 2 Z.

f) Show that if u 2 D 0
(Rn

) is ⇤�periodic, then:

u =

X

g2⇤⇤

dgTe
g

where |dg|  K(1 + |g|)N for some K > 0, N 2 Z are given by:

dg = M(e�gu)

Exercise 5.8. Suppose s � 0.

a) Show that S ⇢ Hs
(Rn

).

b) Suppose f 2 Hs
(Rn

). Show that given ✏ > 0 there exists f✏ 2 S with:

||f � f✏||Hs

(Rn

)

< ✏.

Hint: First find g✏ 2 S such that
���
���( ˆf � g✏)(1 + |⇠|)s

���
���
L2

(Rn

)

< ✏.
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c) Show that
||f ||Hs

(Rn

)

 ||f ||Ht

(Rn

)

for t � s. Deduce that:

||f ||L2
(Rn

)

 1

(2⇡)n
||f ||Hs

(Rn

)

Hint: Use Parseval’s formula

d) Show that the derivative D↵ is a bounded linear map from Hs+k
(Rn

) into Hs
(Rn

),
where k = |↵|.

Exercise 5.9. Suppose that u
0

2 L1

(Rn
)\L2

(Rn
) and that u(t, x) is the solution of the

heat equation with initial data u
0

. Explicitly, u is given by:

u(t, x) =
1

(2⇡)n

Z

Rn

û
0

(⇠)e�t|⇠|2ei⇠·xd⇠,

for t > 0.

a) Show that:
||u(t, ·)||L2

(Rn

)

 ||u
0

||L2
(Rn

)

,

b) Show that:
u(t, x) = u

0

?Kt(x)

where the heat kernel is given by:

Kt(x) =
1

(4⇡t)
n

2
e�

|x|2
4t .

c) Suppose that u
0

� 0. Show that u � 0, and:

||u(t, ·)||L1
(Rn

)

= ||u
0

||L1
(Rn

)

.

[Hint: Lemma 1.9 may be useful]

Exercise 5.10. Consider the Schrödinger equation:
⇢

ut = i�u in (0, T )⇥ Rn,
u = u

0

on {0}⇥ Rn (3)

Suppose u
0

2 H2

(Rn
).

a) Show that (4) admits a unique solution u such that

u 2 C0

([0, T );H2

(Rn
)) \ C1

((0, T );L2

(Rn
)),

whose spatial Fourier-Plancherel transform is given by:

û(t, ⇠) = û
0

(⇠)e�it|⇠|2 .
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b) Show that:
||u(t, ·)||H2

(Rn

)

= ||u
0

||H2
(Rn

)

*c) For t > 0, let Kt 2 L1

loc.(Rn
) be given by:

Kt(x) =
1

(4⇡it)
n

2
e

i|x|2
4t ,

where for n odd we take the usual branch cut so that i
1
2
= ei

⇡

4 . For ✏ > 0 set
K✏

t (x) = e�✏|x|2Kt(x).

i) Show that TK✏

t

! TK
t

in S 0 as ✏! 0.
ii) Show that if <(�) > 0, then:

Z

R
e��x2�ix⇠dx =

r
⇡

�
e�

⇠

2

4� .

iii) Deduce that

cK✏
t (⇠) =

✓
1

1 + 4it✏

◆n

2

e
�it|⇠|2
1+4it✏

iv) Conclude that:
dTK

t

= T
˜K
t

,

where ˜Kt = e�it|⇠|2 .

*d) Suppose that u 2 S (Rn
). Show that for t > 0:

u(t, x) =

Z

Rn

u
0

(y)Kt(x� y)dy,

and deduce:
sup

t>0,x2Rn

|u(t, x)|  1

(4⇡t)
n

2
||û

0

||L1
(Rn

)

.

This type of estimate which shows us that (locally) solutions to the Schrödinger
equation decay in time is known as a dispersive estimate.

Exercise 5.11. Let R3

⇤ := R3 \ {0}, S⇤,T := (�T, T )⇥ R3

⇤ and |x| = r. You may assume
the result that if u = u(r, t) is radial, we have

�u(|x| , t) = �u(r, t) =
@2u

@r2
(r, t) +

2

r

@u

@r
(r, t)

a) Suppose u(x, t) = 1

rv(r, t) for some function v. Show that u solves the wave equation
on R3

⇤ ⇥ (0, T ) if and only if v satisfies the one-dimensional wave equation

�@
2v

@t2
+

@2v

@r2
= 0

on (0,1)⇥ (�T, T ).
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b) Suppose f, g 2 C2

c (R). Deduce that

u(x, t) =
f(r + t)

r
+

g(r � t)

r

is a solution of the wave equation on S⇤,T which vanishes for large |x|.

c) Show that if f 2 C3

c (R) is an odd function (i.e. f(s) = �f(�s) for all s) then

u(x, t) =
f(r + t) + f(r � t)

2r

extends as a C2 function which solves the wave equation on ST := (�T, T )⇥R3, with

u(0, t) = f 0
(t).

*d) By considering a suitable sequence of functions f , or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup

S
T

(|u|+ |ut|)  C sup

⌃0

(|u|+ |ut|)

holds for all solutions u 2 C2

(ST ) of the wave equation which vanish for large |x|.


