

**Exercise 3.1.** a) Suppose that  $\{\phi_j\}_{j=1}^\infty \subset \mathcal{E}(\Omega)$  is a sequence such that  $\phi_j \rightarrow \phi$  in  $\mathcal{E}(\Omega)$ , and  $\chi \in \mathcal{D}(\Omega)$ . Show that

$$\chi\phi_j \rightarrow \chi\phi \quad \text{in } \mathcal{D}(\Omega).$$

b) Show that if  $\psi \in \mathcal{E}(\Omega)$ , then there exists a sequence  $\{\phi_j\}_{j=1}^\infty \subset \mathcal{D}(\Omega)$  such that  $\phi_j \rightarrow \psi$  in  $\mathcal{E}(\Omega)$ .

*[Hint: Take an exhaustion of  $\Omega$  by compact sets and apply Lemma 1.14]*

**Exercise 3.2.** a) Prove Lemma 2.11.

*[Hint: You should argue in a similar fashion to the proof of Lemma 2.9]*

b) Show that we have the inclusions:

$$\mathcal{E}'(\mathbb{R}^n) \subset \mathcal{S}' \subset \mathcal{D}'(\mathbb{R}^n).$$

**Exercise 3.3.** Let  $\{a_j\}_{j=1}^\infty \subset \mathbb{R}$  be a sequence of real numbers. Define for  $\phi \in C^\infty(\mathbb{R})$ :

$$u[\phi] = \sum_{j=1}^\infty a_j \phi(j)$$

provided that the sum converges. Give necessary and sufficient conditions on  $a_j$  such that:

- a)  $u \in \mathcal{E}'(\mathbb{R})$ .
- b)  $u \in \mathcal{S}'$ .
- c)  $u \in \mathcal{D}'(\mathbb{R})$ .

**Exercise 3.4.** For  $\xi \in \mathbb{R}^n$ , define  $e_\xi(x) = e^{i\xi \cdot x}$ . Show that  $T_{e_\xi} \in \mathcal{S}'$ , and that:

$$T_{e_\xi} \rightarrow 0, \quad \text{as } |\xi| \rightarrow \infty$$

in the topology<sup>1</sup> of  $\mathcal{S}'$ .

**Exercise 3.5.** Calculate the Fourier transform of the following functions  $f \in L^1(\mathbb{R})$ :

- a)  $f(x) = \frac{\sin x}{1+x^2}$ .
- b)  $f(x) = \frac{1}{\epsilon^2 + x^2}$ , for  $\epsilon > 0$  a constant.
- c)  $f(x) = \sqrt{\frac{\sigma}{t}} e^{-\sigma \frac{(x-y)^2}{t}}$ , where  $\sigma > 0$ ,  $t > 0$  and  $y$  are constants.

Please send any corrections to [c.warnick@imperial.ac.uk](mailto:c.warnick@imperial.ac.uk)

<sup>1</sup>This is defined precisely as the topology of  $\mathcal{D}'(\Omega)$ , *mutatis mutandis*.

$$*d) \quad f(x) = \frac{1}{\cosh x}.$$

**Exercise 3.6.** Suppose  $f \in C^1(\mathbb{R}^n)$  and that  $f, D_j f \in L^1(\mathbb{R}^n)$ . Fix  $\epsilon > 0$ . Show that there exists  $f_\epsilon \in C_0^1(\mathbb{R}^n)$  such that

$$\|f - f_\epsilon\|_{L^1(\mathbb{R}^n)} + \|D_j f - D_j f_\epsilon\|_{L^1(\mathbb{R}^n)} < \frac{\epsilon}{2}.$$

*[Hint: First construct, for large  $R$ , a smooth cut-off function  $\chi_R(x)$  with  $\chi_R(x) = 1$  for  $|x| < R$ ,  $\chi_R(x) = 0$  for  $|x| > 2R$  and  $|D\chi_R(x)| < C$ , where  $C$  is independent of  $R$ .]*

**Exercise 3.7.** Suppose  $f \in L^1(\mathbb{R}^n)$ , with  $\text{supp } f \subset B_R(0)$  for some  $R > 0$ .

a) Show that  $\hat{f} \in C^\infty(\mathbb{R}^n)$  and for any multi-index:

$$\sup_{\xi \in \mathbb{R}^n} |D^\alpha \hat{f}(\xi)| \leq R^{|\alpha|} \|f\|_{L^1(\mathbb{R}^n)}$$

b) Show that  $\hat{f}$  is real analytic, with an infinite radius of convergence, i.e.:

$$\hat{f}(\xi) = \sum_{\alpha} D^\alpha \hat{f}(0) \frac{\xi^\alpha}{\alpha!}$$

holds for all  $\xi \in \mathbb{R}^n$ .

c) Show that if  $\hat{f}(\xi)$  vanishes on an open set, it must vanish everywhere.

*[Hint: use part i) of Lemma 3.2]*

You may assume the following form of Taylor's theorem. Suppose  $g \in C^{k+1}(\overline{B_r(0)})$ . Then for  $x \in B_r(0)$ :

$$g(x) = \sum_{|\alpha| \leq k} D^\alpha \hat{f}(0) \frac{\xi^\alpha}{\alpha!} + \sum_{\beta=k+1} R_\beta(x) x^\beta$$

where the remainder  $R_\beta(x)$  satisfies the following estimate in  $B_r(0)$ :

$$|R_\beta(x)| \leq \frac{1}{\beta!} \max_{|\alpha|=|\beta|} \max_{y \in \overline{B_r(0)}} |D^\alpha g(y)|.$$

See §A.1 of the notes for notation.