
Example Sheet 8 M2PM1: Real Analysis
Claude Warnick Autumn 2016

Exercise 8.1. Show that f : R2 ! R is everywhere differentiable, and find the differential
when:
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Exercise 8.2. Find the minimum of the function f : R3 ! R given by:
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Exercise 8.3. Suppose A is a symmetric (n⇥ n) matrix. Consider the function:

f : Rn ! R
x 7! x

t

Ax.

a) Show that f is differentiable at all points p 2 Rn, with:

Df(p) = 2p

t

A

b) Find:
Hess f(p).

Exercise 8.4 (*). Consider the function f : R2 ! R given by:
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0 (x, y) = (0, 0).

a) Show that:
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(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Please send any corrections to c.warnick@imperial.ac.uk

Questions marked (⇤) are optional
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and show that these functions are both continuous at (0, 0).

b) Show that:
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Exercise 8.5 (*). a) By induction on m 2 N, show that if x
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where the multinomial coefficient is defined by:
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[Hint: Note that the case m = 1 is trivial and m = 2 is the binomial theorem. Work
by induction using (x
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j�1 and expanding, show
that for j � 1:
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Exercise 8.6. Let ⌦ = {(x, y)t 2 R2

: x > 0}. Consider the function f : ⌦ ! R2 given
by:

f :

✓
x

y

◆
7!

✓
x sin y

x cos y

◆
.



3

a) Show that f is differentiable at all p = (⇠, ⌘)

t 2 ⌦, with:

Df(p) =

✓
sin ⌘ ⇠ cos ⌘

cos ⌘ �⇠ sin ⌘

◆
.

b) Show that Df(p) is invertible for all p 2 ⌦.

c) Show that f : ⌦ ! R2 is not injective. Deduce that the restriction to open sets U, V

in the inverse function theorem is necessary.

Exercise 8.7. a) Suppose f : R ! R is continuously differentiable in a neighbourhood
of the origin, and f

0
(0) = 0. Give an example to show that f may nevertheless be

bijective.

[Hint: Consider the function f : R ! R given by f : x 7! x

3.]

b) Suppose f : Rn ! Rn is bijective, differentiable at the origin, and detDf(0) = 0.
Show that f

�1 is not differentiable at f(0).

[Hint: Assume that f

�1 is differentiable at f(0) and apply the chain rule to ◆ =

f

�1 � f = f � f�1 to derive a contradiction.]


