

Exercise 8.1. Show that $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ is everywhere differentiable, and find the differential when:

a) $f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 + y^2 - x - xy$

b) $f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \frac{1}{\sqrt{1+x^2+y^2}}$

c) $f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^5 y^2$

Exercise 8.2. Find the minimum of the function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ given by:

$$f : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x^4(y^2 + x^2) + z^2 - 4z$$

Exercise 8.3. Suppose A is a symmetric $(n \times n)$ matrix. Consider the function:

$$\begin{aligned} f &: \mathbb{R}^n \rightarrow \mathbb{R} \\ x &\mapsto x^t A x. \end{aligned}$$

a) Show that f is differentiable at all points $p \in \mathbb{R}^n$, with:

$$Df(p) = 2p^t A$$

b) Find:

$$\text{Hess } f(p).$$

Exercise 8.4 (*). Consider the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by:

$$f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{xy^3 - x^3y}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0). \end{cases}$$

a) Show that:

$$D_1 f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{y^3 - 3x^2y}{x^2 + y^2} - \frac{2x(xy^3 - x^3y)}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0). \end{cases}$$

and

$$D_2 f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{3y^2x - x^3}{x^2 + y^2} - \frac{2y(xy^3 - x^3y)}{(x^2 + y^2)^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0), \end{cases}$$

and show that these functions are both continuous at $(0, 0)$.

b) Show that:

$$\lim_{t \rightarrow 0} \frac{1}{t} (D_1 f(te_2) - D_1 f(0)) = 1$$

and

$$\lim_{t \rightarrow 0} \frac{1}{t} (D_2 f(te_1) - D_2 f(0)) = -1$$

c) Conclude that both $D_2 D_1 f(0)$ and $D_1 D_2 f(0)$ exist, but that:

$$D_2 D_1 f(0) \neq D_1 D_2 f(0)$$

Exercise 8.5 (*). a) By induction on $m \in \mathbb{N}$, show that if $x_1, \dots, x_m \in \mathbb{R}$ and $j \in \mathbb{N}$ then:

$$(x_1 + \dots + x_m)^j = \sum_{\substack{n_1, \dots, n_m \in \mathbb{N} \\ n_1 + n_2 + \dots + n_m = j}} \binom{j}{n_1, n_2, \dots, n_m} x_1^{n_1} \cdots x_m^{n_m},$$

where the multinomial coefficient is defined by:

$$\binom{j}{n_1, n_2, \dots, n_m} = \frac{j!}{n_1! n_2! \cdots n_m!}.$$

[Hint: Note that the case $m = 1$ is trivial and $m = 2$ is the binomial theorem. Work by induction using $(x_1 + \dots + x_{m-1} + x_m)^j = (x_1 + \dots + (x_{m-1} + x_m))^j$]

b) By writing $(x_1 + \dots + x_m)^j = (x_1 + \dots + x_m)(x_1 + \dots + x_m)^{j-1}$ and expanding, show that for $j \geq 1$:

$$\begin{aligned} \binom{j}{n_1, n_2, \dots, n_m} &= \frac{(j-1)!}{(n_1-1)! n_2! \cdots n_m!} + \frac{(j-1)!}{n_1! (n_2-1)! \cdots n_m!} + \cdots \\ &\quad \cdots + \frac{(j-1)!}{n_1! n_2! \cdots (n_m-1)!} \end{aligned}$$

holds for any $n_1, \dots, n_m \in \mathbb{N}$, with $n_1 + n_2 + \dots + n_m = j$

Exercise 8.6. Let $\Omega = \{(x, y)^t \in \mathbb{R}^2 : x > 0\}$. Consider the function $f : \Omega \rightarrow \mathbb{R}^2$ given by:

$$f : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \sin y \\ x \cos y \end{pmatrix}.$$

a) Show that f is differentiable at all $p = (\xi, \eta)^t \in \Omega$, with:

$$Df(p) = \begin{pmatrix} \sin \eta & \xi \cos \eta \\ \cos \eta & -\xi \sin \eta \end{pmatrix}.$$

b) Show that $Df(p)$ is invertible for all $p \in \Omega$.

c) Show that $f : \Omega \rightarrow \mathbb{R}^2$ is not injective. Deduce that the restriction to open sets U, V in the inverse function theorem is necessary.

Exercise 8.7. a) Suppose $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable in a neighbourhood of the origin, and $f'(0) = 0$. Give an example to show that f may nevertheless be bijective.

[Hint: Consider the function $f : \mathbb{R} \rightarrow \mathbb{R}$ given by $f : x \mapsto x^3$.]

b) Suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is bijective, differentiable at the origin, and $\det Df(0) = 0$. Show that f^{-1} is not differentiable at $f(0)$.

[Hint: Assume that f^{-1} is differentiable at $f(0)$ and apply the chain rule to $\iota = f^{-1} \circ f = f \circ f^{-1}$ to derive a contradiction.]