

Exercise 1.1. a) Show that the inner product has the following properties:

$$\langle x, y \rangle = \langle y, x \rangle, \quad \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \quad \langle ax, y \rangle = a \langle x, y \rangle.$$

for all $x, y, z \in \mathbb{R}^n$ and $a \in \mathbb{R}$.

b) For $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$, show that:

$$\|x + ty\|^2 = \|x\|^2 + 2t \langle x, y \rangle + t^2 \|y\|^2 \geq 0 \quad (1)$$

c) By thinking of (1) as a quadratic in t , and considering its possible roots, deduce the *Cauchy-Schwartz* inequality:

$$|\langle x, y \rangle| \leq \|x\| \|y\|. \quad (2)$$

When does equality hold?

d) Deduce the triangle inequality (I.1).

e) Show the reverse triangle inequality:

$$|\|x\| - \|y\|| \leq \|x - y\|$$

f) Suppose $x = (x^1, \dots, x^n)^t \in \mathbb{R}^n$.

i) Show that:

$$\max_{k=1,\dots,n} |x^k| \leq \|x\|.$$

[Hint: first write $x = x' + x''$ with $x' = (x^1, 0, \dots, 0)$ and $x'' = (0, x^2, \dots, x^n)$, and expand]

ii) Show that:

$$\|x\| \leq \sqrt{n} \max_{k=1,\dots,n} |x^k|.$$

[Hint: write out $\|x\|^2$ in coordinates and estimate]

Exercise 1.2. Suppose that $(x_i)_{i=0}^{\infty}$ and $(y_i)_{i=0}^{\infty}$ with $x_i, y_i \in \mathbb{R}^n$ are two sequences of vectors with

$$x_i \rightarrow x, \quad y_i \rightarrow y, \quad \text{as } i \rightarrow \infty.$$

a) Show that

$$x_i + y_i \rightarrow x + y \quad \text{as } i \rightarrow \infty.$$

Please send any corrections to c.warnick@imperial.ac.uk

Questions marked (*) are optional

b) Show that

$$\langle x_i, y_i \rangle \rightarrow \langle x, y \rangle \quad \text{as } i \rightarrow \infty,$$

deduce that

$$\|x_i\| \rightarrow \|x\| \quad \text{as } i \rightarrow \infty.$$

[Hint: Write $\langle x_i, y_i \rangle - \langle x, y \rangle = \langle x_i - x, y_i - y \rangle + \langle x_i - x, y \rangle + \langle x, y_i - y \rangle$ and use the Cauchy-Schwartz inequality (2)]

c) Suppose that $(a_i)_{i=0}^{\infty}$ with $a_i \in \mathbb{R}$ is a sequence of real numbers with $a_i \rightarrow a$ as $i \rightarrow \infty$. Show that:

$$a_i x_i \rightarrow a x \quad \text{as } i \rightarrow \infty.$$

[Hint: Write $a_i x_i - a x = (a_i - a)(x_i - x) + (a_i - a)x + a(x_i - x)$ and use the properties of the norm.]

Exercise 1.3. Which of the following subsets of \mathbb{R}^n is open:

- a) \mathbb{R}^n ?
- b) \emptyset ?
- c) $\{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^1 > 0\}$?
- d) $\{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^i \in [0, 1)\}$?
- e) $\mathbb{Q}^n := \{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^i \in \mathbb{Q}\}$?

Exercise 1.4. Which of the following subsets of \mathbb{R}^n is closed:

- a) \mathbb{R}^n ?
- b) \emptyset ?
- c) $\{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^1 \geq 0\}$?
- d) $\{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^i \in [0, 1)\}$?
- e) $\mathbb{Q}^n := \{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^i \in \mathbb{Q}\}$?

Exercise 1.5. a) Let $(x_i)_{i=0}^{\infty}$ be a sequence of vectors $x_i \in \mathbb{R}^n$ with $x_i \rightarrow x$. Suppose that the x_i satisfy $\|x_i\| < r$ for all i and some $r > 0$. Show that:

$$\|x\| \leq r.$$

[Hint: work by contradiction, assume $\|x\| > r$ and show this leads to an absurdity]

b) Show that the closure of the open ball $B_r(y) := \{x \in \mathbb{R}^n : \|x - y\| < r\}$ is the closed ball $\overline{B_r(y)} := \{x \in \mathbb{R}^n : \|x - y\| \leq r\}$.

[Hint: First use part a) to show that the closure is contained in $\overline{B_r(y)}$. Then for each $x \in \overline{B_r(y)}$, find a sequence tending to x .]

Exercise 1.6. Find A° , \overline{A} and ∂A for the following sets:

- a) $A = \mathbb{R}^n$.
- b) $A = \{0\}$.
- c) $A = \{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^1 \geq 0\}$?
- d) $A = \{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^i \in [0, 1) \ \forall i = 1, \dots, n\}$?
- e) $A = \{x = (x^1, \dots, x^n)^t \in \mathbb{R}^n : x^i \in \mathbb{Q} \ \forall i = 1, \dots, n\}$?

Exercise 1.7. a) Show that if U_1, U_2 are open, then so are:

$$i) \ U_1 \cup U_2 \quad ii) \ U_1 \cap U_2$$

b) Show that if E_1, E_2 are closed, then so are:

$$i) \ E_1 \cup E_2 \quad ii) \ E_1 \cap E_2$$

[Hint: use part a) and Theorem I.2]

*c) Suppose \mathcal{U} is any collection of open sets.

- i) Show that $\bigcup \mathcal{U}$ is open.
- ii) Give an example showing that $\bigcap \mathcal{U}$ need not be open.
- iii) What are the analogous statements for closed sets?