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Abstract

In first year analysis courses, you learned about the real numbers and
were introduced to important concepts such as completeness; convergence
of sequences and series; continuity; differentiability of functions of one real
variable. In this course we will extend these ideas to higher dimensions, as
well as introducing new fundamental tools for analysis, including uniform
convergence and integration.
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Notes on Exercises

A crucial feature of mathematics is that it is a practical subject. One learns to a large
extent by doing : solving problems, checking details of proofs, finding counterexamples.



iv Contents

Throughout the notes are incorporated exercises to test your understanding, develop
intuition and establish results that are required later on. You should not treat these
exercises as optional1. You won’t understand the material in this course unless
you spend the time trying to solve the problems! You will have to think hard,
and you may have to come back to some of the problems over more than one session to
crack them. Persist.

Notes on the Appendix

Appendix A consists of an introduction to differentiation in one dimension, and will be
covered in the JMC problem classes at the start of term. Students on the mathematics
course who sat the course M1P1 Analysis 1 should have seen this material before, and
can treat it as optional (but they may wish to study it for revision). Those students on
the joint computing and mathematics course will not have seen this material before, so
should attend the problem classes and study the appendix.

Notes on non-examinable material

Material marked (∗) is not examinable, but will be valuable in future courses, especially
if you take (applied or pure) analysis courses in your third year and beyond. You should
certainly at least read through the notes on these sections, even if you choose not to
attempt the questions. I will try to indicate in lectures when I’m covering this material.

1The exception here are those questions marked (∗), which go beyond the scope of the course, but
which are hopefully nevertheless interesting.



Introduction

In this chapter we’re going to start off by introducing a few definitions so that we’ve
agreed on notation. We’re also going to extend some of the ideas that you saw last year
(such as limits and continuity) to higher dimensions. The definitions are almost identical,
so this should mostly feel like a review chapter to begin with, although some of the ideas
we’re going to approach from a different point of view.

Notation for Rn

Numbers

First, we quickly recall the various sets of numbers that you were introduced to last year.
I’m going to define the natural numbers to start from 0, and denote by N∗ the set of
positive natural numbers:

N := {0, 1, 2, . . .},
N∗ := {1, 2, 3, . . .}.

Be careful: not all authors use this convention, for some N denotes the positive natural
numbers. The set of integers is denoted Z:

Z := {. . . ,−2,−1, 0, 1, 2, . . .}.

If needed, the set Z∗ is the non-zero integers Z∗ := Z\{0}. We know how to add, subtract
and multiply elements of Z (and hence N, N∗). The rational numbers are denoted Q:

Q :=

{
p

q

∣∣∣∣ p ∈ Z, q ∈ Z∗
}
,

where we make the identification:
p

q
∼ mp

mq
, ∀ m ∈ Z∗.

Again, if required Q∗ := Q \ {0} is the set of non-zero rational numbers. We can add
multiply and subtract elements of Q, and we also can divide by elements of Q∗. On Q

v
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we have a notion of ordering ≤, so that we can say whether a rational number is greater
than, less than or equal to another.

The set R of real numbers is obtained as the completion of Q, and inherits the
operations of arithmetic and the order relation from Q. We have:

N ⊂ Z ⊂ Q ⊂ R.

Moreover, R satisfies the completeness axiom:

If A ⊂ R is non-empty and bounded above, then A has a least upper
bound.

An important function defined on all real numbers is the modulus function, given by:

|x| :=
{
x x ≥ 0,
−x x < 0.

This has the properties:

i) For all x ∈ R, we have |x| ≥ 0, with |x| = 0 if and only if x = 0.

ii) For all x ∈ R, if a ∈ R, then |ax| = |a| |x|

iii) The modulus function satisfies the triangle inequality:

|x+ y| ≤ |x|+ |y| , ∀ x, y,∈ R

The set Rn

We can now introduce the space Rn, which consists of column vectors with n real
components2:

Rn =
{(
x1, . . . , xn

)t∣∣∣ xi ∈ R, i = 1, . . . , n
}

If x, y ∈ Rn are two vectors in Rn with

x =
(
x1, . . . , xn

)t
, y =

(
y1, . . . , yn

)t
,

we can define the sum of the two by:

x+ y :=
(
x1 + y1, . . . , xn + yn

)t
.

If λ ∈ R, we define:
λx :=

(
λx1, . . . , λxn

)t
.

With these definitions, Rn has the structure of a vector space over R.
2I will try to stick to the convention of using superscripts to label components of vectors, and

subscripts to label different vectors, so that x1, x2 ∈ Rn are two different vectors, while x1, x2 ∈ R are
the component of one vector.
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We can define the inner product of two vectors by:

〈x, y〉 =
n∑
i=1

xiyi,

and we define the length, or norm of a vector by:

||x|| =
√
〈x, x〉.

This has the properties:

i) For all x ∈ Rn, we have ||x|| ≥ 0, with ||x|| = 0 if and only if x = 0.

ii) For all x ∈ Rn, if a ∈ R, then ||ax|| = |a| ||x||

iii) The norm satisfies the triangle inequality:

||x+ y|| ≤ ||x|| + ||y|| , ∀ x, y,∈ Rn. (I.1)

These properties are often abstracted away to define more general normed spaces [See the
Functional Analysis course M3P7]. The norm gives us a useful notion of distance between
two points. The distance from x to y is given by ||x− y||. Notice that if n = 1 we have
|·| = ||·||, and we will use either interchangeably in this case.

A very important class of subsets of Rn are the open balls. For x ∈ Rn, r > 0, these
are defined as follows:

Br(x) = {y ∈ Rn : ||x− y|| < r} .

That is, Br(x) consists of all points in Rn which are a distance less than r from x.

Exercise 1.1. a) Show that the inner product has the following properties:

〈x, y〉 = 〈y, x〉 , 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 , 〈ax, y〉 = a 〈x, y〉 .

for all x, y, z ∈ Rn and a ∈ R.

b) For t ∈ R and x, y ∈ Rn, show that:

||x+ ty||2 = ||x||2 + 2t 〈x, y〉+ t2 ||y||2 ≥ 0 (I.2)

c) By thinking of (I.2) as a quadratic in t, and considering its possible roots, deduce the
Cauchy-Schwartz inequality:

|〈x, y〉| ≤ ||x|| ||y|| . (I.3)

When does equality hold?

d) Deduce the triangle inequality (I.1).

e) Show the reverse triangle inequality:∣∣ ||x|| − ||y|| ∣∣ ≤ ||x− y||
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f) Suppose x = (x1, . . . , xn)t ∈ Rn.

i) Show that:

max
k=1,...,n

∣∣∣xk∣∣∣ ≤ ||x|| .
ii) Show that:

||x|| ≤
√
n max
k=1,...,n

∣∣∣xk∣∣∣ .
Sets and convergence

Now that we have a few definitions relating to Rn, we’re ready to revisit some concepts
from first year analysis and see how they can be extended to higher dimensions.

Convergence of sequences in Rn

A sequence in Rn is an ordered list

x0, x1, . . . , xi, . . .

with each xi ∈ Rn for i = 0, 1, 2, . . .. This is often written (xi)
∞
i=0, or (xi)i∈N. A very

important concept relating to sequences is that of convergence.

Definition I.1. A sequence (xi)
∞
i=0 with xi ∈ Rn converges to the vector x ∈ Rn if the

following holds: given ε > 0, there exists N ∈ N such that for all i ≥ N we have

||xi − x|| < ε.

We then write:
xi → x, as i→∞,

or
lim
i→∞

xi = x.

You should go back and compare this definition to the definition of convergence for a
sequence of real numbers that you saw in your first year.

Lemma I.1. The sequence of vectors (xi)
∞
i=0 with xi ∈ Rn converges to the vector x ∈ Rn

if and only if each component of xi converges to the corresponding component of x. That
is, if we write:

xi = (x1i , . . . , x
n
i )t, and x = (x1, . . . xn)t,

then
xki → xk, as i→∞, ∀ k = 1, . . . n.
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Proof. First suppose that:

xki → xk, as i→∞, ∀ k = 1, . . . n.

Let ε > 0. Then for each k = 1, . . . n, there exists Nk such that if i ≥ Nk we have:∣∣∣xki − xk∣∣∣ < ε√
n
.

Let N = max{N1 . . . , Nn}. Then for i ≥ N , we have:

max
k=1,...,n

∣∣∣xki − xk∣∣∣ < ε√
n
.

Now, recall from Exercise 1.1 f) ii) that:

||x|| ≤
√
n max
k=1,...,n

∣∣∣xk∣∣∣ ,
so we deduce:

||xi − x|| ≤
√
n max
k=1,...,n

∣∣∣xki − xk∣∣∣ < ε.

This establishes the result in one direction.
Now suppose that:

xi → x, as i→∞.
Let ε > 0. Then there exists N such that for i ≥ N we have:

||xi − x|| < ε.

Recall from Exercise 1.1 f) i) that:

max
k=1,...,n

∣∣∣xk∣∣∣ ≤ ||x|| .
Thus for any k = 1, . . . n we have that if i ≥ N :∣∣∣xki − xk∣∣∣ ≤ max

k=1,...,n

∣∣∣xki − xk∣∣∣ ≤ ||xi − x|| < ε,

which implies xki → xk, which completes the proof.

Exercise 1.2. Suppose that (xi)
∞
i=0 and (yi)

∞
i=0 with xi, yi ∈ Rn are two sequences of

vectors with
xi → x, yi → y, as i→∞.

a) Show that
xi + yi → x+ y as i→∞.

b) Show that
〈xi, yi〉 → 〈x, y〉 as i→∞,

deduce that
||xi|| → ||x|| as i→∞.

c) Suppose that (ai)
∞
i=0 with ai ∈ R is a sequence of real numbers with ai → a as i→∞.

Show that:
aixi → ax as i→∞.
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Open, closed and compact sets

In the study of the real line we are familiar with objects such as the open interval (0, 1),
the closed interval [0, 1] and other sets which are neither open nor closed such as (0, 1]. In
higher dimensions we will need to consider sets which have properties such as "openness"
and "closedness". In fact, the study of open and closed sets on different spaces is an
entire branch of mathematics in itself: topology. We will take a quick and dirty approach
to the area, and defer more careful treatment to the course M2PM5 Metric Spaces and
Topology.

Definition I.2. A subset U ⊂ Rn is open if for each x ∈ U , there exists r > 0 such that
Br(x) ⊂ U .

In other words, about any point in an open set we can find a small ball which is
entirely contained in the set. This means that an open set has no edge or boundary
points.

Example 1. The ball B1(0) is open. To see this, suppose x ∈ B1(0), so that ||x|| < 1.
Let r = (1− ||x||)/2 and suppose y ∈ Br(x). Then:

||y|| = ||y − x+ x|| ≤ ||y − x|| + ||x|| <
1− ||x||

2
+ ||x|| <

1 + ||x||
2

< 1

so that y ∈ B1(0). Thus Br(x) ⊂ B1(0).

Example 2. The set A = {x ∈ Rn : ||x|| ≤ 1} is not open. Clearly y := (1, 0, . . . , 0)t

belongs to A. On the other hand, if r > 0 then z := (1 + r/2, 0, . . . , 0)t belongs to Br(y)
but not to A, so there is no r > 0 such that Br(y) ⊂ A.

Exercise 1.3. Which of the following subsets of Rn is open:

a) Rn?

b) ∅?

c)
{
x = (x1, . . . , xn)t ∈ Rn : x1 > 0

}
?

d)
{
x = (x1, . . . , xn)t ∈ Rn : xi ∈ [0, 1)

}
?

e) Qn :=
{
x = (x1, . . . , xn)t ∈ Rn : xi ∈ Q

}
?

Now we move on to discuss closed sets:

Definition I.3. A subset E ⊂ Rn is closed if for every convergent sequence (xi)
∞
i=0 with

xi ∈ E, we have x = limi→∞ xi ∈ E.

In other words, E contains all of its limit points, that is points which can be approached
by a sequence from inside E.

Example 3. The single point set E = {y} ⊂ Rn is closed. Any convergent sequence
(xi)

∞
i=0 with xi ∈ E must in fact be the constant sequence xi = y, for which we certainly

have y = limi→∞ xi ∈ E.
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Example 4. The set E = {x ∈ Rn : ||x|| ≤ 1} is closed. Any convergent sequence
(xi)

∞
i=0 with xi ∈ E has ||xi|| ≤ 1. Now, we know from Exercise 1.2 that if xi → x, then

||xi|| → ||x||. It’s also a result from last year that if we have a convergent sequence of
real numbers (ai)

∞
i=0 with ai ∈ R satisfying ai ≤ M , then limi→∞ ai ≤ M . Combining

these two facts, we conclude that:

||x|| =

∣∣∣∣∣∣∣∣ lim
i→∞

xi

∣∣∣∣∣∣∣∣ = lim
i→∞
||xi|| ≤ 1,

so that x ∈ E. More generally, for r > 0 and y ∈ Rn, the closed ball :

Br(y) := {x ∈ Rn : ||x− y|| ≤ r}

is closed.

Theorem I.2. A set E is closed if and only if the set Ec := {x ∈ Rn : x 6∈ E} is open.

Proof. First suppose that E is closed and let y ∈ Ec. We have to prove that there exists
r > 0 such that Br(y) ⊂ Ec. We proceed by contradiction. Suppose there is no such r,
then for each i ∈ N we can find xi ∈ B2−i(y) ∩ E. We have:

||xi − y|| < 2−i

so xi → y as i→∞. Since E is closed we must have y ∈ E, but this is a contradiction
since y ∈ Ec. Thus if E is closed, Ec must be open.

Now consider the converse. Suppose that Ec is open and that (xi)
∞
i=0 is a convergent

sequence with xi ∈ E. Let x = limi→∞ xi. We wish to show that x ∈ E. Again we
proceed by contradiction. Suppose x 6∈ E, i.e. x ∈ Ec. Since Ec is open, there exists
r > 0 such that Br(x) ⊂ Ec. In particular, this means that ||y − x|| ≥ r for all y ∈ E.
However, we know that since xi → x there exists N such that if i ≥ N we have:

||xi − x|| <
r

2
.

Since xi ∈ E this is a contradiction. Thus we have shown that if Ec is open, then E is
closed.

This result enables us to equivalently define closed sets as being those whose com-
plement is open. The fact that these two definitions of closedness are equivalent relies
on certain properties of Rn which do not hold for more general topological spaces, and
it is the definition in terms of open complements that is usually taken to be the correct
notion to generalise.

Exercise 1.4. Which of the following subsets of Rn is closed:

a) Rn?

b) ∅?

c)
{
x = (x1, . . . , xn)t ∈ Rn : x1 ≥ 0

}
?
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d)
{
x = (x1, . . . , xn)t ∈ Rn : xi ∈ [0, 1)

}
?

e) Qn :=
{
x = (x1, . . . , xn)t ∈ Rn : xi ∈ Q

}
?

Definition I.4. For any set A ⊂ Rn, we define:

i) the interior of A, denoted A◦ is the set of points x ∈ A such that there exists r > 0
with Br(x) ⊂ A.

ii) the closure of A, denoted A, is the set of points x ∈ Rn such that there exists a
sequence (xi)

∞
i=0 with xi ∈ A and xi → x.

iii) the boundary of A, denoted ∂A is the set A \A◦.

From the definition we have that if U is open then U = U◦, while if E is closed E = E.
We also have that for any set the inclusions:

A◦ ⊂ A ⊂ A,

hold.

Exercise 1.5. a) Let (xi)
∞
i=0 be a sequence of vectors xi ∈ Rn with xi → x. Suppose

that the xi satisfy ||xi|| < r for all i and some r > 0. Show that:

||x|| ≤ r.

b) Show that the closure of the open ball Br(y) := {x ∈ Rn : ||x− y|| < r} is the closed
ball Br(y) := {x ∈ Rn : ||x− y|| ≤ r}.

Exercise 1.6. Find A◦, A and ∂A for the following sets:

a) A = Rn.

b) A = {0}.

c) A =
{
x = (x1, . . . , xn)t ∈ Rn : x1 ≥ 0

}
?

d) A =
{
x = (x1, . . . , xn)t ∈ Rn : xi ∈ [0, 1) ∀ i = 1, . . . , n

}
?

e) A =
{
x = (x1, . . . , xn)t ∈ Rn : xi ∈ Q ∀ i = 1, . . . , n

}
?

Exercise 1.7. a) Show that if U1, U2 are open, then so are:

i) U1 ∪ U2 ii) U1 ∩ U2

b) Show that if E1, E2 are closed, then so are:

i) E1 ∪ E2 ii) E1 ∩ E2

*c) Suppose U is any collection of open sets.
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i) Show that
⋃
U is open.

ii) Give an example showing that
⋂
U need not be open.

iii) What are the analogous statements for closed sets?

It is useful to also introduce the notion of boundedness for a subset of Rn:

Definition I.5. A subset A ⊂ Rn is bounded if there exists M ≥ 0 such that for all
x ∈ A we have:

||x|| ≤M.

A set which is both closed and bounded is called compact.

The Bolzano–Weierstrass theorem

The Bolzano–Weierstrass theorem is the the most basic of a family of important results
in analysis that allow us to extract convergence from some sequence, provided that we
have some compactness. These type of results can be very powerful, but often seem a bit
mystical to begin with.

Theorem I.3 (Bolzano–Weierstrass). Suppose E ⊂ Rn is compact and that (xi)
∞
i=0 is a

sequence with xi ∈ E. Then (xi)
∞
i=0 has a subsequence which converges in E. That is,

there exist integers:
0 ≤ i1 < i2 < . . . < ij < . . .

such that the sequence (xij )
∞
j=0 converges to some x ∈ E.

Before we attack the theorem in the generality it’s stated, we’ll first establish a simpler
result, which you should have seen last year.

Lemma I.4. Suppose (ai)
∞
i=0 is a bounded sequence of real numbers. Then(ai)

∞
i=0 has a

convergent subsequence.

Proof. We proceed by constructing a nested sequence of intervals, each containing an
infinite number of elements of the sequence. First, since (ai)

∞
i=0 is bounded there exists

some K such that ai ∈ [−K,K] for all i = 0, 1, . . .. We call this interval I0 := [−K,K],
and this certainly contains infinitely many elements of our sequence. Now, we can split the
interval I0 into two intervals [−K, 0] and [0,K]. At least one of these intervals contains
infinitely many elements of the sequence, so pick the leftmost and call it I1. We proceed
inductively. After j steps we have a closed interval Ij . We split this in half and choose
the leftmost half which contains infinitely many elements of the sequence to call Ij+1.

We end up with a nested sequence:

I0 ⊃ I1 ⊃ I2 . . . ⊃ Ij . . .

of closed intervals Ij of length 21−jK, each containing infinitely many elements of the
sequence (see Figure 1). We set i0 := 0 and define ij inductively by:

ij := min{i : ai ∈ Ij , i > ij−1}
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for j = 1, 2, . . ..
Let us denote by cj the lower endpoint of Ij and dj the upper endpoint, so that

Ij = [cj , dj ]. The sequence (cj)
∞
j=0 is monotone increasing and bounded above, so has a

limit by the completeness axiom, say cj → c. Similarly, (dj)
∞
j=0 is monotone decreasing

and bounded below so dj → d for some d. Since dj − cj = 21−jK, we have that c = d.
We also have cj ≤ aij ≤ dj , so we conclude that

aij → c

as j →∞. Thus the subsequence (aij )
∞
j=0 which we have constructed is convergent.

I0

I2

I1

I3

Figure 1 The nested intervals chosen in the proof of Lemma I.4

Now we can extend this result to Rn:

Lemma I.5. Suppose (xi)
∞
i=0, with xi ∈ Rn is a bounded sequence. Then (xi)

∞
i=0 has a

convergent subsequence.

Proof. Since (xi)
∞
i=0 is bounded, there exists K > 0 such that ||xi|| ≤ K. Recall from

Exercise 1.1 f) i) that:
max

k=1,...,n

∣∣∣xk∣∣∣ ≤ ||x|| .
We conclude that in particular we have x1i ∈ [−K,K] for all i ∈ N. Now, we can apply
Lemma I.4 to the sequence of real numbers (x1i )

∞
i=0 to extract a subsequence (x1ij1

)∞j1=0

which converges to x1. Consider the sequence (xij1 )∞j1=0. This is a subsequence of
our original sequence, remains bounded and moreover x1ij1 → x1. Now we know that
x2ij1
∈ [−K,K] for all j1 ∈ N. Again applying Lemma I.4, we can extract a subsequence

(x2ij1j2
)∞j2=0 which converges to x2. The sequence (xij1j2

)∞j2=0 is a subsequence of our

original sequence, remains bounded and moreover x1ij1j2
→ x2 and x2ij1j2

→ x1. Continuing

in this way we extract a subsequence of (xi)
∞
i=0 such that each component converges. By

Lemma I.1 we conclude that the subsequence converges.

This previous Lemma is sometimes also known as the Bolzano–Weierstrass theorem.
With this result, we can finally conclude our proof of Theorem I.3.
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Proof of Theorem I.3. Since (xi)
∞
i=0 is a sequence with xi ∈ E and E is bounded, the

sequence is bounded. By Lemma I.5 we have that (xi)
∞
i=0 admits a convergent subsequence,

(xij )
∞
j=0. Since xij ∈ E for all j, and E is closed, we have that limj→∞ xij ∈ E.

Exercise 2.1. We say that a sequence (xi)
∞
i=0 with xi ∈ Rn is a Cauchy sequence if the

following holds: given ε > 0, there exists N ∈ N such that for all i, j ≥ N we have:

||xi − xj || < ε.

a) Suppose the sequence (xi)
∞
i=0 with xi ∈ Rn converges to x. Show that (xi)

∞
i=0 is a

Cauchy sequence.

b) Suppose (xi)
∞
i=0 with xi ∈ Rn is a Cauchy sequence. Show that (xi)

∞
i=0 is bounded.

c) Show that every Cauchy sequence in Rn converges.

Continuity

Last year, you learned about the notion of continuity for functions from R (or subsets
thereof) to R. In this section we’ll revisit those definitions and upgrade them for functions
from (subsets of) Rn to Rm. In fact, the definitions we shall give are almost identical:
the only thing that changes is that we use the appropriate norm for the spaces.

Continuity at a point

We will start with the simple definition:

Definition I.6. Let A ⊂ Rn and suppose f : A→ Rm. We say that f is continuous at
p ∈ A if the following holds: given ε > 0, there exists δ > 0 such that for all x ∈ A with
||x− p|| < δ we have:

||f(x)− f(p)|| < ε.

If f is continuous at p for all p ∈ A, we say f is continuous on A.

We can think of this as saying “f maps points in A close to p to points in Rm close to
f(p)”. Notice that in the definition above, the symbol ||·|| is playing two slightly different
roles: as the norm on Rn and the norm on Rm.

Example 5. The map:
f : Rn → R

x 7→ ||x||

is continuous on Rn. To see this, pick p ∈ Rn. Suppose ||x− p|| < δ, then by the reverse
triangle inequality (see Exercise 1.1) we have:

|f(x)− f(p)| =
∣∣ ||x|| − ||p|| ∣∣ ≤ ||x− p|| < δ.

Thus we can take δ = ε and we have satisfied the condition for continuity.
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Example 6. Suppose Λ : Rn → Rm is linear. Then Λ is continuous. To see this, we let
{ej}nj=1 be the canonical basis for Rn and we calculate:

||Λx− Λp|| = ||Λ(x− p)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣Λ
 n∑
j=1

ej(x− p)j
∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

Λej(x− p)j
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

n∑
j=1

∣∣∣∣Λej(x− p)j∣∣∣∣
≤

n∑
j=1

∣∣(x− p)j∣∣ ||Λej ||
Setting M = maxj=1,...,n ||Λej ||, we have:

||Λx− Λp|| ≤Mn max
j=1,...,n

∣∣(x− p)j∣∣ ≤Mn ||x− p|| ,

using Exercise 1.1 f) i). Thus, if we take δ = ε
1+Mn , then for any x with 0 < ||x− p|| < δ,

we have
||Λx− Λp|| < ε

1 +Mn
Mn < ε,

so Λ is continuous.

Example 7. The map
f : Rn → R

(x1, . . . , xn)t 7→ x1

is continuous on Rn. To see this, pick p ∈ Rn. Suppose ||x− p|| < δ, then by Exercise 1.1
f) i) we have:

|f(x)− f(p)| =
∣∣x1 − p1∣∣ ≤ max

k=1,...,n

∣∣∣xk − pk∣∣∣ ≤ ||x− p|| < δ,

so we may take δ = ε and we have satisfied the condition for continuity. Obviously the
same argument shows that all of the coordinate maps (i.e. the map taking x to xk) are
continuous.

Theorem I.6. Let A ⊂ Rn, B ⊂ Rm. Suppose f : A → B is continuous at p and
g : B → Rl is continuous at f(p). Then g ◦ f : A→ Rl is continuous at p.

Proof. Let ε > 0. Since g is continuous at f(p), we know that there exists δ1 such that
for any y ∈ B with ||y − f(p)|| < δ1, we have ||g(y)− g(f(p))|| < ε. Similarly, Since f is
continuous at p, we know that there exists δ such that for any x ∈ A with ||x− p|| < δ,
we have ||f(x)− f(p)|| < δ1. Combining these two statements and taking y = f(x), we
deduce that if x ∈ A with ||x− p|| < δ, we have ||g(f(x))− g(f(p))|| < ε.

It’s sometimes useful to express the continuity of a function in a slightly different way,
for which we need the following definition:
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Definition I.7. Let A ⊂ Rn and suppose f : A → Rm. For p ∈ A a limit point3 of A,
we say that F ∈ Rm is the limit of f as x tends to p if the following holds: given ε > 0,
there exists δ > 0 such that for all x ∈ A with 0 < ||x− p|| < δ we have:

||f(x)− F || < ε.

In this case, we write
lim
x→p

f(x) := F.

With this notion of a limit in hand, we can give the definition of continuity more
compactly as:

“f is continuous at p if limx→p f(x) = f(p).”

Theorem I.7. Suppose A ⊂ Rn and suppose f, g : A→ R and

lim
x→p

f(x) = F, lim
x→p

g(x) = G,

then:

i) lim
x→p

f(x) + g(x) = F +G,

ii) lim
x→p

f(x)g(x) = FG,

iii) If, furthermore G 6= 0, then:

lim
x→p

f(x)

g(x)
=
F

G
.

Proof. i) Fix ε > 0. Since limx→p f(x) = F , we know that there exists δ1 such that if
x ∈ A with 0 < ||x− p|| < δ1 then:

|f(x)− F | < ε

2
.

Similarly, there exists δ2 such that if x ∈ A with 0 < ||x− p|| < δ2 then:

|g(x)−G| < ε

2
.

Take δ = min{δ1, δ2}. Then if x ∈ A with 0 < ||x− p|| < δ, we have by the triangle
inequality:

|f(x) + g(x)− (F +G)| ≤ |f(x)− F |+ |g(x)−G| < ε.

3p is a limit point of A if Br(p) ∩A 6= {p} for any r > 0. That is, each open ball around p contains
at least one other point of A. Note that every point in A◦ is a limit point.
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ii) Fix ε > 0, and assume without loss of generality that ε < 1. Since limx→p f(x) = F ,
we know that there exists δ1 such that if x ∈ A with 0 < ||x− p|| < δ1 then:

|f(x)− F | < ε

3(1 + |G|)
.

Similarly, there exists δ2 such that if x ∈ A with 0 < ||x− p|| < δ2 then:

|g(x)−G| < ε

3(1 + |F |)
.

We note the following identity:

f(x)g(x)− FG = (f(x)− F )(g(x)−G) + (f(x)− F )G+ (g(x)−G)F

Now, take δ = min{δ1, δ2}. If x ∈ A with 0 < ||x− p|| < δ, we have by the triangle
inequality:

|f(x)g(x)− FG| ≤ |f(x)− F | |g(x)−G|+ |G| |f(x)− F |+ |F | |g(x)−G|

<
ε2

9(1 + |F |)(1 + |G|)
+

ε |G|
3(1 + |G|)

+
ε |F |

3(1 + |F |)
< ε.

iii) Given the previous part, it suffices to show that if limx→p g(x) = G with G 6= 0, then

lim
x→p

1

g(x)
=

1

G
.

Fix ε > 0. Since limx→p g(x) = G, we know that there exist δ such that if x ∈ A
with 0 < ||x− p|| < δ then:

|g(x)−G| < ε |G|2

2
.

Without loss of generality, we can assume that ε is sufficiently small that ε |G| < 1,
which implies |g(x)−G| < |G|

2 and so |g(x)| > |G|
2 .

If x ∈ A with 0 < ||x− p|| < δ, we can estimate:∣∣∣∣ 1

g(x)
− 1

G

∣∣∣∣ = |G− g(x)| · 1

|G|
· 1

|g(x)|
<
ε |G|2

2
· 1

|G|
· 2

|G|
= ε.

Corollary I.8. Suppose A ⊂ Rn and f, g : A→ R are continuous at p ∈ A. Then:

i) f + g is continuous at p.

ii) fg is continuous at p.

iii) If, furthermore g(p) 6= 0, then
f

g
is continuous at p.
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Exercise 2.2 (*). Suppose A ⊂ Rn and f : A→ Rm. Show that limx→p f(x) = F if and
only if for any sequence (xi)

∞
i=0 with xi ∈ A, xi 6= p and xi → p we have:

f(xi)→ F, as i→∞.

Exercise 2.3. a) Show that the map

f : R → Rn
x 7→ (x, 0, . . . , 0)t

is continuous on R.

b) Let A ⊂ Rn and suppose we are given a map:

f : A → Rm

(x1, . . . , xn)t 7→
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)t
.

Show that f is continuous at p ∈ A if and only if each map fk : A→ R is continuous
at p, for k = 1, . . . ,m.

c) Show that a map f : Rn → R which is polynomial in the coordinates is continuous on
Rn.

Extreme value theorem

The final result we shall establish in this chapter is the extreme value theorem. This is a
valuable result which allows us to conclude something about the range of a continuous
function by knowing something about the domain. More precisely, if the domain is
compact, then the range is bounded.

Theorem I.9. Let E ⊂ Rn be compact, and suppose f : E → R is continuous on E.
Then there exist p+, p− ∈ E such that:

f(p−) ≤ f(x) ≤ f(p+)

for all x ∈ E. That is to say that f is bounded and achieves its bounds.

Proof. We first argue that f(x) is bounded above for x ∈ E. Suppose not, then for each
i ∈ N there exists xi ∈ E such that f(xi) > i. Since E is compact, by Bolzano-Weierstrass
the sequence (xi)

∞
i=0 has a convergent subsequence (xij )

∞
j=0 such that xij → x ∈ E. By

the continuity of f we have:
lim
j→∞

f(xij ) = f(x),

but on the other hand f(xij ) > ij → ∞ as j → ∞, a contradiction. Therefore, there
exists M such that f(x) ≤M for all x ∈ E. In other words, the set

f(E) := {f(x) : x ∈ E}

is bounded above. By the completeness axiom, f(E) has a least upper bound, so without
loss of generality we will assume M = supx∈E f(x).
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Now since M is the least upper bound, for i ≥ 1, we have that M − 2−i is not an
upper bound. Therefore there exists yi ∈ E with M − 2−i < f(yi) ≤ M . Clearly, we
have that f(yi)→M as i→∞. Now the sequence (yi)

∞
i=0 with yi ∈ E has a convergent

subsequence (yij )
∞
j=0 with yij → p+ for some p+ ∈ E by the Bolzano-Weierstrass theorem.

Since f(yij )→ M , by the continuity of f we conclude that f(p+) = M , Thus we have
established that there exists p+ ∈ E such that f(x) ≤ f(p+) for all x ∈ E. An identical
argument deals with the lower bound.

Exercise 2.4. Suppose that E ⊂ Rn is compact and f : E → Rm is continuous on E.

a) Show that f(E) := {f(x) : x ∈ E} is bounded.

b) Show that f(E) is closed, hence compact.

c) Is it true that f(E) is closed if we just assume E is closed (not necessarily compact)?

Exercise 2.5 (*). a) Suppose f : Rn → Rm is continuous on Rn, and suppose U ⊂ Rm
is open. Show that:

f−1(U) := {x ∈ Rn : f(x) ∈ U}

is open.

b) Suppose that f : Rn → Rm has the property that f−1(U) ⊂ Rn is open for every open
U ⊂ Rm. Show that f is continuous on Rn.
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