Chapter 4

Integration in higher dimensions

4.1 Integration along a curve

4.1.1 Integration of a function along a curve

In many situations, we want to integrate over more interesting shapes than a simple
interval. Consider for example the kind of integrals that appear in complex analysis: we
want to integrate over some contour in the complex plane. We can in fact do this with the
machinery that we’ve already established, but we first need to make a bit more precise
what we mean by a curve.

Definition 4.1. A Cl—curve in R" is a differentiable map ~ : [a,b] — R™ such that
v : (a,b) = R™ given by v/(p) = D,y is uniformly continuous and non-zero. If y(a) = (b),
we say that the curve is closed.

Example 4.1. The map v : [0, 27] — R? given by:
cos 6
v(6) = < sin 0 )

is a closed C!—curve.

We can integrate a function defined in the neighbourhood of a C!'—curve as follows.
Suppose 7 : [a,b] — R™ is a Ct—curve, that  C R™ with v([a,b]) C Q and that f : @ — R
is a continuous function. We define the integral of f along v to be:

b
[ aei= [ @) ) at

Notice that the assumption that f is continuous and 4’ is uniformly continuous is stronger
than necessary: it is sufficient to assume that (f o) x ||7']| : [a,b] — R is integrable.

Example 4.2. Take 7 to be the curve in Example 4.1 and suppose f : R?\ {0} — R is
given by:

SL‘2

f(l’vy):m

77
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Then we calculate
f(v(8)) = f (cosh,sin@) = cos? 0,

V() = < _cine@ )

2
/fd€ :/ cos*0d0 = .
¥ 0

Suppose v : [a,b] — R" is a C'—curve, that Q C R™ with v([a,b]) C € and that
f:Q — R is a continuous function. Suppose also that s : [c,d] — [a, ] satisfies s(c) = a,
s(d) = b and that s’ : (¢,d) = R is uniformly continuous and positive. Then, by the
mean value theorem, s is strictly monotone increasing and continuous, and hence maps
[c,d] — [a,b] bijectively. If we define ¥ = yos : [c,d] — R", then 7 is a Cl—curve.
Moreover,

and:

so that ||7/(t)|| =1 and:

7 ([a,b]) = 7 ([¢, d])

so that the curves v, 7 coincide as subsets of R”. We say 7 is a C'—reparameterisation
of 7v. By the chain rule, we have for any ¢ € (¢, d) that 3'(t) = s'(t)7'(s(t)), so that:

17 @] = '@ [[7/(s(t)

using that s'(¢) > 0. Now, we have:

)

d
[ rae= [ 16y ol|a
d
- / FOs@) | (se)|| 8/ e
Cb
= s "(s)]| ds = de,
/Gf(v( NG| [yf

by making a change of variables. Thus, the integral along a C'—curve depends on the
curve, rather than the parameterisation. We define the length of a C''—curve to be:

L(y) == L 1de.

By the argument above, this definition of length doesn’t depend on the parameterisation
of the curve.

Exercise 9.1. Let v : [0,27] — R? be given by:

60 —sinf
v(0) = < 1—cos€>'

a) Sketch 7.



4.1 Integration along a curve 79

b) Find
L(y)= [ 1dt.
() /7

This curve is called the cycloid, and it is the path traced out by a point on a unit circle
which rolls without slipping along the z—axis.

4.1.2 Integration of a vector field along a curve

In many physical and mathematical applications, we want to integrate vectorial quantities
along a curve. For instance, the classical Ampére’s law of electromagnetism relates the
flux of a stationary current through a surface bounded by a curve to an integral of
the magnetic field (a vector) around that curve. We can incorporate this idea into the
machinery that we’ve already developed. Suppose that 2 C R” is an open set and that
v :[a,b] = Qis a Cl—curve. A wvector field! defined on  is simply a map V : Q — R",
which attaches a vector in R” to each point of €.
If V is continuous on {2, we define the integral of V' along v to be:

b
[ = [ vom). o),
~y a

Notice that since V' and +/ are both vectors in R", the inner product makes sense at each
point t € [a, b].

As in the case of integration of a function along -, we would like to show that this
quantity doesn’t depend on how we parameterise the curve. Let us again suppose that
s : [a,b] — [c,d] satisfies s(¢) = a, s(d) = b and that s’ : (¢,d) — R is uniformly
continuous and positive. Defining 4 =~y o s : [¢,d] = R", we compute:

[ (v.ae) -

(t))dt

/
/
/C A (s(5)) o (Bt

d
(V(3(1), 5"
d
(V(v(s(t))), 7' (s(£))s'(t)) dt
d
(V(v(s(t)))
b

- / (V(3(0)./ (1)) dt = / (V. de)

a ¥

so that the value of the integral of V' along v again depends on the curve, rather than
the particular parameterisation that we choose.

Again, the condition that v is C' and V is continuous is stronger than we really
require to define the integral of V' along ~. It’s enough that (V o~v,~/) : [a,b] — R is
integrable.

1 This definition is more than adequate for our purposes, but in more exciting situations where €
is not an open subset of R™, but a more general manifold the definition of a vector field becomes more
subtle. The Manifolds course next year will deal with these very interesting ideas.
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Example 4.3. Let us take 7 : [0,27] — R? to be given by:
cos
7(9) - < Sil’l9 ) )

so that 7 is the unit circle traversed anticlockwise. We will take as our vector field
V :R? - R?

Now, we calculate:

and

so that (V(v(¢)),~'(6)) = 1 and:

21
/<v,de> :/ 1dt = 2r.
o 0

4.2 Integration over an area: the Darboux integral on R?

In this section we are going to consider how to define the integral of a function f: A — R,
where A C R2. The restriction to R? is for clarity and to keep the notation sensible. The
same basic idea easily extends to integrating over functions of more than two variables.
To begin with we will take A to be a rectangular domain: A = [ay, b1] X [ag, b2]. This
is the natural generalisation to two dimensions of the integral over an interval. We will
again partition the domain of integration into smaller pieces and approximate the integral
above and below by finite sums. This time, rather than representing the area of a set of
rectangles, the sums will represent the volume of a set of cuboids, which approximate from
above and below the volume below the graph of f. See Figures 4.1, 4.2 for a graphical
depiction of this.

4.2.1 Partitions of a square

Suppose that A = [a1,b1] X [ag,b2]. A partition P of A is a pair (P1,P2), where
Py = (wo,...,xx) is a partition of [a1,b1] and P2 = (yo,...,¥;) is a partition of [aga, ba].
The partition P divides A into k x [ subdomains:

ﬂij:[xi,le]x[yj,ijrl], iZO,...,k—l, j:(),...,l—l.

We define |m;;| := (41 — xi) X (yj+1 — y;) to be the area of the square m;;. We also
define
mesh P = max{mesh P, mesh Ps}.

We say that Q = (91, Q2) refines P if Py < Q) and Py = Q. In this case, each
subdomain of P is split into a finite number of subdomains of @. An example of a
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Figure 4.1 Approximating the volume beneath a graph over the plane

Figure 4.2 Approximating with a finer partition
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Figure 4.3 Two partitions P = (P, P2) and P’ = (P}, P5) of the domain A, with P < P’.

partition and a refinement of that partition are shown in Figure 4.3. If P = (Py,P2)
and P’ = (P, Py) are any two partitions, we define their common refinement to be
R = (R1,R2), where R, is the common refinement of P;, P{ and Ry is the common
refinement of Py, P.

4.2.2 Upper and Lower Darboux Sums

We now consider a bounded function f : A — R. For each i = 0,...,k — 1 and
j=0,...,1—1, we define:

mij = inf f (),

M;j = sup f(x),
IEET('Z']'
which are respectively the greatest lower and least upper bounds for f in the subdomain
m;ij. As we've assumed f to be bounded these are well defined. We then define the lower
and upper sums of f associated to the partition P is the obvious way:

k—11-1
L(f,P):= myj |
i=0 j=0
k—11-1
U(f, P) = ml-j |7Tij| .
i=0 j=0

Abusing notation slightly, we’ll sometimes write m € P to mean w is a subdomain of P.
The allows us to write the sums more compactly as:

L(f,P) =) inf f(x)|]

TeP

U(f,P) =Y _sup f(z)|r].

TeP vem
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where by the sum over m € P we mean summing over all distinct subdomains of P. As in
the one-dimensional case, since m;; < M;;, we certainly have:

L(f,P) <U(f,P).

In fact, almost all of the results that we proved for upper and lower sums in the one-
dimensional case carry over to the higher dimensional setting. In particular, we have:

Theorem 4.1. Let A = [ay,b1] X [a2,b2] and f: A — R be bounded. Suppose that P, Q
are partitions of A with Q a refinement of P. Then:

L(f,P) < L(f,Q) <U(f,Q) <U(f,P).

Proof. Write P = (P1,P2) and Q = (Q1,Q2). Suppose first that Py = (zg,...,x),
Q1= (z0,..., T, C, X141, ... Tk), and Po = Qo = (Yo, ..., Ym), so that P and Q differ only
in that a single subinterval [z, z;11] in the z—direction has been split into [z, ¢] and
[¢, x141], with the partition in the y—direction left alone. From basic properties of the
infimum, we have:

inf  f@)> ol f(),
$E[$Z,C]X[yj,yj+l] $€[$l,$l+1]><[yj,yj+1}
it f@)> i f(),
zele w1 X[y Y +1] w€[zp,xipa] X [Y5,Y541]
for any y = 0,...,m — 1. Now, if we take the difference of the lower sums associated to P

and @, then the only terms which will not cancel will be those involving the subinterval
[1, 141], see Figure 4.4:

m—1
L(f,Q) = L(f,P) = > (c— 1) (yj+1 — ¥5) inf f(z)
= x€lxy,c] X [Yj,Y5+1]
m—1
+ ) @1 — o) (Y1 — ) inf —f(x)
= €[, 1] X [Y5,Y5+1]
m—1
= D (@ — @) (Y41 — y5) inf —f(x)
=0 xe[ﬂcz,xzﬂ}x[yg,ygﬂ]
m—1
> (e —z1) + (2141 — ) — (Ti41 — 11)]
=0
X (Yj+1 — yj) ¥ inf —f(x),
z€[zr,z141]X [Yj,9541]
0.

Thus we have:
L(f,P) < L(f, Q).
Now, note that by Exercise 9.2 a), we have U(f,P) = —L(—f,P), so that:

U(f7 Q) = _L(_f, Q) < —L(—f,P) = U(fv P),
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Figure 4.4 The partitions P, Q from the proof of Theorem 4.1. The subdomains giving rise to
terms in the upper and lower sums which do not cancel are shaded.

so that we have established

L(f,P) < L(f,Q) <U(f,Q) <U(/,P).

in the special case where Q is obtained from P by adding one point in the x—partition.
An identical argument establishes the result in the case where P; = Qp and Ps, Qo differ
only by one point. For the general result, we observe that if P < O then we can obtain
Q by inserting a finite number of points into P, and we can apply our special case result
at each stage to obtain the general result. O

Corollary 4.2. Let A = [a1,b1] X [ag,b2] and let f: A — R be bounded. Suppose P, P’
are any two partitions of A. Then:

L(f,P) <U(f,P).
Proof. Let Q be the common refinement of P, P’. Then by Theorem 4.1 we have:
L(f,P) < L(f,Q) < U(f.Q) < U(f,P"),
which gives the result. O

Exercise 9.2. Let A = [ay, b;1] X [ag,bs] be a square domain in R? and let P be any
partition of A. Suppose f,g: A — R are bounded functions, and that A > 0. Show that:

a) U(—f,P) = _L(fa P), d) L(Af7,P) = )‘L(fv P)a
b) L(—f,P) = -U(f,P), e) U(f+9.P)<U(f,P)+Ul(g,P),
c) U, P) = AU(f,P), f) L(f +9,P) = L(f,P) + L(g, P).
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4.2.3 The Darboux integral

We are now ready to define the integral:

Definition 4.2. The lower and upper Darbouz integrals are defined as follows:

/Af(x)dx = s%p L(f,P) /Af(x)dx = i%f U(f,P)

where the supremum and infimum are taken over all partitions of [a,b]. By Corollary 4.2

we have that: o
/f(x)da; < /f(:v)dw.
JA A

We say that a bounded function f : [a,b] — R is Darbouz integrable, or simply integrable,
if it is bounded, and the upper and lower Darboux integrals are equal. In this case, we

write: o
/A F@)da = /A Fa)da = /A (@) da.

Notice that the lower and upper Darboux integrals are always well defined for a
bounded function f.

As a notational convention, x appears in the integral as a ‘dummy variable’, much
as in the one-dimensional case. Sometimes to emphasise that this is a two dimensional
integral, it is written:

/A f(@)d*z, or /A f(z)dz'da?.

The results that we established in Chapter 2 concerning integrable functions defined
on the interval carry over wholesale to the two dimensional setting. We’ll state them
again, but only repeat the proofs where some modification is necessary. You should look
back at the proofs from Chapter 2 and check that you understand how they extend to
the two dimensional case.

Theorem 4.3 (Linearity of the integral). Let A = [a1,b1] X [a2,b2]. Suppose that
f:A—=>Rand g: A— R are both integrable, and that A € R. Then f + Ag is integrable
and we have:

/ (f(@) + Ag(z)) dz = / f(x)dz + A / g(z)dz.
A A A
Proof. Repeat proof of Theorem 2.4 ]

Lemma 4.4. Let A = [a1,b1] X [ag,b2]. A function f: A — R is integrable if and only if
for any € > 0 there exists a partition P such that:

U(f,P)—L(f,P) <e. (4.1)

Proof. Repeat proof of Lemma 2.5 O
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Theorem 4.5 (Additivity of the integral). Let A = [a1, b1] X [a2, ba]. Suppose ¢ € (a1, b1)
and set A, = [a1,c| X a2, ba], Ar = [c,b1] X [a2,b2]. Then f: A — R is integrable if and
only if fla, and fl4, are integrable, and:

[ t@ar= [ st [ s
A AL Ag

Proof. Repeat proof of Theorem 2.6 O

Theorem 4.6. Let A = [ay,b1] X [ag,b2]. Suppose f: A — R and g: A — R are both
integrable. Then so is:

i) |£1;
i) f%,
i) fg.
Proof. Repeat proof of Theorem 2.8 O

Theorem 4.7. Let A = [a1,b1] X [ag,b2]. Suppose that f: A — R is continuous on A.
Then f is integrable.

Proof. This time we need to slightly modify the proof. Let |A| := (by — a1) x (b2 — ag).
Fix € > 0. Since f is continuous on A, it is uniformly continuous. Thus there exists
0 > 0 such that for all z,y € A with ||z — y|| < § we have |f(z) — f(y)| < ﬁe. Pick a

partition P = (Py, P2) with P = (zo,...,xr) and Py = (yo,...,y;) such that:

\/($¢+1 —2)? 4 (Y41 —yj)* <9
foralli =0,...k—1,7=0,...,l — 1. We can do this by (for example) setting:

b — a1
k
bQ—CLQ
l

Tri=a1+ i, 1=0,...,k,

yj:a2+ j) jzoa"‘7la

where k, [ are chosen sufficiently large that
(b1 —a1)V2 < ks,  (by —az)V2 < I6.

Now, by construction, for z,y € m;; we have:

which implies that:
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Now, we can estimate:

k—11-1
i=0 j=0 TET;; iJ
e
<> T i
i=0 j=0
!
=4 S (@i — i) % (i1 — yj)
i=0 j=0
o kel -1
:ﬁ (Tig1 — x;) XZ%H*%
i=0 j=0

:67

as we have a pair of telescoping sums. Thus for any € > 0, we have found a partition P
such that:

U(f,P) _L(fvp) <,
which implies f is integrable. O
Again, notice that it’s enough that A is uniformly continuous on (a1,b;) X (ag, by) for
this argument to work. Finally, we will state without proof the following result concerning
Riemann sums. A tagged partition is a partition P together with a choice of a point

in each subdomain 7 = {t;|7 € P}. The Riemann sum corresponding to the tagged
partition (P, 7) is:

R(f,P,m) =Y f(tx) |7

TeP

Theorem 4.8. Let A = [a1,b1] X [ag,bs] and let f : [a,b] — R be an integrable function.
Suppose ((Py,m1));2, is a sequence of tagged partitions with mesh P; — 0. Then we have:

R(f.Pum) — /A f(x)dz

Exercise 9.3. Let A =[—1,1] x [-1,1]. Show that the function f: A — R given by:

1 ¢ Q, and y =0,
F,y) = { 0 otherwise.

/A F()dz =

Exercise 9.4. Let A = [a1,b1] X [az2,b2] and set |A| = (b1 — a1) X (ba — a2). Suppose
f:A—=R, g: A— R are integrable.

is integrable, and:
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a) Show that:
Al inf f(x) < / f(z)dz < |A|sup f(x).
QZEA A

T€EA
‘ /A f(2)dz

c) Show that if 0 < f(x) for all z € A then:

b) Establish the estimate:

< |Alsup|f(z)|
T€EA

OS/Af(x)dx

d) Show that if f(z) < g(x) for all z € A then:

/Af(:c)dxg/Ag(x)dx

‘ [ twis| < [ (1@ ds

Exercise 9.5. Let A = [a1,b1] X [ag,b2]. Suppose that f: A — R is continuous. Show
that the map F': [ag, ba] — R given by:

e) Prove that:

by
F(y) = f(z,y)dx

ai

1S continuous.

4.2.4 Relation to repeated integrals

When it comes to evaluating an integral over a square domain in practice, it is useful to
connect the integral to repeated one-dimensional integrals. Roughly speaking, once can
imagine first sending the mesh of the partition in the x—direction to zero, and then the
mesh of the partition in the y—direction. More concretely, if A = [a1,b1] X [ag, ba] and
f: A — R is continuous, for each y € [ag, ba] we can consider the function:

gy : lai,b1] — R
z = fz,y)

For each y this will be a continuous function, so we can define:

by b1

Gy = / gy(x)de = flz,y)dx
al ai

By Exercise 9.5 we have that the map G : y — G, is continuous, and so it makes sense to

compute:

< abl f(x,y)dx) dy.

1

bo bo
Ln= [ Gly)dy = /

az az
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Similarly, we could first integrate over y to find:

by b
I ::/ ( f(a:,y)dy) dz
al as

One might expect that these double integrals are related to

1= [t

and indeed we shall show:

For a function f : A — R which is merely integrable (rather than continuous) we have
the problem that the integral over  may not be defined at all values of y (and vice versa).
For example, the function in Exercise 9.3 is integrable over [—1, 1] x [—1, 1], however:

x> f(z,0)

is not integrable, so the expression:

/ 11 ( / 11 f(x,y>das) dy

does not make sense. We can fix this by replacing the inner integral with an upper (or
lower) integral.

Theorem 4.9 (Fubini’s theorem). Let A = [a1,b1] X [a2,b2] and suppose f: A — R is
integrable. Then the two maps U, L : [az, ba] — R given by:

b1

U:y— [ f(z,y)dz,
h

Ly | f(z,y)dz,

al

are both integrable, and:

/Af(Z)dZ = /: (:f(w,y)d:v> dy = /: (:f(:v,y)d:r> dy.

Proof (*). Suppose P = (P1,P3) be a partition of A with P; = (xg,...,zx) and Py =
(y(:h ... 7yl)'

1. We first estimate:

L(f,P) =) _ inf f(2)|n]

TeP

-1 k-1
=> <Z Ziergrfij f(2)(wip1 — xi)) (Wj+1 — yj)

=0 \i=0
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Note that if Tij = [xi,IH_l] X [yj, yj+1] then:

inf f(z) < inf f(z,y), for all y € [y;j41,y;].
ZGT('” (EE[CEZ'+1,$Z'}
So that:
k—1
inf Tip1 —x;) < inf Tit1 — T;
; ZET;;5 f( ) + Z ;I:E[:cz+1,xz] y)( + )
= L(an Pl)
b1
f(z,y)dz = L(y).
Ja1

for all y € [yj41,y;]. Taking the infimum over y € [y;4+1,y;], we have:

k—1
> inf f(2)(wipn — @) < inf L(y).
o 2T YE[Yj+1,y5]
We deduce that:
f ’P < Z inf (yj+1 — yj) = L(ﬁ,PQ)

Y€ y]+1,y]]

2. Next we estimate:

Z sup f(2) ||

Zeﬂ'
-1
= (Z sup f(2)(zit1 — wi)) (Yj+1 — v5)
ZEM;j
Note that if m; =[x, 541] X [y;, yj+1] then:
sup f(z) >  sup  f(z,y), for all y € [y;11,;]-
ZE;; TE[Tiy1,%]
So that:
k—1 E—1
sup f(2)(@iv1 — ;) > sup  f(x, y)(wip1 — ;)
i=0 Z€™ij i—0 TE[Tit1,7i]
= (gy7P1)
by

f(z,y)dz = U(y).

a1
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for all y € [yj41,y;]. Taking the supremum over y € [y;+1,y;], we have:

Z sup f(2)(zig1 —x3) > sup  U(y).

0 #€™ij YE[Yi11,Y5]

We deduce that:
-1
U(f,P)=> sup U (Y1 —y;) = UU, Pa).

=0 YEWi+1,95]

3. Recalling that L(y) < U(y) for all y € [ag, ba] we have:
L(f,P) < L(L,P2) SU(L,P2) <UU,P2) <U(f,P).

Since f is integrable, we have:
igmﬁ)_mwﬁ /f
We deduce that:
17ID1fU(£ Pz)—supLEPQ /f

so that £ is integrable and:

Aﬂ@mzlf<:}mwm>@.

The equivalent statement for U follows from the inequalitites:

L(f,P) < L(L,P2) < LU, P2) <UU,P2) <U(f,P). O

Obviously, there was nothing special about our decision to integrate first over the
x—coordinate and then the y. We could equally have established that:

/A f(2)dz = / b (;f(x,y)dy> dz = / b (;f(x,y)dy> dr.

In the case where f is continuous, we have the immediate corollary:

Corollary 4.10. Suppose f: A — R is continuous. Then:

e [ ([ s~ [ ([ e

Proof. Since f is continuous, so is the map g, : © — f(x,y) for each y € [ag, ba], thus g,
is integrable and we have:

b1 bl

ai al

and equivalently for the integrals keeping x fixed. O
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4.2.5 Non-square domains

Thus far we have restricted our attention to functions define on a rectangle A = [a1,b;1] X
[az, b2]. Of course, we often wish to integrate over more exotic shapes (circles, ellipses,
stars, etc.). Recall the characteristic function of a set C' C R? is the function y¢o : R? — R
given by:

1 xeC
xo(@) = { 0 x&C,

If C C A for some closed rectangle and f : A — R is bounded, then:

| t@de = [ xe@s s

provided xc(x)f(x) is integrable. By Theorem 4.6 this will certainly be the case if x¢
and f are separately integrable.

Definition 4.3. A bounded set C' is called Jordan measurable if ¢ is integrable. For
such a set we can define the Jordan measure to be:

m(C):/Cldxz/AXC(x)dx,

where A is any rectangle enclosing C.

The Jordan measure is a notion of area for a reasonably large class of sets. Not every
set is Jordan measurable. For example, if we take

C:{(m,y)t|—1<x,y< 1, x,ye(@}

then by a similar argument to Example 2.3 we can show that y¢ is not integrable. In
fact, in the next section we shall see that the criterion that a set be Jordan measurable is
that the boundary be ‘small’ in some appropriate sense.

A word of caution. Although the nomenclature ‘Jordan measure’ is reasonably
established, one should be careful because the word “measure” has a technical meaning
which you will be introduced to in the measure theory course, however the Jordan measure
is not a measure in this sense.

4.2.6 (*) Lebesgue’s criterion for integrability
Sets of measure zero

A domain 7 is a closed rectangle if it is of the form 7 = [ay, b1] X [ag, b2] and if so, then
7| = (b1 — a1) x (ba — a2). A set A C R? is said to have measure zero if the following
property holds: given € > 0, we can find a countable collection of rectangular domains

{m;}22, such that:
oo
AC U T,
i=1
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and:
oo

Z |mi| < e.

i=1
A set has measure zero if it can be completely contained in a set of arbitrarily small area.

Example 4.4. Any countable set A C R? has measure zero. To see this, we write
A = {x1,29,...} with z; = (z},2?)" € R%. Let us then define:

i i i i
o=t —e2 2 2 gl 42772 x [a? — 2727 g 4 2727

i

We have that:

|mi| = 2771

so that:
oo
|mi| = € <e
— 2
1=
In fact, we can make a more general statement

Theorem 4.11. Suppose that A1, As, ... is a countable collection of sets of measure zero.
Then
oo
A= {4
j=1

has measure zero.

Proof. Fix € > 0. Since each A; has measure zero, we can find a countable collection
Uj = {mj}2, of closed rectangles such that:

oo
Aj C U Tjis
i=1
and
oo
Z |7Tj,i‘ < 627]71.
=1
Now, the set:

U= Duj
j=1

is a countable union of countable sets, so it is countable. We can therefore write
U = {T1;}32,. We certainly have that:

o
AC U 11,
k=1

and moreover:

oo o0 o0
SO =)0 im
k=1

> €
= E 62_]_1:§<6. O
j=1 i=1 j=1
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Theorem 4.12. Suppose v : [a,b] — R? is a C'—curve. Then ~([a,b]) has measure zero.

Proof. We write:

for x,y : [a,b] — R. First, note that since 7/(a,b) — R? is uniformly continuous, so
are ',y : (a,b) — R and so 2,y extend continuously to [a,b] by Exercise 3.6. By the
extreme value theorem, we conclude that both 2’ and 3’ are bounded, so that there exists
K with:

()| <K, |/ (s)] < K.

By Exercise 2.6 we deduce that if sq, s2 € [a, ], then:
[2(s1) —z(s2)| < K |s1—s2|,  [y(s1) —y(s2)| < K [s1 — 52
Fix € > 0. Let us define for n € N*:
i .
si=a+(b—a)—, 1=0,...,n.
n
We define the rectangles:

m = [2(si) — k,x(s;) + k] X [y(si) — K, y(si) + K],

where: )
k= Kﬂ_
n
Now, for any s € [a, b], there is an s; with |s — s;| < @. If this is the case, we know
that: b a) b o
—a —a
o(s) — (s < KOy - y(s) < 602,

which implies that v(s) € m;. Thus we have:

¥([a,0]) < | mi.
=0

On the other hand,

b—a)?
‘ﬂ—i| = 4K2( 77,2 )
so that:
n
b—a)?
§2m4:4K“M>(n+n.
i=0

By taking n sufficiently large, we can ensure that the right hand side of this expression
is as small as we like, in particular less than €, and so we have exhibited a collection of
rectangles which contains ~y([a, b]) and has total area less than e. O
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Lebesgue’s criterion

We shall state without proof a very useful characterisation of the integrable functions.

Theorem 4.13 (Lebesgue’s criterion for integrability). Let A = [a1,b1] X [a2,b2] and let
f:A—= R be a bounded function. Then f is integrable if, and only if, the set:

{p € A‘f s not continuous at p}
has measure zero.

Those students interested in seeing the proof of this result can find it in the book
“Calculus on Manifolds” by Spivak, Theorem 3-8.
A very useful consequence of this result is the following:

Corollary 4.14. A set B C A = [a1,b1] X [ag,bs] is Jordan measurable if, and only if,
0B has measure zero.

Proof. We need to show that yp : A — R is integrable. By Lebesgue’s criterion, this is
true if and only if the set of points at which yp is discontinuous has measure zero. Thus
what we need to show is that yp is not continuous at p if and only if p € 0B.

First, suppose that p € B°. Then there exists § > 0 such that Bs(p) € B, and thus
xB(q) =1 for any ¢ with ||¢ — p|| < d. For such ¢, we have:

IxB(q) —xB(P)| =0,

so xp is continuous at p.

Next, suppose that p € B°. Since the complement of a closed set is open, there exists
6 > 0 such that Bs(p) ¢ B®. Thus if |¢ — p| < § we have xp(p) = x5(¢) = 0 and again
Y B is continuous at p. Thus yp is continuous on B and B°. It remains to show that yp
is discontinuous on B = B\ B°.

Finally, suppose that p € 9B. Then since p ¢ B°, for any § > 0 we have that
Bs(p)N B¢ # (). In particular, for any i € N we can find ¢; with ¢; ¢ B and ||¢; — p|| < 27%.
Thus ¢; — p as n — oo. We have:

xB(¢) =00,

as n — oo. On the other hand, since p € B, there exists a sequence (¢i)$2, with ¢/ € B
and ¢, — p. For this sequence we have:

xB(q) =1—1,
which implies that xp is not continuous at p. O

With this result, we are in a position to show that many ‘reasonable’ domains
are Jordan integrable. For example any domain whose boundary can be (piecewise)
parameterised by a C'—curve will necessarily be Jordan integrable.
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4.2.7 (*) Generalisation to R"

It is clear that the same basic approach we’ve described above can be generalised to
integrate over a hypercube A = [a1,b1] X -+ X [an, b,] C R™. The only real challenge is in
handling the notation, which gets very cumbersome very quickly. We define a partition of
A to be a n—tuple of partitions P = (P!,...,P"), where P' = (xf),...,},) is a partition
of the interval [a;, b;]. The subdomains of P are the hypercubes of the form:

Tril’-“,in = [aji’x%l-‘rl] X [x%?xlzg-i-l] X X [x’?n7x?n+l]7

where 0 <i; < k; — 1. We define

’ﬂ-ilu"'7i71/’ = ('/I‘.g-1+1 - .’L';;ll)(x,i_;’_l - x’LQQ) U (m’?n-i-l - x’?n)

For f: A — R a bounded function we define the lower and upper sums with respect
to P in the obvious way:

L(f,P) = inf f(x)|n],
TeP

U(f,P) = 2 sup f(@) |,

rep®

where the sums are understood to be taken over all subdomains 7;, .. ;, of P. From here,
we can proceed as in Section 4.2.3, defining integrable functions and establishing the
obvious generalisations of the results we found for the integral in two dimensions.

4.3 Green’s Theorem in the plane

When we considered the integral in one dimension, one of the crucial results we obtained
was the fundamental theorem of calculus, in particular Corollary 2.14. This states that if
f i [a,b] = R is continuous and F : [a,b] — R satisfies F'(x) = f(z) for all all z € (a,b)
then:

b
/ F(t)dt = F(b) — F(a).

This result is the simplest of a family of results which relate integrals over a region
A C R"™ with quantities evaluated on the boundary 0A. The general result is known as
Stokes” Theorem, and is a deep and very important result in differential geometry. We
shall establish a version for planar regions, known as Green’s Theorem in the plane. This
states that certain integrals over two-dimensional regions can be related to line integrals
around the boundary of the region. We won’t make any attempt to prove an optimal
result.

4.3.1 Proof for simple domains

We say that a domain A C R? is of Type I if there exist a,b € R and continuous functions
a, B : [a,b] — R such that:

A= {(x,y)t ra<z<hb, 06(95) <y< ﬁ(JU)},
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and moreover « and [ are differentiable at all 2 € (a,b) with o/, 5" : (a,b) — R piecewise
continuous.

Similarly, a domain A C R? is of Type II if there exist ¢,d € R and continuous
functions A, p : [¢, d] — R such that:

A={(z,9)": My) <z < p(y),c <y <d}.

and moreover A and p are differentiable at all x € (¢,d) with X, i’ : (¢,d) — R piecewise
continuous. See Figure 4.5 for examples of Type I and Type II domains.

A domain is simple if it is of both Type I and Type 11, see Figure 4.6. We shall assert
without proof the fact that in all three cases, A is Jordan measurable, so:

/Af(a:)dx

makes sense whenever f is continuous on A
) Y

B(x) d

w(y)
A(y)

N -4

a b

Figure 4.5 A type I (left) and type II (right) domain.

Lemma 4.15. Suppose that Q C R? is an open set, and that A C Q is a type I domain.
Suppose that f: Q — R s differentiable on ), with continuous partial derivatives. Then:

| Pt [ " fe. Bt - / ’ f(t ot

Proof. We first apply Fubini’s theorem to reduce the integral over A to a repeated integral:

/Asz(:c)da: = /ab (/Oi(:) Daf(t, s)ds) dt. (4.2)

Dgf(t,s) — }ILI_)I% f(t>8 + h]ia _f(t7 S),

Recalling that:

we note that the first integral may be written:

B(t) B(t)
Dyf(t,s)ds = / F{(s)ds,

a(t) a(t)
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where F; : [a(t), 5(t)] — R is the map s — f(¢,s). Applying the fundamental theorem of
calculus, we have:

B(t)
[, a9 = 5.50) ~ .00
Inserting this into (4.2), we deduce
b
[ Das@ts = [ ((e.50) - 0@ ar
A a
and the result follows. O

Lemma 4.16. Suppose that  C R? is an open set, and that A C Q is a type II domain.
Suppose that g : 0 — R is differentiable on ), with continuous partial derivatives. Then:

ADM@M—AZW@@%—AZW$$M

Proof. The proof proceeds almost exactly as in the previous Lemma. We first apply
Fubini’s theorem to reduce the integral over A to a repeated integral:

d w(s)
/ADlg(x)da: :/C (/}\(s) Dqg(t, s)dt> ds. (4.3)

. t+h,s),—g(t,s
Dt ) = i S Po0)al0)

Recalling that:

we note that the first integral may be written:
w(s) w(s)
Dqg(t,s)dt = G (t)dt,
A(s) As)

where G : [A(s), pu(s)] — R is the map ¢ — ¢(t, s). Applying the fundamental theorem of
calculus, we have:

w(s)
/' Dig(t, s)dt = g(u(s), 5) — g(A(s), s).
A(s)
Inserting this into (4.3), we deduce
d
[ Digtarde = [ (aluts).5) - g 5)) ds.
A c

and the result follows. O

Combining these two results, we arrive at Green’s theorem:
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Figure 4.6 A simple domain, with the direction of the boundary indicated.

Theorem 4.17 (Green’s Theorem in the plane). Suppose that Q C R? is an open set,
and that A C Q is a simple domain. Suppose that V : Q — R? is differentiable at all
points of Q, with continuous partial derivatives. Then:

/ (V,de) = / [D1V?(z) — DoV (2)] da, (4.4)
0A A

where we understand the integration over the boundary to be taken in the anti-clockwise
sense.

Proof. 1. First, let us assume that V2 = 0 on 2. We make use of the fact that A is of
Type I and apply Lemma 4.15 to the second term on the right of (4.4). We deduce:

b b
1 _ 1 _ 1
/A —DoV(2)dx _/ VLt a(t))dt / Vit B(t))dt.

a a

The boundary 0A of a Type I domain consists of at most four components (see
Figure ). We can parameterise these as:

n(t) = (b,t), alb) < t < B(b)
Y2(t) = (=t, B(—t))' —b<t<-—a
(t) = (a,—1)", — B(a) <t < —pB(a)
n(t) = (¢ at)), a<t<b.

so that we can compute:
n(t) = (0,1, a(b) <t < B(b)
(t) = (=1, =8'(—t))" —b<t<-—a
5(t) = (0, -1), — Bla) <t < —Ba)
() = (1, (), a<t<b
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Accordingly, we compute:
/(V,df)zO,
7
—a b
_ IRyV _ _ 1
/72 vty = [ Vit a-oyd = - [ Vi s
/ (V. de) —
¥3

b
/ (V, de) = / V(t, at))dt.
Y4 a
Putting this all together, we conclude that:
/ (V,de) = / [D1V?(z) — DoV (2)] da,
dA A
when V2 = 0.

. Next, we consider the case when V! =0 on . We make use of the fact that A is of
Type II and apply Lemma 4.16 to the first term on the right of (4.4). We deduce:

d
/ D1V3(z)dx = / (VZ(/L(S), s) — V2(\(s), s)) ds
A c

The boundary 9A of a Type II domain consists of at most four components (see
Figure ). We can parameterise these as:

() = (u(s), ), c<s<d
(t) = (=s,d)' — p(d) < s < —A(d)
13(t) = (A(=5), —9)", _d<s<—c
n(t) = (s,¢)', Ale) < s < p(c)
so that we can compute:
() = (1 (s). 1), c<s<d
7(t) = (~1,0)° — p(d) < s < —A(d)
Y(t) = (=N (=s), ~1)", —d<s<—c
Y4(t) = (1,0)", Ae) < s < pu(e)

Accordingly, we compute:

/7 e = / V2 u(s), 8)ds,
/7 (V.de) =

/73 <V7dE>Z/_CVQ(A(—S),—s)d,s:_/Cdv2()\(s)’s)d8

—d

[ e -
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Putting this all together, we conclude that:
/ (V,dt) = / [D1V?(z) — DoV (2)] da,
A A

when V1 = 0.

3. Now, note that for any vector field V we can write V = U + W for two vector
fields U, W with U? = W' = 0 on Q. Applying the results above together with the
linearity of the integral, we deduce that:

/ (V,de) = / [D1V?(2) — DoV(2)] da,
0A A
holds for any vector field V' satisfying the conditions of the theorem. 0

Note that while the condition of being simple is not by itself sufficient to ensure that
0A is piecewise O, we nevertheless have that the integral:

/aA (v, de)

always makes sense.

Example 4.5. Let’s consider A = B1(0), the unit disc centred at the origin, and we’ll

C()IlSidel .
y X

The boundary 0A is the unit circle traversed in an anti-clockwise direction. We’ve already
computed the integral of this vector field along the unit circle in Example 4.3 and we

found:
/ (V. de) = 2r.
A

On the other hand, we can compute:

DiV? — DV =2

/ 2dx = 2.
A

Now, the disc is an example of a simple domain (check this) and so we deduce that the
Jordan measure of the disc is m(B1(0)) = .

so that:
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N

8A2 aAl
Ao Ay
.Tl

\\%/jiy//
As

043

Figure 4.7 Breaking up a region into simple components.

4.3.2 Green’s theorem in more general domains

The assumption that the domain is simple is rather a strong one. We can, however extend
the results to more complicated domains by breaking them up into simple domains. We
give here one example where this is possible, but the same basic idea can be applied in
many other situations.

Consider the planar domain A shown in Figure 4.7. This is not of Type I or Type
II. We can, however, split it up into three simple domains by making the cuts shown in
the second diagram. The final diagram shows the three new domains Aq, As, A3 slightly
displaced to show the boundaries of these regions. If f : A — R is any function which is
integrable over A, then clearly:

Aﬂwﬂzéf@“+éfww+Af@M
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Moreover, if V' is any integrable vector field defined in a neighbourhood of A, then we

have: /3,4 V. de) /6 N (V,dey + /8 N (V,dey + /8 N (V, de)

since the contributions from the cuts cancel, as the line segments are traversed twice in
opposite directions. On each of the domains A;, we can apply Green’s theorem separately,
so we deduce that Green’s theorem holds for the domain A.

4.3.3 Proof of symmetry of mixed partial derivatives

When we discussed partial derivatives, we stated the following result without proving it:

Theorem 3.8 (Schwartz’ Theorem). Suppose @ C R™ is open and f : Q@ — R is
differentiable at each p € Q. Suppose further that for some i,j € {1,...,n} the second
partial derivatives:

DiD;f(p),  D;Dif(p),
exist and are continuous at all p € Q. Then:

D;D;f(p) = D;D;f(p).

We are now in a position to establish this result. We first need to establish the
following Lemma

Lemma 4.18. Let Q C R? be open and let f : Q — R be continuous. Suppose that:

/ f(z)dz =0
By (p)
for allr > 0,p € Q such that the disc B.(p) C Q. Then f =0 on .

Proof. Suppose not, there there exists p € Q such that f(p) = ¢ # 0. Without loss
of generality we can assume ¢ > 0 (otherwise apply the argument to —f). Since 2 is
open, there exists > 0 such that B,(p) C . Since f is continuous, there exists § < r
such that if ||z — p|| < d then |f(z) — f(p)| < §. Thus, we have that for x € Bs(p) that
f(x) > § > 0. We deduce that:

/ f(x)dx > 7625 > 0,
Bs(p) 2

contradicting the assumption that the integral of f over any disc vanishes. ]
Now we are ready to prove the result.

Proof of Theorem 3.8. First note that it’s enough to show the result for n = 2, since for
higher n we can treat all of the variables except z¢, 27 as constant. Thus, suppose that
Q C R? is open and f : Q — R is differentiable at each p € . Suppose further that the
second partial derivatives:

DD f(x), DyD f(x),
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exist and are continuous at all z € . Let us fix r > 0,p € Q such that B,(p) C 2. We
compute using Green’s theorem:

[ 0iDas@) - Dapuse e = [ v,
BT(P)

9B:(p)
v (55 )

Now, note that if « : [a,b] — R? is an anti-clockwise parameterisation of B,(p), then:

(V(v(£),7'(t)) = Dif(v(t)¥" (t) + Do f (v(t)¥*'(t)
= (fo) (1),

by the chain rule. Applying the fundamental theorem of calculus, we have:

where V is the vector field:

b b
/BBr(p) Wt :/a <V(V(t))’7(t)>dt=/a (f o) (t)dt

= f(v(0)) = f(7(a)) = 0,
since 0B, (p) is closed, so y(a) = v(b). We conclude that:

/ (DlDQf([I}> — D2D1f<$)) dr = 0.
Br(p)

Since B, (p) was arbitrary, by the previous Lemma we deduce that:
DyDyf(x) — D2Dyf(x) =0

for all = € €2, which is the result we require. O

4.3.4 Change of variables formula in two dimensions

From the fundamental theorem of calculus in one dimension we were able to establish
the change of variables formula (Theorem 2.15). We will show how it’s possible to use
Green’s theorem to establish a change of variables theorem in two dimensions. We shall
make strong assumptions in order to establish this result. It is certainly the case that
these assumptions may be weakened. In particular the restriction we make on the shape
of the domain is much stronger than necessary.

Theorem 4.19. Let A = [ay, bo] X [az, ba] be a square domain in R? and let f : A — R be
continuous. Suppose Q C R? be open, and suppose ¢ : Q@ — A is an injective, orientation
preserving®, twice continuously differentiable function. Finally suppose that D C € has
the property that Green’s theorem is valid on both D and ¢(D). Then:

f(@)de = / f o d(x) |Dé(x)| dx
#(D) D

Here |D¢| indicates the determinant of the Jacobian.

2A map is orientation preserving if |[Dé| > 0 everywhere
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(*) Proof. We shall proceed by applying Green’s theorem to relate the left hand side to
a line integral around 0¢(D) and then showing that this can be transformed into a line
integral over dD. Finally another application of Green’s theorem gives the result.

To set up some notation let us assume that v : [a,b] — R? is the boundary of D,
traversed in an anti-clockwise direction. The boundary of D will be ¥ = ¢o+y : [a,b] — R2.
The condition that ¢ is orientation preserving is required to ensure that 4 traverses 0D
in the correct sense.

1. First, we note that since f is continuous, there exists a continuous function F :
A — R such that D1 F(z) = f(x) for all x € A, which we can define by:

t
F(t,s) = / f(t,s)dt'.

Now, applying Green’s theorem on the domain 9D to the vector field:

V@ = ( i )

we have:

/ f(x)dx—/ Dy F(z)dz
¢(D) ¢(D)
_ / (V. de)
0¢(D)

= /b F o3(t) 7% (t)dt.

2. Next, we can apply the chain rule to relate ¥(¢) to v by:
FH(t) = D1g? (v ()7 (£) + Dag® (v(t))7* (1),

so that:

b b
/ Fo3(t) 7% (t)dt =/ Fog(y(t) [D16®(v(t)y"' () + D2d®(v(t))v*' ()] dt

a

B /<< PR ) ('Y(t))a’/(t)>dt
N /BD (W, de),

where W is the vector field:

[ Fod(x) Did(a)
W) = ( F o ¢(x) Dad?(x) ) |
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3. Now we compute with the chain rule:

Di\W?(z) = (D1F(¢(z))D1¢" (z) + D2F(¢(2))D1¢*(x)) Dag? (x) + F(¢(2)) D1 Dagp(),
DoW(x) = (D1F(¢(2)) D¢ () + DoF(¢(x)) Dag*(x)) D1¢*(2) + F(p(x)) D2 D1g(x),

so that:
/ (W, de) = /D (DIW(z) — DyW' () da
=/ Dy F(¢(x)) [D1¢" (x)D2¢p*(z) — D2¢' () D1¢*(x)] da

- / f o é(x) |Dé()|dz,
D

where we use the fact that D1 F = f. Combining all of these identities, the result
follows. O

Figure 4.8 The regions ¢(D), and Bg(0) \ ¢(D).

Example 4.6. Fix R > 0. Let A =[-2R,2R] x [-2R,2R] and suppose that f: A — R
is continuous. Fix ¢ > 0, and let us take Q = (¢R,2R) X (—7 + ¢, ™ — €) The map:

é: (TN r cos 6
"\ 6 rsin @
is injective and smooth, and we can compute for z = (r, )¢
|Dé(2)| = D1¢' (2)D2g?(2) — D16”(2) D2gp' (2)

= cosf X rcosf —sinf x (—rcosf)

=7
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Let us take D = [2eR, R] x [—m + 2¢, ™ — 2¢]. We can apply the above result to conclude
(making use of Fubini’s theorem):

R T—2€
/¢(D) f(z)dx = /D foo(z) |Do(2)|dz = /ZER </ﬂ+26f(r cos 9,r51n0)d9> rdr.

Here we are justified in using Fubini since the function (r,0) — f(rcosf,rsinf) is
continuous (as it is a composition of continuous functions).

Now, let us consider the domain Br(0) \ ¢(D). We can estimate the area of this set
by putting it inside a box of height 4Re and width 2R, so that |Bg(0) \ ¢(D)| < 8eR2.
Since f is a continuous function on a bounded set, we have |f(z)| < K for some K. We

/BRw) Floide = /¢>(D> fleydr

Since € was arbitrary, we deduce that:

R T
/ f(x)dx = / ( f(rcosf,rsin 9)d«9> rdr.
Bgr(0) 0 —m

which is the usual change of variables formula for polar coordinates in the plane. Notice
that we had to introduce € in order that the conditions of Theorem 4.19 are satisfied.
This type of approach enables us to extend the change of variables formula in other cases
where the hypotheses of Theorem 4.19 are not satisfied.

deduce:

< 8¢K R?

Exercise 9.6. a) Show that the improper integral:

/ e "“du
1

converges.

b) By making use of the estimate:
R ) R
/ e du < / e “du, for R > 1,
1 1

or otherwise, establish that the improper integral:
o0 2
I:= / e " du
—0oQ

c¢) Let Sgp = [-R, R] x [-R, R]. Show that for any function f :R? — R satisfying f > 0,

the estimate:
/ f(z)dz < f(z)dx < / f(z)dzx
Br(0) Sr B /55(0)

converges.

holds.
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d) By taking f : (u,v) — e =", or otherwise, show that:

77 (1 - €_R2> < /Z </]Z2 e_“g_”2du> dv<m (1 — 6_2R2>

e) Deduce that:

I=r.
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