
Chapter 4

Integration in higher dimensions

4.1 Integration along a curve

4.1.1 Integration of a function along a curve

In many situations, we want to integrate over more interesting shapes than a simple
interval. Consider for example the kind of integrals that appear in complex analysis: we
want to integrate over some contour in the complex plane. We can in fact do this with the
machinery that we’ve already established, but we first need to make a bit more precise
what we mean by a curve.

Definition 4.1. A C1−curve in Rn is a differentiable map γ : [a, b] → Rn such that
γ′ : (a, b)→ Rn given by γ′(p) = Dpγ is uniformly continuous and non-zero. If γ(a) = γ(b),
we say that the curve is closed.

Example 4.1. The map γ : [0, 2π]→ R2 given by:

γ(θ) =

(
cos θ
sin θ

)
is a closed C1−curve.

We can integrate a function defined in the neighbourhood of a C1−curve as follows.
Suppose γ : [a, b]→ Rn is a C1−curve, that Ω ⊂ Rn with γ([a, b]) ⊂ Ω and that f : Ω→ R
is a continuous function. We define the integral of f along γ to be:∫

γ
fd` :=

∫ b

a
f(γ(t))

∣∣∣∣γ′(t)∣∣∣∣ dt.
Notice that the assumption that f is continuous and γ′ is uniformly continuous is stronger
than necessary: it is sufficient to assume that (f ◦ γ)× ||γ′|| : [a, b]→ R is integrable.

Example 4.2. Take γ to be the curve in Example 4.1 and suppose f : R2 \ {0} → R is
given by:

f(x, y) =
x2

x2 + y2

77
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Then we calculate
f(γ(θ)) = f (cos θ, sin θ) = cos2 θ,

and:

γ′(t) =

(
− sin θ
cos θ

)
so that ||γ′(t)|| = 1 and: ∫

γ
fd` =

∫ 2π

0
cos2θdθ = π.

Suppose γ : [a, b] → Rn is a C1−curve, that Ω ⊂ Rn with γ([a, b]) ⊂ Ω and that
f : Ω→ R is a continuous function. Suppose also that s : [c, d]→ [a, b] satisfies s(c) = a,
s(d) = b and that s′ : (c, d) → R is uniformly continuous and positive. Then, by the
mean value theorem, s is strictly monotone increasing and continuous, and hence maps
[c, d] → [a, b] bijectively. If we define γ̃ = γ ◦ s : [c, d] → Rn, then γ̃ is a C1−curve.
Moreover,

γ ([a, b]) = γ̃ ([c, d])

so that the curves γ, γ̃ coincide as subsets of Rn. We say γ̃ is a C1−reparameterisation
of γ. By the chain rule, we have for any t ∈ (c, d) that γ̃′(t) = s′(t)γ′(s(t)), so that:∣∣∣∣γ̃′(t)∣∣∣∣ = s′(t)

∣∣∣∣γ′(s(t))∣∣∣∣ ,
using that s′(t) > 0. Now, we have:∫

γ̃
fd` =

∫ d

c
f(γ̃(t))

∣∣∣∣γ̃′(t)∣∣∣∣ dt
=

∫ d

c
f(γ(s(t)))

∣∣∣∣γ′(s(t))∣∣∣∣ s′(t)dt
=

∫ b

a
f(γ(s))

∣∣∣∣γ′(s)∣∣∣∣ ds =

∫
γ
fd`,

by making a change of variables. Thus, the integral along a C1−curve depends on the
curve, rather than the parameterisation. We define the length of a C1−curve to be:

L(γ) :=

∫
γ

1d`.

By the argument above, this definition of length doesn’t depend on the parameterisation
of the curve.

Exercise 9.1. Let γ : [0, 2π]→ R2 be given by:

γ(θ) =

(
θ − sin θ
1− cos θ

)
.

a) Sketch γ.
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b) Find

L(γ) =

∫
γ

1d`.

This curve is called the cycloid, and it is the path traced out by a point on a unit circle
which rolls without slipping along the x−axis.

4.1.2 Integration of a vector field along a curve

In many physical and mathematical applications, we want to integrate vectorial quantities
along a curve. For instance, the classical Ampère’s law of electromagnetism relates the
flux of a stationary current through a surface bounded by a curve to an integral of
the magnetic field (a vector) around that curve. We can incorporate this idea into the
machinery that we’ve already developed. Suppose that Ω ⊂ Rn is an open set and that
γ : [a, b]→ Ω is a C1−curve. A vector field1 defined on Ω is simply a map V : Ω→ Rn,
which attaches a vector in Rn to each point of Ω.

If V is continuous on Ω, we define the integral of V along γ to be:∫
γ
〈V, d`〉 =

∫ b

a

〈
V (γ(t)), γ′(t)

〉
dt,

Notice that since V and γ′ are both vectors in Rn, the inner product makes sense at each
point t ∈ [a, b].

As in the case of integration of a function along γ, we would like to show that this
quantity doesn’t depend on how we parameterise the curve. Let us again suppose that
s : [a, b] → [c, d] satisfies s(c) = a, s(d) = b and that s′ : (c, d) → R is uniformly
continuous and positive. Defining γ̃ = γ ◦ s : [c, d]→ Rn, we compute:∫

γ̃
〈V, d`〉 =

∫ d

c

〈
V (γ̃(t)), γ̃′(t)

〉
dt

=

∫ d

c

〈
V (γ(s(t))), γ′(s(t))s′(t)

〉
dt

=

∫ d

c

〈
V (γ(s(t))), γ′(s(t))

〉
s′(t)dt

=

∫ b

a

〈
V (γ(t)), γ′(t)

〉
dt =

∫
γ
〈V, d`〉 .

so that the value of the integral of V along γ again depends on the curve, rather than
the particular parameterisation that we choose.

Again, the condition that γ is C1 and V is continuous is stronger than we really
require to define the integral of V along γ. It’s enough that 〈V ◦ γ, γ′〉 : [a, b] → R is
integrable.

1This definition is more than adequate for our purposes, but in more exciting situations where Ω
is not an open subset of Rn, but a more general manifold the definition of a vector field becomes more
subtle. The Manifolds course next year will deal with these very interesting ideas.
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Example 4.3. Let us take γ : [0, 2π]→ R2 to be given by:

γ(θ) =

(
cos θ
sin θ

)
,

so that γ is the unit circle traversed anticlockwise. We will take as our vector field
V : R2 → R2

V :

(
x
y

)
7→
(
−y
x

)
Now, we calculate:

γ′(θ) =

(
− sin θ
cos θ

)
,

and

V (γ(t)) =

(
− sin θ
cos θ

)
,

so that 〈V (γ(t)), γ′(θ)〉 = 1 and:∫
γ
〈V, d`〉 =

∫ 2π

0
1dt = 2π.

4.2 Integration over an area: the Darboux integral on R2

In this section we are going to consider how to define the integral of a function f : A→ R,
where A ⊂ R2. The restriction to R2 is for clarity and to keep the notation sensible. The
same basic idea easily extends to integrating over functions of more than two variables.
To begin with we will take A to be a rectangular domain: A = [a1, b1] × [a2, b2]. This
is the natural generalisation to two dimensions of the integral over an interval. We will
again partition the domain of integration into smaller pieces and approximate the integral
above and below by finite sums. This time, rather than representing the area of a set of
rectangles, the sums will represent the volume of a set of cuboids, which approximate from
above and below the volume below the graph of f . See Figures 4.1, 4.2 for a graphical
depiction of this.

4.2.1 Partitions of a square

Suppose that A = [a1, b1] × [a2, b2]. A partition P of A is a pair (P1,P2), where
P1 = (x0, . . . , xk) is a partition of [a1, b1] and P2 = (y0, . . . , yl) is a partition of [a2, b2].
The partition P divides A into k × l subdomains:

πij = [xi, xi+1]× [yj , yj+1], i = 0, . . . , k − 1, j = 0, . . . , l − 1.

We define |πij | := (xi+1 − xi) × (yj+1 − yj) to be the area of the square πij . We also
define

mesh P = max{mesh P1,mesh P2}.

We say that Q = (Q1,Q2) refines P if P1 � Q1 and P2 � Q2. In this case, each
subdomain of P is split into a finite number of subdomains of Q. An example of a
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x1

x2

f(x1, x2)

a1
b1

a2

b2

Figure 4.1 Approximating the volume beneath a graph over the plane

x1

x2

f(x1, x2)

a1
b1

a2

b2

Figure 4.2 Approximating with a finer partition
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1

Figure 4.3 Two partitions P = (P1,P2) and P ′ = (P ′
1,P ′

2) of the domain A, with P � P ′.

partition and a refinement of that partition are shown in Figure 4.3. If P = (P1,P2)
and P ′ = (P ′1,P ′2) are any two partitions, we define their common refinement to be
R = (R1,R2), where R1 is the common refinement of P1,P ′1 and R2 is the common
refinement of P2,P ′2.

4.2.2 Upper and Lower Darboux Sums

We now consider a bounded function f : A → R. For each i = 0, . . . , k − 1 and
j = 0, . . . , l − 1, we define:

mij := inf
x∈πij

f(x),

Mij := sup
x∈πij

f(x),

which are respectively the greatest lower and least upper bounds for f in the subdomain
πij . As we’ve assumed f to be bounded these are well defined. We then define the lower
and upper sums of f associated to the partition P is the obvious way:

L(f,P) :=
k−1∑
i=0

l−1∑
j=0

mij |πij |

U(f,P) :=
k−1∑
i=0

l−1∑
j=0

mij |πij | .

Abusing notation slightly, we’ll sometimes write π ∈ P to mean π is a subdomain of P.
The allows us to write the sums more compactly as:

L(f,P) =
∑
π∈P

inf
x∈π

f(x) |π|

U(f,P) =
∑
π∈P

sup
x∈π

f(x) |π| .
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where by the sum over π ∈ P we mean summing over all distinct subdomains of P . As in
the one-dimensional case, since mij ≤Mij , we certainly have:

L(f,P) ≤ U(f,P).

In fact, almost all of the results that we proved for upper and lower sums in the one-
dimensional case carry over to the higher dimensional setting. In particular, we have:

Theorem 4.1. Let A = [a1, b1]× [a2, b2] and f : A→ R be bounded. Suppose that P, Q
are partitions of A with Q a refinement of P. Then:

L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P).

Proof. Write P = (P1,P2) and Q = (Q1,Q2). Suppose first that P1 = (x0, . . . , xk),
Q1 = (x0, . . . , xl, c, xl+1, . . . xk), and P2 = Q2 = (y0, . . . , ym), so that P and Q differ only
in that a single subinterval [xl, xl+1] in the x−direction has been split into [xl, c] and
[c, xl+1], with the partition in the y−direction left alone. From basic properties of the
infimum, we have:

inf
x∈[xl,c]×[yj ,yj+1]

f(x) ≥ inf
x∈[xl,xl+1]×[yj ,yj+1]

f(x),

inf
x∈[c,xl+1]×[yj ,yj+1]

f(x) ≥ inf
x∈[xl,xl+1]×[yj ,yj+1]

f(x),

for any y = 0, . . . ,m− 1. Now, if we take the difference of the lower sums associated to P
and Q, then the only terms which will not cancel will be those involving the subinterval
[xl, xl+1], see Figure 4.4:

L(f,Q)− L(f,P) =
m−1∑
j=0

(c− xl) (yj+1 − yj) inf
x∈[xl,c]×[yj ,yj+1]

f(x)

+

m−1∑
j=0

(xl+1 − c) (yj+1 − yj) inf
x∈[c,xl+1]×[yj ,yj+1]

f(x)

−
m−1∑
j=0

(xl+1 − xl) (yj+1 − yj) inf
x∈[xl,xl+1]×[yj ,yj+1]

f(x)

≥
m−1∑
j=0

[(c− xl) + (xl+1 − c)− (xl+1 − xl)]

× (yj+1 − yj)× inf
x∈[xl,xl+1]×[yj ,yj+1]

f(x),

= 0.

Thus we have:
L(f,P) ≤ L(f,Q).

Now, note that by Exercise 9.2 a), we have U(f,P) = −L(−f,P), so that:

U(f,Q) = −L(−f,Q) ≤ −L(−f,P) = U(f,P),
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Figure 4.4 The partitions P , Q from the proof of Theorem 4.1. The subdomains giving rise to
terms in the upper and lower sums which do not cancel are shaded.

so that we have established

L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P).

in the special case where Q is obtained from P by adding one point in the x−partition.
An identical argument establishes the result in the case where P1 = Q1 and P2, Q2 differ
only by one point. For the general result, we observe that if P � Q then we can obtain
Q by inserting a finite number of points into P , and we can apply our special case result
at each stage to obtain the general result.

Corollary 4.2. Let A = [a1, b1]× [a2, b2] and let f : A→ R be bounded. Suppose P,P ′
are any two partitions of A. Then:

L(f,P) ≤ U(f,P ′).

Proof. Let Q be the common refinement of P,P ′. Then by Theorem 4.1 we have:

L(f,P) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P ′),

which gives the result.

Exercise 9.2. Let A = [a1, b1] × [a2, b2] be a square domain in R2 and let P be any
partition of A. Suppose f, g : A→ R are bounded functions, and that λ ≥ 0. Show that:

a) U(−f,P) = −L(f,P),

b) L(−f,P) = −U(f,P),

c) U(λf,P) = λU(f,P),

d) L(λf,P) = λL(f,P),

e) U(f + g,P) ≤ U(f,P) + U(g,P),

f) L(f + g,P) ≥ L(f,P) + L(g,P).
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4.2.3 The Darboux integral

We are now ready to define the integral:

Definition 4.2. The lower and upper Darboux integrals are defined as follows:∫
A
f(x)dx := sup

P
L(f,P)

∫
A
f(x)dx := inf

P
U(f,P)

where the supremum and infimum are taken over all partitions of [a, b]. By Corollary 4.2
we have that: ∫

A
f(x)dx ≤

∫
A
f(x)dx.

We say that a bounded function f : [a, b]→ R is Darboux integrable, or simply integrable,
if it is bounded, and the upper and lower Darboux integrals are equal. In this case, we
write: ∫

A
f(x)dx :=

∫
A
f(x)dx =

∫
A
f(x)dx.

Notice that the lower and upper Darboux integrals are always well defined for a
bounded function f .

As a notational convention, x appears in the integral as a ‘dummy variable’, much
as in the one-dimensional case. Sometimes to emphasise that this is a two dimensional
integral, it is written: ∫

A
f(x)d2x, or

∫
A
f(x)dx1dx2.

The results that we established in Chapter 2 concerning integrable functions defined
on the interval carry over wholesale to the two dimensional setting. We’ll state them
again, but only repeat the proofs where some modification is necessary. You should look
back at the proofs from Chapter 2 and check that you understand how they extend to
the two dimensional case.

Theorem 4.3 (Linearity of the integral). Let A = [a1, b1] × [a2, b2]. Suppose that
f : A→ R and g : A→ R are both integrable, and that λ ∈ R. Then f + λg is integrable
and we have: ∫

A
(f(x) + λg(x)) dx =

∫
A
f(x)dx+ λ

∫
A
g(x)dx.

Proof. Repeat proof of Theorem 2.4

Lemma 4.4. Let A = [a1, b1]× [a2, b2]. A function f : A→ R is integrable if and only if
for any ε > 0 there exists a partition P such that:

U(f,P)− L(f,P) < ε. (4.1)

Proof. Repeat proof of Lemma 2.5
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Theorem 4.5 (Additivity of the integral). Let A = [a1, b1]× [a2, b2]. Suppose c ∈ (a1, b1)
and set AL = [a1, c]× [a2, b2], AR = [c, b1]× [a2, b2]. Then f : A→ R is integrable if and
only if f |AL and f |AR are integrable, and:∫

A
f(x)dx =

∫
AL

f(x)dx+

∫
AR

f(x)dx.

Proof. Repeat proof of Theorem 2.6

Theorem 4.6. Let A = [a1, b1] × [a2, b2]. Suppose f : A → R and g : A → R are both
integrable. Then so is:

i) |f |,

ii) f2,

iii) fg.

Proof. Repeat proof of Theorem 2.8

Theorem 4.7. Let A = [a1, b1] × [a2, b2]. Suppose that f : A → R is continuous on A.
Then f is integrable.

Proof. This time we need to slightly modify the proof. Let |A| := (b1 − a1)× (b2 − a2).
Fix ε > 0. Since f is continuous on A, it is uniformly continuous. Thus there exists
δ > 0 such that for all x, y ∈ A with ||x− y|| < δ we have |f(x)− f(y)| < 1

2|A|ε. Pick a
partition P = (P1,P2) with P1 = (x0, . . . , xk) and P2 = (y0, . . . , yl) such that:√

(xi+1 − xi)2 + (yj+1 − yj)2 < δ

for all i = 0, . . . k − 1, j = 0, . . . , l − 1. We can do this by (for example) setting:

xi = a1 +
b1 − a1
k

i, i = 0, . . . , k,

yj = a2 +
b2 − a2

l
j, j = 0, . . . , l,

where k, l are chosen sufficiently large that

(b1 − a1)
√

2 < kδ, (b2 − a2)
√

2 < lδ.

Now, by construction, for x, y ∈ πij we have:

|f(x)− f(y)| < 1

2 |A|
ε,

which implies that:

sup
x∈πij

f(x)− inf
x∈πij

f(x) ≤ 1

2 |A|
ε <

1

|A|
ε.
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Now, we can estimate:

U(f,P)− L(f,P) =
k−1∑
i=0

l−1∑
j=0

[
sup
x∈πij

f(x)− inf
x∈πij

f(x)

]
|πij |

<
k−1∑
i=0

l−1∑
j=0

ε

|A|
|πij |

=
ε

|A|

k−1∑
i=0

l−1∑
j=0

(xi+1 − xi)× (yj+1 − yj)

=
ε

|A|

k−1∑
i=0

(xi+1 − xi)×
l−1∑
j=0

(yj+1 − yj)

= ε,

as we have a pair of telescoping sums. Thus for any ε > 0, we have found a partition P
such that:

U(f,P)− L(f,P) < ε,

which implies f is integrable.

Again, notice that it’s enough that A is uniformly continuous on (a1, b1)× (a2, b2) for
this argument to work. Finally, we will state without proof the following result concerning
Riemann sums. A tagged partition is a partition P together with a choice of a point
in each subdomain τ = {tπ|π ∈ P}. The Riemann sum corresponding to the tagged
partition (P, τ) is:

R(f,P, τ) =
∑
π∈P

f(tπ) |π| .

Theorem 4.8. Let A = [a1, b1]× [a2, b2] and let f : [a, b]→ R be an integrable function.
Suppose ((Pl, τl))∞l=0 is a sequence of tagged partitions with mesh Pl → 0. Then we have:

R(f,Pl, τl)→
∫
A
f(x)dx.

Exercise 9.3. Let A = [−1, 1]× [−1, 1]. Show that the function f : A→ R given by:

f(x, y) =

{
1 x 6∈ Q, and y = 0,
0 otherwise.

is integrable, and: ∫
A
f(z)dz = 0.

Exercise 9.4. Let A = [a1, b1] × [a2, b2] and set |A| = (b1 − a1) × (b2 − a2). Suppose
f : A→ R, g : A→ R are integrable.
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a) Show that:

|A| inf
x∈A

f(x) ≤
∫
A
f(x)dx ≤ |A| sup

x∈A
f(x).

b) Establish the estimate: ∣∣∣∣∫
A
f(x)dx

∣∣∣∣ ≤ |A| sup
x∈A
|f(x)|

c) Show that if 0 ≤ f(x) for all x ∈ A then:

0 ≤
∫
A
f(x)dx

d) Show that if f(x) ≤ g(x) for all x ∈ A then:∫
A
f(x)dx ≤

∫
A
g(x)dx

e) Prove that: ∣∣∣∣∫
A
f(x)dx

∣∣∣∣ ≤ ∫
A
|f(x)| dx

Exercise 9.5. Let A = [a1, b1]× [a2, b2]. Suppose that f : A→ R is continuous. Show
that the map F : [a2, b2]→ R given by:

F (y) =

∫ b1

a1

f(x, y)dx

is continuous.

4.2.4 Relation to repeated integrals

When it comes to evaluating an integral over a square domain in practice, it is useful to
connect the integral to repeated one-dimensional integrals. Roughly speaking, once can
imagine first sending the mesh of the partition in the x−direction to zero, and then the
mesh of the partition in the y−direction. More concretely, if A = [a1, b1]× [a2, b2] and
f : A→ R is continuous, for each y ∈ [a2, b2] we can consider the function:

gy : [a1, b1] → R
x 7→ f(x, y).

For each y this will be a continuous function, so we can define:

Gy =

∫ b1

a1

gy(x)dx =

∫ b1

a1

f(x, y)dx

By Exercise 9.5 we have that the map G : y 7→ Gy is continuous, and so it makes sense to
compute:

I12 :=

∫ b2

a2

G(y)dy =

∫ b2

a2

(∫ b1

a1

f(x, y)dx

)
dy.
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Similarly, we could first integrate over y to find:

I21 :=

∫ b1

a1

(∫ b2

a2

f(x, y)dy

)
dx

One might expect that these double integrals are related to

I =

∫
A
f(z)dz,

and indeed we shall show:
I12 = I21 = I.

For a function f : A→ R which is merely integrable (rather than continuous) we have
the problem that the integral over x may not be defined at all values of y (and vice versa).
For example, the function in Exercise 9.3 is integrable over [−1, 1]× [−1, 1], however:

x 7→ f(x, 0)

is not integrable, so the expression:∫ 1

−1

(∫ 1

−1
f(x, y)dx

)
dy

does not make sense. We can fix this by replacing the inner integral with an upper (or
lower) integral.

Theorem 4.9 (Fubini’s theorem). Let A = [a1, b1]× [a2, b2] and suppose f : A→ R is
integrable. Then the two maps U ,L : [a2, b2]→ R given by:

U : y 7→
∫ b1

a1

f(x, y)dx,

L : y 7→
∫ b1

a1

f(x, y)dx,

are both integrable, and:∫
A
f(z)dz =

∫ b2

a2

(∫ b1

a1

f(x, y)dx

)
dy =

∫ b2

a2

(∫ b1

a1

f(x, y)dx

)
dy.

Proof (*). Suppose P = (P1,P2) be a partition of A with P1 = (x0, . . . , xk) and P2 =
(y0, . . . , yl).

1. We first estimate:

L(f,P) =
∑
π∈P

inf
z∈π

f(z) |π|

=
l−1∑
j=0

(
k−1∑
i=0

inf
z∈πij

f(z)(xi+1 − xi)

)
(yj+1 − yj)
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Note that if πij = [xi, xi+1]× [yj , yj+1] then:

inf
z∈πij

f(z) ≤ inf
x∈[xi+1,xi]

f(x, y), for all y ∈ [yj+1, yj ].

So that:

k−1∑
i=0

inf
z∈πij

f(z)(xi+1 − xi) ≤
k−1∑
i=0

inf
x∈[xi+1,xi]

f(x, y)(xi+1 − xi)

= L(gy,P1)

≤
∫ b1

a1

f(x, y)dx = L(y).

for all y ∈ [yj+1, yj ]. Taking the infimum over y ∈ [yj+1, yj ], we have:

k−1∑
i=0

inf
z∈πij

f(z)(xi+1 − xi) ≤ inf
y∈[yj+1,yj ]

L(y).

We deduce that:

L(f,P) ≤
l−1∑
j=0

inf
y∈[yj+1,yj ]

L(y)(yj+1 − yj) = L(L,P2).

2. Next we estimate:

U(f,P) =
∑
π∈P

sup
z∈π

f(z) |π|

=
l−1∑
j=0

(
k−1∑
i=0

sup
z∈πij

f(z)(xi+1 − xi)

)
(yj+1 − yj)

Note that if πij = [xi, xi+1]× [yj , yj+1] then:

sup
z∈πij

f(z) ≥ sup
x∈[xi+1,xi]

f(x, y), for all y ∈ [yj+1, yj ].

So that:

k−1∑
i=0

sup
z∈πij

f(z)(xi+1 − xi) ≥
k−1∑
i=0

sup
x∈[xi+1,xi]

f(x, y)(xi+1 − xi)

= U(gy,P1)

≥
∫ b1

a1

f(x, y)dx = U(y).
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for all y ∈ [yj+1, yj ]. Taking the supremum over y ∈ [yj+1, yj ], we have:

k−1∑
i=0

sup
z∈πij

f(z)(xi+1 − xi) ≥ sup
y∈[yj+1,yj ]

U(y).

We deduce that:

U(f,P) ≥
l−1∑
j=0

sup
y∈[yj+1,yj ]

U(y)(yj+1 − yj) = U(U ,P2).

3. Recalling that L(y) ≤ U(y) for all y ∈ [a2, b2] we have:

L(f,P) ≤ L(L,P2) ≤ U(L,P2) ≤ U(U ,P2) ≤ U(f,P).

Since f is integrable, we have:

inf
P
U(f,P) = sup

P
L(f,P) =

∫
A
f(z)dz.

We deduce that:

inf
P2

U(L,P2) = sup
P2

L(L,P2) =

∫
A
f(z)dz,

so that L is integrable and:∫
A
f(z)dz =

∫ b2

a2

(∫ b1

a1

f(x, y)dx

)
dy.

The equivalent statement for U follows from the inequalitites:

L(f,P) ≤ L(L,P2) ≤ L(U ,P2) ≤ U(U ,P2) ≤ U(f,P).

Obviously, there was nothing special about our decision to integrate first over the
x−coordinate and then the y. We could equally have established that:∫

A
f(z)dz =

∫ b1

a1

(∫ b2

a2

f(x, y)dy

)
dx =

∫ b1

a1

(∫ b2

a2

f(x, y)dy

)
dx.

In the case where f is continuous, we have the immediate corollary:

Corollary 4.10. Suppose f : A→ R is continuous. Then:∫
A
f(z)dz =

∫ b1

a1

(∫ b2

a2

f(x, y)dy

)
dx =

∫ b2

a2

(∫ b1

a1

f(x, y)dx

)
dy.

Proof. Since f is continuous, so is the map gy : x 7→ f(x, y) for each y ∈ [a2, b2], thus gy
is integrable and we have: ∫ b1

a1

f(x, y)dx =

∫ b1

a1

f(x, y)dx,

and equivalently for the integrals keeping x fixed.
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4.2.5 Non-square domains

Thus far we have restricted our attention to functions define on a rectangle A = [a1, b1]×
[a2, b2]. Of course, we often wish to integrate over more exotic shapes (circles, ellipses,
stars, etc.). Recall the characteristic function of a set C ⊂ R2 is the function χC : R2 → R
given by:

χC(x) =

{
1 x ∈ C
0 x 6∈ C,

If C ⊂ A for some closed rectangle and f : A→ R is bounded, then:∫
C
f(x)dx =

∫
A
χC(x)f(x)dx,

provided χC(x)f(x) is integrable. By Theorem 4.6 this will certainly be the case if χC
and f are separately integrable.

Definition 4.3. A bounded set C is called Jordan measurable if χC is integrable. For
such a set we can define the Jordan measure to be:

m(C) =

∫
C

1dx =

∫
A
χC(x)dx,

where A is any rectangle enclosing C.

The Jordan measure is a notion of area for a reasonably large class of sets. Not every
set is Jordan measurable. For example, if we take

C =
{

(x, y)t
∣∣− 1 < x, y < 1, x, y ∈ Q

}
then by a similar argument to Example 2.3 we can show that χC is not integrable. In
fact, in the next section we shall see that the criterion that a set be Jordan measurable is
that the boundary be ‘small’ in some appropriate sense.

A word of caution. Although the nomenclature ‘Jordan measure’ is reasonably
established, one should be careful because the word “measure” has a technical meaning
which you will be introduced to in the measure theory course, however the Jordan measure
is not a measure in this sense.

4.2.6 (*) Lebesgue’s criterion for integrability

Sets of measure zero

A domain π is a closed rectangle if it is of the form π = [a1, b1]× [a2, b2] and if so, then
|π| = (b1 − a1) × (b2 − a2). A set A ⊂ R2 is said to have measure zero if the following
property holds: given ε > 0, we can find a countable collection of rectangular domains
{πi}∞i=1 such that:

A ⊂
∞⋃
i=1

πi,
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and:
∞∑
i=1

|πi| < ε.

A set has measure zero if it can be completely contained in a set of arbitrarily small area.

Example 4.4. Any countable set A ⊂ R2 has measure zero. To see this, we write
A = {x1, x2, . . .} with xi = (x1i , x

2
i )
t ∈ R2. Let us then define:

πi = [x1i − ε2−
i
2
−2, x1i + ε2−

i
2
−2]× [x2i − ε2−

i
2
−1, x2i + ε2−

i
2
−1]

We have that:
|πi| = ε2−i−1

so that:
∞∑
i=1

|πi| =
ε

2
< ε.

In fact, we can make a more general statement

Theorem 4.11. Suppose that A1, A2, . . . is a countable collection of sets of measure zero.
Then

A =
∞⋃
j=1

Aj

has measure zero.

Proof. Fix ε > 0. Since each Aj has measure zero, we can find a countable collection
Uj = {πj,i}∞i=1 of closed rectangles such that:

Aj ⊂
∞⋃
i=1

πj,i,

and
∞∑
i=1

|πj,i| < ε2−j−1.

Now, the set:

U =

∞⋃
j=1

Uj

is a countable union of countable sets, so it is countable. We can therefore write
U = {Πk}∞k=1. We certainly have that:

A ⊂
∞⋃
k=1

Πk,

and moreover:
∞∑
k=1

|Πk| =
∞∑
j=1

∞∑
i=1

|πj,i| =
∞∑
j=1

ε2−j−1 =
ε

2
< ε.
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Theorem 4.12. Suppose γ : [a, b]→ R2 is a C1−curve. Then γ([a, b]) has measure zero.

Proof. We write:

γ(s) =

(
x(s)
y(s)

)
for x, y : [a, b] → R. First, note that since γ′(a, b) → R2 is uniformly continuous, so
are x′, y′ : (a, b)→ R and so x′, y′ extend continuously to [a, b] by Exercise 3.6. By the
extreme value theorem, we conclude that both x′ and y′ are bounded, so that there exists
K with: ∣∣x′(s)∣∣ ≤ K, ∣∣y′(s)∣∣ ≤ K.
By Exercise 2.6 we deduce that if s1, s2 ∈ [a, b], then:

|x(s1)− x(s2)| ≤ K |s1 − s2| , |y(s1)− y(s2)| ≤ K |s1 − s2|

Fix ε > 0. Let us define for n ∈ N∗:

si = a+ (b− a)
i

n
, i = 0, . . . , n.

We define the rectangles:

πi = [x(si)− k, x(si) + k]× [y(si)− k, y(si) + k],

where:

k = K
(b− a)

n
.

Now, for any s ∈ [a, b], there is an si with |s− si| < (b−a)
n . If this is the case, we know

that:

|x(s)− x(si)| ≤ K
(b− a)

n
, |y(s)− y(si)| ≤ K

(b− a)

n
,

which implies that γ(s) ∈ πi. Thus we have:

γ([a, b]) ⊂
n⋃
i=0

πi.

On the other hand,

|πi| = 4K2 (b− a)2

n2

so that:
n∑
i=0

|πi| = 4K2 (b− a)2

n2
(n+ 1).

By taking n sufficiently large, we can ensure that the right hand side of this expression
is as small as we like, in particular less than ε, and so we have exhibited a collection of
rectangles which contains γ([a, b]) and has total area less than ε.
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Lebesgue’s criterion

We shall state without proof a very useful characterisation of the integrable functions.

Theorem 4.13 (Lebesgue’s criterion for integrability). Let A = [a1, b1]× [a2, b2] and let
f : A→ R be a bounded function. Then f is integrable if, and only if, the set:{

p ∈ A
∣∣f is not continuous at p

}
has measure zero.

Those students interested in seeing the proof of this result can find it in the book
“Calculus on Manifolds” by Spivak, Theorem 3-8.

A very useful consequence of this result is the following:

Corollary 4.14. A set B ⊂ A = [a1, b1]× [a2, b2] is Jordan measurable if, and only if,
∂B has measure zero.

Proof. We need to show that χB : A→ R is integrable. By Lebesgue’s criterion, this is
true if and only if the set of points at which χB is discontinuous has measure zero. Thus
what we need to show is that χB is not continuous at p if and only if p ∈ ∂B.

First, suppose that p ∈ B◦. Then there exists δ > 0 such that Bδ(p) ∈ B, and thus
χB(q) = 1 for any q with ||q − p|| < δ. For such q, we have:

|χB(q)− χB(p)| = 0,

so χB is continuous at p.
Next, suppose that p ∈ Bc. Since the complement of a closed set is open, there exists

δ > 0 such that Bδ(p) ⊂ B
c. Thus if |q − p| < δ we have χB(p) = χB(q) = 0 and again

χB is continuous at p. Thus χB is continuous on Bc and B◦. It remains to show that χB
is discontinuous on ∂B = B \B◦.

Finally, suppose that p ∈ ∂B. Then since p 6∈ B◦, for any δ > 0 we have that
Bδ(p)∩Bc 6= ∅. In particular, for any i ∈ N we can find qi with qi 6∈ B and ||qi − p|| < 2−i.
Thus qi → p as n→∞. We have:

χB(qi) = 0→ 0,

as n→∞. On the other hand, since p ∈ B, there exists a sequence (qi)
∞
i=0 with q′i ∈ B

and q′i → p. For this sequence we have:

χB(q′i) = 1→ 1,

which implies that χB is not continuous at p.

With this result, we are in a position to show that many ‘reasonable’ domains
are Jordan integrable. For example any domain whose boundary can be (piecewise)
parameterised by a C1−curve will necessarily be Jordan integrable.
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4.2.7 (*) Generalisation to Rn

It is clear that the same basic approach we’ve described above can be generalised to
integrate over a hypercube A = [a1, b1]× · · · × [an, bn] ⊂ Rn. The only real challenge is in
handling the notation, which gets very cumbersome very quickly. We define a partition of
A to be a n−tuple of partitions P = (P1, . . . ,Pn), where P i = (xi0, . . . , x

i
ki

) is a partition
of the interval [ai, bi]. The subdomains of P are the hypercubes of the form:

πi1,...,in = [x1i1 , x
1
i1+1]× [x2i2 , x

2
i2+1]× · · · × [xnin , x

n
in+1],

where 0 ≤ ij ≤ ki − 1. We define

|πi1,...,in | = (x1i1+1 − x1i1)(x2i2+1 − x2i2) · · · (xnin+1 − xnin)

For f : A→ R a bounded function we define the lower and upper sums with respect
to P in the obvious way:

L(f,P) =
∑
π∈P

inf
x∈π

f(x) |π| ,

U(f,P) =
∑
π∈P

sup
x∈π

f(x) |π| ,

where the sums are understood to be taken over all subdomains πi1,...,in of P . From here,
we can proceed as in Section 4.2.3, defining integrable functions and establishing the
obvious generalisations of the results we found for the integral in two dimensions.

4.3 Green’s Theorem in the plane

When we considered the integral in one dimension, one of the crucial results we obtained
was the fundamental theorem of calculus, in particular Corollary 2.14. This states that if
f : [a, b]→ R is continuous and F : [a, b]→ R satisfies F ′(x) = f(x) for all all x ∈ (a, b)
then: ∫ b

a
f(t)dt = F (b)− F (a).

This result is the simplest of a family of results which relate integrals over a region
A ⊂ Rn with quantities evaluated on the boundary ∂A. The general result is known as
Stokes’ Theorem, and is a deep and very important result in differential geometry. We
shall establish a version for planar regions, known as Green’s Theorem in the plane. This
states that certain integrals over two-dimensional regions can be related to line integrals
around the boundary of the region. We won’t make any attempt to prove an optimal
result.

4.3.1 Proof for simple domains

We say that a domain A ⊂ R2 is of Type I if there exist a, b ∈ R and continuous functions
α, β : [a, b]→ R such that:

A = {(x, y)t : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)},
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and moreover α and β are differentiable at all x ∈ (a, b) with α′, β′ : (a, b)→ R piecewise
continuous.

Similarly, a domain A ⊂ R2 is of Type II if there exist c, d ∈ R and continuous
functions λ, µ : [c, d]→ R such that:

A = {(x, y)t : λ(y) ≤ x ≤ µ(y), c ≤ y ≤ d}.

and moreover λ and µ are differentiable at all x ∈ (c, d) with λ′, µ′ : (c, d)→ R piecewise
continuous. See Figure 4.5 for examples of Type I and Type II domains.

A domain is simple if it is of both Type I and Type II, see Figure 4.6. We shall assert
without proof the fact that in all three cases, A is Jordan measurable, so:∫

A
f(x)dx

makes sense whenever f is continuous on A
y

x
a b

β(x)

α(x)

y

x

c

d
µ(y)

λ(y)

Figure 4.5 A type I (left) and type II (right) domain.

Lemma 4.15. Suppose that Ω ⊂ R2 is an open set, and that A ⊂ Ω is a type I domain.
Suppose that f : Ω→ R is differentiable on Ω, with continuous partial derivatives. Then:∫

A
D2f(x)dx =

∫ b

a
f(t, β(t))dt−

∫ b

a
f(t, α(t))dt.

Proof. We first apply Fubini’s theorem to reduce the integral over A to a repeated integral:∫
A
D2f(x)dx =

∫ b

a

(∫ β(t)

α(t)
D2f(t, s)ds

)
dt. (4.2)

Recalling that:

D2f(t, s) = lim
h→0

f(t, s+ h),−f(t, s)

h
,

we note that the first integral may be written:∫ β(t)

α(t)
D2f(t, s)ds =

∫ β(t)

α(t)
F ′t(s)ds,
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where Ft : [α(t), β(t)]→ R is the map s 7→ f(t, s). Applying the fundamental theorem of
calculus, we have: ∫ β(t)

α(t)
D2f(t, s)ds = f(t, β(t))− f(t, α(t)).

Inserting this into (4.2), we deduce∫
A
D2f(x)dx =

∫ b

a
(f(t, β(t))− f(t, α(t))) dt,

and the result follows.

Lemma 4.16. Suppose that Ω ⊂ R2 is an open set, and that A ⊂ Ω is a type II domain.
Suppose that g : Ω→ R is differentiable on Ω, with continuous partial derivatives. Then:∫

A
D1g(x)dx =

∫ d

c
g(µ(s), s)ds−

∫ d

c
g(λ(s), s)ds.

Proof. The proof proceeds almost exactly as in the previous Lemma. We first apply
Fubini’s theorem to reduce the integral over A to a repeated integral:

∫
A
D1g(x)dx =

∫ d

c

(∫ µ(s)

λ(s)
D1g(t, s)dt

)
ds. (4.3)

Recalling that:

D1g(t, s) = lim
h→0

g(t+ h, s),−g(t, s)

h
,

we note that the first integral may be written:∫ µ(s)

λ(s)
D1g(t, s)dt =

∫ µ(s)

λ(s)
G′s(t)dt,

where Gs : [λ(s), µ(s)]→ R is the map t 7→ g(t, s). Applying the fundamental theorem of
calculus, we have: ∫ µ(s)

λ(s)
D1g(t, s)dt = g(µ(s), s)− g(λ(s), s).

Inserting this into (4.3), we deduce∫
A
D1g(x)dx =

∫ d

c
(g(µ(s), s)− g(λ(s), s)) ds,

and the result follows.

Combining these two results, we arrive at Green’s theorem:
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x

y

A ∂A

Figure 4.6 A simple domain, with the direction of the boundary indicated.

Theorem 4.17 (Green’s Theorem in the plane). Suppose that Ω ⊂ R2 is an open set,
and that A ⊂ Ω is a simple domain. Suppose that V : Ω → R2 is differentiable at all
points of Ω, with continuous partial derivatives. Then:∫

∂A
〈V, d`〉 =

∫
A

[
D1V

2(x)−D2V
1(x)

]
dx, (4.4)

where we understand the integration over the boundary to be taken in the anti-clockwise
sense.

Proof. 1. First, let us assume that V 2 = 0 on Ω. We make use of the fact that A is of
Type I and apply Lemma 4.15 to the second term on the right of (4.4). We deduce:∫

A
−D2V

1(x)dx =

∫ b

a
V 1(t, α(t))dt−

∫ b

a
V 1(t, β(t))dt.

The boundary ∂A of a Type I domain consists of at most four components (see
Figure ). We can parameterise these as:

γ1(t) = (b, t)t, α(b) ≤ t ≤ β(b)

γ2(t) = (−t, β(−t))t − b ≤ t ≤ −a
γ3(t) = (a,−t)t, − β(a) ≤ t ≤ −β(a)

γ4(t) = (t, α(t))t, a ≤ t ≤ b.

so that we can compute:

γ′1(t) = (0, 1)t, α(b) ≤ t ≤ β(b)

γ′2(t) = (−1,−β′(−t))t − b ≤ t ≤ −a
γ′3(t) = (0,−1)t, − β(a) ≤ t ≤ −β(a)

γ′4(t) = (1, α′(t))t, a ≤ t ≤ b.
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Accordingly, we compute:∫
γ1

〈V, d`〉 = 0,∫
γ2

〈V, d`〉 =

∫ −a
−b
−V 1(−t, β(−t))dt = −

∫ b

a
V 1(t, β(t))dt,∫

γ3

〈V, d`〉 = 0,∫
γ4

〈V, d`〉 =

∫ b

a
V 1(t, α(t))dt.

Putting this all together, we conclude that:∫
∂A
〈V, d`〉 =

∫
A

[
D1V

2(x)−D2V
1(x)

]
dx,

when V 2 = 0.

2. Next, we consider the case when V 1 = 0 on Ω. We make use of the fact that A is of
Type II and apply Lemma 4.16 to the first term on the right of (4.4). We deduce:∫

A
D1V

2(x)dx =

∫ d

c

(
V 2(µ(s), s)− V 2(λ(s), s)

)
ds

The boundary ∂A of a Type II domain consists of at most four components (see
Figure ). We can parameterise these as:

γ1(t) = (µ(s), s)t, c ≤ s ≤ d
γ2(t) = (−s, d)t − µ(d) ≤ s ≤ −λ(d)

γ3(t) = (λ(−s),−s)t, − d ≤ s ≤ −c
γ4(t) = (s, c)t, λ(c) ≤ s ≤ µ(c).

so that we can compute:

γ′1(t) = (µ′(s), 1)t, c ≤ s ≤ d
γ′2(t) = (−1, 0)t − µ(d) ≤ s ≤ −λ(d)

γ′3(t) = (−λ′(−s),−1)t, − d ≤ s ≤ −c
γ′4(t) = (1, 0)t, λ(c) ≤ s ≤ µ(c).

Accordingly, we compute:∫
γ1

〈V, d`〉 =

∫ d

c
V 2(µ(s), s)ds,∫

γ2

〈V, d`〉 = 0,∫
γ3

〈V, d`〉 =

∫ −c
−d

V 2(λ(−s),−s)ds = −
∫ d

c
V 2(λ(s), s)ds∫

γ4

〈V, d`〉 = 0.
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Putting this all together, we conclude that:∫
∂A
〈V, d`〉 =

∫
A

[
D1V

2(x)−D2V
1(x)

]
dx,

when V 1 = 0.

3. Now, note that for any vector field V we can write V = U + W for two vector
fields U,W with U2 = W 1 = 0 on Ω. Applying the results above together with the
linearity of the integral, we deduce that:∫

∂A
〈V, d`〉 =

∫
A

[
D1V

2(x)−D2V
1(x)

]
dx,

holds for any vector field V satisfying the conditions of the theorem.

Note that while the condition of being simple is not by itself sufficient to ensure that
∂A is piecewise C1, we nevertheless have that the integral:∫

∂A
〈V, d`〉

always makes sense.

Example 4.5. Let’s consider A = B1(0), the unit disc centred at the origin, and we’ll
consider:

V :

(
x
y

)
7→
(
−y
x

)
.

The boundary ∂A is the unit circle traversed in an anti-clockwise direction. We’ve already
computed the integral of this vector field along the unit circle in Example 4.3 and we
found: ∫

∂A
〈V, d`〉 = 2π.

On the other hand, we can compute:

D1V
2 −D2V

1 = 2,

so that: ∫
A

2dx = 2π.

Now, the disc is an example of a simple domain (check this) and so we deduce that the
Jordan measure of the disc is m(B1(0)) = π.
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x2

x1

A

∂A

x2

x1

A

∂A

x2

x1

A1

∂A1

A2

∂A2

A3

∂A3

Figure 4.7 Breaking up a region into simple components.

4.3.2 Green’s theorem in more general domains

The assumption that the domain is simple is rather a strong one. We can, however extend
the results to more complicated domains by breaking them up into simple domains. We
give here one example where this is possible, but the same basic idea can be applied in
many other situations.

Consider the planar domain A shown in Figure 4.7. This is not of Type I or Type
II. We can, however, split it up into three simple domains by making the cuts shown in
the second diagram. The final diagram shows the three new domains A1, A2, A3 slightly
displaced to show the boundaries of these regions. If f : A→ R is any function which is
integrable over A, then clearly:∫

A
f(x)dx =

∫
A1

f(x)dx+

∫
A1

f(x)dx+

∫
A1

f(x)dx
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Moreover, if V is any integrable vector field defined in a neighbourhood of A, then we
have: ∫

∂A
〈V, d`〉 =

∫
∂A1

〈V, d`〉+

∫
∂A2

〈V, d`〉+

∫
∂A3

〈V, d`〉

since the contributions from the cuts cancel, as the line segments are traversed twice in
opposite directions. On each of the domains Ai, we can apply Green’s theorem separately,
so we deduce that Green’s theorem holds for the domain A.

4.3.3 Proof of symmetry of mixed partial derivatives

When we discussed partial derivatives, we stated the following result without proving it:

Theorem 3.8 (Schwartz’ Theorem). Suppose Ω ⊂ Rn is open and f : Ω → R is
differentiable at each p ∈ Ω. Suppose further that for some i, j ∈ {1, . . . , n} the second
partial derivatives:

DiDjf(p), DjDif(p),

exist and are continuous at all p ∈ Ω. Then:

DiDjf(p) = DjDif(p).

We are now in a position to establish this result. We first need to establish the
following Lemma

Lemma 4.18. Let Ω ⊂ R2 be open and let f : Ω→ R be continuous. Suppose that:∫
Br(p)

f(x)dx = 0

for all r > 0, p ∈ Ω such that the disc Br(p) ⊂ Ω. Then f = 0 on Ω.

Proof. Suppose not, there there exists p ∈ Ω such that f(p) = c 6= 0. Without loss
of generality we can assume c > 0 (otherwise apply the argument to −f). Since Ω is
open, there exists r > 0 such that Br(p) ⊂ Ω. Since f is continuous, there exists δ < r
such that if ||x− p|| < δ then |f(x)− f(p)| < c

2 . Thus, we have that for x ∈ Bδ(p) that
f(x) ≥ c

2 > 0. We deduce that:∫
Bδ(p)

f(x)dx ≥ πδ2 c
2
> 0,

contradicting the assumption that the integral of f over any disc vanishes.

Now we are ready to prove the result.

Proof of Theorem 3.8. First note that it’s enough to show the result for n = 2, since for
higher n we can treat all of the variables except xi, xj as constant. Thus, suppose that
Ω ⊂ R2 is open and f : Ω→ R is differentiable at each p ∈ Ω. Suppose further that the
second partial derivatives:

D1D2f(x), D2D1f(x),
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exist and are continuous at all x ∈ Ω. Let us fix r > 0, p ∈ Ω such that Br(p) ⊂ Ω. We
compute using Green’s theorem:∫

Br(p)
(D1D2f(x)−D2D1f(x)) dx =

∫
∂Br(p)

〈V, d`〉 ,

where V is the vector field:

V (x) =

(
D1f(x)
D2f(x)

)
.

Now, note that if γ : [a, b]→ R2 is an anti-clockwise parameterisation of Br(p), then:〈
V (γ(t)), γ′(t)

〉
= D1f(γ(t))γ1′(t) +D2f(γ(t))γ2′(t)

= (f ◦ γ)′ (t),

by the chain rule. Applying the fundamental theorem of calculus, we have:∫
∂Br(p)

〈V, d`〉 =

∫ b

a

〈
V (γ(t)), γ′(t)

〉
dt =

∫ b

a
(f ◦ γ)′ (t)dt

= f(γ(b))− f(γ(a)) = 0,

since ∂Br(p) is closed, so γ(a) = γ(b). We conclude that:∫
Br(p)

(D1D2f(x)−D2D1f(x)) dx = 0.

Since Br(p) was arbitrary, by the previous Lemma we deduce that:

D1D2f(x)−D2D1f(x) = 0

for all x ∈ Ω, which is the result we require.

4.3.4 Change of variables formula in two dimensions

From the fundamental theorem of calculus in one dimension we were able to establish
the change of variables formula (Theorem 2.15). We will show how it’s possible to use
Green’s theorem to establish a change of variables theorem in two dimensions. We shall
make strong assumptions in order to establish this result. It is certainly the case that
these assumptions may be weakened. In particular the restriction we make on the shape
of the domain is much stronger than necessary.

Theorem 4.19. Let A = [a1, b2]× [a2, b2] be a square domain in R2 and let f : A→ R be
continuous. Suppose Ω ⊂ R2 be open, and suppose φ : Ω→ A is an injective, orientation
preserving2, twice continuously differentiable function. Finally suppose that D ⊂ Ω has
the property that Green’s theorem is valid on both D and φ(D). Then:∫

φ(D)
f(x)dx =

∫
D
f ◦ φ(x) |Dφ(x)| dx

Here |Dφ| indicates the determinant of the Jacobian.
2A map is orientation preserving if |Dφ| > 0 everywhere
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(*) Proof. We shall proceed by applying Green’s theorem to relate the left hand side to
a line integral around ∂φ(D) and then showing that this can be transformed into a line
integral over ∂D. Finally another application of Green’s theorem gives the result.

To set up some notation let us assume that γ : [a, b] → R2 is the boundary of D,
traversed in an anti-clockwise direction. The boundary of D will be γ̃ = φ◦γ : [a, b]→ R2.
The condition that φ is orientation preserving is required to ensure that γ̃ traverses ∂D
in the correct sense.

1. First, we note that since f is continuous, there exists a continuous function F :
A→ R such that D1F (x) = f(x) for all x ∈ A, which we can define by:

F (t, s) =

∫ t

a1

f(t′, s)dt′.

Now, applying Green’s theorem on the domain ∂D to the vector field:

V (x) =

(
0

F (x)

)
,

we have: ∫
φ(D)

f(x)dx =

∫
φ(D)

D1F (x)dx

=

∫
∂φ(D)

〈V, d`〉

=

∫ b

a
F ◦ γ̃(t) γ̃2′(t)dt.

2. Next, we can apply the chain rule to relate γ̃2′(t) to γ by:

γ̃2′(t) = D1φ
2(γ(t))γ1′(t) +D2φ

2(γ(t))γ2′(t),

so that:∫ b

a
F ◦ γ̃(t) γ̃2′(t)dt =

∫ b

a
F ◦ φ(γ(t))

[
D1φ

2(γ(t))γ1′(t) +D2φ
2(γ(t))γ2′(t)

]
dt

=

∫ b

a

〈(
F ◦ φ D1φ

2

F ◦ φ D2φ
2

)
(γ(t)), γ′(t)

〉
dt

=

∫
∂D
〈W,d`〉 ,

where W is the vector field:

W (x) =

(
F ◦ φ(x) D1φ

2(x)
F ◦ φ(x) D2φ

2(x)

)
.
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3. Now we compute with the chain rule:

D1W
2(x) =

(
D1F (φ(x))D1φ

1(x) +D2F (φ(x))D1φ
2(x)

)
D2φ

2(x) + F (φ(x))D1D2φ(x),

D2W
1(x) =

(
D1F (φ(x))D2φ

1(x) +D2F (φ(x))D2φ
2(x)

)
D1φ

2(x) + F (φ(x))D2D1φ(x),

so that:∫
∂D
〈W,d`〉 =

∫
D

(
D1W

2(x)−D2W
1(x)

)
dx

=

∫
D
D1F (φ(x))

[
D1φ

1(x)D2φ
2(x)−D2φ

1(x)D1φ
2(x)

]
dx

=

∫
D
f ◦ φ(x) |Dφ(x)| dx,

where we use the fact that D1F = f . Combining all of these identities, the result
follows.

x2

x1

x2

x1

2R

4Rε

Figure 4.8 The regions φ(D), and BR(0) \ φ(D).

Example 4.6. Fix R > 0. Let A = [−2R, 2R]× [−2R, 2R] and suppose that f : A→ R
is continuous. Fix ε > 0, and let us take Ω = (εR, 2R)× (−π + ε, π − ε) The map:

φ :

(
r
θ

)
7→
(
r cos θ
r sin θ

)
is injective and smooth, and we can compute for z = (r, θ)t:

|Dφ(z)| = D1φ
1(z)D2φ

2(z)−D1φ
2(z)D2φ

1(z)

= cos θ × r cos θ − sin θ × (−r cos θ)

= r.



4.3 Green’s Theorem in the plane 107

Let us take D = [2εR,R]× [−π + 2ε, π − 2ε]. We can apply the above result to conclude
(making use of Fubini’s theorem):∫

φ(D)
f(x)dx =

∫
D
f ◦ φ(z) |Dφ(z)| dz =

∫ R

2εR

(∫ π−2ε

−π+2ε
f(r cos θ, r sin θ)dθ

)
rdr.

Here we are justified in using Fubini since the function (r, θ) 7→ f(r cos θ, r sin θ) is
continuous (as it is a composition of continuous functions).

Now, let us consider the domain BR(0) \ φ(D). We can estimate the area of this set
by putting it inside a box of height 4Rε and width 2R, so that |BR(0) \ φ(D)| ≤ 8εR2.
Since f is a continuous function on a bounded set, we have |f(x)| ≤ K for some K. We
deduce: ∣∣∣∣∣

∫
BR(0)

f(x)dx−
∫
φ(D)

f(x)dx

∣∣∣∣∣ ≤ 8εKR2

Since ε was arbitrary, we deduce that:∫
BR(0)

f(x)dx =

∫ R

0

(∫ π

−π
f(r cos θ, r sin θ)dθ

)
rdr.

which is the usual change of variables formula for polar coordinates in the plane. Notice
that we had to introduce ε in order that the conditions of Theorem 4.19 are satisfied.
This type of approach enables us to extend the change of variables formula in other cases
where the hypotheses of Theorem 4.19 are not satisfied.

Exercise 9.6. a) Show that the improper integral:∫ ∞
1

e−udu

converges.

b) By making use of the estimate:∫ R

1
e−u

2
du ≤

∫ R

1
e−udu, for R > 1,

or otherwise, establish that the improper integral:

I :=

∫ ∞
−∞

e−u
2
du

converges.

c) Let SR = [−R,R]× [−R,R]. Show that for any function f : R2 → R satisfying f ≥ 0,
the estimate: ∫

BR(0)
f(x)dx ≤

∫
SR

f(x)dx ≤
∫
B√

2R(0)
f(x)dx

holds.
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d) By taking f : (u, v)t 7→ e−u
2−v2 , or otherwise, show that:

π
(

1− e−R2
)
≤
∫ R

−R

(∫ R

−R
e−u

2−v2du

)
dv ≤ π

(
1− e−2R2

)
e) Deduce that:

I =
√
π.
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