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Let D ⊂ C be an open domain and w : D → C a holomorphic function. Recall that a
point ξ ∈ ∂D is a singular point of w if w cannot be continued holomorphically to an
open set including1 ξ. Singular points include poles, essential singularities and branch
points.

For a w obeying the linear equation:

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0,

with meromorphic p, q, it is known that any singularities of w can only occur at points
where p or q are singular. Regardless of the initial data w(z0), w′(z0), the singularities
are fixed.

By contrast, for some nonlinear equations singularities can occur even for holomorphic
coefficients. Consider

dw

dz
+ z2 = 0

for which the general solution is:

w(z) =
1

z − z0
.

This has a solution at z = z0 which depends on the constant of integration. It is a
moveable singularity.

Consider a general ODE of the form:

dnw

dzn
= F

(
dn−1w

dzn−1
, . . . , w, z

)
We say such an ODE has the Painlevé property if the moveable singularities of its solutions
are at worst poles. This is the case with the example above, but if we instead consider

dw

dz
+ z3 = 0

for which the general solution is:

w(z) =
1√

2(z − z0)
,

the moveable singularity is a branch point, and this does not satisfy the Painleé property.
Painlevé classified all of the ODEs with this property of the form:

d2w

dz2
= F

(
dw

dz
,w, z

)
,

1We permit here extensions defined on some Riemann surface other than C so that for example log z
has a singular point at z = 0, but not along the branch cut.
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where F is a rational function. He found2 50 canonical types, of which 44 he could solve
by functions then known (sin, cos, Jacobi elliptic functions, Bessel functions,...). The
other 6 define new transcendental functions called the Painlevé transcendents.

(PI)
d2w

dz2
= 6w2 + z
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d2w

dz2
= 2w3 + zw + α

(PIII)
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=
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w
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+
1

z
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−dw
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)
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w
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=
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(
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)
where α, β, γ, δ ∈ C are constants.

It can be shown that if a PDE is solvable by the inverse scattering transform, then all
ODE reductions of that PDE must possess the Painlevé property. This gives a necessary
(but not sufficient) condition for integrability. To obtain ODE reductions of a PDE, we
first identify a Lie point symmetry, and then introduce coordinates that are invariant
with respect to that symmetry.

Example 1. Consider the Sine-Gordon equation in light-cone coordinates: uxt = sinu.
This admits a Lie point symmetry:

ψs : (x, t, u) 7→ (esx, e−st, u)

Clearly z = xt is an invariant of this one-parameter group of transformations, so we seek
a solution of the form u(x, t) = F (z). Setting w = eiF and substituting into Sine-Gordon,
we arrive at:

d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+
w2

2z
− 1

2z
.

which is (PIII) with α = −β = 1/2, γ = δ = 0.

2This is a bit of historical revisionism. Painleveé made some mistakes which were corrected by later
authors.


