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We wish to consider symmetries of some scalar PDE of order k defined over Rn. The
main challenge in generalising from the ODE case is trying to keep the notation straight
when there are lots of partial derivatives flying around. In order to keep notation sensible
when working with high order partial derivatives it’s useful to introduce multi-index
notation. We define a multi-index α to be an element of (Z≥0)n, i.e. a n−vector of
non-negative integers α = (α1, . . . , αn). We let |α| = α1 + . . .+ αn and for u : Rn → R a
smooth function we define

∂|α|u

∂xα
:=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

u,

in other words, we differentiate α1 times with respect to x1, α2 times with respect to x2
and so on. We write

Dku =

(
∂|α|u

∂xα

)
|α|≤k

,

for the collection of all partial derivatives of u of order at most k. Note this includes
the derivative of order zero, which is u itself. The kth jet space then consists of points
(x,Dku) with x ∈ Rn, and a kth order PDE is a relation of the form:

∆(x,Dku) = 0.

Suppose that ψs : (x, u) 7→ (x̃, ũ) is a smooth one-parameter group of transformations.
By the chain rule, this induces a smooth one-parameter group of transformations on the
k − th jet space by:

Pr(k)ψs : (x,Dku) 7→
(
x̃, D̃ku

)
where the components of D̃ku are:

D̃ku =

(
∂|α|ũ

∂x̃α

)
|α|≤k

.

Since ψs is a smooth one-parameter group of transformations, it is generated by a vector
field V which we can write as:

V =

n∑
i=1

ξi
∂

∂xi
+ η

∂

∂u
.

The prolongation Pr(k)ψs will be generated by the prolongation of V , which will take the
form:

Pr(k)V =

n∑
i=1

ξi
∂

∂xi
+
∑
|α|≤k

ηα
∂

∂u(α)
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here η(α) are undetermined functions, except for η(0,...,0) = η and we have introduced the
notation:

u(α) =
∂|α|u

∂xα
.

As in the one-dimensional case, we can construct the prolongation of V without having
to first construct the prolongation of ψs. We do this order by order in k. Let us first
consider finding ηα for |α| = 1, so that α = ej for some j = 1, . . . , n. Then u(α) = ∂u

∂xj
.

We make use of the contact condition:

dũ =

n∑
i=1

∂ũ

∂x̃i
dx̃i.

Using ũ = u+ sη(x, u) + o(s) for small s, the left hand side can be written:

dũ = du+ s

n∑
l=1

(Dxlη) dxl + o(s) =

n∑
l=1

(
∂u

∂xl
+ sDxlη

)
dxl + o(s)

where Dxl is the total derivative operator in the l direction:

Dxl =
∂

∂xl
+
∂u

∂xl

∂

∂u
+

n∑
k=1

∂(∂ku)

∂xl
∂

∂(∂ku)
+ . . .

=
∂

∂xl
+
∑
α

u(α+el)
∂

∂u(α+el)

Since η is a function only of x, u, we have:

Dxlη =
∂η

∂xl
+
∂u

∂xl
∂η

∂u
.

Now, since x̃i = xi + sξi(x, u) + o(s), we have:

dx̃i = dxi + s
n∑

m=1

(Dxmξ
i)dxm + o(s) =

n∑
m=1

(
δm

i + sDxmξ
i
)
dxm + o(s)

Putting these expressions together, we have:
n∑
l=1

(
∂u

∂xl
+ sDxlη

)
dxl =

n∑
i=1

n∑
m=1

∂ũ

∂x̃i
(
δm

i + sDxmξ
i
)
dxm + o(s)

so that we have: (
∂u

∂xl
+ sDxlη

)
=

n∑
i=1

∂ũ

∂x̃i
(
δl
i + sDxlξ

i
)

+ o(s)

Multiplying both sides by
(
δj
l − sDxjξ

l
)
and summing over l, we have:

n∑
l=1

(
∂u

∂xl
+ sDxlη

)(
δj
l − sDxjξ

l
)

=

n∑
l=1

n∑
i=1

∂ũ

∂x̃i
(
δl
i + sDxlξ

i
) (
δj
l − sDxjξ

l
)

+ o(s)



3

Expanding, we conclude:

∂ũ

∂x̃j
=

∂u

∂xj
+ s

(
Dxjη −

n∑
l=1

∂u

∂xl
Dxjξ

l

)
+ o(s)

So that we can finally read off:

ηej = Dxjη −
n∑
l=1

u(el)Dxjξ
l,

which is consistent with our result in the one-dimensional case. This permits us to find
all of the components of Pr(1)V , since:

Pr(1)V =

n∑
i=1

ξi
∂

∂xi
+ η

∂

∂u
+

n∑
j=1

ηej
∂

∂u(ej)

We can now iterate this result. Using the contact condition:

dũ(α) =
n∑
i=1

∂ũ(α)

∂x̃i
dx̃i

together with the fact that ũ(α) = u(α)+sηα+o(s), we can work through the computations
above again to determine:

ηα+ej = Dxjη
α −

n∑
l=1

u(α+el)Dxjξ
l.

In this way we can find arbitrary prolongations of V .

Example 1. Suppose we consider a PDE defined on R2 with coordinates (x1, x2) = (x, y).
Consider the vector field:

V = y
∂

∂x
+ x

∂

∂y
+ u

∂

∂u
.

so that ξ1 = y, ξ2 = x and η = u. Then:

η(1,0) = De1η − uxDe1ξ
1 − uyDe1ξ

2 = ux − ux · 0− uy · 1 = ux − uy

and
η(0,1) = De2η − uxDe2ξ

1 − uyDe2ξ
2 = uy − ux · 1− uy · 0 = uy − ux

so that:
Pr(1)V = y

∂

∂x
+ x

∂

∂y
+ u

∂

∂u
+ (ux − uy)

∂

∂ux
+ (uy − ux)

∂

∂uy

Continuing, we have:

η(2,0) = De1η
(1,0) − uxxDe1ξ

1 − uxyDe1ξ
2 = uxx − uxy − uxy
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η(1,1) = De1η
(0,1) − uyxDe1ξ

1 − uyyDe1ξ
2 = uxy − uxx − uyy

η(1,1) = De2η
(1,0) − uxxDe2ξ

1 − uxyDe2ξ
2 = uxy − uyy − uxx

η(0,2) = De2η
(0,1) − uyxDe2ξ

1 − uyyDe2ξ
2 = uyy − uxy − uxy

Here we’ve verified that for η(1,1) we get the same result regardless of how we compute it.
Thus we have:

Pr(2)V = Pr(1)V + (uxx − 2uxy)
∂

∂uxx
+ 2 (uxy − uxx − uyy)

∂

∂uxy
+ (uyy − 2uxy)

∂

∂uyy

Consider the wave equation, defined by:

∆(x,D2u) = uxx − uyy

We have:
Pr(2)V (∆) = (uxx − 2uxy)− (uyy − 2uxy) = uxx − uyy = ∆,

so if ∆ = 0 then Pr(2)V (∆), so we conclude that V generates a solution of the wave
equation.


