

In lectures, I claimed that a canonical transformation can be constructed from a single function S by the following process. Suppose $S = S(\mathbf{q}, \mathbf{P})$ is a function from $\mathbb{R}^m \times \mathbb{R}^m$ to \mathbb{R} , and suppose furthermore that:

$$\det \left(\frac{\partial^2 S}{\partial q_i \partial P_j}(\mathbf{q}_0, \mathbf{P}_0) \right) \neq 0. \quad (\star)$$

We first consider the relation:

$$p_i = \frac{\partial S}{\partial q_i}(\mathbf{q}, \mathbf{P})$$

as an equation for \mathbf{P} and solve this to obtain $\mathbf{P}(\mathbf{q}, \mathbf{p})$. By the implicit function theorem, we can do this, at least locally, as the non-degeneracy condition (\star) is precisely what is required in the hypotheses of the implicit function theorem.

Having constructed $\mathbf{P}(\mathbf{q}, \mathbf{p})$, we define $\mathbf{Q}(\mathbf{q}, \mathbf{p})$ by the equation:

$$Q_i(\mathbf{q}, \mathbf{p}) = \frac{\partial S}{\partial P_i}(\mathbf{q}, \mathbf{P}(\mathbf{q}, \mathbf{p})) \quad (\flat)$$

I claimed (but did not prove) that this is a canonical transformation. To establish this result, we show that the Poisson bracket algebra of \mathbf{Q}, \mathbf{P} is the standard one, i.e.:

$$\{Q_i, Q_j\} = \{P_i, P_j\} = 0, \quad \{Q_i, P_j\} = -\{P_j, Q_i\} = \delta_{ij}. \quad (\diamond)$$

where as always

$$\{f, g\} = \frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q_j}.$$

Checking (\diamond) is made harder as we have no explicit expression for $\mathbf{P}(\mathbf{q}, \mathbf{p})$, rather it is implicitly defined by the relation:

$$p_i = \frac{\partial S}{\partial q_i}(\mathbf{q}, \mathbf{P}(\mathbf{q}, \mathbf{p})) \quad (\dagger)$$

Differentiating (\dagger) with respect to p_j , we find:

$$\frac{\partial p_i}{\partial p_j} = \delta_{ij} = \frac{\partial^2 S}{\partial q_i \partial P_k} \frac{\partial P_k}{\partial p_j}$$

Setting $A_{ik} = \frac{\partial^2 S}{\partial q_i \partial P_k}$ and $B_{kj} = \frac{\partial P_k}{\partial p_j}$, we can read this as the matrix equation:

$$I = AB$$

so that $A = B^{-1}$. Thus we also have $I = BA$, which in components reads:

$$\frac{\partial P_k}{\partial p_j} \frac{\partial^2 S}{\partial q_j \partial P_l} = \delta_{kl}. \quad (\triangle)$$

Next we differentiate (†) with respect to q_j to obtain:

$$0 = \frac{\partial^2 S}{\partial q_i \partial q_j} + \frac{\partial^2 S}{\partial q_i \partial P_l} \frac{\partial P_l}{\partial q_j},$$

so that:

$$\frac{\partial^2 S}{\partial q_i \partial P_l} \frac{\partial P_l}{\partial q_j} = -\frac{\partial^2 S}{\partial q_i \partial q_j}$$

Multiplying both sides by

$$\delta_{kj} = \frac{\partial^2 S}{\partial q_k \partial P_m} \frac{\partial P_m}{\partial p_j}$$

we obtain:

$$\frac{\partial^2 S}{\partial q_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} \frac{\partial^2 S}{\partial q_k \partial P_m} = -\frac{\partial^2 S}{\partial q_i \partial q_k}$$

Antisymmetrizing on i, k , we obtain:

$$\begin{aligned} 0 &= \frac{\partial^2 S}{\partial q_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} \frac{\partial^2 S}{\partial q_k \partial P_m} - \frac{\partial^2 S}{\partial q_k \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} \frac{\partial^2 S}{\partial q_i \partial P_m} \\ &= \frac{\partial^2 S}{\partial q_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial^2 S}{\partial q_k \partial P_m} - \frac{\partial^2 S}{\partial q_k \partial P_m} \frac{\partial P_m}{\partial q_j} \frac{\partial^2 S}{\partial p_j \partial q_i} \\ &= \frac{\partial^2 S}{\partial q_i \partial P_l} \left[\frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} - \frac{\partial P_m}{\partial q_j} \frac{\partial P_l}{\partial p_j} \right] \frac{\partial^2 S}{\partial q_k \partial P_m} \\ &= \frac{\partial^2 S}{\partial q_i \partial P_l} \{P_l, P_m\} \frac{\partial^2 S}{\partial q_k \partial P_m} \end{aligned}$$

Now, by (★), we can assume that $\frac{\partial^2 S}{\partial q_k \partial P_m}$ is invertible (possibly after restricting to a neighbourhood), so that $\{P_l, P_m\} = 0$.

Next, we consider $\{Q_i, Q_j\}$, which we wish to show vanishes. To do this, we differentiate (β) with respect to q_j and p_j to conclude:

$$\begin{aligned} \frac{\partial Q_i}{\partial q_j} &= \frac{\partial^2 S}{\partial P_i \partial q_j} + \frac{\partial^2 S}{\partial P_i \partial P_l} \frac{\partial P_l}{\partial q_j} \\ \frac{\partial Q_k}{\partial p_j} &= \frac{\partial^2 S}{\partial P_k \partial P_m} \frac{\partial P_m}{\partial p_j} \end{aligned}$$

Multiplying these two expressions we find:

$$\begin{aligned} \frac{\partial Q_i}{\partial q_j} \frac{\partial Q_k}{\partial p_j} &= \frac{\partial^2 S}{\partial P_i \partial q_j} \frac{\partial^2 S}{\partial P_k \partial P_m} \frac{\partial P_m}{\partial p_j} + \frac{\partial^2 S}{\partial P_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial^2 S}{\partial P_k \partial P_m} \frac{\partial P_m}{\partial p_j} \\ &= \frac{\partial^2 S}{\partial P_i \partial P_k} + \frac{\partial^2 S}{\partial P_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} \frac{\partial^2 S}{\partial P_k \partial P_m} \end{aligned}$$

where in moving from the first line to the second we have made use of the relation (Δ) . Now, antisymmetrizing on i, k gives:

$$\begin{aligned}\{Q_i, Q_k\} &= \frac{\partial^2 S}{\partial P_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} \frac{\partial^2 S}{\partial P_k \partial P_m} - \frac{\partial^2 S}{\partial P_k \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_m}{\partial p_j} \frac{\partial^2 S}{\partial P_i \partial P_m} \\ &= \frac{\partial^2 S}{\partial P_i \partial P_l} \{P_l, P_m\} \frac{\partial^2 S}{\partial P_k \partial P_m} = 0.\end{aligned}$$

by a similar series of index manipulations to before. It remains for us to verify the bracket $\{Q_i, P_k\}$. Using the expressions for derivatives of Q_i we have:

$$\begin{aligned}\frac{\partial Q_i}{\partial p_j} \frac{\partial P_k}{\partial p_j} - \frac{\partial Q_i}{\partial p_j} \frac{\partial P_k}{\partial q_j} &= \frac{\partial^2 S}{\partial P_i \partial q_j} \frac{\partial P_k}{\partial p_j} + \frac{\partial^2 S}{\partial P_i \partial P_l} \frac{\partial P_l}{\partial q_j} \frac{\partial P_k}{\partial p_j} - \frac{\partial^2 S}{\partial P_i \partial P_l} \frac{\partial P_l}{\partial p_j} \frac{\partial P_k}{\partial q_j} \\ &= \delta_{ik} + \frac{\partial^2 S}{\partial P_i \partial P_l} \{P_l, P_k\} = \delta_{ik}\end{aligned}$$

where again we've used (Δ) to simplify the first term. We have thus verified that \mathbf{Q}, \mathbf{P} satisfy the canonical Poisson bracket algebra. To check that this implies the transformation is canonical, we can compute:

$$\begin{aligned}\dot{Q}_i &= \frac{\partial Q_i}{\partial q_j} \frac{\partial H}{\partial p_j} - \frac{\partial Q_i}{\partial p_j} \frac{\partial H}{\partial q_j} \\ &= \frac{\partial Q_i}{\partial q_j} \left(\frac{\partial H}{\partial Q_k} \frac{\partial Q_k}{\partial p_j} + \frac{\partial H}{\partial P_k} \frac{\partial P_k}{\partial p_j} \right) - \frac{\partial Q_i}{\partial p_j} \left(\frac{\partial H}{\partial Q_k} \frac{\partial Q_k}{\partial q_j} + \frac{\partial H}{\partial P_k} \frac{\partial P_k}{\partial q_j} \right) \\ &= \frac{\partial H}{\partial Q_k} \{Q_i, Q_k\} + \frac{\partial H}{\partial P_k} \{Q_i, P_k\}\end{aligned}$$

and similarly:

$$\begin{aligned}\dot{P}_i &= \frac{\partial P_i}{\partial q_j} \frac{\partial H}{\partial p_j} - \frac{\partial P_i}{\partial p_j} \frac{\partial H}{\partial q_j} \\ &= \frac{\partial P_i}{\partial q_j} \left(\frac{\partial H}{\partial Q_k} \frac{\partial Q_k}{\partial p_j} + \frac{\partial H}{\partial P_k} \frac{\partial P_k}{\partial p_j} \right) - \frac{\partial P_i}{\partial p_j} \left(\frac{\partial H}{\partial Q_k} \frac{\partial Q_k}{\partial q_j} + \frac{\partial H}{\partial P_k} \frac{\partial P_k}{\partial q_j} \right) \\ &= \frac{\partial H}{\partial Q_k} \{P_i, Q_k\} + \frac{\partial H}{\partial P_k} \{P_i, P_k\}\end{aligned}$$

so that we have:

$$\dot{Q}_i = \frac{\partial H}{\partial P_i}, \quad \dot{P}_i = -\frac{\partial H}{\partial Q_i}$$

if and only if:

$$\{Q_i, Q_j\} = \{P_i, P_j\} = 0, \quad \{Q_i, P_j\} = -\{P_j, Q_i\} = \delta_{ij}.$$

holds.