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In lectures, I claimed that a canonical transformation can be constructed from a single
function S by the following process. Suppose S = S(q, P) is a function from R™ x R™
to R, and suppose furthermore that:
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We first consider the relation:
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as an equation for P and solve this to obtain P(q,p). By the implicit function theorem,
we can do this, at least locally, as the non-degeneracy condition (%) is precisely what is
required in the hypotheses of the implicit function theorem.

Having constructed P(q,p), we define Q(g,p) by the equation:
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I claimed (but did not prove) that this is a canonical transformation. To establish this
result, we show that the Poisson bracket algebra of @, P is the standard one, i.e.:
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Checking (¢) is made harder as we have no explicit expression for P(q, p), rather it is
implicitly defined by the relation:
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Differentiating () with respect to p;, we find:
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Setting A;i = % and By; = g—i;?, we can read this as the matrix equation:
I1=AB
so that A = B~'. Thus we also have I = BA, which in components reads:
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Next we differentiate (1) with respect to g; to obtain:
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so that:
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Multiplying both sides by
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Antisymmetrizing on i, k, we obtain:
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Now, by (%), we can assume that %TTSPM is invertible (possibly after restricting to a
neighbourhood), so that {F}, P,} = 0.

Next, we consider {Q;, @;}, which we wish to show vanishes. To do this, we differen-
tiate (») with respect to g; and p; to conclude:
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Multiplying these two expressions we find:
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where in moving from the first line to the second we have made use of the relation (A).
Now, antisymmetrizing on ¢, k gives:
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by a similar series of index manipulations to before. It remains for us to verify the bracket
{Qi, P;:}. Using the expressions for derivatives of @); we have:
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where again we've used (A) to simplify the first term. We have thus verified that Q, P
satisfy the canonical Poisson bracket algebra. To check that this implies the transformation
is canonical, we can compute:
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and similarly:
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