

1 Analysis of PDE Sample Question

We work over \mathbb{R}^n for some $n \in \mathbb{N}$.

- a) State the Gagliardo–Nirenberg–Sobolev inequality.
- b) Let $1 \leq p < n$ and set $p_* = np/(n-p)$. Show that if $q \neq p_*$, then there can exist no constant C such that

$$\|u\|_{L^q} \leq C\|Du\|_{L^p}$$

holds for all $u \in C_c^\infty(\mathbb{R}^n)$.

Hint: you may find it useful to consider the family of functions $\phi_\lambda(x) := \phi(\lambda x)$ for some fixed non-zero $\phi \in C_c^\infty(\mathbb{R}^n)$ and $\lambda > 0$.

- c) Suppose for some $1 \leq p, q < \infty$ and $a, b \in \mathbb{R}$ there exists a constant C such that the inequality:

$$\|u|x|^a\|_{L^q} \leq C \left\| |Du||x|^b \right\|_{L^p} \quad (\dagger)$$

holds for all $u \in C_c^\infty(\mathbb{R}^n)$. By arguing as in part b), or otherwise, find a relation between p, q, a, b, n .

- d) Show that if $p = q$, $b = a + 1$ and $ap > -n$, there indeed exists a constant C such that (\dagger) holds for all $u \in C_c^\infty(\mathbb{R}^n)$.

Hint: note that $|x|^{ap} = \frac{1}{n+ap} \operatorname{div}(x|x|^{ap})$, and integrate by parts.

Marks	Comments
-------	----------

a) The Gagliardo–Nirenberg–Sobolev inequality states that if $1 \leq p < n$ and $p_* = np/(n-p)$, then there exists a constant C such that:

$$\|u\|_{L^{p_*}} \leq C\|Du\|_{L^p}$$

holds for all $u \in C_c^\infty(\mathbb{R}^n)$ (or $u \in W^{1,p}(\mathbb{R}^n)$)

b) Following the hint, we compute:

$$\|\phi_\lambda\|_{L^q} = \left(\int_{\mathbb{R}^n} |\phi(\lambda x)|^q dx \right)^{\frac{1}{q}} = \left(\int_{\mathbb{R}^n} |\phi(y)|^q \lambda^{-n} dy \right)^{\frac{1}{q}} = \lambda^{-\frac{n}{q}} \|\phi\|_{L^q}$$

Similarly,

$$\|D\phi_\lambda\|_{L^p} = \left(\int_{\mathbb{R}^n} |D\phi(\lambda x)|^p dx \right)^{\frac{1}{p}} = \left(\int_{\mathbb{R}^n} |D\phi(y)|^p \lambda^{p-n} dy \right)^{\frac{1}{p}} = \lambda^{1-\frac{n}{p}} \|\phi\|_{L^q}$$

Now applying the inequality to $u = \phi_\lambda$ and rearranging, we conclude:

$$\lambda^{\frac{n}{p} - \frac{n}{q} - 1} \leq C \frac{\|D\phi\|_{L^p}}{\|\phi\|_{L^q}}$$

We arrive at a contradiction by sending λ to 0 or ∞ , unless $\frac{n}{p} - \frac{n}{q} - 1 = 0$, which occurs precisely when $q = p_*$.

c) Arguing as in the previous part, we note that:

$$\|\phi_\lambda|x|^a\|_{L^q} = \left(\int_{\mathbb{R}^n} |\phi_\lambda|^q |x|^{qa} dx \right)^{\frac{1}{q}} = \lambda^{-\frac{n+aq}{q}} \left(\int_{\mathbb{R}^n} |\phi|^q |x|^a dx \right)^{\frac{1}{q}} = \lambda^{-\frac{n}{q} - a} \|\phi|x|^a\|_{L^q}$$

and

$$\|D\phi_\lambda|x|^b\|_{L^p} = \left(\int_{\mathbb{R}^n} |D\phi_\lambda|^p |x|^{pb} dx \right)^{\frac{1}{p}} = \lambda^{1-\frac{n+pb}{p}} \left(\int_{\mathbb{R}^n} |D\phi|^p |x|^b dx \right)^{\frac{1}{p}} = \lambda^{1-\frac{n}{p} - b} \|D\phi|x|^b\|_{L^p}$$

We see that, in order for the inequality (†) to hold for all $u \in C_c^\infty(\mathbb{R}^n)$ we must have:

$$\frac{n}{p} + b = \frac{n}{q} + a + 1.$$

d) Following the hint, we compute:

$$\int_{\mathbb{R}^n} |\phi|^p |x|^{ap} dx = \frac{1}{n+ap} \int_{\mathbb{R}^n} |\phi|^p \operatorname{div} (x|x|^{ap}) dx = -\frac{p}{n+ap} \int_{\mathbb{R}^n} (\operatorname{sgn} \phi) x \cdot D\phi |\phi|^{p-1} |x|^{ap} dx$$

The condition $ap > -n$ ensures that there is no contribution from the origin. Applying Hölder's inequality, we can estimate the integral on the RHS by:

$$\left| -\frac{p}{n+ap} \int_{\mathbb{R}^n} (\operatorname{sgn} \phi) x \cdot D\phi |\phi|^{p-1} |x|^{ap} dx \right| \leq \frac{p}{n+ap} \|\phi^{p-1} |x|^{a(p-1)}\|_{L^{\frac{p}{p-1}}} \|D\phi|x|^{1+a}\|_{L^p}$$

We deduce:

$$\|\phi|x|^a\|_{L^p}^p \leq \frac{p}{n+ap} \|\phi|x|^a\|_{L^p}^{p-1} \|D\phi|x|^{1+a}\|_{L^p}$$

and the result follows on cancelling $\|\phi|x|^a\|_{L^p}^{p-1}$ from both sides.