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Material marked with () is unexaminable, although questions may appear which make use
of ideas from these sections of the course.

I. INTRODUCTION AND THE CAUCHY-KOVALEVSKAYA THEOREM

a) Introduction Examples of PDE; well-posedness; classification into linear/semi-linear
etc.

b) Cauchy—Kovalevskaya Motivation through ODE theory; real analytic functions and
their properties; Cauchy—Kovalevskaya theorem for first order systems (*proof*); re-
duction to first order systems; characteristic surfaces.

IT. SPACES OF FUNCTIONS

a) Holder spaces Definition; basic properties.

b) Sobolev spaces Weak derivatives; definition of Sobolev spaces; approximation by
smooth functions; extension theorems; trace theorem; Sobolev embeddings: Gagliardo-
Nirenberg-Sobolev inequality, Morrey’s inequality, Poincaré inequality.

III. ELLIPTIC BOUNDARY VALUE PROBLEMS

a) Basic solvability Strong/uniform ellipticity; weak formulations; Lax-Milgram; energy
estimates/Garding’s inequality; basic existence of solutions; *solving nonlinear prob-
lems by contraction mapping theorem™.

b) Compactness Weak compactness for Hilbert spaces; Rellich-Kondrachov theorem;
Fredholm alternative; spectrum of L; spectral theorem for symmetric (formally self-
adjoint) elliptic BVPs.

¢) Regularity Difference quotients; elliptic regularity: interior and *boundary™.
IV. HYPERBOLIC EQUATIONS

a) Basic solvability Definition of hyperbolicity for second order linear operators; weak
formulation of the initial-boundary value problem; uniqueness of weak solutions; *Galerkin’s
method for existence™.

b) Further results and extensions finite speed of propagation; *parabolic problems*;
*solving nonlinear problems by contraction mapping theorem*.



