

Unless otherwise stated, $U \subset \mathbb{R}^n$ is open and bounded with C^1 boundary, and L is the operator:

$$Lu := - \sum_{i,j=1}^n (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^n b^i(x)u_{x_i} + c(x)u$$

for $a^{ij} = a^{ji}$, $b^i, c \in L^\infty(U)$, and a^{ij} satisfying the uniform ellipticity condition:

$$\sum_{i,j=1}^n a^{ij}(x)\xi_i \xi_j \geq \theta |\xi|^2$$

for all $\xi \in \mathbb{R}^n$, almost every $x \in U$ and some $\theta > 0$.

Exercise 3.1. For $\gamma > 0$ sufficiently large let $L_\gamma^{-1} : L^2(U) \rightarrow H_0^1(U)$ be the bounded linear operator which maps $f \in L^2(U)$ to the weak solution $u \in H_0^1(U)$ of the boundary value problem:

$$Lu + \gamma u = f \quad \text{in } U, \quad u = 0 \quad \text{on } \partial U.$$

Show that $\text{Ran } L_\gamma^{-1}$ is dense in $H_0^1(U)$.

[Hint: consider $f = L_\gamma \phi$ for $\phi \in C_c^\infty(U)$, and approximate the functions $\sum_{j=1}^n a^{ij} \phi_{x_j}$ in $L^2(U)$.]

Exercise 3.2. Suppose that L is positive and formally self-adjoint. Let $\{w_k\}_{k=1}^\infty$ be an orthonormal basis for $L^2(U)$ consisting of eigenfunctions $w_k \in H_0^1(U)$ solving

$$Lw_k = \lambda_k w_k \quad \text{in } U, \quad w_k = 0 \quad \text{on } \partial U,$$

in a weak sense, where $0 < \lambda_1 \leq \lambda_2 \leq \dots$

i) If B is the bilinear form on $H_0^1(U)$ corresponding to L , show that B can be thought of as a new inner product on $H_0^1(U)$, defining an equivalent norm to $(\cdot, \cdot)_{H^1(U)}$.

ii) Show that:

$$B[w_k, w_l] = \lambda_k \delta_{kl}.$$

iii) Deduce that $\left\{ \lambda_k^{-\frac{1}{2}} w_k \right\}_{k=1}^\infty$ is a basis for $H_0^1(U)$ which is orthonormal with respect to the inner product defined by B .

iv) Show that:

$$\lambda_1 = \min_{u \in H_0^1(U), \|u\|_{L^2(U)}=1} B[u, u].$$

Please send any corrections to cmw50@cam.ac.uk

Questions marked (*) may be handed in, those marked (†) are optional and may be tough.

v) (\dagger) Show that:

$$\lambda_k = \max_{V \in \mathcal{V}_{k-1}} \left(\min_{u \in V, \|u\|_{L^2(U)}=1} B[u, u] \right)$$

where $V \in \mathcal{V}_k$ if

$$V = \{u \in H_0^1(U) | (u, v_i)_{L^2(U)} = 0, i = 1, \dots, k\}$$

for some k distinct vectors $v_i \in H_0^1(U)$, $i = 1, \dots, k$. By convention $\mathcal{V}_0 = \{H_0^1(U)\}$. In other words, \mathcal{V}_k is the set of codimension k subspaces of $H_0^1(U)$. This is the Courant minimax principle.

Exercise 3.3. Suppose that the boundary value problem:

$$Lu = f \quad \text{in } U, \quad u = 0 \quad \text{on } \partial U. \quad (\Delta)$$

admits a weak solution $u \in H_0^1(U)$ for every $f \in L^2(U)$. Show that there exists a constant C such that:

$$\|u\|_{L^2(U)} \leq C \|f\|_{L^2(U)}$$

for all $f \in L^2(U)$ and $u \in H_0^1(U)$ solving (Δ) in the weak sense.

[Hint: Assume the result is not true, so that a sequence of $u_k \in H_0^1(U)$ and $f_k \in L^2(U)$ solving (Δ) exist with $\|u_k\|_{L^2(U)} \geq k \|f_k\|_{L^2(U)}$. Derive a contradiction.]

Exercise 3.4 (*). Let $U \subset \mathbb{R}^n$ be an open, not necessarily bounded set and assume $V \subset\subset U$. Suppose $u \in L^2(U)$ and define the i^{th} difference quotient:

$$\Delta_i^h u(x) := \frac{u(x + he_i) - u(x)}{h}$$

for $i = 1, \dots, n$; $x \in V$ and $0 < |h| < \text{dist}(V, \partial U)$. Let $\Delta^h u = (\Delta_1^h u, \dots, \Delta_n^h u)$.

i) a) Suppose $u \in C^\infty(U)$. Show that for $x \in V$, $0 < |h| < \frac{1}{2}\text{dist}(V, \partial U)$:

$$|u(x + he_i) - u(x)| \leq |h| \int_0^1 |Du(x + the_i)| dt$$

b) Deduce that:

$$\int_V \left| \Delta^h u(x) \right|^2 dx \leq \sum_{i=1}^n \int_V \int_0^1 |Du(x + the_i)|^2 dt dx$$

c) Conclude that:

$$\left\| \Delta^h u \right\|_{L^2(V)} \leq \sqrt{n} \|Du\|_{L^2(U)}$$

for all $0 < |h| < \frac{1}{2}\text{dist}(V, \partial U)$. Deduce that this inequality holds for all $u \in H^1(U)$.

ii) Now suppose that $u \in L^2(U)$ satisfies:

$$\|\Delta^h u\|_{L^2(V)} \leq C$$

for all $0 < |h| < \frac{1}{2}\text{dist}(V, \partial U)$ and some constant C .

a) Show that if $\phi \in C_c^\infty(V)$ and h is sufficiently small then:

$$\int_V u(x) [\Delta_i^h \phi(x)] dx = - \int_V [\Delta_i^{-h} u(x)] \phi(x) dx.$$

b) Show there exists a sequence $h_k \rightarrow 0$ and $v_i \in L^2(V)$ with $\|v_i\|_{L^2(V)} \leq C$ such that

$$\Delta_i^{-h_k} u \rightharpoonup v_i$$

in $L^2(V)$ as $k \rightarrow \infty$.

c) Deduce that $D_i u = v_i$ in the weak sense, and hence $u \in H^1(V)$.

Exercise 3.5. Let $I = (a, b)$ for some $a < b$.

i) Let $x \in I$. Show that if $u \in C_c^\infty(I)$ then:

$$|u(x)|^2 \leq 2 \|u\|_{L^2(I)} \|u'\|_{L^2(I)}.$$

Deduce that there exists a bounded linear map $\delta_x : H_0^1(I) \rightarrow \mathbb{R}$ such that $\delta_x[u] = u(x)$ for $u \in C^0(I) \cap H_0^1(I)$, and find explicitly $v_x \in H_0^1(I)$ such that $\delta_x[u] = (v_x, u)_{H^1(I)}$ for all $u \in H_0^1(I)$, where we define as usual:

$$(u_1, u_2)_{H^1(I)} = \int_a^b (u'_1 u'_2 + u_1 u_2) dx$$

ii) Consider the Sturm-Liouville operator:

$$Lu := -\frac{d}{dx} \left(p(x) \frac{du}{dx} \right) + q(x)u,$$

where $p, q \in L^\infty(I)$ with $p(x) \geq c > 0$ and $q(x) \geq 0$ for almost every x .

a) Define a weak solution to the boundary value problem:

$$Lu = f \quad \text{in } I, \quad u(a) = u(b) = 0,$$

for $f \in (H_0^1(I))^*$ and show that there exists a unique weak solution to:

$$Lu = \delta_x \quad \text{in } I, \quad u(a) = u(b) = 0.$$

b) Let $u, \tilde{u} \in H_0^1(I)$ be two non-trivial weak solutions to the eigenvalue problem:

$$Lu = \lambda u \quad \text{in } I, \quad u(a) = u(b) = 0, \quad (\star)$$

for some $\lambda \in \mathbb{R}$. Show that the Wronskian:

$$W(x) = p(x) [u'(x)\tilde{u}(x) - u(x)\tilde{u}'(x)]$$

admits a weak derivative which vanishes identically on I . (†) Conclude that there exists $\alpha \in \mathbb{R}$ such that $u(x) = \alpha\tilde{u}(x)$.

[Hint: Consider using $\phi\tilde{u}$ as a test function in the weak formulation of (\star) for some $\phi \in C_c^\infty(I)$.]

- c) Show that there exists an orthonormal basis for $L^2(I)$ consisting of eigenfunctions $u_n \in H_0^1(I)$ which are weak solutions to (\star) with $\lambda = \lambda_n$, where $0 < \lambda_1 < \lambda_2 < \dots$
- d) (†) Show that if $p, q \in C^\infty(\bar{I})$, then $u_n \in C^\infty(\bar{I})$.

iii) (†) Fix $y \in (a, b)$. Consider the modified Sturm-Liouville operator with a ‘delta function potential’⁴:

$$Lu := -\frac{d}{dx} \left(p(x) \frac{du}{dx} \right) + a\delta_y u,$$

where $a \in \mathbb{R}$. Define a weak solution to the boundary value problem:

$$Lu = f \quad \text{in } I, \quad u(a) = u(b) = 0, \quad (\diamond)$$

and show that either a weak solution to (\diamond) exists for every $f \in L^2(I)$ or else a solution to the homogeneous problem exists.

Exercise 3.6 (†). Let $n \geq 3$. For $u \in C_c^\infty(\mathbb{R}^n)$ define:

$$\|u\|_{\dot{H}^1(\mathbb{R}^n)} := \left(\int_{\mathbb{R}^n} |Du|^2 dx \right)^{\frac{1}{2}}.$$

- i) Show that $\|\cdot\|_{\dot{H}^1(\mathbb{R}^n)}$ defines a norm on $C_c^\infty(\mathbb{R}^n)$. We denote by $\dot{H}^1(\mathbb{R}^n)$ the completion of $C_c^\infty(\mathbb{R}^n)$ in this norm.
- ii) Show that $H^1(\mathbb{R}^n) \subset \dot{H}^1(\mathbb{R}^n)$, and that the inclusion is proper.
- iii) Show that there exists a constant C such that:

$$\int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \leq C \|u\|_{\dot{H}^1(\mathbb{R}^n)}^2$$

for all $u \in \dot{H}^1(\mathbb{R}^n)$. Estimates such as this known as Hardy inequalities.

[Hint: Write $\frac{1}{|x|^2} = \frac{1}{n-2} \operatorname{div} \left(\frac{x}{|x|^2} \right)$ and integrate by parts]

⁴such operators appear in physics, for example in quantum mechanics.

iv) Show that for any f such that $|x|f \in L^2(\mathbb{R}^n)$ there exists a unique weak solution $u \in \dot{H}^1(\mathbb{R}^n)$ to Poisson's equation:

$$-\Delta u = f \text{ on } \mathbb{R}^n, \quad u \rightarrow 0 \text{ as } |x| \rightarrow \infty.$$

You should carefully define what is meant by a weak solution in this context.

Exercise 3.7 (\dagger). Repeat Exercise 3.4 replacing $L^2(U)$ with $L^p(U)$ everywhere, for some $1 < p < \infty$. For part *ii*) you will first need to prove that if X is a reflexive Banach space then every bounded sequence in X admits a weakly convergent subsequence. What goes wrong in the case $p = 1$?

Exercise 3.8 (\dagger). Let $U \subset \mathbb{R}^n$ be open and suppose $1 \leq p < \infty$. Let $L_k^p(U)$ be the set of vectors $v = (v^\alpha)_{|\alpha| \leq k}$ whose components are indexed by multiindices of order at most k , such that each $v^\alpha \in L^p(U)$. Define:

$$\|v\|_{L_k^p(U)} := \left(\sum_{|\alpha| \leq k} \|v^\alpha\|_{L^p(U)}^p \right)^{\frac{1}{p}}.$$

i) Show that $L_k^p(U)$ is separable for $1 \leq p < \infty$ and reflexive for $1 < p < \infty$.
ii) Show that the map $\iota : W^{k,p}(U) \rightarrow L_k^p(U)$ given by:

$$\iota : u \mapsto (D^\alpha u)_{|\alpha| \leq k}$$

is a bounded linear map satisfying:

$$\|u\|_{W^{k,p}(U)} = \|\iota(u)\|_{L_k^p(U)}, \quad \forall u \in W^{k,p}(U)$$

i.e. an isometry. Deduce that ι is injective.

iii) Show that $\iota(W^{k,p}(U))$ is a closed subspace of $L_k^p(U)$ and deduce that $W^{k,p}(U)$ is separable for $1 \leq p < \infty$ and reflexive for $1 < p < \infty$.