Seshadri constants via toric degenerations

Atsushi Ito

University of Tokyo

Chulalongkorn University, December 23, 2011
Introduction

1. Introduction
2. Toric case
3. Non-toric case
4. Multi-point case
Let L be an ample line bundle on a projective variety X over \mathbb{C}.
Let L be an ample line bundle on a projective variety X over \mathbb{C}.

How can we measure the positivity of L?
Let L be an ample line bundle on a projective variety X over \mathbb{C}.

How can we measure the positivity of L?

- The volume L^n is one basic measure, where $n = \dim X$.
Let L be an ample line bundle on a projective variety X over \mathbb{C}.

How can we measure the positivity of L?

- The volume L^n is one basic measure, where $n = \dim X$.
- But it is not enough.
Example

\(X = \mathbb{P}^1 \times \mathbb{P}^1, L_1 = \mathcal{O}(k, k), L_2 = \mathcal{O}(1, k^2). \)
Example

\[X = \mathbb{P}^1 \times \mathbb{P}^1, \quad L_1 = O(k, k), \quad L_2 = O(1, k^2). \]

Then

- \[K_X + L_1 \] is nef for \(k \geq 2 \)
Example

\(X = \mathbb{P}^1 \times \mathbb{P}^1, L_1 = O(k, k), L_2 = O(1, k^2). \)

Then

\(K_X + L_1 \) is nef for \(k \geq 2 \) and very ample for \(k \geq 3 \),
Example

\[X = \mathbb{P}^1 \times \mathbb{P}^1, \quad L_1 = O(k, k), \quad L_2 = O(1, k^2). \]

Then

- \(K_X + L_1 \) is nef for \(k \geq 2 \) and very ample for \(k \geq 3 \),

- but \(K_X + L_2 \) is not effective for any \(k > 0 \).
Definition (Demailly ’92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;
Definition (Demailly ’92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

$$
\varepsilon(X, L; p) := \inf_C \frac{C.L}{\text{mult}_p(C)} > 0
$$
Definition (Demailly ’92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is;

\[
\varepsilon(X, L; p) := \inf_{C} \frac{C.L}{\text{mult}_p(C)} > 0
\]

\[
= \max\{ t \geq 0 \mid \mu^*L - tE \text{ is nef} \},
\]

\[
\mu : \tilde{X} \to X, E = \mu^{-1}(p)
\]
Definition (Demailly ’92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is:

$$\varepsilon(X, L; p) := \inf_{C} \frac{C \cdot L}{\text{mult}_p(C)} > 0$$

$$= \max \{ t \geq 0 \mid \mu^* L - tE \text{ is nef} \},$$

$$\mu : \widetilde{X} \to X, E = \mu^{-1}(p)$$

Remark (Seshadri criterion)

For a line bundle L,
Definition (Demailly ’92)

The Seshadri constant $\varepsilon(X, L; p)$ for $p \in X$ is:

$$
\varepsilon(X, L; p) := \inf_C \frac{C.L}{\text{mult}_p(C)} > 0
$$

$$
= \max \{ t \geq 0 \mid \mu^* L - tE \text{ is nef} \},
\mu : \tilde{X} \to X, E = \mu^{-1}(p)
$$

Remark (Seshadri criterion)

For a line bundle L,

$$
L \text{ is ample } \Leftrightarrow \inf_{p,C} \frac{C.L}{\text{mult}_p(C)} > 0
$$
Example

\[\varepsilon(\mathbb{P}^n, O(1); p) = 1 \text{ for } \forall p, \]
Example

- $\varepsilon(\mathbb{P}^n, O(1); p) = 1$ for $\forall p,$
- $\varepsilon(\mathbb{P}^1 \times \mathbb{P}^1; O(a, b); p) = \min\{a, b\}$ for $a, b > 0, \forall p,$
Example

- \(\varepsilon(\mathbb{P}^n, O(1); p) = 1 \) for \(\forall p \),
- \(\varepsilon(\mathbb{P}^1 \times \mathbb{P}^1; O(a, b); p) = \min\{a, b\} \) for \(a, b > 0, \forall p \),
- For a smooth cubic surface \(S \subset \mathbb{P}^3 \),

\[
\varepsilon(S, O(1); p) = \begin{cases}
1 & \text{if } p \in \text{line} \\
3/2 & \text{otherwise.}
\end{cases}
\]
Remark

(1) For $p \geq 8 \in \mathbb{Z}$, $(X; L; p) \Rightarrow \dim \mathbb{Z} \sqrt{\mathbb{Z}}: L \dim \mathbb{Z}$, $\mult p (\mathbb{Z}) \Rightarrow \text{dim}$. In particular, $(X; L; p) \Rightarrow n p L \Rightarrow n$ holds.

(2) For a flat family $(X_t; L_t; p_t)_{t \in T}$ over smooth T and $0 \Rightarrow T$, $(X_t; L_t; p_t) \Rightarrow (X_0; L_0; p_0)$ holds for very general t (lower semicontinuity).
Remark

(1) For $p \in^Y Z \subset X$,

\[\dim Z \geq \dim (X; L; p) \]

In particular,

\[(X; L; p) \]

holds.

(2) For a flat family $(X_t; L_t; p_t)_{t \in T}$ over smooth T and $0 \in T$,

\[(X_t; L_t; p_t) \]

\[(X_0; L_0; p_0) \]

holds for very general t (lower semicontinuity).
Remark

(1) For $p \in^\forall Z \subset X$,

$$\varepsilon(X, L; p) \leq \dim Z \sqrt{\frac{Z.L^{\dim Z}}{\text{mult}_p(Z)}}.$$
Remark

(1) For $p \in \mathcal{V} \subset X$,

$$
\varepsilon(X, L; p) \leq \dim Z \sqrt{\frac{Z.L^{\dim Z}}{\text{mult}_p(Z)}}.
$$

In particular, $\varepsilon(X, L; p) \leq \sqrt[n]{L^n}$ holds.
Remark

(1) For $p \in^\forall Z \subset X$,

$$
\varepsilon(X, L; p) \leq \dim Z \sqrt{\frac{Z.L^{\dim Z}}{\text{mult}_p(Z)}}.
$$

In particular, $\varepsilon(X, L; p) \leq \sqrt[n]{L^n}$ holds.

(2) For a flat family $(X_t, L_t, p_t)_{t \in T}$ over smooth T and $0 \in T$,

Remark

(1) For $p \in \mathcal{Z} \subset X$,

$$\varepsilon(X, L; p) \leq \sqrt{\dim Z \cdot L^{\dim Z}} \cdot \sqrt{\frac{Z \cdot L^{\dim Z}}{\text{mult}_p(Z)}}.$$

In particular, $\varepsilon(X, L; p) \leq \sqrt{n L^n}$ holds.

(2) For a flat family $(X_t, L_t, p_t)_{t \in T}$ over smooth T and $0 \in T$,

$$\varepsilon(X_t, L_t; p_t) \geq \varepsilon(X_0, L_0; p_0)$$

holds for very general t (lower semicontinuity).
By the lower semicontinuities of Seshadri constants, we can define the following;
By the lower semicontinuities of Seshadri constants, we can define the following:

Definition

The Seshadri constant $\varepsilon(X, L; 1)$ of L at a very general point is;
By the lower semicontinuities of Seshadri constants, we can define the following;

Definition

The Seshadri constant $\varepsilon(X, L; 1)$ of L at a very general point is;

$$\varepsilon(X, L; 1) := \varepsilon(X, L; p)$$

for very general $p \in X$.
Seshadri constants relate to...
Seshadri constants relate to

- jet separations of adjoint line bundles (Demailly),
Seshadri constants relate to

- jet separations of adjoint line bundles (Demailly),
- Ross-Thomas’ slope stabilities of polarized varieties (Ross-Thomas),
Seshadri constants relate to
- jet separations of adjoint line bundles (Demailly),
- Ross-Thomas’ slope stabilities of polarized varieties (Ross-Thomas),
- Gromov width (Mcduff-Polterovich), and so on.
But it is very difficult to compute Seshadri constants in general.
But it is very difficult to compute Seshadri constants in general. In higher dimensional cases, the following results are known;
But it is very difficult to compute Seshadri constants in general. In higher dimensional cases, the following results are known;

\[\varepsilon(X, L; 1) \geq \frac{1}{\dim X} \] (Ein-Küchle-Lazarsfeld),
But it is very difficult to compute Seshadri constants in general. In higher dimensional cases, the following results are known;

- \(\varepsilon(X, L; 1) \geq \frac{1}{\text{dim } X} \) holds (Ein-Küchle-Lazarsfeld),
- abelian varieties, (Nakamaye,Lazarsfeld,etc.,.).
But it is very difficult to compute Seshadri constants in general.
In higher dimensional cases, the following results are known:

- $\varepsilon(X, L; 1) \geq 1/\dim X$ holds (Ein-Küchle-Lazarsfeld),
- abelian varieties, (Nakamaye, Lazarsfeld, etc.,).
- X: toric, p: torus invariant point (Di Rocco).
In this talk, I will explain how to estimate Seshadri constants from below.
In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;
In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

- estimate $\varepsilon(X, L; 1)$ for toric X,
In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

- estimate \(\varepsilon(X, L; 1) \) for toric \(X \),
- find "good" toric degenerations and use lower semicontinuities.
In this talk, I will explain how to estimate Seshadri constants from below. Our strategy is;

- estimate $\varepsilon(X, L; 1)$ for toric X,
- find ”good” toric degenerations and use lower semicontinuities.

By this strategy, we obtain the following results;
Theorem (Hypersurfaces)

$X \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree d.

Note that the upper bound comes from $\left(X; \mathcal{O}(1); 1 \right)$.
Theorem (Hypersurfaces)

\(X \subset \mathbb{P}^{n+1} : \text{a very general hypersurface of degree } d. \text{Then it holds that} \)

\[\lfloor \sqrt[n]{d} \rfloor \leq c(X, O(1); 1) \leq \sqrt[n]{d}. \]
Theorem (Hypersurfaces)

$X \subset \mathbb{P}^{n+1}$: a very general hypersurface of degree d. Then it holds that

$$\lfloor \sqrt[n]{d} \rfloor \leq \varepsilon(X, \mathcal{O}(1); 1) \leq \sqrt[n]{d}.$$

Remark

Note that the upper bound comes from $\varepsilon(X, \mathcal{O}(1); 1) \leq \sqrt[n]{\mathcal{O}(1)^n}$.

Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1 (note that there are 17 such families),
Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1 (note that there are 17 such families),

\[\varepsilon(X, -K_X; 1) = \begin{cases}
6/5 & (6) \subset \mathbb{P}(1, 1, 1, 1, 3) \\
4/3 & (4) \subset \mathbb{P}^4 \\
3/2 & (2) \cap (3) \subset \mathbb{P}^5 \\
2 & otherwise \\
3 & (2) \subset \mathbb{P}^4 \\
4 & \mathbb{P}^3
\end{cases} \]

holds, where \(X \) is a very general member in the family.
<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>Toric case</th>
<th>Non-toric case</th>
<th>Multi-point case</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Toric case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Non-toric case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Multi-point case</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition (Toric variety)

\[M \cong \mathbb{Z}^n, M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R} \]
Definition (Toric variety)

\(M \cong \mathbb{Z}^n, M_\mathbb{R} = M \otimes \mathbb{Z} \mathbb{R} \)

\(P \subset M_\mathbb{R} : n \)-dim integral polytope
Definition (Toric variety)

\[M \cong \mathbb{Z}^n, \quad M_\mathbb{R} = M \otimes \mathbb{Z} \mathbb{R} \]

\[P \subset M_\mathbb{R}: \text{n-dim integral polytope} \]

The polarized toric variety corresponding to \(P \) is
Definition (Toric variety)

\[M \cong \mathbb{Z}^n, \quad M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R} \]

\(P \subset M_{\mathbb{R}} : \) n-dim integral polytope

The polarized toric variety corresponding to \(P \) is

\[(X_P, L_P) := (\text{Proj} \bigoplus_{k \geq 0} V_{kP}, \mathcal{O}(1)), \]

where \(V_{kP} := \bigoplus_{u \in kP \cap M} \mathbb{C}x^u \subset \mathbb{C}[M]. \]
Remark (Di rocco)

\(P \subset M_\mathbb{R} \) : integral polytope of \(\dim n \)
Remark (Di rocco)

$P \subset M_\mathbb{R}$: integral polytope of $\dim n$

$v \prec P$: a vertex,
Remark (Di rocco)

\(P \subset M_\mathbb{R} \): integral polytope of \(\dim n \)
\(v \subset P \): a vertex, \(x_v \subset X_P \): the torus invariant point
Remark (Di rocco)

\[P \subset M_{\mathbb{R}} : \text{integral polytope of dim } n \]
\[v < P : \text{a vertex, } x_v \subset X_P : \text{the torus invariant point} \]
Then \(\varepsilon(X_P, L_P; x_v) = \min\{ |\tau| \mid v < \tau < P, \dim \tau = 1 \} \) holds.
Remark (Di rocco)

\(P \subset M_\mathbb{R} \): integral polytope of \(\dim n \)
\(\nu < P \): a vertex, \(x_\nu \subset X_P \): the torus invariant point

Then \(\varepsilon(X_P, L_P; x_\nu) = \min\{ |\tau| | \nu < \tau < P, \dim \tau = 1 \} \)
holds.

Remark

For \(\sigma < P \) and \(p \in O_\sigma \),
Remark (Di rocco)

\(P \subset M_{\mathbb{R}} \): integral polytope of \(\dim n \)
\(v < P \): a vertex, \(x_v \subset X_P \): the torus invariant point
Then \(\varepsilon(X_P, L_P; x_v) = \min \{ |\tau| \mid v < \tau < P, \dim \tau = 1 \} \)
holds.

Remark

For \(\sigma < P \) and \(p \in O_{\sigma} \), it holds that

\[
\varepsilon(X_P, L_P; p) = \min \{\varepsilon(X_{\sigma}, L_{\sigma}; p), \varepsilon(X_{P'}, L_{P'}; x_{v'})\},
\]

where \(\pi : M_{\mathbb{R}} \to M_{\mathbb{R}}/(\mathbb{R}(\sigma - \sigma)) \) and
\(P' = \pi(P), v' = \pi(\sigma) \).
The following proposition is a key tool to estimate Seshadri constants on toric varieties:
The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

\[\pi : M_R \rightarrow M'_R : \text{lattice projection with rank } M = n, \]
\[\text{rank } M' = r, \]
The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

\[\pi : M_\mathbb{R} \to M_\mathbb{R}' : \text{lattice projection with rank } M = n, \]
\[\text{rank } M' = r, \]
\[P \subset M_\mathbb{R} : \text{n-dim integral polytope.} \]
The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

\[\pi : M_\mathbb{R} \to M'_\mathbb{R} : \text{lattice projection with \(\text{rank } M = n \), \(\text{rank } M' = r \),} \]

\[P \subset M_\mathbb{R} : \text{n-dim integral polytope.} \]

For \(u' \in \pi(P) \cap M'_\mathbb{Q} \), set \(P(u') = \pi^{-1}(u') \cap P \).
The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

\[\pi : M_R \rightarrow M'_R : \text{lattice projection with rank } M = n, \]

\[\text{rank } M' = r, \]

\[P \subset M_R : n\text{-dim integral polytope.} \]

For \(u' \in \pi(P) \cap M'_Q \), set \(P(u') = \pi^{-1}(u') \cap P \).

If \(\dim P(u') = n - r \), it holds that
The following proposition is a key tool to estimate Seshadri constants on toric varieties;

Proposition

\[\pi : M_{\mathbb{R}} \to M'_{\mathbb{R}} : \text{lattice projection with rank } M = n, \]
\[\text{rank } M' = r, \]
\[P \subset M_{\mathbb{R}} : n\text{-dim integral polytope}. \]

For \(u' \in \pi(P) \cap M'_{\mathbb{Q}} \), set \(P(u') = \pi^{-1}(u') \cap P \).

If \(\dim P(u') = n - r \), it holds that

\[
\min \{ \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(u')}, L_{P(u')}; 1_{P(u')}) \} \\
\leq \varepsilon(X_P, L_P; 1_P) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)})
\]
We can construct a rational map \(\phi \): \(X \to \mathbb{P}^d \) such that \(X(\mathbb{P}) \); the general fiber of \(\phi \). We study \(C \): \(L \mathbb{P} = \text{mult}_1 \mathbb{P}(C) \) in case of \(\phi(C) = \text{pt} \); or, \text{pt} separably.
Idea of proof.

We can construct a rational map \(\varphi : X_P \to X_{P(u')} \) such that \(X_{\pi(P)} =: \text{the general fiber of } \varphi. \)
We can construct a rational map $\varphi : X_P \to X_{P(u')}$. Let $X_{\pi(P)}$ denote the general fiber of φ. We study $C.L_P / \text{mult}_{1_P}(C)$ in case of $\varphi(C) = \text{pt}$, or $\varphi(C) \neq \text{pt}$ separably.
Remark

(1) If \(\text{rank } M' = 1 \),
Remark

(1) If \(\text{rank } M' = 1 \),
\[
\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \text{deg } L_{\pi(P)}
\]
Remark

(1) If $\text{rank } M' = 1$,
$\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$.
Remark

(1) If \(\text{rank } M' = 1 \),
\[
\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|.
\]
Thus we have \(\varepsilon(X_{P}, L_{P}; 1_{P}) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| \).
Remark

(1) If rank $M' = 1$,
$\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$.
Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi: M_R \to \mathbb{R}} |\pi(P)|$,
where the right hand side is called the lattice width of P.
Remark

(1) If rank $M' = 1$,
\[\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|. \]
Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi: M_R \to \mathbb{R}} |\pi(P)|$,
where the right hand side is called the lattice width of P.
In fact, $\varepsilon(X_P, L_P; 1_P) = 1$ iff
Remark

(1) If rank $M' = 1$,
$\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|$.

Thus we have $\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_R \to \mathbb{R}} |\pi(P)|$,
where the right hand side is called the lattice width of P.

In fact, $\varepsilon(X_P, L_P; 1_P) = 1$ iff $\min_{\pi:M_R \to \mathbb{R}} |\pi(P)| = 1$.
Remark

(1) If \(\text{rank } M' = 1 \),
\[\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|. \]
Thus we have \(\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| \),
where the right hand side is called the lattice width of \(P \).

In fact, \(\varepsilon(X_P, L_P; 1_P) = 1 \) iff \(\min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| = 1 \).

But in general, \(\varepsilon(X_P, L_P; 1_P) \neq \min_{\pi:M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| \).
Remark

(1) If \(\text{rank } M' = 1 \),
\[
\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|.
\]
Thus we have \(\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi: M_\mathbb{R} \to \mathbb{R}} |\pi(P)| \), where the right hand side is called the lattice width of \(P \).

In fact, \(\varepsilon(X_P, L_P; 1_P) = 1 \) iff \(\min_{\pi: M_\mathbb{R} \to \mathbb{R}} |\pi(P)| = 1 \).

But in general, \(\varepsilon(X_P, L_P; 1_P) \neq \min_{\pi: M_\mathbb{R} \to \mathbb{R}} |\pi(P)| \).

(2) If \(\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) \leq \varepsilon(X_{P(u')}, L_{P(u')}; 1_{P(u')}) \),
Remark

(1) If \(\text{rank } M' = 1 \),
\[
\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = \deg L_{\pi(P)} = |\pi(P)|.
\]
Thus we have \(\varepsilon(X_P, L_P; 1_P) \leq \min_{\pi: M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| \),
where the right hand side is called the lattice width of \(P \).

In fact, \(\varepsilon(X_P, L_P; 1_P) = 1 \) iff \(\min_{\pi: M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| = 1 \).

But in general, \(\varepsilon(X_P, L_P; 1_P) \neq \min_{\pi: M_{\mathbb{R}} \to \mathbb{R}} |\pi(P)| \).

(2) If \(\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) \leq \varepsilon(X_{P(u')}, L_{P(u')}; 1_{P(u')}) \),
then \(\varepsilon(X_P, L_P; 1_P) = \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) \).
Example
Example

(1) $P = P_n := \text{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n,$
Example

(1) $P = P_n := \text{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n$,
$\pi : \mathbb{R}^n \to \mathbb{R} : n$-th projection.
Example

(1) $P = P_n := \text{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n$,

$\pi : \mathbb{R}^n \to \mathbb{R} : n$-th projection.

Since $\pi(P) = [0, 1]$, $P(0) = P_{n-1}$, it holds that
Example

(1) $P = P_n := \text{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n$,

$\pi : \mathbb{R}^n \to \mathbb{R} : n$-th projection.

Since $\pi(P) = [0, 1]$, $P(0) = P_{n-1}$, it holds that

$$\min\{\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(0)}, L_{P(0)}; 1_{P(0)})\}$$

$$= \min\{1, \varepsilon(X_{P_{n-1}}, L_{P_{n-1}}; 1_{P_{n-1}})\}$$

$$\leq \varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = 1$$
Example

(1) $P = P_n := \text{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n$

$\pi : \mathbb{R}^n \to \mathbb{R} : n$-th projection.

Since $\pi(P) = [0, 1]$, $P(0) = P_{n-1}$, it holds that

$$\min\{\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(0)}, L_{P(0)}; 1_{P(0)})\}$$

$$= \min\{1, \varepsilon(X_{P_{n-1}}, L_{P_{n-1}}; 1_{P_{n-1}})\}$$

$$\leq \varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = 1$$

Inductively, we have $\varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) = 1$.
Example

(1) $P = P_n := \text{conv}(0, e_1, \ldots, e_n) \subset \mathbb{R}^n$,
\pi : \mathbb{R}^n \rightarrow \mathbb{R} : n$-th projection.
Since $\pi(P) = [0, 1]$, $P(0) = P_{n-1}$, it holds that

$$\min\{\varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}), \varepsilon(X_{P(0)}, L_{P(0)}; 1_{P(0)})\}$$
$$= \min\{1, \varepsilon(X_{P_{n-1}}, L_{P_{n-1}}; 1_{P_{n-1}})\}$$
$$\leq \varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) \leq \varepsilon(X_{\pi(P)}, L_{\pi(P)}; 1_{\pi(P)}) = 1$$

Inductively, we have $\varepsilon(X_{P_n}, L_{P_n}; 1_{P_n}) = 1$.
Note that $(X_{P_n}, L_{P_n}) = (\mathbb{P}^n, \mathcal{O}(1))$.
Example

(2) $P = \text{conv}(e_1, e_2, -e_1 - e_2)$,

$\pi : \mathbb{R}^2 \rightarrow \mathbb{R}$: 2-nd projection.

Then we have

$\min\{2, 3/2\} = 3/2 \leq \varepsilon(X_P, L_P; 1_P) \leq 2$.

Note that X_P is the cubic surface in \mathbb{P}^3 defined by

$T_0^3 = T_1 T_2 T_3$,

with T_i being the monomials of degree i.
Example

(2) \(P = \text{conv}(e_1, e_2, -e_1 - e_2) \),
\(\pi : \mathbb{R}^2 \rightarrow \mathbb{R} \): 2-nd projection.
Then we have
\[\min\{2, 3/2\} = 3/2 \leq \varepsilon(X_P, L_P; 1_P) \leq 2. \]

Note that \(X_P \) is the cubic surface in \(\mathbb{P}^3 \) defined by
\[T_0^3 = T_1 T_2 T_3, \quad \text{and} \quad \varepsilon(X_P, L_P; 1_P) = 3/2 \text{ holds.} \]
The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;
The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

\[(3) \quad P = \text{conv}(e_1, \ldots, e_n, - \sum_{i=1}^{n} a_i e_i) \subset \mathbb{R}^n \text{ for } 0 \leq a_i \in \mathbb{Q}.\]
The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) \(P = \text{conv}(e_1, \ldots, e_n, - \sum_{i=1}^{n} a_i e_i) \subset \mathbb{R}^n \) for \(0 \leq a_i \in \mathbb{Q} \). Then it holds that

\[
\varepsilon(X_P, L_P; 1_P) \geq \min_{1 \leq i \leq n} \frac{a_i + \cdots + a_n + 1}{a_{i+1} + \cdots + a_n + 1}.
\]
The following is a simple generalization of (2), and will be used to estimate Seshadri constants on hypersurfaces later;

Example

(3) $P = \text{conv}(e_1, \ldots, e_n, - \sum_{i=1}^n a_i e_i) \subset \mathbb{R}^n$ for $0 \leq a_i \in \mathbb{Q}$. Then it holds that

$$\varepsilon(X_P, L_P; 1_P) \geq \min_{1 \leq i \leq n} \frac{a_i + \cdots + a_n + 1}{a_{i+1} + \cdots + a_n + 1}.$$

In (2) $a_1 = a_2 = 1$, hence

$$\min \left\{ \frac{a_1 + a_2 + 1}{a_2 + 1}, \frac{a_2 + a_1}{1} \right\} = \min \left\{ \frac{3}{2}, 2 \right\} = \frac{3}{2}.$$
1. Introduction
2. Toric case
3. Non-toric case
4. Multi-point case
Next, we investigate non-toric cases.
Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;
Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Proposition

$(X_t, L_t)_{t \in T}$: flat family of polarized varieties over smooth $T \ni 0$.
Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Proposition

\[(X_t, L_t)_{t \in T}: \text{flat family of polarized varieties over smooth } T \ni 0.\]

Assume that \((X_0, L_0)^{nor} \cong (X_P, L_P)\) for some \(P \subset M_{\mathbb{R}}.\)
Next, we investigate non-toric cases. As stated in Introduction, toric degenerations play an important role;

Proposition

\[(X_t, L_t)_{t \in T}: \text{flat family of polarized varieties over smooth } T \ni 0.\]

Assume that \((X_0, L_0)^{nor} \cong (X_P, L_P)\) for some \(P \subset M_\mathbb{R}.\)

Then

\[\varepsilon(X_t, L_t; 1) \geq \varepsilon(X_P, L_P; 1_P)\]

holds for very general \(t \in T.\)
By using above proposition, we obtain the following computations;
By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

\[X = X^d_n \subset \mathbb{P}^{n+1} : \text{very general hypersurface of degree } d. \]
By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

\[X = X_d^n \subset \mathbb{P}^{n+1} : \text{very general hypersurface of degree } d. \text{ Then it holds that} \]

\[\varepsilon(X, O(1); 1) \geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \ldots, c_1/c_2\} \]
By using above proposition, we obtain the following computations;

Theorem (Hypersurfaces)

\[X = X^n_d \subset \mathbb{P}^{n+1} : \text{very general hypersurface of degree } d. \text{ Then it holds that} \]

\[\varepsilon(X, O(1); 1) \geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \ldots, c_1/c_2\} \]

for any increasing seq. \(1 = c_{n+1} \leq c_n \leq \ldots \leq c_1 = d \) of integers.
By using above proposition, we obtain the following computations:

Theorem (Hypersurfaces)

\[X = X^n_d \subset \mathbb{P}^{n+1} : \text{very general hypersurface of degree } d. \text{ Then it holds that} \]

\[\varepsilon(X, O(1); 1) \geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \ldots, c_1/c_2\} \]

for any increasing seq. \(1 = c_{n+1} \leq c_n \leq \ldots \leq c_1 = d \) of integers.

In particular, we have

\[\lfloor \sqrt[n]{d} \rfloor \leq \varepsilon(X, O(1); 1) \leq n\sqrt[2]{d}. \]
Sketch of proof.
Sketch of proof.

X degenerates to

$X_0 := (T_0^d = T_1^{c_1-c_2} \cdots T_n^{c_n-c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}.$
Sketch of proof.

X degenerates to

$X_0 := (T_0^d = T_1^{c_1 - c_2} \cdots T_n^{c_n - c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}$.

We can show $(X_0, O(1))^{nor} = (X_P, L_P)$ for

$P = \text{conv}(e_1, \ldots, e_n, -\sum_{i=1}^n (c_i - c_{i+1})e_i) \subset \mathbb{R}^n$.

Sketch of proof.

X degenerates to

$X_0 := (T^d_0 = T_{c_1-2}^1 \cdots T_{c_n-c_{n+1}}^n T_{c_{n+1}}^{n+1}) \subset \mathbb{P}^{n+1}$.

We can show $(X_0, \mathcal{O}(1))^{nor} = (X_P, L_P)$ for

$P = \text{conv}(e_1, \ldots, e_n, -\sum_{i=1}^n (c_i - c_{i+1})e_i) \subset \mathbb{R}^n$.

Thus we have

$\varepsilon(X, \mathcal{O}(1); 1) \geq \varepsilon(X_P, L_P; 1_P)$
Sketch of proof.

X degenerates to

$$X_0 := (T_0^d = T_1^{c_1-c_2} \ldots T_n^{c_n-c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}.$$

We can show $(X_0, O(1))^{nor} = (X_P, L_P)$ for

$P = \text{conv}(e_1, \ldots, e_n, -\sum_{i=1}^n (c_i - c_{i+1}) e_i) \subset \mathbb{R}^n$.

Thus we have

$$\varepsilon(X, O(1); 1) \geq \varepsilon(X_P, L_P; 1_P)$$

$$\geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \ldots, c_1/c_2\}.$$
Sketch of proof.

X degenerates to

$X_0 := (T_0^d = T_1^{c_1-c_2} \cdots T_n^{c_n-c_{n+1}} T_{n+1}^{c_{n+1}}) \subset \mathbb{P}^{n+1}$.

We can show $(X_0, \mathcal{O}(1))^{nor} = (X_P, L_P)$ for

$P = \text{conv}(e_1, \ldots, e_n, - \sum_{i=1}^n (c_i - c_{i+1}) e_i) \subset \mathbb{R}^n$.

Thus we have

$$\varepsilon(X, \mathcal{O}(1); 1) \geq \varepsilon(X_P, L_P; 1_P) \geq \min\{c_n/c_{n+1}, c_{n-1}/c_n, \ldots, c_1/c_2\}.$$

The last part follows if we take

$c_n = c, c_{n-1} = c^2, \ldots, c_2 = c^{n-1}$ for $c = \lfloor \sqrt[d]{n} \rfloor$. \square
Example

(1) When $n = 2$,
$$(X^2d; O(1); 1)_{\min f\lceil p_d \rceil; d} = \lceil p_d \rceil g = d = \lceil p_d \rceil$$

follows from
$$1 \lceil p_d \rceil.$$
Thus we have
$$(X^2d; O(1); 1)_{\max f\lfloor p_d \rfloor; d} = \lfloor p_d \rfloor g.$$

For example,
$$(X^27; O(1); 1)_{\max f2; 7} = 3 = \lceil p_d \rceil 7 = 3.$$

(2)
$$(X^322; O(1); 1)_{\min f3; 8} = 3 = \lceil p_d \rceil 8 = 3.$$

(3)
$$(X^n; O(1); 1)_{c} = c$$
holds for any $c; n^2 N$.

(4)
$$(X^n c; O(1); 1)_{= c}$$
holds for any $c; n^2 N$.

Example

(1) When \(n = 2 \),
\[
\varepsilon(X_d^2, O(1); 1) \geq \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\} = d/\lceil \sqrt{d} \rceil
\]
follows from \(1 \leq \lceil \sqrt{d} \rceil \leq d \).
Example

(1) When $n = 2$,
\[
\varepsilon(X_d^2, O(1); 1) \geq \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\} = d/\lceil \sqrt{d} \rceil
\]
follows from $1 \leq \lceil \sqrt{d} \rceil \leq d$.

Thus we have
\[
\varepsilon(X_d^2, O(1); 1) \geq \max\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\}.
\]
Example

(1) When \(n = 2 \),
\[\varepsilon(X_d^2, O(1); 1) \geq \min \{ \lfloor \sqrt{d} \rfloor, d/\lfloor \sqrt{d} \rfloor \} = d/\lfloor \sqrt{d} \rfloor \]
follows from \(1 \leq \lfloor \sqrt{d} \rfloor \leq d \).
Thus we have
\[\varepsilon(X_d^2, O(1); 1) \geq \max \{ \lfloor \sqrt{d} \rfloor, d/\lfloor \sqrt{d} \rfloor \}. \]
For example, \(\varepsilon(X_7^2, O(1); 1) \geq \max \{2, 7/3\} = 7/3 \).
Example

(1) When $n = 2$,
\[
\varepsilon(X_d^2, O(1); 1) \geq \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\} = d/\lceil \sqrt{d} \rceil
\]
follows from $1 \leq \lceil \sqrt{d} \rceil \leq d$.
Thus we have
\[
\varepsilon(X_d^2, O(1); 1) \geq \max\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil\}.
\]
For example, $\varepsilon(X_7^2, O(1); 1) \geq \max\{2, 7/3\} = 7/3$.

(2) $\varepsilon(X_{22}^3, O(1); 1) \geq \min\{3, 8/3, 22/8\} = 8/3$ from $1 \leq 3 \leq 8 \leq 22$.
Example

(1) When $n = 2$,
$\varepsilon(X_d^2, O(1); 1) \geq \min\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil \} = d/\lceil \sqrt{d} \rceil$
follows from $1 \leq \lceil \sqrt{d} \rceil \leq d$.
Thus we have
$\varepsilon(X_d^2, O(1); 1) \geq \max\{\lceil \sqrt{d} \rceil, d/\lceil \sqrt{d} \rceil \}$.
For example, $\varepsilon(X_7^2, O(1); 1) \geq \max\{2, 7/3\} = 7/3$.
(2) $\varepsilon(X_{22}^3, O(1); 1) \geq \min\{3, 8/3, 22/8\} = 8/3$ from
$1 \leq 3 \leq 8 \leq 22$.
(3) $\varepsilon(X_c^n, O(1); 1) = c$ holds for any $c, n \in \mathbb{N}$.
In the above theorem, we do not know whether the lower bound equals to \(\varepsilon(X, \mathcal{O}(1); 1) \) or not.
In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1); 1)$ or not. But at least in Fano case, we can obtain equalities as follows;
In the above theorem, we do not know whether the lower bound equals to \(\varepsilon(X, O(1); 1) \) or not. But at least in Fano case, we can obtain equalities as follows;

Theorem (Fano complete intersections)

\[d_1 \geq \ldots \geq d_k, \; n: \text{positive integers s.t. } \sum_j d_j = n + k. \]
In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1); 1)$ or not. But at least in Fano case, we can obtain equalities as follows;

Theorem (Fano complete intersections)

$d_1 \geq \ldots \geq d_k, n$: positive integers s.t. $\sum_j d_j = n + k$.
$X \subset \mathbb{P}^{n+k}$: very general c.i. of degrees d_1, \ldots, d_k.
In the above theorem, we do not know whether the lower bound equals to $\varepsilon(X, O(1); 1)$ or not. But at least in Fano case, we can obtain equalities as follows:

Theorem (Fano complete intersections)

$d_1 \geq \ldots \geq d_k, n$: positive integers s.t. $\sum_j d_j = n + k$.

$X \subset \mathbb{P}^{n+k}$: very general c.i. of degrees d_1, \ldots, d_k.

Then it holds that $\varepsilon(X, O(1); 1) = d_1/(d_1 - 1)$.

Proof.

We prove only $k = 1$ case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$.

(\geq) part follows from $1 \leq 2 \leq \ldots \leq n + 1$.

We prove only $k = 1$ case, thus we show
$\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$.
(\geq) part follows from $1 \leq 2 \leq \ldots \leq n + 1$.
(\leq) part ;
Proof.

We prove only $k = 1$ case, thus we show
$\varepsilon(X, \mathcal{O}(1); 1) = (n + 1)/n$ since $d_1 = n + 1$.

(\geq) part follows from $1 \leq 2 \leq \ldots \leq n + 1$.

(\leq) part; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and
$p = [1 : 0 : \ldots : 0]$ for a homogeneous polynomial
$F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}$, $\deg F_i = i$.
Proof.

We prove only $k = 1$ case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$.

(\geq) part follows from $1 \leq 2 \leq \ldots \leq n + 1$.

(\leq) part; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and $p = [1 : 0 : \ldots : 0]$ for a homogeneous polynomial

$F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}$, $\deg F_i = i$.

Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$.
Proof.

We prove only \(k = 1 \) case, thus we show \(\varepsilon(X, \mathcal{O}(1); 1) = (n + 1)/n \) since \(d_1 = n + 1 \).

(\(\geq \)) part follows from \(1 \leq 2 \leq \ldots \leq n + 1 \).

(\(\leq \)) part; Let \(X := (F = 0) \subset \mathbb{P}^{n+1} \) and \(p = [1 : 0 : \ldots : 0] \) for a homogeneous polynomial \(F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}, \deg F_i = i \).

Set \(C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0) \).

Then we have \(p \in C \subset X \).
Proof.

We prove only \(k = 1 \) case, thus we show \(\varepsilon(X, O(1); 1) = (n + 1)/n \) since \(d_1 = n + 1 \).

\((\geq)\) part follows from \(1 \leq 2 \leq \ldots \leq n + 1 \).

\((\leq)\) part: Let \(X := (F = 0) \subset \mathbb{P}^{n+1} \) and \(p = [1 : 0 : \ldots : 0] \) for a homogeneous polynomial \(F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}, \deg F_i = i. \)

Set \(C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0). \)

Then we have \(p \in C \subset X \) and \(\deg C = (n - 1)! (n + 1), \)
Proof.

We prove only $k = 1$ case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$.

(\geq) part follows from $1 \leq 2 \leq \ldots \leq n + 1$.

(\leq) part; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and $p = [1 : 0 : \ldots : 0]$ for a homogeneous polynomial $F = T_0^nF_1 + T_0^{n-1}F_2 + \cdots + F_{n+1}$, $\deg F_i = i$.

Set $C = (F_1 = \cdots = F_{n-1} = T_0F_n + F_{n+1} = 0)$.

Then we have $p \in C \subset X$ and

$\deg C = (n - 1)!(n + 1)$, $\text{mult}_p(C) = (n - 1)!n$.
Proof.

We prove only $k = 1$ case, thus we show $\varepsilon(X, O(1); 1) = (n + 1)/n$ since $d_1 = n + 1$.

(\geq) part follows from $1 \leq 2 \leq \ldots \leq n + 1$.

(\leq) part; Let $X := (F = 0) \subset \mathbb{P}^{n+1}$ and $p = [1 : 0 : \ldots : 0]$ for a homogeneous polynomial $F = T_0^n F_1 + T_0^{n-1} F_2 + \cdots + F_{n+1}$, $\deg F_i = i$.

Set $C = (F_1 = \cdots = F_{n-1} = T_0 F_n + F_{n+1} = 0)$.

Then we have $p \in C \subset X$ and $\deg C = (n - 1)! (n + 1)$, $\text{mult}_p(C) = (n - 1)! n$.

Thus $\varepsilon(X, O(1); 1) \leq C \cdot O(1)/ \text{mult}_p(C) = (n + 1)/n$.

\square
Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1,
Theorem (Fano 3-folds with Picard number 1)

For each family of smooth Fano 3-folds with Picard number 1,

\[\varepsilon(X, -K_X; 1) = \begin{cases}
6/5 & (6) \subset \mathbb{P}(1, 1, 1, 1, 3) \\
4/3 & (4) \subset \mathbb{P}^4 \\
3/2 & (2) \cap (3) \subset \mathbb{P}^5 \\
2 & \text{otherwise} \\
3 & (2) \subset \mathbb{P}^4 \\
4 & \mathbb{P}^3
\end{cases} \]

holds, where \(X \) is a very general member in the family.
Ilten, Lewis, and Przyjalkowski showed that such X degenerates to a toric variety. We use it to show \geq. \leq is proved by finding a suitable curve $C \subset X$. \qed
To apply this method, we have to find toric degenerations.
To apply this method, we have to find toric degenerations. For example, any Schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, etc.).
To apply this method, we have to find toric degenerations. For example, any Schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, etc.).

Question

Which polarized variety degenerates to a polarized variety whose normalization is toric?
To apply this method, we have to find toric degenerations.
For example, any Schubert variety and spherical variety admit a flat degeneration to a polarized toric variety (Caldero, Alexeev-Brion, etc.).

Question

Which polarized variety degenerates to a polarized variety whose normalization is toric?

Anderson gave an interesting partial answer;
Example

\((X, L)\): polarized var.
Example

\((X, L)\): polarized var. \(Y_\bullet\): a flag of subvarieties of \(X\).
Example

\((X, L)\): polarized var. \(Y_\bullet\): a flag of subvarieties of \(X\).

We can define the Okounkov body

\[\Delta(L) = \Delta_{Y_\bullet}(L) \subset \mathbb{R}^n. \]
Example

We can define the Okounkov body
$\Delta(L) = \Delta_Y(L) \subset \mathbb{R}^n$.
Anderson showed that (X, L) admits a flat
degeneration to a not necessarily normal polarized
toric variety
Example

\((X, L)\): polarized var. \(Y_\bullet\): a flag of subvarieties of \(X\).

We can define the Okounkov body

\[\Delta(L) = \Delta_{Y_\bullet}(L) \subset \mathbb{R}^n. \]

Anderson showed that \((X, L)\) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is \((X_{\Delta(L)}, L_{\Delta(L)}) \)

under some finitely generatedness condition.
Example

\((X, L)\): polarized var. \(Y_\bullet\): a flag of subvarieties of \(X\).
We can define the Okounkov body
\[\Delta(L) = \Delta_{Y_\bullet}(L) \subset \mathbb{R}^n. \]
Anderson showed that \((X, L)\) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is \((X_{\Delta(L)}, L_{\Delta(L)})\) under some finitely generatedness condition.
Thus \(\varepsilon(X, L; 1) \geq \varepsilon(X_{\Delta(L)}, L_{\Delta(L)}; 1_{\Delta(L)})\) holds in this case.
Example

(X, L): polarized var. Y_\bullet: a flag of subvarieties of X. We can define the Okounkov body $\Delta(L) = \Delta_{Y_\bullet}(L) \subset \mathbb{R}^n$.

Anderson showed that (X, L) admits a flat degeneration to a not necessarily normal polarized toric variety whose normalizations is $(X_{\Delta(L)}, L_{\Delta(L)})$ under some finitely generatedness condition. Thus $\varepsilon(X, L; 1) \geq \varepsilon(X_{\Delta(L)}, L_{\Delta(L)}; 1_{\Delta(L)})$ holds in this case.

I proved that $\varepsilon(X, L; 1) \geq \varepsilon(X_{\Delta(L)}, L_{\Delta(L)}; 1_{\Delta(L)})$ holds without the finitely generatedness condition if we define $\varepsilon(X_\Delta, L_\Delta; 1_\Delta)$ for any closed convex set $\Delta \subset \mathbb{R}^n$ suitably.
Introduction

1. Introduction
2. Toric case
3. Non-toric case
4. Multi-point case
Seshadri constants can be defined for multi-point cases;
Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For \(\bar{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r \),
Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For \(\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r \),

\[
\varepsilon(X, L; \overline{m}) := \inf_{C} \frac{C.L}{\sum_i m_i \text{mult}_{p_i}(C)}
\]
Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r$,

$$
\varepsilon(X, L; \overline{m}) := \inf_{C} \frac{C.L}{\sum_i m_i \text{mult}_{p_i}(C)}
$$

$$
= \max\{ t \geq 0 | \mu^*L - t \sum_i m_i E_i \text{ is nef} \}
$$

for very general $p_1, \ldots, p_r \in X$.

Seshadri constants can be defined for multi-point cases;

Definition (multi-point Seshadri constant)

For $\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{R}_{>0})^r$,

$$
\varepsilon(X, L; \overline{m}) := \inf_{C} \frac{C \cdot L}{\sum_i m_i \text{mult}_{p_i}(C)} = \max\{ t \geq 0 \mid \mu^* L - t \sum_i m_i E_i \text{ is nef} \}
$$

for very general $p_1, \ldots, p_r \in X$.

Remark

$$
\varepsilon(X, L; t\overline{m}) = t^{-1} \varepsilon(X, L; \overline{m}) \text{ holds for any } t > 0.
$$
Proposition

\((X_t, L_t)_{t \in T}: \text{flat family of polarized schemes over smooth } T \ni 0.\)
Proposition

\((X_t, L_t)_{t \in T}: \text{flat family of polarized schemes over smooth } T \ni 0.\)

Assume that general fibers are red. and irreducible.
Proposition

\((X_t, L_t)_{t \in T} : \) flat family of polarized schemes over smooth \(T \ni 0\).

Assume that general fibers are red. and irreducible.

and \(X_0 = \bigcup_{i=1}^{r} Y_i : \) reduced.
Proposition

\[(X_t, L_t)_{t \in T} : \text{flat family of polarized schemes over smooth } T \ni 0.\]

Assume that general fibers are red. and irreducible. and \(X_0 = \bigcup_{i=1}^{r} Y_i : \text{reduced.}\)

Then

\[\varepsilon(X_t, L_t; \varepsilon_1, \ldots, \varepsilon_r) \geq 1\]

holds for very general \(t \in T,\)

where \(\varepsilon_i = \varepsilon(Y_i, L_0|_{Y_i}; 1).\)
Theorem

\[X = X_d \subset \mathbb{P}^{n+1} : \text{a very general hypersurface of degree } d. \]
Theorem

\[X = X_d \subset \mathbb{P}^{n+1} : \text{a very general hypersurface of degree } d. \text{ Then} \]

\[\left\lfloor \sqrt[n]{d / \sum_{i=1}^{r} m_i^n} \right\rfloor \leq \varepsilon(X, O(1); \overline{m}) \leq \sqrt[n]{d / \sum_{i=1}^{r} m_i^n} \]

holds for any \(\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{N} \setminus 0)^r. \)
Theorem

\[X = X_d \subset \mathbb{P}^{n+1} : \text{a very general hypersurface of degree } d. \text{Then} \]

\[
\sqrt[n]{d / \sum_{i=1}^{r} m_i^n} \leq \varepsilon(X, O(1); \overline{m}) \leq \sqrt[n]{d / \sum_{i=1}^{r} m_i^n}
\]

holds for any \(\overline{m} = (m_1, \ldots, m_r) \in (\mathbb{N} \setminus 0)^r \).

Remark

Note that the above theorem is false for \(\overline{m} \in (\mathbb{R}_{>0})^r \) in general.
Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus 0$ such that $\sum d_i = d$.
Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus \{0\}$ such that $\sum d_i = d$. Since X_d degenerates to $\bigcup_{i=1}^r X_{d_i}$, we have $\varepsilon(X_d, O(1); \varepsilon_1, \ldots, \varepsilon_r) \geq 1$ for $\varepsilon_i := \varepsilon(X_{d_i}, O(1); 1)$.

Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus \{0\}$ such that $\sum d_i = d$.
Since X_d degenerates to $\bigcup_{i=1}^r X_{d_i}$, we have
$\varepsilon(X_d, O(1); \varepsilon_1, \ldots, \varepsilon_r) \geq 1$ for $\varepsilon_i := \varepsilon(X_{d_i}, O(1); 1)$. We take d_i such that $d_i \geq (cm_i)^n$,
where $c = \lfloor \sqrt[n]{d / \sum_{i=1}^r m_i^n} \rfloor$.
Sketch of proof.

Let $d_1, \ldots, d_r \in \mathbb{N} \setminus \{0\}$ such that $\sum d_i = d$. Since X_d degenerates to $\bigcup_{i=1}^{r} X_{d_i}$, we have $\varepsilon(X_d, \mathcal{O}(1); \varepsilon_1, \ldots, \varepsilon_r) \geq 1$ for $\varepsilon_i := \varepsilon(X_{d_i}, \mathcal{O}(1); 1)$.

We take d_i such that $d_i \geq (cm_i)^n$, where $c = \lfloor \sqrt[n]{d / \sum_{i=1}^{r} m_i^n} \rfloor$.

Then $\varepsilon_i = \varepsilon(X_{d_i}, \mathcal{O}(1); 1) \geq \lfloor \sqrt[n]{d_i} \rfloor \geq cm_i$.

\[\square\]