Characterization of varieties of Fano type via singularities of Cox rings II

Y. Gongyo, S. Okawa, A. Sannai, & S. Takagi
University of Tokyo
Algebraic Geometry Conference
Chulalongkorn University, Bangkok, Thailand

21, December, 2011
Schedule

1. Cox ring and Mori dream space
2. D-minimal model program
3. Review of Okawa’s talk
4. MDS of gl. F-reg. type is of Fano type
5. Characterization of varieties of Fano type via singularities of Cox rings
6. Proof of Key lemma
7. Case of log Calabi–Yau
8. Application
9. Open question
Definition(Cox ring)

X: a normal \mathbb{Q}-fac. proj. var. $/ k$
Definition (Cox ring)

X: a normal \mathbb{Q}-fac. proj. var. / k s.t. $\text{Pic}(X)_\mathbb{Q} \cong N^1(X)_\mathbb{Q}$.
Definition (Cox ring)

X: a normal \mathbb{Q}-fac. proj. var. / k s.t. $\text{Pic}(X)_\mathbb{Q} \cong N^1(X)_\mathbb{Q}$.

$\Gamma \subset \text{Div}(X)$: f.g. group of Cartier div. on X s.t.

$$\Gamma_\mathbb{Q} \to \text{Pic}(X)_\mathbb{Q}; \ D \mapsto \mathcal{O}_X(D)$$

is iso.
Definition (Cox ring)

X: a normal \mathbb{Q}-fac. proj. var. / k s.t. $\text{Pic}(X)_\mathbb{Q} \cong \text{N}^1(X)_\mathbb{Q}$.

$\Gamma \subset \text{Div}(X)$: f.g. group of Cartier div. on X s.t.

$$\Gamma_\mathbb{Q} \rightarrow \text{Pic}(X)_\mathbb{Q}; \ D \mapsto O_X(D)$$

is iso. The multi-sec. ring

$$R_X(\Gamma) = \bigoplus_{D \in \Gamma} H^0(X, O_X(D))$$

is called a Cox ring of X.
Definition [Mori dream space]

X: normal proj. var. / k.

X: Mori dream space (or MDS for short),

(i) X: \mathbb{Q}-fac. & Pic(X) $\mathbb{Q} \cong N_1(X)$,

(ii) $\mathrm{Nef}(X)$ is the affine hull of finitely many semi-ample line bundles,

(iii) \exists a finite collection of small bir. maps $f_i: X \to X_i$ s.t. X_i satisfies (i) & (ii), and $\mathrm{Mov}(X) = \bigcup_i f_i(\mathrm{Nef}(X_i))$.

Theorem [Hu–Keel].

X: \mathbb{Q}-fac. normal proj. var. / k such that Pic(X) $\mathbb{Q} \cong N_1(X)$.

X: MDS, $\mathrm{Cox}(X)$: f.g. k-alg. - Y. Gongyo, S. Okawa, A. Sannai, & S. Takagi

University of Tokyo Algebraic Geometry Conference Chulalongkorn University, Bangkok, Thailand

Character. of Fano type via Cox rings II

21, December, 2011 4 / 23
Definition[Mori dream space]

X: normal proj. var. / k.
Definition [Mori dream space]

X: normal proj. var. / k.

X: Mori dream space (or MDS for short)
Definition[Mori dream space]

\(X\): normal proj. var. / \(k\).

\(X\): Mori dream space (or MDS for short) \iff

(i) \(X\): Q-fac. & \(\text{Pic}(X)_\mathbb{Q} \cong N^1(X)_\mathbb{Q}\),
Definition [Mori dream space]

X: normal proj. var. / k.

X: Mori dream space (or MDS for short) \iff

(i) X: \mathbb{Q}-fac. & $\text{Pic}(X)_\mathbb{Q} \cong N^1(X)_\mathbb{Q}$,

(ii) $\text{Nef}(X)$ is the affine hull of finitely many semi-ample line bundles,
Definition [Mori dream space]

X: normal proj. var. / k.

X: *Mori dream space* (or *MDS* for short) \iff

(i) X: Q-fac. & $\text{Pic}(X)_{\mathbb{Q}} \cong N^1(X)_{\mathbb{Q}}$,

(ii) $\text{Nef}(X)$ is the affine hull of finitely many semi-ample line bundles,

(iii) \exists a finite collection of small bir. maps $f_i : X \to X_i$ s.t. X_i satisfies (i) & (ii), and $\text{Mov}(X) = \bigcup_i f_i^*(\text{Nef}(X_i))$.

[Theorem [Hu–Keel]]
Definition[Mori dream space]

X: normal proj. var. / k.

X: Mori dream space (or MDS for short) ⇔

(i) X: Q-fac. & Pic(X)_Q ≃ N^1(X)_Q,

(ii) Nef(X) is the affine hull of finitely many semi-ample line bundles,

(iii) ∃ a finite collection of small bir. maps f_i : X → X_i s.t. X_i satisfies (i) & (ii), and Mov(X) = ∪_i f_i^*(Nef(X_i)).

Theorem[Hu–Keel]

X: Q-fac. normal proj. var. / k such that Pic(X)_Q ≃ N^1(X)_Q.

X: MDS ⇔ Cox(X) : f.g. k-alg.
Given $X \& D(\sim)$; Ask D is nef or not, D is nef \Rightarrow X is D-minimal model, D is not nef \Rightarrow Find a curve C s.t. $D: C < 0 \& R: R = 0 \{ C \} \subset N_1(X) \Rightarrow$ X extremal, \Rightarrow Construct a proj. mor. $\phi: X \to Y$ of conn. fibers s.t. Curve C' s.t. $\phi(C)$ is a point, $\{ C' \} \subset R$, (i) ϕ: bir. contracts a divisor \Rightarrow Replacing as $X = Y \& D = \phi(D)$, go back \Rightarrow, (ii) ϕ: bir. contracts no divisors, \Rightarrow Constructing D-flip $X_d X + Y$. Gongyo, S. Okawa, A. Sannai, & S. Takagi University of Tokyo Algebraic Geometry Conference Chulalongkorn University, Bangkok, Thailand (21 December, 2011 5 / 23)
D-MMP

Given X & D – (◊),
D-MMP

Given X & D – (◇),

Ask D is nef or not,
D-MMP

Given X and D - (\Diamond),

Ask D is nef or not,

D is nef $\Rightarrow X$: D-minimal model,
D-MMP

Given X & D – (◇),

Ask D is nef or not,

D is nef $\Rightarrow X$: D-minimal model,

D is not nef
D-MMP

Given X & $D - (\Diamond)$,

Ask D is nef or not,

D is nef \Rightarrow X: D-minimal model,

D is not nef

\Rightarrow Find a curve C s.t. $D.C < 0$ & $R := \mathbb{R}_{\geq 0}[C] \subset \text{N}^1(X)_{\mathbb{R}}$: extremal,
D-MMP

Given $X \& D - (\diamond)$,

Ask D is nef or not,

D is nef \Rightarrow X: D-minimal model,

D is not nef

\Rightarrow Find a curve C s.t. $D.C < 0 \& R := \mathbb{R}_{\geq 0}[C] \subset N^1(X)_\mathbb{R}$: extremal,

\Rightarrow Construct a proj. mor. $\varphi : X \to Y$ of conn. fibers s.t.

Curve C' s.t. $\varphi(C)$ is a point $\iff [C'] \in R$,
D-MMP

Given X & $D - (\Diamond)$,
Ask D is nef or not,
D is nef $\Rightarrow X$: D-minimal model,
D is not nef
\Rightarrow Find a curve C s.t. $D.C < 0$ & $R := \mathbb{R}_{\geq 0}[C] \subset N^1(X)_R$: extremal,
\Rightarrow Construct a proj. mor. $\varphi : X \to Y$ of conn. fibers s.t.

Curve C' s.t. $\varphi(C)$ is a point $\Leftrightarrow [C'] \in R$,

(i) φ: bir. contracts a divisor
D-MMP

Given $X \& D - (\diamond)$,

Ask D is nef or not,

D is nef \Rightarrow X: D-minimal model,

D is not nef

\Rightarrow Find a curve C s.t. $D.C < 0$ & $R := \mathbb{R}_{\geq 0}[C] \subset N^1(X)_{\mathbb{R}}$: extremal,

\Rightarrow Construct a proj. mor. $\varphi : X \to Y$ of conn. fibers s.t.

Curve C' s.t. $\varphi(C)$ is a point $\Leftrightarrow \ [C'] \in R$,

(i) φ: bir. contracts a divisor

\Rightarrow Replacing as $X := Y \& D := \varphi_*D$, go back (\diamond),
D-MMP

Given X & $D - (\Diamond)$,

Ask D is nef or not,

D is nef \Rightarrow X: D-minimal model,

D is not nef \Rightarrow Find a curve C s.t. $D.C < 0$ & $R := \mathbb{R}_{\geq 0}[C] \subset N^1(X)_{\mathbb{R}}$: extremal,

\Rightarrow Construct a proj. mor. $\varphi : X \to Y$ of conn. fibers s.t.

\[
\text{Curve } C' \text{ s.t. } \varphi(C) \text{ is a point } \iff [C'] \in R,
\]

(i) φ: bir. contracts a divisor

\Rightarrow Replacing as $X := Y$ & $D := \varphi_* D$, go back (\Diamond),

(ii) φ: bir. contracts no divisors,
Given $X \& D \rightarrow (\Diamond)$,
Ask D is nef or not,

D is nef \Rightarrow X: D-minimal model,

D is not nef \Rightarrow Find a curve C s.t. $D.C < 0 \& R := \mathbb{R}_{\geq 0}[C] \subset N^1(X)_{\mathbb{R}}$: extremal,

\Rightarrow Construct a proj. mor. $\varphi : X \rightarrow Y$ of conn. fibers s.t.

Curve C' s.t. $\varphi(C)$ is a point $\Leftrightarrow [C'] \in R$,

(i) φ: bir. contracts a divisor
\Rightarrow Replacing as $X := Y \& D := \varphi_*D$, go back (\Diamond),

(ii) φ: bir. contracts no divisors,
\Rightarrow Constructing D-flip $X \rightarrow X^+$,
D-MMP

i.e. \exists small bir. mor. $\varphi^+ : X^+ \to Y$ s.t. $X^+: \text{Q-fac.}$, $\rho(X^+ / Y) = 1$, & the str. trans. $D^+: \varphi^+$-ample,
D-MMP

i.e. \exists small bir. mor. $\varphi^+ : X^+ \to Y$ s.t. X^+: Q-fac., $\rho(X^+/Y) = 1$, & the str. trans. $D^+ : \varphi^+$-ample,
⇒ Replacing as $X := X^+$ & $D := D^+$, go back (◇),
D-MMP

i.e. \(\exists \) small bir. mor. \(\varphi^+ : X^+ \to Y \) s.t. \(X^+ : \text{Q-fac.} \), \(\rho(X^+ / Y) = 1 \), &

the str. trans. \(D^+ : \varphi^+ \)-ample,

⇒ Replacing as \(X := X^+ \) & \(D := D^+ \), go back (◊),

(iii) \(\varphi \) has a positive dim. general fibers.
D-MMP

i.e. \exists small bir. mor. $\varphi^+: X^+ \to Y$ s.t. $X^+: \mathbb{Q}$-fac., $\rho(X^+/Y) = 1$, \& the str. trans. $D^+: \varphi^+-ample,$

\Rightarrow Replacing as $X := X^+$ \& $D := D^+$, go back (\Diamond),

(iii) φ has a positive dim. general fibers.

\Rightarrow $\varphi : X \to Y$: D- Mori fiber space.
D-MMP

i.e. \(\exists \) small bir. mor. \(\varphi^+ : X^+ \to Y \) s.t. \(X^+ : \text{Q-fac.}, \rho(X^+ / Y) = 1, \) & the str. trans. \(D^+ : \varphi^+ \)-ample,
\(\Rightarrow \) Replacing as \(X := X^+ \) & \(D := D^+ \), go back (\(\diamond \)),

(iii) \(\varphi \) has a positive dim. general fibers.
\(\Rightarrow \varphi : X \to Y : D\)-Mori fiber space.

Repeat the process:

\[
X_0 = X \to X_1 \to \cdots \to X_i \cdots
\]
\textbf{D-MMP} \\
\text{i.e. } \exists \text{ small bir. mor. } \varphi^+: X^+ \to Y \text{ s.t. } X^+: \text{Q-fac.}, \rho(X^+/Y) = 1, \& \text{the str. trans. } D^+: \varphi^+\text{-ample},

\Rightarrow \text{Replacing as } X := X^+ \& D := D^+, \text{ go back (◊),}

(iii) \varphi \text{ has a positive dim. general fibers.}

\Rightarrow \varphi : X \to Y: D\text{- Mori fiber space.}

Repeat the process:

\[X_0 = X \to X_1 \to \cdots \to X_i \cdots . \]

For looking for D-minimal models or D-Mori fiber spaces, we run the program.
Theorem[Hu–Keel]

\(X: \text{MDS} \) & \(D: \text{divisor on } X. \)

Then \(D \)-MMP run and terminates.

Moreover each \(X_i \) is also a MDS.
Theorem [Hu–Keel]

\textbf{X: MDS} \& \textbf{D: divisor on } X.

Then \textbf{D-MMP} run and terminates.

Moreover each \textbf{X}_i is also a MDS.

Theorem [Hu–Keel]

\textbf{X: MDS}.

Then \exists a finite collection of rat. cont. maps \(f_i : X \rightarrow X_i \) s.t. \(\forall \) rat. cont. map \(g : X \rightarrow Y \), \(\exists i \) s.t. \(f_i \simeq g \).
Review of Okawa’s talk

Strongly F-regular
Review of Okawa’s talk

Strongly F-regular

k: F-finite field of char. $p > 0.$
Review of Okawa’s talk

Strongly F-regular

k: F-finite field of char. $p > 0$.

An int. dom. R is f.g. alg./ k is strongly F-regular
Review of Okawa’s talk

Strongly F-regular

k: F-finite field of char. $p > 0$.

An int. dom. R is f.g. alg./ k is

R: strongly F-regular $\iff 0 \neq \forall c \in R \exists e > 0$ s.t.

$$cF^e : R \rightarrow F^e_*R \rightarrow F^e_*R$$

splits as R-mod.
Globally F-regular

k: F-finite of char. $p > 0$.

X: normal var./ k.
Globally F-regular

k: F-finite of char. $p > 0$.

X: normal var./ k.

X: globally F-regular
Globally F-regular

k: F-finite of char. $p > 0$.

X: normal var./ k.

X: globally F-regular $\iff \forall D \geq 0 \exists e > 0$ s.t. $cF^e : O_X \to F^e_*O_X \to F^e_*(O_X(D)),$

splits as O_X-mod. , where $c \in H^0(X, O_X(D))$ s.t. $\text{div}_0(c) = D$.
Globally F-regular

k: F-finite of char. $p > 0$.

X: normal var./ k.

X: globally F-regular $\iff \forall D \geq 0 \exists e > 0$ s.t.

$$cF^e : O_X \to F_*^eO_X \to F_*^e(O_X(D)),$$

splits as O_X-mod. , where $c \in H^0(X, O_X(D))$ s.t. $\text{div}_0(c) = D$.

Proposition (K. Smith)

As above,
Globally F-regular

k: F-finite of char. $p > 0$.

X: normal var./ k.

X : globally F-regular $\iff \forall D \geq 0 \exists e > 0$ s.t.

$$cF^e : O_X \rightarrow F^e_* O_X \rightarrow F^e_*(O_X(D)),$$

splits as O_X-mod., where $c \in H^0(X, O_X(D))$ s.t. $\text{div}_0(c) = D$.

Proposition (K. Smith)

As above,

X is gl. F-regular
Globally F-regular

k: F-finite of char. $p > 0$.

X: normal var./ k.

X : globally F-regular $\iff \forall D \geq 0 \exists e > 0 \text{ s.t.}$

$$cF^e : O_X \to F^e_*O_X \to F^e_*(O_X(D)),$$

splits as O_X-mod. , where $c \in H^0(X, O_X(D))$ s.t. $\text{div}_0(c) = D$.

Proposition (K. Smith)

As above,

X is gl. F-regular $\iff \exists$ ample div. H s.t. the sec. ring $R(X, H)$: strongly F-regular.
Theorem P (Hashimoto, Sannai)

k: F-finite of char. $p > 0$.

X: proj. normal var./ k.
Theorem P (Hashimoto, Sannai)

k: F-finite of char. $p > 0$.

X: proj. normal var./ k.

X: gl. F-regular.
Theorem P (Hashimoto, Sannai)

k: \(F \)-finite of char. \(p > 0 \).

\(X \): proj. normal var./ \(k \).

\(X \): gl. \(F \)-regular.

\(\forall \Gamma \subset \text{Div} (X) \): semi-group of Cartier div.

\[
R_X(\Gamma) = \bigoplus_{D \in \Gamma} H^0(X, \mathcal{O}_X(D))
\]

is strongly \(F \)-regular.
Theorem F [GOST]

X: MDS.
Theorem F [GOST]

X: MDS.

If X is of gl. F-regular type,
Theorem F [GOST]

\[X: \text{MDS.} \]

If \(X \) is of gl. \(F \)-regular type, then \(X \) is of Fano type, i.e., there exists \(\Delta \geq 0 \) such that \((X, \Delta)\) is klt and \(- (K_X + \Delta)\) is ample.
Theorem F [GOST]

X: MDS.

If X is of gl. F-regular type, then X is of Fano type, i.e.,

$\exists \Delta \geq 0$ s.t. (X, Δ) is klt & $-(K_X + \Delta)$: ample.

Proof.
Theorem F [GOST]

X: MDS.

If X is of gl. F-regular type, then X is of Fano type, i.e.,

$\exists \Delta \geq 0 \text{ s.t. } (X, \Delta) \text{ is klt } \& -(K_X + \Delta): \text{ ample.}$

Proof. Running $(-K_X)$-MMP:
Theorem F [GOST]

\(X \): MDS.

If \(X \) is of gl. \(F \)-regular type, then \(X \) is of Fano type, i.e.,
\[\exists \Delta \geq 0 \text{ s.t. } (X, \Delta) \text{ is klt & } -(K_X + \Delta) : \text{ ample}. \]

Proof. Running \((-K_X)\)-MMP:

\[X_0 = X \to X_1 \to \cdots \to X_l, \]
Theorem F [GOST]

X: MDS.

If X is of gl. F-regular type, then X is of Fano type, i.e.,

$\exists \Delta \geq 0$ s.t. (X, Δ) is klt & $-(K_X + \Delta)$: ample.

Proof. Running $(-K_X)$-MMP:

$X_0 = X \rightarrow X_1 \rightarrow \cdots \rightarrow X_I$,

where X_I: a final model.
Theorem F [GOST]

X: MDS.

If X is of gl. F-regular type, then X is of Fano type, i.e.,

$\exists \Delta \geq 0$ s.t. (X, Δ) is klt & $-(K_X + \Delta)$: ample.

Proof. Running $(-K_X)$-MMP:

$$X_0 = X \mapsto X_1 \mapsto \cdots \mapsto X_f,$$

where X_f: a final model. We know each X_i is also a MDS of gl. F-reg. type since, in general,

any images of ver. of gl. F-reg. type are also of gl. F-reg. type, and gl. F-reg. preserve under isom. in codim 1.
Thus we see:

Claim.

\[X_l \] is \((K_{X_l})\)-minimal model such that \(K_{X_l}\) is big.

Proof of Claim:

We know \(X_l\); \(p\)-reduction of Fano type under taking mod. \(p\)-reduction from Schwede–Smith’s theorem.

Theorem [Schwede–Smith].

\[X_p : \text{gl. } F\text{-regular variety over a } F\text{-finite field of characteristic } p > 0. \]

Then \(X_p\) is of Fano type, i.e. \(9 \Delta_p \geq 0 \text{ s.t. } (X_p; \Delta_p) \text{ is klt} \& (K_{X_p} + \Delta_p) \text{ ample.} \)

Remark!

\(\Delta_p\) depends on \(p\). Thus we cannot lift it on \(X\).
Thus we see:

Claim

X_l is $(-K_X)$-minimal model such that $-K_{X_l}$ is big.
Thus we see:

Claim

X_I is $(-K_X)$-minimal model such that $-K_{X_I}$ is big.

Proof of Claim:
Thus we see:

Claim

X_l is $(-K_X)$-minimal model such that $-K_{X_l}$ is big.

Proof of Claim: We know $X_{l,p}$ is of Fano type under taking mod. p-reduction from Schwede–Smith’s theorem:

Theorem [Schwede–Smith]

$X_p : \text{gl. } F\text{-regular variety over a } F\text{-finite field of characteristic } p > 0$.

Then X_p is of Fano type, i.e. $\exists \Delta_p \geq 0$ s.t. (X_p, Δ_p) is klt & $-(K_{X_p} + \Delta_p)$: ample.
Thus we see:

Claim

\(X_l \) is \((-K_X)\)-minimal model such that \(-K_{X_l}\) is big.

Proof of Claim: We know \(X_{l,p} \) is of Fano type under taking mod. \(p \)-reduction from Schwede–Smith’s theorem:

Theorem [Schwede–Smith]

\(X_p : \text{gl. } F\text{-regular variety over a } F\text{-finite field of characteristic } p > 0. \)

Then \(X_p \) is of Fano type, i.e. \(\exists \Delta_p \geq 0 \text{ s.t. } (X_p, \Delta_p) \text{ is klt & } -(K_{X_p} + \Delta_p) : \text{ample.} \)

Remark! \(\Delta_p \) depends on \(p \). Thus we can not lift it on \(X \).
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space.
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$
Assume $f : X_l \to \gamma$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$

Taking reduction mod p,
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$

Taking reduction mod p, it holds $K_{X_l,p}.C_p > 0$ and C_p is movable.
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$

Taking reduction mod p, it holds $K_{X_{l,p}}.C_p > 0$ and C_p is movable. However $\exists \Delta_p \geq 0$ s.t. $-(K_{X_p} + \Delta_p)$: ample.
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$

Taking reduction mod p, it holds $K_{X_l,p}.C_p > 0$ and C_p is movable. However $\exists \Delta_p \geq 0$ s.t. $-(K_{X_p} + \Delta_p)$: ample. Since $\Delta_p.C_p \geq 0$, this is a contradiction!
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$

Taking reduction mod p, it holds $K_{X_{l,p}}.C_p > 0$ and C_p is movable. However $\exists \Delta_p \geq 0$ s.t. $-(K_{X_p} + \Delta_p)$: ample. Since $\Delta_p.C_p \geq 0$, this is a contradiction! Thus $-K_{X_l}$ is nef. In particular, $-K_{X_l}$ is semi-ample since X_l is a MDS.
Assume $f : X_l \to Y$ is $(-K_X)$-Mori fiber space. Let C a f-contracting curve.

$$K_{X_l}.C > 0.$$

Taking reduction mod p, it holds $K_{X_l,p}.C_p > 0$ and C_p is movable. However $\exists \Delta_p \geq 0$ s.t. $-(K_{X_p} + \Delta_p)$: ample. Since $\Delta_p.C_p \geq 0$, this is a contradiction!

Thus $-K_{X_l}$ is nef. In particular, $-K_{X_l}$ is semi-ample since X_l is a MDS. Thus we see:

$$(-K_{X_l})^{\dim X} = (-K_{X_l,p})^{\dim X} > 0,$$

since $-K_{X_l,p}$ is nef and big.
Assume \(f : X_l \to Y \) is \((-K_X)\)-Mori fiber space. Let \(C \) a \(f \)-contracting curve.

\[
K_{X_l}.C > 0.
\]

Taking reduction mod \(p \), it holds \(K_{X_{l,p}}.C_p > 0 \) and \(C_p \) is movable. However \(\exists \Delta_p \geq 0 \) s.t. \(-(K_{X_p} + \Delta_p) \): ample.

Since \(\Delta_p.C_p \geq 0 \), this is a contradiction!

Thus \(-K_{X_l} \) is nef. In particular, \(-K_{X_l} \) is semi-ample since \(X_l \) is a MDS. Thus we see:

\[
(-K_{X_l})^{\dim X} = (-K_{X_{l,p}})^{\dim X} > 0,
\]

since \(-K_{X_{l,p}} \) is nef and big. Finish the proof of Claim.
In particular, Hara–Watanabe’s theorem says X has only log terminal singularities.

Theorem[Hara-Watanabe]

X: \mathbb{Q}-Gor. normal var./ k of ch.=0.

If X is of strongly F-regular type, then X has only log terminal singularities.
In particular, Hara–Watanabe’s theorem says X has only log terminal singularities.

Theorem [Hara-Watanabe]

X: \mathbb{Q}-Gor. normal var./ k of ch.$=0$.
If X is of strongly F-regular type, then X has only log terminal singularities.

Thus X_l is of Fano type.
In particular, Hara–Watanabe’s theorem says X has only log terminal singularities.

Theorem [Hara-Watanabe]

X: \mathbb{Q}-Gor. normal var./ k of ch.=0.

If X is of strongly F-regular type, then X has only log terminal singularities.

Thus X_1 is of Fano type.

Now by induction it suffice to show X is of Fano type under the assumption that X_1 is of Fano type.
In particular, Hara–Watanabe’s theorem says X has only log terminal singularities.

Theorem [Hara-Watanabe]

X: \mathbb{Q}-Gor. normal var. $\rightarrow k$ of ch. $= 0$.

If X is of strongly F-regular type, then X has only log terminal singularities.

Thus X_I is of Fano type.

Now by induction it suffice to show X is of Fano type under the assumption that X_1 is of Fano type.

Assume $\exists \Delta_1 \geq 0$ s.t. (X_1, Δ_1) is klt & $-(K_{X_1} + \Delta_1)$: ample.
(i) When $f : X \to X_1$: flip,
(i) When $f : X \rightarrow X_1$: flip, let $g : X \rightarrow Y$ be the flipping contr. & $g^+ : X_1 \rightarrow Y$ the flipped contr.
(i) When \(f : X \to X_1 \): flip, let \(g : X \to Y \) be the flipping contr. & \(g^+ : X_1 \to Y \) the flipped contr.

\(\Rightarrow Y \) is of Fano type since, in general, images of var. of Fano type are also of Fano type,
(i) When $f : X \rightarrow X_1$: flip, let $g : X \rightarrow Y$ be the flipping contr. & $g^+ : X_1 \rightarrow Y$ the flipped contr.

$\Rightarrow Y$ is of Fano type since, in general, images of var. of Fano type are also of Fano type,

i.e. $\exists \Delta_Y \geq 0$ s.t. (Y, Δ_Y) is klt & $-(K_Y + \Delta_Y)$: ample.
(i) When \(f : X \to X_1 \): flip, let \(g : X \to Y \) be the flipping contr. \& \(g^+ : X_1 \to Y \) the flipped contr.

\(\Rightarrow Y \) is of Fano type since, in general, images of var. of Fano type are also of Fano type, i.e. \(\exists \Delta_Y \geq 0 \) s.t. \((Y, \Delta_Y) \) is klt \& \(- (K_Y + \Delta_Y) : \text{ample.} \)

\(\Rightarrow X \) is of Fano type since \(- (K_X + \Delta) = -g^+*(K_Y + \Delta_Y) \) is nef-big, and klt, where \(\Delta \): the str. trans. of \(\Delta_Y \).
(ii) When \(f : X \to X_1 \): divisorial contr.,
(ii) When $f : X \to X_1$: divisorial contr., we know K_X is f-ample.
(ii) When $f : X \to X_1$: divisorial contr., we know K_X is f-ample. Let Δ: the str. trans. of Δ_1.
$\Rightarrow \Delta$ is f-nef
(ii) When $f : X \to X_1$: divisorial contr., we know K_X is f-ample. Let Δ: the str. trans. of Δ_1.
$\Rightarrow \Delta$ is f-nef, in particular, $K_X + \Delta$: f-ample,
(ii) When $f : X \to X_1$: divisorial contr., we know K_X is f-ample. Let Δ: the str. trans. of Δ_1.

$\Rightarrow \Delta$ is f-nef, in particular, $K_X + \Delta$: f-ample,

$\Rightarrow -(K_X + \Delta) = -f^*(K_{X_1} + \Delta_1) + aE$,

where E the f-excep. div. and $a > 0$ (from the negativity lemma).
(ii) When $f : X \to X_1$: divisorial contr., we know K_X is f-ample.
Let Δ: the str. trans. of Δ_1.
\Rightarrow Δ is f-nef, in particular, $K_X + \Delta$: f-ample,
\Rightarrow $-(K_X + \Delta) = -f^*(K_{X_1} + \Delta_1) + aE$,
where E the f-excep. div. and $a > 0$ (from the negativity lemma).
Thus $(X, \Delta + aE)$ is klt and $-(K_X + \Delta + aE)$ is nef-big. In particular, X is of Fano type.
(ii) When $f : X \to X_1$: divisorial contr., we know K_X is f-ample. Let Δ: the str. trans. of Δ_1.

$\Rightarrow \Delta$ is f-nef, in particular, $K_X + \Delta$: f-ample,

$\Rightarrow -(K_X + \Delta) = -f^*(K_{X_1} + \Delta_1) + aE$,

where E the f-excep. div. and $a > 0$ (from the negativity lemma).

Thus $(X, \Delta + aE)$ is klt and $-(K_X + \Delta + aE)$ is nef-big. In particular, X is of Fano type.

Finish the proof of Theorem F.
Theorem C [GOST]

Let X be a \mathbb{Q}-fac. proj. normal var. over \mathbb{C}.

X : of Fano type $\iff \text{Cox}(X)$ has only log terminal singularities.
Theorem C [GOST]

Let X be a \mathbb{Q}-fac. proj. normal var./ \mathbb{C}. X : of Fano type \iff $\text{Cox}(X)$ has only log terminal singularities.

Proof. (\Leftarrow)
Theorem C [GOST]

Let X be a \mathbb{Q}-fac. proj. normal var./ \mathbb{C}. X : of Fano type \Leftrightarrow $\text{Cox}(X)$ has only log terminal singularities.

Proof. (\Leftarrow)Let H be a very ample divisor on X.
Theorem C [GOST]

Let X be a \mathbb{Q}-fac. proj. normal var./ \mathbb{C}. X : of Fano type $\Leftrightarrow \text{Cox}(X)$ has only log terminal singularities.

Proof. (\Leftarrow)Let H be a very ample divisor on X. From Theorem F, it suffices to show $R(X, H)$ is strongly F-regular type.
Theorem C [GOST]

Let X be a \mathbb{Q}-fac. proj. normal var./ \mathbb{C}.

X : of Fano type \iff $\text{Cox}(X)$ has only log terminal singularities.

Proof. (\Leftarrow) Let H be a very ample divisor on X.

From Theorem F, it suffices to show $R(X, H)$ is strongly F-regular type.

That follows from the fact that $R(X, H)$ is a pure subring of $\text{Cox}(X)$ after even taking a mod p-reduction.
Theorem C [GOST]

Let \(X \) be a \(\mathbb{Q} \)-fac. proj. normal var./ \(\mathbb{C} \).

\(X \) : of Fano type \(\iff \) Cox(\(X \)) has only log terminal singularities.

Proof. (\(\Leftarrow \))Let \(H \) be a very ample divisor on \(X \).

From Theorem F, it suffices to show \(R(X, H) \) is strongly \(F \)-regular type.

That follows from the fact that \(R(X, H) \) is a pure subring of Cox(\(X \)) after even taking a mod \(p \)-reduction.

Remark that we don’t know Cox(\(X \)) \(p \) = Cox(\(X \)).
Character of Fano type via Cox rings

\[(\Rightarrow)\]
(\Rightarrow)

Key lemma

X: MDS of gl. F-reg. type / C & Γ: f.g. semi-group of Cartier divisors.

Then there exists $m \in \mathbb{N}$ s.t. $R(X, m\Gamma)_p = R(X_p, m\Gamma_p)$ for a mod p reduction.
(⇒)

Key lemma

\(X: \text{MDS of gl. } F\text{-reg. type} / C \& \Gamma: \text{f.g. semi-group of Cartier divisors.}

Then there exists \(m \in \mathbb{N}\) s.t. \(R(X, m\Gamma)_p = R(X_p, m\Gamma_p)\) for a mod \(p\) reduction.

\text{Cox}(X) := R(X, \Gamma).

\(X: \text{MDS of gl. } F\text{-reg. type (from BCHM and Schwede–Smith)}\)
(⇒)

Key lemma

\[X: \text{MDS of gl. } F\text{-reg. type } / \mathbb{C} \& \Gamma: \text{f.g. semi-group of Cartier divisors.} \]

Then there exists \(m \in \mathbb{N} \) s.t. \(R(X, m\Gamma)_p = R(X_p, m\Gamma_p) \) for a mod \(p \) reduction.

\[\text{Cox}(X) := R(X, \Gamma). \]

\[X: \text{MDS of gl. } F\text{-reg. type (from BCHM and Schwede–Smith)} \]

\[\Rightarrow R(X, m\Gamma)_p = R(X_p, m\Gamma_p) \text{ is strong. } F\text{-reg. (Theorem P),} \]
(⇒)

Key lemma

\(X: \text{MDS of gl. } F\text{-reg. type} / \mathbb{C} \text{ & } \Gamma: \text{f.g. semi-group of Cartier divisors.} \)

Then there exists \(m \in \mathbb{N} \) s.t. \(R(X, m\Gamma)_p = R(X_p, m\Gamma_p) \) for a mod \(p \) reduction.

\[\text{Cox}(X) := R(X, \Gamma). \]

\(X: \text{MDS of gl. } F\text{-reg. type (from BCHM and Schwede–Smith)} \)

\(\Rightarrow R(X, m\Gamma)_p = R(X_p, m\Gamma_p) \) is strong. \(F\text{-reg. (Theorem P),} \)

\(\Rightarrow R(X, m\Gamma) \) is log terminal (from Hara–Watanabe),
\((\Rightarrow)\)

Key lemma

\(X: \text{MDS of gl. } F\text{-reg. type} / \mathbb{C} \& \Gamma: \text{f.g. semi-group of Cartier divisors.}\)

Then there exists \(m \in \mathbb{N}\) s.t. \(R(X, m\Gamma)_p = R(X_p, m\Gamma_p)\) for a mod \(p\) reduction.

\[\text{Cox}(X) := R(X, \Gamma).\]

\(X: \text{MDS of gl. } F\text{-reg. type (from BCHM and Schwede–Smith)}\)

\(\Rightarrow R(X, m\Gamma)_p = R(X_p, m\Gamma_p)\) is strong. \(F\text{-reg. (Theorem } P),\)

\(\Rightarrow R(X, m\Gamma)\) is log terminal (from Hara–Watanabe),

\(\Rightarrow R(X, \Gamma)\) is log terminal

since \(R(X, m\Gamma) \subseteq R(X, \Gamma)\) is étale in codim. 1 (cf. in Okawa’s talk).
(⇒)

Key lemma

\(X\): MDS of gl. \(F\)-reg. type / \(\mathbb{C}\) & \(\Gamma\): f.g. semi-group of Cartier divisors.

Then there exists \(m \in \mathbb{N}\) s.t. \(R(X, m\Gamma)_p = R(X_p, m\Gamma_p)\) for a mod \(p\) reduction.

Cox(\(X\)) := \(R(X, \Gamma)\).

\(X\): MDS of gl. \(F\)-reg. type (from BCHM and Schwede–Smith)

⇒ \(R(X, m\Gamma)_p = R(X_p, m\Gamma_p)\) is strong. \(F\)-reg. (Theorem P),

⇒ \(R(X, m\Gamma)\) is log terminal (from Hara–Watanabe),

⇒ \(R(X, \Gamma)\) is log terminal

since \(R(X, m\Gamma) \subseteq R(X, \Gamma)\) is étale in codim. 1 (cf. in Okawa’s talk).

Finish the proof of Theorem C.
We give the proof of Key lemma.
We give the proof of Key lemma.
Show $\exists m \in \mathbb{N}$ s.t.

$$H^0(X, D) = H^0(X_p, D_p)$$

for $\forall D \in m\Gamma$ & \forall closed fibers X_p of some model.
We give the proof of Key lemma.
Show \(\exists m \in \mathbb{N} \) s.t.

\[
H^0(X, D) = H^0(X_p, D_p)
\]

for \(\forall D \in m\mathcal{G} \) & \(\forall \) closed fibers \(X_p \) of some model.
\(\exists \) a finite collection of birat. cont. maps \(f_i : X \rightarrow X_i \) & cont. mor. \(g_{i,j} : X_i \rightarrow Y_{i,j} \) s.t. \(\forall D \in \mathcal{G}, \exists i, j \) s.t. \(f_i : X \rightarrow X_i \) is some \(D \)-MMP with \(g_{i,j} \) \(D \)-can. model or \(D \)-Mori fiber space.
We give the proof of Key lemma.

Show \(\exists m \in \mathbb{N} \) s.t.

\[
H^0(X, D) = H^0(X_p, D_p)
\]

for \(\forall D \in m\Gamma \) & \(\forall \) closed fibers \(X_p \) of some model.

\(\exists \) a finite collection of birat. cont. maps \(f_i : X \to X_i \) & cont. mor. \(g_{i,j} : X_i \to Y_{i,j} \) s.t. \(\forall D \in \Gamma, \exists i, j \) s.t. \(f_i : X \to X_i \) is some \(D \)-MMP with \(g_{i,j} \) \(D \)-can. model or \(D \)-Mori fiber space.

(i) When \(D \) is not effective,
We give the proof of Key lemma.
Show \(\exists m \in \mathbb{N} \text{ s.t.} \)

\[
H^0(X, D) = H^0(X_p, D_p)
\]

for \(\forall D \in m\Gamma \) \& \(\forall \) closed fibers \(X_p \) of some model.
\(\exists \) a finite collection of birat. cont. maps \(f_i : X \to X_i \) \& cont. mor. \(g_{i,j} : X_i \to Y_{i,j} \) s.t. \(\forall D \in \Gamma \), \(\exists i, j \) s.t. \(f_i : X \to X_i \) is some \(D \)-MMP with \(g_{i,j} \) \(D \)-can. model or \(D \)-Mori fiber space.

(i) When \(D \) is not effective, we see

\[
H^0(X, D) = H^0(X_p, D_p) = 0
\]

as a similar arguments to the proof of Claim.
(ii) When D is effective,
(ii) When D is effective, we see

$$H^0(X, D) = H^0(X_i, f_{i*}D).$$
(ii) When D is effective, we see

$$H^0(X, D) = H^0(X_i, f_i^*D).$$

We can take $m \in \mathbb{N}$ (do not depend on D, i, j) such that $f_i^*mD = g_{i,j}^*H$ for some ample div. H on $Y_{i,j}$.
(ii) When D is effective, we see

$$H^0(X, D) = H^0(X_i, f_{i*}D).$$

We can take $m \in \mathbb{N}$ (do not depend on D, i, j) such that

$$f_{i*}mD = g_{i,j}^*H$$

for some ample div. H on $Y_{i,j}$.

By the base change theorem and a vanishing theorem for F-split var.,
(ii) When D is effective, we see

$$H^0(X, D) = H^0(X_i, f_{i*}D).$$

We can take $m \in \mathbb{N}$ (do not depend on D, i, j) such that $f_{i*}mD = g^*_{i,j}H$ for some ample div. H on $Y_{i,j}$.

By the base change theorem and a vanishing theorem for F-split var.,

$$H^0(Y_{i,j}, A) = H^0(Y_{i,j,p}, A_p)$$

for \forall closed fibers $Y_{i,j,p}$ of any model.
(ii) When D is effective, we see

$$H^0(X, D) = H^0(X_i, f_{i*}D).$$

We can take $m \in \mathbb{N}$ (do not depend on D, i, j) such that $f_{i*}mD = g_{i,j}^*H$ for some ample div. H on $Y_{i,j}$.

By the base change theorem and a vanishing theorem for F-split var.,

$$H^0(Y_{i,j}, A) = H^0(Y_{i,j,p}, A_p)$$

for \forall closed fibers $Y_{i,j,p}$ of any model.

Thus we see $\exists m \in \mathbb{N}$ s.t.

$$H^0(X, D) = H^0(X_p, D_p)$$

for $\forall D \in m\Gamma$ & \forall closed fibers X_p of some model.
Theorem CY [GOST]

\(X : \text{MDS.} \)
Theorem CY [GOST]

X: MDS.

If X is of dense gl. F-split type, then X is of Calabi–Yau type, i.e.,

$\exists \Delta \geq 0$ s.t. (X, Δ) is lc & $K_X + \Delta \sim_{\mathbb{Q}} 0$.

Character. of Fano type via Cox rings II
Theorem CY [GOST]

X: MDS.

If X is of dense gl. F-split type, then X is of Calabi–Yau type, i.e.,

$$\exists \Delta \geq 0 \text{ s.t. } (X, \Delta) \text{ is lc } \& \ K_X + \Delta \sim_{\mathbb{Q}} 0.$$

Theorem +[Fujino–Takagi]

X: klt Mori dream surface such that $K_X \sim_{\mathbb{Q}} 0$.

Y. Gongyo, S. Okawa, A. Sannai, & S. Takagi

Character. of Fano type via Cox rings II

21, December, 2011
Theorem CY [GOST]

\(X \): MDS.

If \(X \) is of dense gl. \(F \)-split type, then \(X \) is of Calabi–Yau type, i.e.,
\[\exists \Delta \geq 0 \text{ s.t. } (X, \Delta) \text{ is lc } \& \ K_X + \Delta \sim \mathbb{Q} 0. \]

Theorem +[Fujino–Takagi]

\(X \): klt Mori dream surface such that \(K_X \sim \mathbb{Q} 0. \)

Then \(\text{Cox}(X) \) has only lc singularities.
We can give another proof of the following:

Cor. [Shokurov– Prokhorov, Fujino–Gongyo]

\[f : X \rightarrow Y : \text{surj. prom. mor. of normal proj. var. /} \mathbb{C}. \]

If \(X \) is of Fano type then so is \(Y \).
We can give another proof of the following:

Cor. [Shokurov– Prokhorov, Fujino–Gongyo]

\[f : X \to Y : \text{surj. prom. mor. of normal proj. var. } /\mathbb{C}. \]

If \(X \) is of Fano type then so is \(Y \).

Proof:
We can give another proof of the following:

Cor. [Shokurov– Prokhorov, Fujino–Gongyo]

\[\begin{align*}
 f : X &\rightarrow Y : \text{surj. prom. mor. of normal proj. var.} /\mathbb{C}. \\
 \text{If } X \text{ is of Fano type then so is } Y.
\end{align*} \]

Proof: For simplicity, assume that \(f \) has connected fibers.
We can give another proof of the following:

Cor. [Shokurov– Prokhorov, Fujino–Gongyo]

\(f : X \to Y \): surj. prom. mor. of normal proj. var. /\(\mathbb{C} \).

If \(X \) is of Fano type then so is \(Y \).

Proof: For simplicity, assume that \(f \) has connected fibers.
Then \(Y \) is also a MDS of gl. \(F \)-reg. type (cf. Okawa, ”On images of Mori dream spaces”).
We can give another proof of the following:

Cor. [Shokurov– Prokhorov, Fujino–Gongyo]

\(f : X \to Y \): surj. prom. mor. of normal proj. var. /\(\mathbb{C} \).

If \(X \) is of Fano type then so is \(Y \).

Proof: For simplicity, assume that \(f \) has connected fibers. Then \(Y \) is also a MDS of gl. \(F \)-reg. type (cf. Okawa, ”On images of Mori dream spaces”). By Theorem F, \(Y \) is of Fano type.
Question 1

X: MDS.

Then X is of CY type if and only if $\text{Cox}(X)$ has only lc sing.
Question 1

X: MDS.

Then X is of CY type if and only if $\text{Cox}(X)$ has only lc sing.

Question 2 (Schwede–Smith)

If X is of gl. F-reg. type then X is MDS.
Question 1

\(X: \text{MDS.} \)

Then \(X \) is of CY type if and only if \(\text{Cox}(X) \) has only lc sing.

Question 2 (Schwede–Smith)

If \(X \) is of gl. \(F \)-reg. type then \(X \) is MDS.

Question 3 (Schwede–Smith)

\(X \) is of dense gl. \(F \)-split type if and only if \(X \) is of CY type.