Hyperplane Arrangements

Nero Budur

Department of Mathematics

University of Notre Dame

December 19, 2011

Algebraic Geometry Conference

Chulalongkorn University, Bangkok, Thailand
I. Setup

II. Topology

III. Geometry

IV. Arithmetic
I. Setup
I. Setup

\[D = \sum_{i \in S} m_i D_i = \text{hyperplane arrangement of degree } d \text{ in } \mathbb{C}^n \]
I. Setup

\[D = \sum_{i \in S} m_i D_i = \text{hyperplane arrangement of degree } d \text{ in } \mathbb{C}^n \]

\[D = \{ f = 0 \} \text{ for some } f = \prod_i f_i^{m_i} \in \mathbb{C}[x_1, \ldots, x_n] \]

\[D \text{ is central if } f = \text{homogeneous} \]
I. Setup

\[D = \sum_{i \in S} m_i D_i \] = hyperplane arrangement of degree \(d \) in \(\mathbb{C}^n \)

\[D = \{ f = 0 \} \] for some \(f = \prod_i f_i^{m_i} \in \mathbb{C}[x_1, \ldots, x_n] \)

\(D \) is central if \(f \) = homogeneous

\(D \) is essential if \(\cap_i D_i = 0 \)
I. Setup

\[D = \sum_{i \in S} m_i D_i = \text{hyperplane arrangement of degree } d \text{ in } \mathbb{C}^n \]

\[D = \{ f = 0 \} \text{ for some } f = \prod_{i} f_i^{m_i} \in \mathbb{C}[x_1, \ldots, x_n] \]

\[D \text{ is central if } f \text{ = homogeneous} \]

\[D \text{ is essential if } \cap_i D_i = 0 \]

\[D \text{ is indecomposable if } f \neq g_1(u)g_2(t) \text{ for any choice of coordinates } (u, t) \text{ of } \mathbb{C}^n \text{ and any non-constant polynomials } g_1, g_2. \]
The *combinatorics* of D:
The *combinatorics* of D:

- *intersection lattice* $\mathcal{L}(D) := \{ \cap_{i \in I} D_i \mid I \subset S \}$ with \subset;
The *combinatorics* of D:

- *intersection lattice* $\mathcal{L}(D) := \{ \bigcap_{i \in I} D_i \mid I \subset S \}$ with \subset;
- the *codimensions* $\text{codim} : \mathcal{L}(D) \to \mathbb{Z}$;
The *combinatorics* of D:

- intersection lattice $\mathcal{L}(D) := \{ \cap_{i \in I} D_i \mid I \subset S\}$ with \subset;

- the codimensions $\text{codim} : \mathcal{L}(D) \to \mathbb{Z}$;

- the multiplicities m_i of the hyperplanes D_i.
II. Topology

Theorem (Orlik-Solomon 1980):

\[D = \text{central} \Rightarrow H^*(V, C) = \Lambda^* \left(\sum_{i \in S} C e_i \right) / (\text{de}_I | I \subset S \text{ linearly dependent}) \]

where if \(I = \{i_1, \ldots, i_k\} \) then \(\text{de}_I = \sum_{j=1}^k (-1)^j e_{i_1} \ldots \hat{e}_{i_j} \ldots e_{i_k} \).
II. Topology

\[V := \mathbb{C}^n - D. \]
II. Topology

\[V := \mathbb{C}^n - D. \]

Cohomology of \(V \) is combinatorial:

\[\text{Theorem (Orlik-Solomon 1980)}: \quad D = \text{central} \Rightarrow H^\ast(V; \mathbb{C}) = \Lambda^\ast(\sum_{i \in S} \mathbb{C}e_i) / (de_I | I \subset S \text{ linearly dependent}), \]

where if \(I = \{i_1, \ldots, i_k\} \) then

\[de_I = \sum_{j=1}^k (-1)^j e_{i_1} \cdots \hat{e}_{i_j} \cdots e_{i_k}. \]
II. Topology

\[V := \mathbb{C}^n - D. \]

Cohomology of \(V \) is combinatorial:

Theorem (Orlik-Solomon 1980): \(D = \text{central} \Rightarrow \)
II. Topology

\(V := \mathbb{C}^n - D. \)

Cohomology of \(V \) is combinatorial:

Theorem (Orlik-Solomon 1980): \(D = \text{central} \Rightarrow \)

\[H^*(V, \mathbb{C}) = \Lambda^* \left(\sum_{i \in S} e_i \right) / (de_I \mid I \subset S \text{ linearly dependent}), \]
II. Topology

$V := \mathbb{C}^n - D$.

Cohomology of V is combinatorial:

Theorem (Orlik-Solomon 1980): $D = \text{central} \Rightarrow$

$$H^*(V, \mathbb{C}) = \Lambda^*(\sum_{i \in S} C_{e_i}) / (de_I \mid I \subset S \text{ linearly dependent}),$$

where if $I = \{i_1, \ldots, i_k\}$ then
II. Topology

$V := \mathbb{C}^n - D$.

Cohomology of V is combinatorial:

Theorem (Orlik-Solomon 1980): $D = \text{central} \Rightarrow$

$$H^*(V, \mathbb{C}) = \Lambda^* \left(\sum_{i \in S} C e_i \right) / \left(de_I \mid I \subset S \text{ linearly dependent} \right),$$

where if $I = \{i_1, \ldots, i_k\}$ then

$$de_I = \sum_{j=1}^{k} (-1)^j e_{i_1} \ldots \hat{e}_{i_j} \ldots e_{i_k}.$$
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).

Characteristic varieties of local systems of rank one:

\[\text{Characteristic varieties} \]
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).

Characteristic varieties of local systems of rank one:

$$R^i_j(V) := \{ \mathcal{V} \in H^1(V, \mathbb{C}^*) \mid \dim H^i(U, \mathcal{V}) \geq j \}$$
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).

Characteristic varieties of local systems of rank one:

$$\mathcal{R}_j^i(V) := \{ \mathcal{V} \in H^1(V, C^*) \mid \dim H^i(U, \mathcal{V}) \geq j \}$$

depend only on the homotopy type of V.
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).

Characteristic varieties of local systems of rank one:

$$\mathcal{R}_j^i(V) := \{ \mathcal{V} \in H^1(V, \mathbb{C}^*) | \dim H^i(U, \mathcal{V}) \geq j \}$$

depend only on the homotopy type of V.

Conjecture: $\mathcal{R}_j^i(V)$ are combinatorial.
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).

Characteristic varieties of local systems of rank one:

$$\mathcal{R}_j^i(V) := \{ \mathcal{V} \in H^1(V, \mathbb{C}^*) \mid \dim H^i(U, \mathcal{V}) \geq j \}$$

depend only on the homotopy type of V.

Conjecture: $\mathcal{R}_j^i(V)$ are combinatorial.

Particular-case Conjecture: The Betti numbers of the Milnor fibers of D are combinatorial.
Note: $\pi_1(V)$ is not combinatorial (G. Rybnikov 1998).

Characteristic varieties of local systems of rank one:

$$R^i_j(V) := \{ V \in H^1(V, \mathbb{C}^*) \mid \dim H^i(U, V) \geq j \}$$

depend only on the homotopy type of V.

Conjecture: $R^i_j(V)$ are combinatorial.

Particular-case Conjecture: The Betti numbers of the Milnor fibers of D are combinatorial.

Still unknown even for a cone over a line arrangement in \mathbb{P}^2 with at most triple points.
The *resonance varieties*:

\[
R_{ij}(V) := \{ v \in H_1(V, \mathbb{C}) | \dim H^i(H^\bullet(V, \mathbb{C}), v \cup .) \geq j \}
\]

are combinatorial invariants (first defined by Falk).

Theorem (Cohen-Orlik):

\[R_{ij}(V) = T_C V(R_{ij}(V)) \]

Builds on Arapura (Hodge theory), Cohen - Suciu, Libgober - Yuzvinsky.

Corollary:

\[R_{ij}(V) = \text{union of vector subspaces of } H_1(V, \mathbb{C}) \]
The resonance varieties:

\[R_j^i(V) := \{ v \in H^1(V, \mathbb{C}) \mid \dim H^i(H^\bullet(V, \mathbb{C}), v \cup .) \geq j \} \]
The *resonance varieties*:

\[R^i_j(V) := \{ v \in H^1(V, \mathbb{C}) \mid \dim H^i(H^\bullet(V, \mathbb{C}), v \cup .) \geq j \} \]

are combinatorial invariants (first defined by Falk).
The resonance varieties:

\[R_j^i(V) := \{ v \in H^1(V, \mathbb{C}) | \dim H^i(H^\bullet(V, \mathbb{C}), v \cup .) \geq j \} \]

are combinatorial invariants (first defined by Falk).

Theorem (Cohen-Orlik): \(R_j^i(V) = T_{C_v}(R_j^i(V)) \).
The *resonance varieties*:

\[R_j^i(V) := \{ v \in H^1(V, \mathbb{C}) \mid \dim H^i(H^\bullet(V, \mathbb{C}), v \cup .) \geq j \} \]

are combinatorial invariants (first defined by Falk).

Theorem (Cohen-Orlik): \(R_j^i(V) = T_{C^o}(R_j^i(V)) \).

Builds on Arapura (Hodge theory), Cohen - Suciu, Libgober - Yuzvinsky.
The resonance varieties:

\[R_j^i(V) := \{ v \in H^1(V, \mathbb{C}) \mid \dim H^i(H^\bullet(V, \mathbb{C}), v \cup .) \geq j \} \]

are combinatorial invariants (first defined by Falk).

Theorem (Cohen-Orlik): \(R_j^i(V) = T_{Cv}(\mathcal{R}_j^i(V)) \).

Builds on Arapura (Hodge theory), Cohen - Suciu, Libgober - Yuzvinsky.

Corollary: \(R_j^i(V) = \text{union of vector subspaces of } H^1(V, \mathbb{C}) \).
Shape of the combinatorial invariants?
Shape of the combinatorial invariants?

Betti numbers: $b_i(V) := \dim H^i(V, \mathbb{C})$.
Shape of the combinatorial invariants?

Betti numbers: \(b_i(V) := \dim H^i(V, \mathbb{C}) \).

Theorem (J. Huh 2010, former Conjecture of Rota 1970): \(b_i(V) \)

are log-concave: \(b_i(V)^2 \geq b_{i-1}(V)b_{i+1}(V) \).
Shape of the combinatorial invariants?

Betti numbers: \(b_i(V) := \dim H^i(V, \mathbb{C}) \).

Theorem (J. Huh 2010, former Conjecture of Rota 1970): \(b_i(V) \)

are log-concave: \(b_i(V)^2 \geq b_{i-1}(V)b_{i+1}(V) \).

Positivity for other polynomials, next.
Shape of the combinatorial invariants?

Betti numbers: $b_i(V) := \dim H^i(V, \mathbb{C})$.

Theorem (J. Huh 2010, former Conjecture of Rota 1970): $b_i(V)$ are log-concave: $b_i(V)^2 \geq b_{i-1}(V)b_{i+1}(V)$.

Positivity for other polynomials, next.

Assume: $D = $ central, essential, indecomposable.
Shape of the combinatorial invariants?

Betti numbers: \(b_i(V) := \dim H^i(V, \mathbb{C}) \).

Theorem (J. Huh 2010, former Conjecture of Rota 1970): \(b_i(V) \)

are log-concave: \(b_i(V)^2 \geq b_{i-1}(V)b_{i+1}(V) \).

Positivity for other polynomials, next.

Assume: \(D = \) central, essential, indecomposable.

\(U = \mathbb{P}^{n-1} - \mathbb{P}(D), \quad b_i(U) := \dim H^i(U, \mathbb{C}) \).
Shape of the combinatorial invariants?

Betti numbers: $b_i(V) := \dim H^i(V, \mathbb{C})$.

Theorem (J. Huh 2010, former Conjecture of Rota 1970): $b_i(V)$ are log-concave: $b_i(V)^2 \geq b_{i-1}(V)b_{i+1}(V)$.

Positivity for other polynomials, next.

Assume: $D = $ central, essential, indecomposable.

$U = \mathbb{P}^{n-1} - \mathbb{P}(D), \quad b_i(U) := \dim H^i(U, \mathbb{C})$.

In fact: $b_i(U) = b_i(V) - b_{i-1}(V) + \ldots + (-1)^ib_0(V)$.
Let \(c^{(j)}_i \) denote the coefficient of \(t^i \) in

\[
c^{(j)}(t) = \prod_{k=1}^{j+1} (1 - kt)^{-1} b_{j+1-k}(U).
\]
Let $c_i^{(j)}$ denote the coefficient of t^i in

$$c^{(j)}(t) = \prod_{k=1}^{j+1} (1 - kt)^{(-1)^k b_{j+1-k}(U)}.$$

E.g. $c_1^{(j)} = b_j(U) - 2b_{j-1}(U) + 3b_{j-2}(U) - 4b_{j-3}(U) + \ldots$
Let $c^{(j)}_i$ denote the coefficient of t^i in

$$c^{(j)}(t) = \prod_{k=1}^{j+1} (1 - kt)^{(-1)^k b_{j+1-k}(U)}.$$

E.g. \[c^{(j)}_1 = b_j(U) - 2b_{j-1}(U) + 3b_{j-2}(U) - 4b_{j-3}(U) + \ldots \]

Theorem (B.): *Any Schur polynomial of weight*

\[< \text{codim } R^j_1(U) =: q_j \text{ in } c^{(j)}_1, \ldots, c^{(j)}_{q_j-1} \text{ is non-negative.} \]
Let $c^{(j)}_i$ denote the coefficient of t^i in

$$c^{(j)}(t) = \prod_{k=1}^{j+1} (1 - kt)^{(-1)^k b_{j+1-k}(U)}.$$

E.g. $c^{(j)}_1 = b_j(U) - 2b_{j-1}(U) + 3b_{j-2}(U) - 4b_{j-3}(U) + \ldots$

Theorem (B.): Any Schur polynomial of weight $< \text{codim } R^j_1(U) =: q_j$ in $c^{(j)}_1, \ldots, c^{(j)}_{q_j-1}$ is non-negative. In particular,

$c^{(j)}_i \geq 0$ for $1 \leq i < q_j.$
Let $c^{(j)}_i$ denote the coefficient of t^i in

$$c^{(j)}(t) = \prod_{k=1}^{j+1} (1 - kt)^{(-1)^k b_{j+1-k}(U)}.$$

E.g.

$c^{(j)}_1 = b_j(U) - 2b_{j-1}(U) + 3b_{j-2}(U) - 4b_{j-3}(U) + \ldots$

Theorem (B.): Any Schur polynomial of weight $< \text{codim } R^j_1(U) = q_j$ in $c^{(j)}_1, \ldots, c^{(j)}_{q_j-1}$ is non-negative. In particular,

$c^{(j)}_i \geq 0$ for $1 \leq i < q_j$. Also, $\{c^{(j)}_i\}_i$ form a log-concave sequence.
Let $c^{(j)}_i$ denote the coefficient of t^i in

$$c^{(j)}(t) = \prod_{k=1}^{j+1} (1 - kt)^{(-1)^k b_{j+1-k}(U)}.$$

E.g. $c^{(j)}_1 = b_j(U) - 2b_{j-1}(U) + 3b_{j-2}(U) - 4b_{j-3}(U) + \ldots$

Theorem (B.): Any Schur polynomial of weight $< \text{codim } R^j_1(U) =: q_j$ in $c^{(j)}_1, \ldots, c^{(j)}_{q_j-1}$ is non-negative. In particular,

$c^{(j)}_i \geq 0$ for $1 \leq i < q_j$. Also, $\{c^{(j)}_i\}_i$ form a log-concave sequence.

First few Schur polys: $c_1; c_2, c_1^2 - c_2; c_3, c_1c_2 - c_3, c_1^3 - 2c_1c_2 + c_3, \ldots$
Proof: (Method of Popa-Lazarsfeld for $h^{p,q}$ of irregular varieties.)
Proof: (Method of Popa-Lazarsfeld for $h^{p,q}$ of irregular varieties.)

Vary $v \in \mathbf{P}(H^1(U, C))$ in $(H^\bullet(U, C), v \cup \cdot)$ to get:
Proof: (Method of Popa-Lazarsfeld for $h^{p,q}$ of irregular varieties.)

Vary $v \in \mathbf{P}(H^1(U, C))$ in $(H^\bullet(U, C), v \cup \cdot)$ to get:

$$0 \longrightarrow \mathcal{O}_\mathbf{P}(-n + 1) \otimes H^0(U) \overset{\phi_0}{\longrightarrow} \mathcal{O}_\mathbf{P}(-n + 2) \otimes H^1(U) \overset{\phi_1}{\longrightarrow} \ldots$$

$$\ldots \overset{\phi_{n-2}}{\longrightarrow} \mathcal{O}_\mathbf{P} \otimes H^{n-1}(U) \longrightarrow \mathcal{F} \longrightarrow 0.$$
Proof: (Method of Popa-Lazarsfeld for $h^{p,q}$ of irregular varieties.)

Vary $v \in \mathbf{P}(H^1(U, C))$ in $(H^\bullet(U, C), \nu \cup \cdot)$ to get:

$0 \to \mathcal{O}_\mathbf{P}(-n + 1) \otimes H^0(U) \xrightarrow{\phi_0} \mathcal{O}_\mathbf{P}(-n + 2) \otimes H^1(U) \xrightarrow{\phi_1} \ldots$

$\ldots \phi_{n-2} \to \mathcal{O}_\mathbf{P} \otimes H^{n-1}(U) \to \mathcal{F} \to 0.$

Recognize this as the linear locally free resolution of \mathcal{F} constructed via BGG by Eisenbud-Popescu-Yuzvinsky.
Proof: (Method of Popa-Lazarsfeld for $h^{p,q}$ of irregular varieties.)

Vary $v \in \mathbf{P}(H^1(U, \mathbb{C}))$ in $(H^\bullet(U, \mathbb{C}), \nu \cup \cdot)$ to get:

$$0 \longrightarrow \mathcal{O}_\mathbf{P}(-n + 1) \otimes H^0(U) \xrightarrow{\phi_0} \mathcal{O}_\mathbf{P}(-n + 2) \otimes H^1(U) \xrightarrow{\phi_1} \ldots$$

$$\ldots \xrightarrow{\phi_{n-2}} \mathcal{O}_\mathbf{P} \otimes H^{n-1}(U) \longrightarrow \mathcal{F} \longrightarrow 0.$$

Recognize this as the linear locally free resolution of \mathcal{F} constructed via BGG by Eisenbud-Popescu-Yuzvinsky.

Chern poly of $\mathcal{F} = c^{(n-2)}(t).$
Proof: (Method of Popa-Lazarsfeld for $h^{p,q}$ of irregular varieties.)

Vary $v \in \mathbf{P}(H^1(U, \mathcal{C}))$ in $(H^\bullet(U, \mathcal{C}), v \cup \cdot)$ to get:

$$0 \longrightarrow \mathcal{O}_\mathbf{P}(-n+1) \otimes H^0(U) \xrightarrow{\phi_0} \mathcal{O}_\mathbf{P}(-n+2) \otimes H^1(U) \xrightarrow{\phi_1} \cdots$$

$$\cdots \xrightarrow{\phi_{n-2}} \mathcal{O}_\mathbf{P} \otimes H^{n-1}(U) \longrightarrow \mathcal{F} \longrightarrow 0.$$

Recognize this as the linear locally free resolution of \mathcal{F} constructed via BGG by Eisenbud-Popescu-Yuzvinsky.

Chern poly of $\mathcal{F} = c^{(n-2)}(t)$.

Fulton-Lazarfeld: For a globally generated vector bundle, Chern classes and Schur polynomials in these are nonnegative. □
Corollary: $P(R^i_j(U))$ is the support of the ideal generated by the minors of size $\beta_i + 1 - j$ of ϕ_i.

(Surprisingly, unknown except for $R^i_j(U)$, Matei-Suciu.) Other implications for $R^i_j(U)$: codimension bounds, connectedness criterion, propagation. (Applications of results of Buchsbaum - Eisenbud, Fulton - Lazarsfeld, resp. Tchernev - Weyman.)
Corollary: $P(R^i_j(U))$ is the support of the ideal generated by the minors of size $\beta_i + 1 - j$ of ϕ_i.

Here $\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^i b_0(U)$.
Corollary: \(P(R_j^i(U)) \) is the support of the ideal generated by the minors of size \(\beta_i + 1 - j \) of \(\phi_i \).

Here \(\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^i b_0(U) \).

(Surprisingly, unknown except for \(R_j^1(U) \), Matei-Suciu.)
Corollary: $P(R^i_j(U))$ is the support of the ideal generated by the minors of size $\beta_i + 1 - j$ of ϕ_i.

Here $\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^ib_0(U)$.

(Surprisingly, unknown except for $R^1_j(U)$, Matei-Suciu.)

Other implications for $R^i_j(U)$:
Corollary: \(P(R_j^i(U)) \) is the support of the ideal generated by the minors of size \(\beta_i + 1 - j \) of \(\phi_i \).

Here \(\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^i b_0(U) \).

(Surprisingly, unknown except for \(R_j^1(U) \), Matei-Suciu.)

Other implications for \(R_j^i(U) \): codimension bounds,
Corollary: \(P(R_i^j(U)) \) is the support of the ideal generated by the minors of size \(\beta_i + 1 - j \) of \(\phi_i \).

Here \(\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^i b_0(U) \).

(Surprisingly, unknown except for \(R_1^1(U) \), Matei-Suciu.)

Other implications for \(R_i^j(U) \): codimension bounds, connectedness criterion,
Corollary: $P(R_j^i(U))$ is the support of the ideal generated by the minors of size $\beta_i + 1 - j$ of ϕ_i.

Here $\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^i b_0(U)$.

(Surprisingly, unknown except for $R_j^1(U)$, Matei-Suciu.)

Other implications for $R_j^i(U)$: codimension bounds, connectedness criterion, propagation.
Corollary: \(P(R_j^i(U)) \) is the support of the ideal generated by the minors of size \(\beta_i + 1 - j \) of \(\phi_i \).

Here \(\beta_i := b_i(U) - b_{i-1}(U) + \ldots + (-1)^i b_0(U) \).

(Surprisingly, unknown except for \(R_j^1(U) \), Matei-Suciu.)

Other implications for \(R_j^i(U) \): codimension bounds, connectedness criterion, propagation.

(Applications of results of Buchsbaum - Eisenbud, Fulton - Lazarsfeld, resp. Tchernev - Weyman.)
III. Geometry

(1) Minimal log resolution of (\mathbb{C}^n, D)
III. Geometry

(1) *Minimal log resolution* of \((\mathbb{C}^n, D)\) (De Concini - Procesi, Schechtman - Terao - Varchenko):

\[\mu^* D = \sum_{Z = \text{dense edge}} a_Z E_Z, \quad a_Z = \text{mult} D(Z) \]

\[\text{K}_{\mu} = \sum_{Z = \text{dense edge}} k_Z E_Z, \quad k_Z = \text{codim} Z - 1. \]
III. Geometry

(1) Minimal log resolution of (\mathbb{C}^n, D) (De Concini - Procesi, Schechtman - Terao - Varchenko): $\mu : Y \to \mathbb{C}^n$ blowing up dense edges.
III. Geometry

(1) Minimal log resolution of (\mathbb{C}^n, D) (De Concini - Procesi, Schechtman - Terao - Varchenko): $\mu : Y \rightarrow \mathbb{C}^n$ blowing up dense edges. An edge $Z \in \mathcal{L}(D)$ is dense if the induced arrangement on \mathbb{C}^n/Z is decomposable.
III. Geometry

(1) *Minimal log resolution* of \((\mathbb{C}^n, D)\) (De Concini - Procesi, Schechtman - Terao - Varchenko): \(\mu : Y \to \mathbb{C}^n\) blowing up dense edges. An edge \(Z \in \mathcal{L}(D)\) is *dense* if the induced arrangement on \(\mathbb{C}^n/Z\) is decomposable.

\[
\mu^*D = \sum_{Z=\text{dense edge}} a_Z E_Z, \quad a_Z = \text{mult}_D(Z),
\]
III. Geometry

(1) Minimal log resolution of (\mathbb{C}^n, D) (De Concini - Procesi, Schechtman - Terao - Varchenko): $\mu : Y \to \mathbb{C}^n$ blowing up dense edges. An edge $Z \in \mathcal{L}(D)$ is dense if the induced arrangement on \mathbb{C}^n/Z is decomposable.

$$\mu^*D = \sum_{Z=\text{dense edge}} a_Z E_Z, \quad a_Z = \text{mult}_D(Z),$$

$$K_\mu = \sum_{Z=\text{dense edge}} k_Z E_Z, \quad k_Z = \text{codim} Z - 1.$$
(2) Multiplier ideals: $\mathcal{I}(\mathbb{C}^n, cD)$

\[\mathcal{I}(\mathbb{C}^n, cD) := \mu^* \mathcal{O}_Y (K_{\mu} - \lfloor c \mu^* D \rfloor) \]

Musta\c{t}a, Teitler:

$\mathcal{I}(\mathbb{C}^n, cD) = \bigcap_{Z = \text{dense edge}} I \lfloor c \cdot \text{mult} D (Z) \rfloor - \text{codim} (Z) + 1 Z$.

Jumping numbers:

$c \in \mathbb{R}^+$ such that $\mathcal{I}(\mathbb{C}^n, cD) \subsetneq \mathcal{I}(\mathbb{C}^n, (c-\epsilon)D) \forall \epsilon > 0$.

Theorem (B. - M. Saito):

Jumping numbers of hyperplane arrangements are given by explicit combinatorial formula.
(2) Multiplier ideals: \(\mathcal{I}(\mathbb{C}^n, cD) := \mu_* \mathcal{O}_Y(K_\mu - \lfloor c \mu^* D \rfloor) \)
(2) Multiplier ideals: \(\mathcal{I}(\mathbb{C}^n, cD) := \mu_* \mathcal{O}_Y (K_\mu - \lfloor c\mu^* D \rfloor) \)

Mustaţă, Teitler:

\[
\mathcal{I}(\mathbb{C}^n, cD) = \bigcap_{Z=\text{dense edge}} I_Z^{\lfloor c \cdot \text{mult}_D (Z) \rfloor - \text{codim} (Z) + 1}.
\]
(2) Multiplier ideals: \(\mathcal{I}(\mathbb{C}^n, cD) := \mu_* \mathcal{O}_Y (K_{\mu} - \lfloor c\mu^* D \rfloor) \)

Mustaţă, Teitler:

\[
\mathcal{I}(\mathbb{C}^n, cD) = \bigcap_{Z\text{=dense edge}} I_Z^{\lfloor c \cdot \operatorname{mult}_D(Z) \rfloor - \operatorname{codim}(Z) + 1}.
\]

Jumping numbers:
(2) Multiplier ideals: \(\mathcal{I}(\mathbb{C}^n, cD) := \mu_* \mathcal{O}_Y(K_\mu - \lfloor c\mu^* D \rfloor) \)

Musta\c{t}a, Teitler:

\[
\mathcal{I}(\mathbb{C}^n, cD) = \bigcap_{Z=\text{dense edge}} I_Z^{\lfloor c \cdot \text{mult}_D(Z) \rfloor - \text{codim}(Z) + 1}.
\]

Jumping numbers: \(c \in \mathbb{R}_+ \) such that

\[
\mathcal{I}(\mathbb{C}^n, cD) \subsetneq \mathcal{I}(\mathbb{C}^n, (c - \epsilon)D) \quad \forall \epsilon > 0.
\]
(2) Multiplier ideals: \(\mathcal{I}(\mathbb{C}^n, cD) := \mu_* \mathcal{O}_Y(K_\mu - \lfloor c\mu^*D \rfloor) \)

Mustață, Teitler:

\[
\mathcal{I}(\mathbb{C}^n, cD) = \bigcap_{Z=\text{dense edge}} I_Z^{\lfloor c \cdot \text{mult}_D(Z) \rfloor - \text{codim}(Z) + 1}.
\]

Jumping numbers: \(c \in \mathbb{R}_+ \) such that

\[
\mathcal{I}(\mathbb{C}^n, cD) \subsetneq \mathcal{I}(\mathbb{C}^n, (c - \epsilon)D) \quad \forall \epsilon > 0.
\]

Theorem (B. - M. Saito): *Jumping numbers of hyperplane arrangements are given by explicit combinatorial formula.*
(3) The Milnor fiber of f at 0 is
(3) The *Milnor fiber of* \(f \) *at* 0 is

\[
M_{f,0} := f^{-1}(t) \cap B,
\]
(3) The Milnor fiber of f at 0 is

$$M_{f,0} := f^{-1}(t) \cap B,$$

where B is a small ball centered at 0, and $0 < |t| \ll \text{radius } B \ll 1$.
(3) The *Milnor fiber of f at 0* is

$$M_{f,0} := f^{-1}(t) \cap B,$$

where B is a small ball centered at 0, and $0 < |t| \ll \text{radius } B \ll 1$.

The *monodromy* acts on $H^*(M_{f,0}, \mathbb{C})$.
(3) The Milnor fiber of f at 0 is

$$M_{f,0} := f^{-1}(t) \cap B,$$

where B is a small ball centered at 0, and $0 < |t| \ll \text{radius } B \ll 1$.

The monodromy acts on $H^*(M_{f,0}, \mathbb{C})$. The eigenvalues of monodromy are roots of 1.
(3) The *Milnor fiber of* f at 0 is

$$M_{f,0} := f^{-1}(t) \cap B,$$

where B is a small ball centered at 0, and $0 < |t| \ll \text{radius } B \ll 1$.

The *monodromy* acts on $H^*(M_{f,0}, \mathbb{C})$. The eigenvalues of monodromy

are roots of 1.

$f = \text{homogeneous} \Rightarrow$
(3) The Milnor fiber of \(f \) at 0 is

\[M_{f,0} := f^{-1}(t) \cap B, \]

where \(B \) is a small ball centered at 0, and \(0 < |t| \ll \text{radius } B \ll 1 \).

The monodromy acts on \(H^*(M_{f,0}, \mathbb{C}) \). The eigenvalues of monodromy are roots of 1.

\(f = \text{homogeneous} \Rightarrow M_{f,0} = f^{-1}(1) \)
(3) The Milnor fiber of f at 0 is

$$M_{f,0} := f^{-1}(t) \cap B,$$

where B is a small ball centered at 0, and $0 < |t| \ll \text{radius } B \ll 1$.

The monodromy acts on $H^*(M_{f,0}, \mathbb{C})$. The eigenvalues of monodromy are roots of 1.

$f = \text{homogeneous} \Rightarrow M_{f,0} = f^{-1}(1) \rightarrow U$ is unramified degree d covering
(3) The Milnor fiber of f at 0 is

$$M_{f,0} := f^{-1}(t) \cap B,$$

where B is a small ball centered at 0, and $0 < |t| \ll \text{radius } B \ll 1$.

The monodromy acts on $H^*(M_{f,0}, \mathbb{C})$. The eigenvalues of monodromy are roots of 1.

$f = \text{homogeneous} \Rightarrow M_{f,0} = f^{-1}(1) \rightarrow U$ is unramified degree d

covering $\Rightarrow H^i(M_{f,0}, \mathbb{C})_\lambda = H^i(U, \mathcal{V}_\lambda)$.
Conjecture:
Conjecture: \(\dim Gr_F^{p} H^i(M_f,0, C) \lambda \) are combinatorial.
Conjecture: \(\dim Gr_F^p H^i(M_f, 0, C)_\lambda \) are combinatorial.

First unknown case:
Conjecture: \(\dim Gr_F^p H^i(M_f, 0, C)_\lambda \) are combinatorial.

First unknown case: *If \(D = \) cone over line arrangement in \(\mathbb{P}^2 \) with at most triple points, and \(X = \) set of triple points*
Conjecture: $\dim Gr_F^p H^i(M_f, 0, C)_\lambda$ are combinatorial.

First unknown case: If $D = \text{cone over line arrangement in } \mathbb{P}^2 \text{ with at most triple points, and } X = \text{set of triple points, then}$

$\dim H^0(\mathbb{P}^2, I_X(\frac{2d}{3} - 3))$ is combinatorial.
Conjecture: $\dim Gr^p_{F} H^i(M_f,0, C)_{\lambda}$ are combinatorial.

First unknown case: If $D = cone$ over line arrangement in \mathbb{P}^2 with at most triple points, and $X = set$ of triple points, then

$\dim H^0(\mathbb{P}^2, I_X(\frac{2d}{3} - 3))$ is combinatorial.

Partial confirmation:
Conjecture: \(\dim Gr_F H^i(M_f,0, C)^\lambda \) are combinatorial.

First unknown case: If \(D = \) cone over line arrangement in \(\mathbb{P}^2 \) with at most triple points, and \(X = \) set of triple points, then

\[
\dim H^0(\mathbb{P}^2, I_X(\frac{2d}{3} - 3)) \) is combinatorial.

Partial confirmation:

Theorem (B. - M. Saito): The Hodge spectrum of a hyperplane arrangement
Conjecture: $\dim Gr^p_F H^i(M_f,0, C)_{\lambda}$ are combinatorial.

First unknown case: *If $D = \text{cone over line arrangement in } \mathbb{P}^2$ with at most triple points, and $X = \text{set of triple points},$ then*

$$\dim H^0(\mathbb{P}^2, I_X\left(\frac{2d}{3} - 3\right))$$ is combinatorial.

Partial confirmation:

Theorem (B. - M. Saito): *The Hodge spectrum of a hyperplane arrangement, i.e. the numbers

$$n_c := \sum_{i \in \mathbb{Z}} (-1)^i \dim Gr^{[n-c]} F H^i(M_f,0, C)_{e^{2\pi i c}}, \quad c \in \mathbb{Q},$$

are combinatorial.*
Conjecture: $\dim Gr_F^p H^i(M_f,0,C)_{\lambda}$ are combinatorial.

First unknown case: If D = cone over line arrangement in \mathbb{P}^2 with at most triple points, and $X = $ set of triple points, then

$$\dim H^0(\mathbb{P}^2, I_X(\frac{2d}{3} - 3))$$

is combinatorial.

Partial confirmation:

Theorem (B. - M. Saito): The Hodge spectrum of a hyperplane arrangement, i.e. the numbers

$$n_c := \sum_{i \in \mathbb{Z}} (-1)^i \dim Gr_F^{[n-c]} H^i(M_f,0,C)_{e^{2\pi i c}}, \quad c \in \mathbb{Q},$$

admit explicit combinatorial formulas.
Proof. Use local systems, Hirzebruch-Riemann-Roch, to reduce to intersection numbers on the minimal log resolution. □
Proof. Use local systems, Hirzebruch-Riemann-Roch, to reduce to intersection numbers on the minimal log resolution. □

(4) The topological zeta function
Proof. Use local systems, Hirzebruch-Riemann-Roch, to reduce to intersection numbers on the minimal log resolution. □

(4) The topological zeta function (Denef - Loeser):

\[Z_f^{top}(s) := \sum_{I \subset \mathcal{L}(D)^{dense}} \chi(E^\circ_I) \cdot \prod_{Z \in I} \frac{1}{azs + kZ + 1}, \]
Proof. Use local systems, Hirzebruch-Riemann-Roch, to reduce to intersection numbers on the minimal log resolution. □

(4) The topological zeta function (Denef - Loeser):

\[Z_{f}^{\text{top}}(s) := \sum_{I \subset \mathcal{L}(D)^{\text{dense}}} \chi(E_{I}^\circ) \cdot \prod_{Z \in I} \frac{1}{a_{Z}s + k_{Z} + 1}, \]

is combinatorial. Here \(E_{I}^\circ = \cap_{Z \in I} E_{Z} - \cup_{Z \notin I} E_{Z} \).
Proof. Use local systems, Hirzebruch-Riemann-Roch, to reduce to intersection numbers on the minimal log resolution. □

(4) The topological zeta function (Denef - Loeser):

$$Z_f^{top}(s) := \sum_{I \subseteq \mathcal{L}(\mathcal{D})^{dense}} \chi(E_I^\circ) \cdot \prod_{Z \in I} \frac{1}{a_Z s + k_Z + 1},$$

is combinatorial. Here $E_I^\circ = \cap_{Z \in I} E_Z - \cup_{Z \notin I} E_Z$.

Theorem (B. - Mustaţă - Teitler): The Monodromy Conjecture holds for hyperplane arrangements.
Proof. Use local systems, Hirzebruch-Riemann-Roch, to reduce to intersection numbers on the minimal log resolution. □

(4) The topological zeta function (Denef - Loeser):

\[\text{Z}_{\text{top}}^s := \sum_{I \subset \mathcal{L}(D)_{\text{dense}}} \chi(E_I^\circ) \cdot \prod_{Z \in I} \frac{1}{a_Z s + k_Z + 1}, \]

is combinatorial. Here \(E_I^\circ = \cap_{Z \in I} E_Z - \cup_{Z \notin I} E_Z. \)

Theorem (B. - Mustaţă - Teitler): The Monodromy Conjecture holds for hyperplane arrangements, i.e. \(c = \text{pole of } \text{Z}_{\text{top}}^s \Rightarrow e^{2\pi i c} = \)

eigenvalue of monodromy.
(5) The *Bernstein - Sato polynomial* of f, also called the *b-function*:

$$b_f(s) = \text{non-zero monic polynomial}$$

is the non-zero monic polynomial $b_f \in \mathbb{C}[s]$ of minimal degree among those for which

$$b_f(s)f_s = P \cdot f_s + 1$$

for some $P \in \mathbb{C}[x_1, \ldots, x_n, \partial \partial x_1, \ldots, \partial \partial x_n, s]$.

Example (Walther, 2003):

$$f = \text{central generic hyperplane arrangement of degree } d \Rightarrow b_f(s) = (s+1)^{n-1}2^{d-2}\prod_{j=1}^{n}(s+jd).$$
(5) The *Bernstein-Sato polynomial* of f, also called the *b-function*:

is the non-zero monic polynomial $b_f \in \mathbb{C}[s]$ of minimal degree among those for which
(5) The *Bernstein - Sato polynomial* of f, also called the *b-function*:

is the non-zero monic polynomial $b_f \in \mathbb{C}[s]$ of minimal degree among those for which

$$b(s) f^s = P \bullet f^{s+1}$$
(5) The **Bernstein - Sato polynomial** of f, also called the **b-function**: is the non-zero monic polynomial $b_f \in \mathbb{C}[s]$ of minimal degree among those for which

$$b(s) f^s = P \cdot f^{s+1}$$

for some $P \in \mathbb{C}[x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, s]$.
(5) The *Bernstein - Sato polynomial* of \(f \), also called the *b-function*:

is the non-zero monic polynomial \(b_f \in \mathbb{C}[s] \) of minimal degree among those for which

\[
b(s) f^s = P \cdot f^{s+1}
\]

for some \(P \in \mathbb{C}[x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, s] \).

Example (Walther, 2003): \(f \) = central generic hyperplane arrangement of degree \(d \) ⇒
(5) The *Bernstein - Sato polynomial* of \(f \), also called the *b-function*:

is the non-zero monic polynomial \(b_f \in \mathbb{C}[s] \) of minimal degree among those for which

\[
b(s) f^s = P \cdot f^{s+1}
\]

for some \(P \in \mathbb{C}[x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, s] \).

Example (Walther, 2003): \(f = \) central generic hyperplane arrangement of degree \(d \) \(\Rightarrow \)

\[
b_f(s) = (s + 1)^{n-1} \prod_{j=n}^{2d-2} \left(s + \frac{j}{d} \right).
\]
n/d - Conjecture (B. - Mustaţă - Teitler):

If f is a central essential indecomposable hyperplane arrangement in \mathbb{C}^n of degree d, then $b_f(\frac{-n}{d}) = 0$.

Even this one root of b_f is very useful:

Proposition (BMT): If n/d-Conjecture is true, it implies the Strong Monodromy Conjecture for all hyperplane arrangements:

$$c = \text{pole of } Z_{\text{top}}f(s) \implies b_f(c) = 0.$$

However, producing roots of b_f is very difficult.
n/d - Conjecture (B. - Mustață - Teitler): If $f =$ central essential indecomposable hyperplane arrangement in \mathbb{C}^n of degree d, then

$$b_f\left(-\frac{n}{d}\right) = 0.$$
n/d - Conjecture (B. - Mustață - Teitler): If $f = central\ essential$ indecomposable hyperplane arrangement in \mathbb{C}^n of degree d, then

$$b_f\left(\frac{-n}{d}\right) = 0.$$

Even this one root of b_f is very useful:
n/d - Conjecture (B. - Mustaţă - Teitler): If $f = central essential$

indecomposable hyperplane arrangement in \mathbb{C}^n of degree d, then

$$b_f(-\frac{n}{d}) = 0.$$

Even this one root of b_f is very useful:

Proposition (BMT): If n/d-Conjecture is true, it implies the Strong

Monodromy Conjecture for all hyperplane arrangements:

$$c = pole of Z_f^{top}(s) \Rightarrow b_f(c) = 0.$$
n/d - Conjecture (B. - Mustață - Teitler): If \(f \) = central essential indecomposable hyperplane arrangement in \(\mathbb{C}^n \) of degree \(d \), then

\[
b_f \left(-\frac{n}{d} \right) = 0.
\]

Even this one root of \(b_f \) is very useful:

Proposition (BMT): If n/d-Conjecture is true, it implies the Strong Monodromy Conjecture for all hyperplane arrangements:

\[
c = \text{pole of } Z_{f}^{\text{top}}(s) \Rightarrow b_f(c) = 0.
\]

However, producing roots of \(b_f \) is very difficult.
Theorem (B.-Saito-Yuzvinsky):

- reduced D, $n \leq 3$;
- reduced D, $(n, d) = 1$, and one hyperplane is in general position.

Corollary (BSY):
The Strong Monodromy Conjecture holds for:
- reduced hyperplane arrangements in ≤ 3 variables;
- reduced hyperplane arrangements in 4 variables, of odd degree, with one hyperplane in general position.
Theorem (B.-Saito-Yuzvinsky): The n/d-Conjecture holds for:

- reduced D, $n \leq 3$;
- reduced D, $(n, d) = 1$, and one hyperplane is in general position.

Corollary (BSY): The Strong Monodromy Conjecture holds for:

- reduced hyperplane arrangements in ≤ 3 variables;
- reduced hyperplane arrangements in 4 variables, of odd degree, with one hyperplane in general position.
Theorem (B.-Saito-Yuzvinsky): The n/d-Conjecture holds for:

- reduced D, $n \leq 3$;
Theorem (B.-Saito-Yuzvinsky): *The n/d-Conjecture holds for:*

- reduced D, $n \leq 3$;

- reduced D, $(n, d) = 1$, and one hyperplane is in general position.
Theorem (B.-Saito-Yuzvinsky): The n/d-Conjecture holds for:
- reduced D, $n \leq 3$;
- reduced D, $(n, d) = 1$, and one hyperplane is in general position.

Corollary (BSY): The Strong Monodromy Conjecture holds for:

Nero Budur (University of Notre Dame)
Theorem (B.-Saito-Yuzvinsky): The n/d-Conjecture holds for:

- reduced D, $n \leq 3$;

- reduced D, $(n, d) = 1$, and one hyperplane is in general position.

Corollary (BSY): The Strong Monodromy Conjecture holds for:

- reduced hyperplane arrangements in ≤ 3 variables;
Theorem (B.-Saito-Yuzvinsky): The \(n/d \)-Conjecture holds for:

- reduced \(D \), \(n \leq 3 \);

- reduced \(D \), \((n,d) = 1 \), and one hyperplane is in general position.

Corollary (BSY): The Strong Monodromy Conjecture holds for:

- reduced hyperplane arrangements in \(\leq 3 \) variables;

- reduced hyperplane arrangements in 4 variables, of odd degree, with one hyperplane in general position.
Proof:
Proof: Griffiths and Deligne related pole order filtration with Hodge filtration on $H^*(U, \mathbb{C})$ when $U =$ complement of a snc divisor $\mathbb{P}(D)$ in \mathbb{P}^n.

Brieskorn lattices produce roots of b_f (Malgrange, Saito). A form $df_1f_1 \wedge ... \wedge df_nf_n$ will have the right pole order to produce the root $-n/d$ if the hyperplanes $f_1,...,f_n$ satisfy a combinatorial condition. □
Proof: Griffiths and Deligne related pole order filtration with Hodge filtration on $H^*(U, \mathbb{C})$ when $U =$ complement of a snc divisor $\mathbb{P}(D)$ in \mathbb{P}^n. Dimca and M. Saito extended this to arbitrarily singular D and to non-trivial local systems \mathcal{V} by relating pole order filtration with Brieskorn lattices of Milnor fiber.
Proof: Griffiths and Deligne related pole order filtration with Hodge filtration on $H^*(U, \mathbb{C})$ when $U =$ complement of a snc divisor $\mathbb{P}(D)$ in \mathbb{P}^n. Dimca and M. Saito extended this to arbitrarily singular D and to non-trivial local systems \mathcal{V} by relating pole order filtration with Brieskorn lattices of Milnor fiber. Brieskorn lattices produce roots of b_f (Malgrange, Saito).
Proof: Griffiths and Deligne related pole order filtration with Hodge filtration on $H^\ast(U, \mathbb{C})$ when $U =$ complement of a snc divisor $\mathbb{P}(D)$ in \mathbb{P}^n. Dimca and M. Saito extended this to arbitrarily singular D and to non-trivial local systems \mathcal{V} by relating pole order filtration with Brieskorn lattices of Milnor fiber. Brieskorn lattices produce roots of b_f (Malgrange, Saito). A form $\frac{df_1}{f_1} \wedge \ldots \wedge \frac{df_n}{f_n}$ will have the right pole order to produce the root $-n/d$.

Nero Budur (University of Notre Dame)
Proof: Griffiths and Deligne related pole order filtration with Hodge filtration on $H^*(U, \mathbb{C})$ when $U =$ complement of a snc divisor $\mathbb{P}(D)$ in \mathbb{P}^n. Dimca and M. Saito extended this to arbitrarily singular D and to non-trivial local systems \mathcal{V} by relating pole order filtration with Brieskorn lattices of Milnor fiber. Brieskorn lattices produce roots of b_f (Malgrange, Saito). A form $\frac{df_1}{f_1} \wedge \ldots \wedge \frac{df_n}{f_n}$ will have the right pole order to produce the root $-n/d$ if the hyperplanes f_1, \ldots, f_n satisfy a combinatorial condition. □
(5) *Questions*: What about subspace arrangements?
(5) *Questions*: What about subspace arrangements?

Cohomology ring $H^*(V, \mathbb{Z})$ of complement is still combinatorial:
(5) Questions: What about subspace arrangements?

Cohomology ring $H^*(V, \mathbb{Z})$ of complement is still combinatorial:

(5) *Questions*: What about subspace arrangements?

Cohomology ring $H^*(V, \mathbb{Z})$ of complement is still combinatorial:

Canonical log resolutions, log canonical thresholds, Monodromy Conjecture, ... ?
IV. Arithmetic

(1) The p-adic zeta function.

(Igusa)

$f \in \mathbb{Z}[[x_1, \ldots, x_n]]$;

p = prime number;

$N_m(a) := \{ x \in (\mathbb{Z}/p^m\mathbb{Z})^n | f(x) \equiv a \text{ modulo } p^m \}$.

$P_f(t) := 1 + N_1(0) p^n t + N_2(0) p^{2n} t^2 + N_3(0) p^{3n} t^3 + \ldots$.

$P_f(t)$ is a rational function (Igusa).

$Z_p f(s) := p^{s - (p^s - 1)} P_f(p^{-s}) = \int_{\mathbb{Z}_p^n} |f(x)|^s dx$.
IV. Arithmetic

(1) The \textit{p-adic zeta function}. (Igusa)
IV. Arithmetic

(1) The \textit{p-adic zeta function.} (Igusa)

\[f \in \mathbb{Z}[x_1, \ldots, x_n] ; \]
IV. Arithmetic

(1) The p-adic zeta function. (Igusa)

\[f \in \mathbb{Z}[x_1, \ldots, x_n] \quad ; \quad p = \text{prime number} \quad ; \]
IV. Arithmetic

(1) The \textit{p-adic zeta function}. (Igusa)

\[f \in \mathbb{Z}[x_1, \ldots, x_n] \ ; \quad p = \text{prime number} \ ; \]

\[N_m(a) := \{ x \in (\mathbb{Z}/p^m\mathbb{Z})^n \mid f(x) \equiv a \text{ modulo } p^m \} \ . \]
IV. Arithmetic

(1) The \textit{p-adic zeta function}. (Igusa)

\[f \in \mathbb{Z}[x_1, \ldots, x_n] \ ; \quad p = \text{prime number} \ ; \]

\[N_m(a) := \{ x \in (\mathbb{Z}/p^m\mathbb{Z})^n \mid f(x) \equiv a \ \text{modulo} \ p^m \} \ . \]

\[P_f(t) := 1 + \frac{N_1(0)}{p^n} \cdot t + \frac{N_2(0)}{p^{2n}} \cdot t^2 + \frac{N_3(0)}{p^{3n}} \cdot t^3 + \ldots \ . \]
IV. Arithmetic

(1) The p-adic zeta function. (Igusa)

$f \in \mathbb{Z}[x_1, \ldots, x_n] \quad ; \quad p = \text{prime number} \quad ;$

\[N_m(a) := \{ x \in (\mathbb{Z}/p^m\mathbb{Z})^n \mid f(x) \equiv a \mod p^m \} . \]

\[P_f(t) := 1 + \frac{N_1(0)}{p^n} \cdot t + \frac{N_2(0)}{p^{2n}} \cdot t^2 + \frac{N_3(0)}{p^{3n}} \cdot t^3 + \ldots . \]

$P_f(t)$ is a rational function (Igusa).
IV. Arithmetic

(1) The \textit{p-adic zeta function}. (Igusa)

\(f \in \mathbb{Z}[x_1, \ldots, x_n] \ ; \ p = \text{prime number} \ ;\)

\[N_m(a) := \{ \ x \in (\mathbb{Z}/p^m\mathbb{Z})^n \ | \ f(x) \equiv a \ \text{modulo} \ p^m \} \ . \]

\[P_f(t) := 1 + \frac{N_1(0)}{p^n} \cdot t + \frac{N_2(0)}{p^{2n}} \cdot t^2 + \frac{N_3(0)}{p^{3n}} \cdot t^3 + \ldots \ . \]

\(P_f(t)\) is a rational function (Igusa).

\[Z_f^p(s) := p^s - (p^s - 1)P_f(p^{-s}) = \int_{\mathbb{Z}_p^n} |f(x)|^s dx \]
Poles of $Z_f^p(s)$ give asymptotics of $N_m(a)$.
Poles of $Z_f^p(s)$ give asymptotics of $N_m(a)$.

Strong Monodromy Conjecture (Igusa): $c = \text{pole of}$

$Z_f^p(s) \Rightarrow b_f(\text{Re}(c)) = 0$.
Poles of $Z_f^p(s)$ give asymptotics of $N_m(a)$.

Strong Monodromy Conjecture (Igusa): $c = \text{pole of}$

$Z_f^p(s) \Rightarrow b_f(\Re(c)) = 0.$

All proofs for $Z_f^{\text{top}}(s)$ seems to translate well for $Z_f^p(s)$.

Nero Budur (University of Notre Dame) Hyperplane Arrangements
Poles of $Z^p_f(s)$ give asymptotics of $N_m(a)$.

Strong Monodromy Conjecture (Igusa): $c = \text{pole of}$

\[Z^p_f(s) \quad \Rightarrow \quad b_f(Re(c)) = 0. \]

All proofs for $Z^{top}_f(s)$ seems to translate well for $Z^p_f(s)$. Hence, we also obtain the p-adic SMC for the hyperplane arrangement cases covered by BSY.
Strong Monodromy Conjecture is known in addition for:
Strong Monodromy Conjecture is known in addition for:

- irreducible plane curves (Loeser);
Strong Monodromy Conjecture is known in addition for:

- irreducible plane curves (Loeser);
- nonresonant nondegenerate polynomials (Loeser);
Strong Monodromy Conjecture is known in addition for:

- irreducible plane curves (Loeser);
- nonresonant nondegenerate polynomials (Loeser);
- relative invariants of regular irreducible prehomogeneous vector spaces (Igusa, Kimura - Sato - Zhu);
Strong Monodromy Conjecture is known in addition for:

- irreducible plane curves (Loeser);

- nonresonant nondegenerate polynomials (Loeser);

- relative invariants of regular irreducible prehomogeneous vector spaces (Igusa, Kimura - Sato - Zhu);

- monomial ideals (Howald - Mustaţă - Yuen).
(2) Question:
(2) *Question:* What are the F-pure thresholds and the test ideal jumping numbers (positive characteristic analogs of log canonical thresholds and multiplier ideal jumping numbers)?
(2) Question: What are the F-pure thresholds and the test ideal jumping numbers (positive characteristic analogs of log canonical thresholds and multiplier ideal jumping numbers)?

~ THANK YOU! ~