- 1. Let K be an arbitrary set. Let A be an algebra of complex-valued functions on K with pointwise operations, and assume that $\|\cdot\|$ is a complete algebra norm on A. Prove that $A \subset \ell_{\infty}(K)$ and that $\sup_{K} |f| \leq \|f\|$ for all $f \in A$.
- 2. Let A be a unital Banach algebra and $x, y \in A$. Show that $\sigma_A(xy) \setminus \{0\} = \sigma_A(yx) \setminus \{0\}$. Can it happen that $\sigma_A(xy) \neq \sigma_A(yx)$? Show that the commutator xy yx of x and y cannot be a non-zero scalar multiple of the identity.
- 3. Verify that the only characters on the uniform algebra $\mathcal{R}(K)$, where K is a non-empty compact subset of \mathbb{C} , are the point evaluations δ_w with $w \in K$. Similarly, show that $\Phi_{A(\Delta)} = \{\delta_w : w \in \Delta\}$ and that $\Phi_W = \{\delta_w : w \in \mathbb{T}\}$, where $A(\Delta)$ is the disc algebra and W is the Wiener algebra.
- 4. Let $A = \{ f \in C(\Delta) : \exists g \in A(\Delta), \ g \upharpoonright_{\mathbb{T}} = f \upharpoonright_{\mathbb{T}} \}$, where $\Delta = \{ z \in \mathbb{C} : |z| \leqslant 1 \}$, $\mathbb{T} = \partial \Delta$ and $A(\Delta)$ is the disc algebra. Prove that A is a closed subalgebra of $C(\Delta)$ and determine Φ_A . To which well known topological space is Φ_A homeomorphic?
- 5. Give an example of 2×2 matrices x, y with r(xy) > r(x)r(y) and r(x+y) > r(x)+r(y).
- 6. Let K be a compact Hausdorff space, and let A be a subalgebra of C(K) that contains the constant functions and separates the points of K. Assume that A is a Banach algebra in some norm $\|\cdot\|$. Prove that $\delta \colon K \to \Phi_A$, $k \mapsto \delta_k$, is a homeomorphism of K into Φ_A . Deduce that A is semisimple. What can you say about the Gelfand map if A is one of C(K), $A(\Delta)$, W or $\mathcal{R}(K)$?
- 7. Consider $V = L_1[0,1]$ with the L_1 -norm and with multiplication given by the "chopped-off" convolution:

$$f * g(x) = \int_0^x f(t)g(x-t) dt.$$

Verify that V is a non-unital commutative Banach algebra. Let $A = V_+$ be the unitization of V. What is the Gelfand map of A?

- 8. Let A be a unital Banach algebra. For $x \in A$ define $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Show that $e^{x+y} = e^x e^y$ whenever x, y are commuting elements. Show that $\sigma_A(e^x) = \{e^{\lambda} : \lambda \in \sigma_A(x)\}$. Show further that the connected component G_0 of the topological group G = G(A) that contains 1 is the subgroup of G generated by $\{e^x : x \in A\}$.
- 9. Let A be a commutative, unital Banach algebra, $x \in A$, and U an open subset of \mathbb{C} with $U \supset \sigma_A(x)$. Recall that the holomorphic functional calculus is given by

$$\Theta_x(f) = \frac{1}{2\pi i} \int_{\Gamma} f(z) (z1 - x)^{-1} dz$$

where Γ is a cycle in U that encloses $\sigma_A(x)$ but does not enclose any point of $\mathbb{C} \setminus U$. Use Lemma 6.3 to show that if A is semisimple, then Θ_x is multiplicative. By considering a second cycle Γ' in U that encloses $[\Gamma] \cup \{z \in \mathbb{C} : n(\Gamma, z) \neq 0\}$ but does not enclose any point of $\mathbb{C} \setminus U$, show directly that Θ_x is multiplicative in the general case.

- 10. Let A be a unital Banach algebra and let $x \in A$. Show that
- (i) if $\sigma_A(x)$ is disconnected, then A contains a non-trivial idempotent (i.e., not 0 or 1);
- (ii) if $\sigma_A(x) \cap (-\infty, 0] = \emptyset$ then $x = e^y$ for some $y \in A$.
- 11. Show that $T \in \mathcal{B}(H)$ is positive if and only if $\langle Tx, x \rangle \geq 0$ for all $x \in H$.

- 12. (Continuous Functional Calculus) Let $T \in \mathcal{B}(H)$ be a normal operator and $K = \sigma(T)$. Prove that there is a unique unital *-homomorphism $f \mapsto f(T) \colon C(K) \to \mathcal{B}(H)$ such that z(T) = T, where $z(\lambda) = \lambda$ for all $\lambda \in K$.
- 13. Let $\|\cdot\|$ and $\|\cdot\|'$ be C^* -norms on a *-algebra A. Prove that $\|\cdot\| = \|\cdot\|'$. Deduce that a *-isomorphism between C^* -algebras is isometric.
- 14. A Banach *-algebra is a Banach algebra with an involution satisfying $||x^*|| = ||x||$ for every x. Let $\theta \colon A \to B$ be a *-homomorphism from a Banach *-algebra A to a C^* -algebra B. Show that $||\theta(x)|| \le ||x||$ for all $x \in A$. [Hint: First consider the unital case and then use the result below about unitization.]
- 15. (i) Let K be a compact, Hausdorff space, and let A be the algebra C(K) with the supremum norm $\|\cdot\|$. Let $\|\cdot\|_1$ be some (possibly incomplete) algebra-norm on A. Show that $\|f\| \leq \|f\|_1$ for all $f \in A$.
- (ii) Let A and B be unital C^* -algebras and let $\theta: A \to B$ be an injective, unital *-homomorphism. Prove that θ is an isometry onto a C^* -subalgebra of B.

Unitization of C^* -algebras

- (a) Show that the direct sum $A \oplus B$ of C^* -algebras A and B is a C^* -algebra with coordinate-wise operations and with $\|(x,y)\| = \max\{\|x\|,\|y\|\}$.
- (b) A double centralizer for a C^* -algebra A is a pair (L,R) of bounded linear maps on A such that for all $a,b \in A$ we have

$$L(ab) = L(a)b$$
, $R(ab) = aR(b)$ and $R(a)b = aL(b)$.

Let M(A) be the set of all double centralizers for A. Show the following.

- (i) For each $c \in A$, the pair (L_c, R_c) , where $L_c(a) = ca$ and $R_c(a) = ac$ for all $a \in A$, is a double centralizer for A.
- (ii) If (L, R) is a double centralizer for A, then ||L|| = ||R||.
- (iii) M(A) is a closed subspace of $\mathcal{B}(A) \oplus \mathcal{B}(A)$.
- (iv) M(A) is a C^* -algebra with multiplication and involution defined by

$$(L_1, R_1)(L_2, R_2) = (L_1L_2, R_2R_1)$$
 $(L, R)^* = (R^*, L^*)$,

where for a bounded linear map $T: A \to A$, we set $T^*(a) = (T(a^*))^*, a \in A$.

(c) Using the previous two questions, show that if A is a C^* -algebra, then there is a (necessarily unique) C^* -norm on its unitization A_+ . [Hint: consider separately the cases whether A is unital or not.] Show that this norm extends the norm on A.