- 1. Let (x_n) be a normalised basic sequence in some Banach space. Show that (x_n) dominates the unit vector basis (e_n) of c_0 : there exists $B \ge 1$ such that $\|\sum a_i e_i\|_{\infty} \le B\|\sum a_i x_i\|$ for all $(a_i) \in c_{00}$.
- 2. Show that C[0,1] has a Schauder basis consisting of polynomials.
- 3. Let (e_n) be the unit vector basis of ℓ_1 . Show that for any permutation π of \mathbb{N} , the sequence $(e_{\pi(n)})$ is a basis of ℓ_1 . Now, for each $n \in \mathbb{N}$, set $x_n = e_n e_{n-1}$ $(e_0 = 0)$. Prove that (x_n) is a basis of ℓ_1 but that $(x_{\pi(n)})$ is not a basis for certain permutations π of \mathbb{N} .
- 4. The Schreier space X is the completion of the space c_{00} of eventually zero scalar sequences with respect to the norm

$$||(a_i)|| = \sup \left\{ \sum_{i=1}^k |a_{n_i}| : k \le n_1 < n_2 < \dots < n_k \right\}.$$

Show that the unit vector basis (e_n) is a normalised, monotone basis of X.

Let (u_n) be a normalised block basis of (e_n) such that $||u_n||_{\infty} \to 0$. Show that some subsequence of (u_n) is equivalent to the unit vector basis of c_0 . Deduce that (e_n) is weakly null.

Show that X is c_0 -saturated: every closed infinite-dimensional subspace of X contains a further subspace isomorphic to c_0 .

- 5. An operator $T\colon X\to Y$ between Banach spaces is $strictly\ singular$ if it is not an isomorphism on any infinite-dimensional subspace. Show that the sum of two strictly singular operators is strictly singular. [Hint: Construct a suitable basic sequence.] Deduce that the set $\mathcal{S}(X,Y)$ of all strictly singular operators $X\to Y$ is a closed subspace of $\mathcal{B}(X,Y)$ with the ideal property.
- 6. Let $1 \leq p < q < \infty$. Prove that $\mathcal{B}(\ell_p, \ell_q) = \mathcal{S}(\ell_p, \ell_q)$.
- 7. Let $s_n = \sum_{i=1}^n e_i$. Show that (s_n) is a basis of c_0 with basis constant 2. This is called the *summing basis* of c_0 .

Let X be a non-reflexive Banach space. Show that there is a sequence (x_n) in S_X with a w^* -accumulation point $\varphi \in X^{**} \setminus X$. Deduce that some subsequence (y_n) of (x_n) is a basic sequence that dominates the summing basis.

- 8. Use the Pełczyński Decomposition Method to show that $\ell_{\infty} \sim L_{\infty}[0,1]$. [You may assume that $L_{\infty}[0,1]$ is complemented in every superspace.]
- 9. Let $T: X \to Y$ be a linear bijection between (real) vector spaces and let C be a convex subset of X. Show that $T(\operatorname{Ext} C) = \operatorname{Ext} T(C)$. Now assume that $T: X \to Y$ is a continuous linear map between locally convex spaces and C is a compact convex subset of X. Show that $T(\operatorname{Ext} C) \supset \operatorname{Ext} T(C)$.
- 10. Show that $B_{\ell_{\infty}} = \overline{\text{conv}} \operatorname{Ext} B_{\ell_{\infty}}$ but that $B_{C[0,1]^*} \neq \overline{\text{conv}} \operatorname{Ext} B_{C[0,1]^*}$.

- 11. Let A be a Banach algebra. Let $p \in A$ be such that $p^2 = p$ (such an element of called an *idempotent*). Show that if p is in the closure of an ideal J of A, then p does in fact belong to J.
- 12. Let Δ be the closed unit disc in \mathbb{C} . Show that one can choose a sequence (D_n) of non-overlapping open discs in the interior of Δ such that $\sum_n \operatorname{diam}(D_n) < \infty$ and $\bigcup_n D_n$ is dense in Δ . Set $K = \Delta \setminus \bigcup_n D_n$ (the *Swiss Cheese*). Show that the following formula defines a non-zero, bounded linear functional on C(K).

$$\theta(f) = \int_{\partial \Delta} f(z) dz - \sum_{n=1}^{\infty} \int_{\partial D_n} f(z) dz$$

Deduce that $\mathcal{R}(K) \neq A(K)$.