- 1. Let K be a compact Hausdorff space, and (f_n) be a bounded sequence in C(K). Show that (f_n) is weakly null if and only if it is pointwise null.
- 2. Let $T: X \to Y$ be a linear map between normed spaces. Show that the following are equivalent.
- (i) T is norm-to-norm continuous.
- (ii) T is weak-to-weak continuous.
- (iii) T is norm-to-weak continuous.

Show further that T is weak-to-norm continuous if and only if T is bounded and of finite-rank.

- 3. Let $T: Y^* \to X^*$ be a bounded linear map between dual spaces. Show that the following are equivalent.
- (i) T is w^* -to- w^* continuous.
- (ii) There is a bounded linear map $S \colon X \to Y$ with $S^* = T$.
- (iii) $T^*(X) \subset Y$.
- 4. When is the canonical embedding $X^* \to X^{***}$ w^* -to- w^* continuous?
- 5. Prove that the closed unit ball B_X of a normed space X is weakly closed. Use this to show that if every norm-Cauchy sequence in X is weakly convergent then X is a Banach space.
- 6. Show that in ℓ_{∞} the set $\{e_n : n \in \mathbb{N}\} \cup \{0\}$ is weakly compact but not norm compact.
- 7. Let $x_n \xrightarrow{w} 0$ in a Banach space X. Show that for all $\varepsilon > 0$ and for all $m \in \mathbb{N}$ there exists n > m such that for all $x^* \in B_{X^*}$ there exists $i \in \mathbb{N}$ such that m < i < n and $|x^*(x_i)| < \varepsilon$.
- 8. Let Z be a subspace of X^* that separates the points of X. Show that if B_X is $\sigma(X, Z)$ -compact, then X is a dual space. More precisely, $X \cong Z^*$.
- 9. Given $F \subset X^*$ of dim $F < \infty$, $\varphi \in B_{X^{**}}$ and $\varepsilon > 0$, show that there exists $x \in X$ with $||x|| < 1 + \varepsilon$ such that \hat{x} and φ agree on F. Use this to give an alternative proof of Goldstine's theorem.
- 10. Show that every weakly compact subset of ℓ_{∞} is norm separable.
- 11. Let X be a Banach space. Prove directly, without the characterization of reflexivity in terms of w-compactness of the unit ball, that X is reflexive if and only if X^* is reflexive. Show that if Y is a closed subspace of X, then X is reflexive if and only if Y and X/Y are reflexive.
- 12. Show that none of the spaces c_0 , ℓ_1 , ℓ_∞ , $L_1[0,1]$ and $L_\infty[0,1]$ is reflexive.
- 13. Let Y be a closed subspace of a Banach space X and $q: X \to X/Y$ be the quotient map. Show that q is an open map with respect to the weak topologies of X and X/Y.