- 1. Let X be a normed space. Show that for $f \in S_{X^*}$ we have $|f(x)| = \operatorname{dist}(x, \ker f)$ for all $x \in X$. Show further that for a closed subspace Y of X and $x_0 \notin Y$ there is $f \in S_{X^*}$ with $Y \subset \ker f$ and $f(x_0) = d(x_0, Y)$.
- 2. Prove Riesz's lemma: if Y is a proper, closed subspace of a normed space X, then for all $\varepsilon > 0$ there exists $x \in S_X$ with $\operatorname{dist}(x,Y) = \inf\{\|x y\| : y \in Y\} > 1 \varepsilon$.
- 3. Let Y be a closed subspace of a normed space X. Show that the topology on X/Y induced by the quotient norm is the quotient topology induced by the quotient map $q: X \to X/Y$. Show further that Y and X/Y are complete if and only if X is complete.
- 4. Show that every separable Banach space X is the quotient of ℓ_1 , *i.e.*, that there is a closed subspace Y of ℓ_1 with $X \cong \ell_1/Y$.
- 5. Let Y be a closed subspace of a normed space X and let $Y^{\perp} = \{f \in X^* : f \upharpoonright_Y = 0\}$. Show that $(X/Y)^* \cong Y^{\perp}$ and that $Y^* \cong X^*/Y^{\perp}$.
- 6. Show that a Banach space X with its weak topology is a completely regular topological space: given a weakly closed subset C of X and $p \notin C$, there is a continuous function $f:(X,w)\to [0,1]$ such that f(p)=1 and f=0 on C.
- 7. Show the following quantitative version of Lemma 2.3. Let X be a normed space, $f, g_1, g_2, \ldots, g_n \in X^*$ and $\varepsilon > 0$. Assume that the restriction of f to $\bigcap_{i=1}^n \ker g_i$ has norm at most ε . Deduce that $d(f, \operatorname{span}\{g_1, \ldots, g_n\}) \leq \varepsilon$.
- 8. Show that the weak and norm topologies on a normed space X coincide if and only if $\dim X < \infty$. Show that the weak topology of an infinite-dimensional normed space and the w^* -topology of the dual space of an infinite-dimensional Banach space are not metrizable.
- 9. Let $T: X \to Y$ be a bounded linear map between Banach spaces. Show that
- (i) T is an into isomorphism if and only if T^* is onto;
- (ii) T^* is an into isomorphism if and only if T is onto;
- (iii) T^* is injective if and only if T(X) is dense in Y;
- (iv) T(X) is closed if and only if $T^*(Y^*)$ is closed.

10. For a subset A of a normed space X, we define the annihilator of A as the subset $A^{\perp} = \{f \in X^* : f(x) = 0 \text{ for all } x \in A\}$ of X^* . Similarly, for $B \subset X^*$, we define the preannihilator of B as the subset $B_{\perp} = \{x \in X : f(x) = 0 \text{ for all } f \in B\}$ of X.

- (i) Show that $\overline{\operatorname{span}}A = (A^{\perp})_{\perp}$ for any $A \subset X$.
- (ii) Show that $\overline{\operatorname{span}}^{w^*}B = (B_{\perp})^{\perp}$ for any $B \subset X^*$. Deduce that a w^* -closed subspace Y of X^* is a dual space: there is a normed space Z such that $Y \cong Z^*$.
- (iii) Prove the following for a bounded linear map T between normed spaces.
 - (a) $\ker T = (\operatorname{im} T^*)_{\perp}$ and $\ker T^* = (\operatorname{im} T)^{\perp}$.
 - (b) $\overline{\operatorname{im} T} = (\ker T^*)_{\perp} \text{ and } \overline{\operatorname{im} T^*}^{w^*} = (\ker T)^{\perp}.$
- 11. Let Ω be a set and \mathcal{F} be a σ -field on Ω . Prove carefully that the set $L_{\infty}(\Omega, \mathcal{F})$ of all bounded, measurable, scalar-valued functions on Ω is a Banach space in the supremum norm: $||f||_{\infty} = \sup_{\omega \in \Omega} |f(\omega)|$. The aim of this question is to identify $L_{\infty}(\Omega, \mathcal{F})^*$.

A finitely additive measure on \mathcal{F} is a (real or complex) function ν on \mathcal{F} such that $\nu(\emptyset) = 0$ and $\nu(A \cup B) = \nu(A) + \nu(B)$ whenever $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$. The total variation measure $|\nu|$ of ν is defined as follows.

$$|\nu|(A) = \sup \left\{ \sum_{k=1}^{n} |\nu(A_k)| : A = \bigcup_{k=1}^{n} A_k \text{ is a measurable partition of } A \right\}.$$

The total variation of ν is $\|\nu\|_1 = |\nu|(\Omega)$. We say ν is bounded if $\|\nu\|_1 < \infty$. Show that the space ba (Ω, \mathcal{F}) of all bounded, finitely additive measures on \mathcal{F} is a Banach space in the total variation norm and that it is isometrically isomorphic to $L_{\infty}(\Omega, \mathcal{F})^*$.

- 12. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that $L_{\infty}(\mu)$ is a quotient of $L_{\infty}(\Omega, \mathcal{F})$. Deduce that $L_{\infty}(\mu)^*$ is a subspace of $ba(\Omega, \mathcal{F})$ and identify that subspace.
- 13. Let $0 and define <math>L_p(0,1)$ to be the space of Lebesgue measurable functions $f: [0,1] \to \mathbb{R}$ for which $\int_0^1 |f(x)|^p dx < \infty$. Show that

$$d(f,g) = \int_0^1 |f(x) - g(x)|^p dx$$

defines a metric on $L_p(0,1)$ (as usual, we identify functions that are equal a.e.). Identify the dual space of $L_p(0,1)$, *i.e.*, the space of linear functionals on $L_p(0,1)$ that are continuous with respect to d.