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1. Let X be a normed space. Show that for f ∈ SX∗ we have |f(x)| = dist(x, ker f)
for all x ∈ X. Show further that for a closed subspace Y of X and x0 /∈ Y there is
f ∈ SX∗ with Y ⊂ ker f and f(x0) = d(x0, Y ).

2. Prove Riesz’s lemma: if Y is a proper, closed subspace of a normed space X, then
for all ε > 0 there exists x ∈ SX with dist(x, Y ) = inf{‖x− y‖ : y ∈ Y } > 1− ε.

3. Let Y be a closed subspace of a normed space X. Show that the topology on
X/Y induced by the quotient norm is the quotient topology induced by the quotient
map q : X → X/Y . Show further that Y and X/Y are complete if and only if X is
complete.

4. Show that every separable Banach space X is the quotient of `1, i.e., that there is
a closed subspace Y of `1 with X ∼= `1/Y .

5. Let Y be a closed subspace of a normed space X and let Y ⊥ = {f ∈ X∗ : f�Y = 0}.
Show that

(
X/Y

)∗ ∼= Y ⊥ and that Y ∗ ∼= X∗/Y ⊥.

6. Show that a Banach space X with its weak topology is a completely regular
topological space: given a weakly closed subset C of X and p /∈ C, there is a continuous
function f : (X,w)→ [0, 1] such that f(p) = 1 and f = 0 on C.

7. Show the following quantitative version of Lemma 2.3. Let X be a normed space,
f, g1, g2, . . . , gn ∈ X∗ and ε > 0. Assume that the restriction of f to

⋂n
i=1 ker gi has

norm at most ε. Deduce that d
(
f, span{g1, . . . , gn}

)
6 ε.

8. Show that the weak and norm topologies on a normed space X coincide if and only
if dimX <∞. Show that the weak topology of an infinite-dimensional normed space
and the w∗-topology of the dual space of an infinite-dimensional Banach space are not
metrizable.

9. Let T : X → Y be a bounded linear map between Banach spaces. Show that
(i) T is an into isomorphism if and only if T ∗ is onto;
(ii) T ∗ is an into isomorphism if and only if T is onto;
(iii) T ∗ is injective if and only if T (X) is dense in Y ;
(iv) T (X) is closed if and only if T ∗(Y ∗) is closed.



10. For a subset A of a normed space X, we define the annihilator of A as the subset
A⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈ A} of X∗. Similarly, for B ⊂ X∗, we define the
preannihilator of B as the subset B⊥ = {x ∈ X : f(x) = 0 for all f ∈ B} of X.

(i) Show that spanA =
(
A⊥
)
⊥ for any A ⊂ X.

(ii) Show that spanw∗
B =

(
B⊥
)⊥

for any B ⊂ X∗. Deduce that a w∗-closed subspace
Y of X∗ is a dual space: there is a normed space Z such that Y ∼= Z∗.

(iii) Prove the following for a bounded linear map T between normed spaces.

(a) kerT = (imT ∗)⊥ and kerT ∗ = (imT )⊥.

(b) imT = (kerT ∗)⊥ and imT ∗
w∗

= (kerT )⊥.

11. Let Ω be a set and F be a σ-field on Ω. Prove carefully that the set L∞(Ω,F) of all
bounded, measurable, scalar-valued functions on Ω is a Banach space in the supremum
norm: ‖f‖∞ = supω∈Ω|f(ω)|. The aim of this question is to identify L∞(Ω,F)∗.

A finitely additive measure on F is a (real or complex) function ν on F such that
ν(∅) = 0 and ν(A ∪B) = ν(A) + ν(B) whenever A,B ∈ F and A ∩B = ∅. The total
variation measure |ν| of ν is defined as follows.

|ν|(A) = sup
{ n∑

k=1

|ν(Ak)| : A =
n⋃

k=1

Ak is a measurable partition of A
}
.

The total variation of ν is ‖ν‖1 = |ν|(Ω). We say ν is bounded if ‖ν‖1 < ∞. Show
that the space ba(Ω,F) of all bounded, finitely additive measures on F is a Banach
space in the total variation norm and that it is isometrically isomorphic to L∞(Ω,F)∗.

12. Let (Ω,F , µ) be a measure space. Show that L∞(µ) is a quotient of L∞(Ω,F).
Deduce that L∞(µ)∗ is a subspace of ba(Ω,F) and identify that subspace.

13. Let 0 < p < 1 and define Lp(0, 1) to be the space of Lebesgue measurable functions

f : [0, 1]→ R for which
∫ 1

0
|f(x)|p dx <∞. Show that

d(f, g) =

∫ 1

0

|f(x)− g(x)|p dx

defines a metric on Lp(0, 1) (as usual, we identify functions that are equal a.e.). Iden-
tify the dual space of Lp(0, 1), i.e., the space of linear functionals on Lp(0, 1) that are
continuous with respect to d.


