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1 The Hahn—Banach extension theorems

Dual space. Let X be a normed space. The dual space X* of X is the space
of all bounded linear functionals on X. The dual space is a Banach space in the
operator norm which is defined for f € X* as

I£ll = sup {|f(2)| : = € Bx} .

Recall that Bx = {z € X : ||z| < 1} is the closed unit ball of X and that
Sx ={z € X : ||z|| = 1} is the unit sphere of X.

Examples. (7 = (, for 1 <p < oo, 1 < ¢ < oo with 1% + % = 1. We also have
¢ =41, If H is a Hilbert space then H* = H (conjugate-linear in the complex
case).

Notation. 1. Given normed spaces X and Y, we write X ~ Y if X and Y
are isomorphic, i.e., when there is a linear bijection T: X — Y such that both
T and T~! are continuous. (Recall that by the Open Mapping Theorem, if X
and Y are both complete and T is a continuous linear bijection, then T~ is
automatically continuous.)



2. Given normed spaces X and Y, we write X 2 Y if X and Y are isometrically
isomorphic, i.e., when there is a surjective linear map T: X — Y such that
|ITx|| = ||z|| for all x € X. It follows that T is a continuous linear bijection and
that 77! is also isometric, and hence continuous.

3. For z € X and f € X*, we shall sometimes denote f(x), the action of f on
x, by (z, f). By definition of the operator norm we have

(@, )l = @) < 1A - ]l -

When X is a Hilbert space and we identify X* with X in the usual way, then
(x, f) is the inner product of = and f.

Definition. Let X be a real vector space. A functional p: X — R is called

e positive homogeneous if p(tx) = tp(x) for all z € X and ¢ > 0, and

o subadditive if p(x +y) < p(z) + p(y) for all z,y € X.

Theorem 1. (Hahn—Banach) Let X be a real vector space and p be a positive
homogeneous, subadditive functional on X. Let Y be a subspace of X and
g: Y — R be a linear functional such that g(y) < p(y) for all y € Y. Then
there is a linear functional f: X — R such that fly= g and f(x) < p(z) for all
zeX.

Zorn’s Lemma. This is used in the proof, so we recall it here. Let (P, <) be a
poset (partially ordered set). An element x € P is an upper bound for a subset
Aof Pifa <z foralla € A. A subset C of P is called a chain if it is linearly
ordered by <. An element x € P is a maximal element of P if whenever x < y
for some y € P, we have y = x. Zorn’s Lemma states that if P # () and every
non-empty chain in P has an upper bound, then P has a maximal element.

Definition. A seminorm on a real or complex vector space X is a functional
p: X — R such that

e p(z) >0 for all z € X
p(Azr) = [A|p(z) for all x € X and for all scalars A;

e p(z+y) < p(x) +py) for all z,y € X.

Note. “norm” = “seminorm” = “positive homogeneous+subadditive”.

Theorem 2. (Hahn-Banach) Let X be a real or complex vector space and p
be a seminorm on X. Let Y be a subspace of X and g be a linear functional on
Y such that |g(y)| < p(y) for all y € Y. Then there is a linear functional f on
X such that fly=g and |f(z)| < p(z) for all z € X.

Remark. It follows from the proof given in lectures that for a complex normed
space X, the map f — Re(f): (X*)]R — (XR)* is an isometric isomorphism.
Here YR, for a complex vector space Y, denotes the real vector space obtained
from Y by restricting scalar multiplication to the reals.



Corollary 3. Let X be a real or complex vector space and p be a seminorm
on X. For every zp € X there is a linear functional f on X with f(z) = p(zo)
and |f(z)] < p(x) for all z € X.

Theorem 4. (Hahn-Banach) Let X be a real or complex normed space.
Then

(i) Given a subspace Y of X and g € Y*, there exists f € X* with fly=g¢g
and || f[| = [lgll-

(ii) Given a non-zero xg € X, there exists f € Sx« with f(zg) = ||zo]|.

Remarks. 1. Part (i) can be viewed as a linear version of Tietze’s extension
theorem. The latter states that if L is a closed subset of a compact Hausdorff
space K, and g: L — R (or C) is continuous, then there is a continuous function
f:+ K — R (respectively, C) such that f]r= g and || f|lcc = |9lc0-
2. Part (ii) implies that X* separates the points of X: given x # y in X, there
exists f € X* such that f(x) # f(y). Thus there are “plenty” bounded linear
functionals on X.
3. The element f € X* in part (ii) is called a norming functional for xq. It
shows that

ol = max {|(z0.9)| : g € Bx-} -

Another name for f is support functional at xg. Assume X is a real normed
space and that ||zg|| = 1. Then Bx C {x € X : f(z) < 1}, and hence the
hyperplane {z € X : f(x) =1} can be thought of as a tangent to Bx at x.

Bidual. Let X be a normed space. Then X** = (X*)* is called the bidual or
second dual of X. It is the Banach space of all bounded linear functionals on X*
with the operator norm. For € X we define 2: X* — R (or C) by &(f) = f(x)
(evaluation at x). Then & € X** and ||#|| < ||=||. The map z — &: X — X** is
called the canonical embedding.

Theorem 5. The canonical embedding defined above is an isometric isomor-
phism of X into X™**.

Remarks. 1. Using the bracket notation, we have
(fi2) =(z,f) =flx) weX feX .

2. The image X = {#: 2 € X} of the canonical embedding is closed in X** if
and only if X is complete. R
3. In general, the closure of X in X** is a Banach space which contains an
isometric copy of X as a dense subspace. We have thus proved that every
normed space has a completion.

Definition. X is reflexive if the canonical embedding of X into X™** is surjec-
tive.

Examples. 1. The spaces £,, 1 < p < oo, Hilbert spaces, finite-dimensional
spaces are reflexive. Later we prove that the spaces L,(p), 1 < p < oo, are also
reflexive.

2. The spaces co, ¢1, L1[0, 1] are not reflexive.



Remark. Every reflexive space X is complete with X = X**. There are
Banach spaces X with X = X** which are not reflexive. So for 1 < p < o0,
it is not sufficient to say that £;* = (7 = £, (where ¢ is the conjugate index
of p) to deduce that ¢, is reflexive. One also has to verify that this isometric
isomorphism is the canonical embedding.

Dual operators. Recall that for normed spaces X,Y we denote by B(X,Y)
the space of all bounded linear maps T: X — Y. This is a normed space in the
operator norm:

|T|| =sup {||Tz| : « € Bx} .

Moreover, B(X,Y') is complete if Y is.
For T € B(X,Y), the dual operator of T is the map T%: Y* — X* defined
by T*(g) = go T for g € Y*. In bracket notation:

(x, T*g) = (Tx,g) reX, geYr.
T* is linear and bounded with || 77| = ||T|| (uses Theorem 4(ii)).

Remark. When X and Y are Hilbert spaces, the dual operator T corresponds
to the adjoint of T after identifying X* and Y* with X and Y, respectively.

Example. Let 1 < p < oo and consider the right shift R: ¢, — ¢,. Then
R*: {; — {4 (q the conjugate index of p) is the left shift.

Properties of dual operators. 1. (IdX )* = Idx«

2. (AS +puT)* = AS* + uT™* for scalars A,y and for S,T € B(X,Y). Note that
unlike for adjoints there is no complex conjugation here. That is because the
identification of a Hilbert space with its dual is conjugate linear in the complex
case.

3. (ST)*=T*S* for T € B(X,Y) and S € B(Y, Z).

4. The map T — T*: B(X,Y) — B(Y*, X*) is an into isometric isomorphism.
5. The following diagram

T

X Y

T**

X** Y**
commutes, where the vertical arrows represent canonical embeddings.

Remark. It follows from the above properties that if X ~ Y then X* ~ Y™*.

Quotient space. Let X be a normed space and Y a closed subspace. Then
the quotient space X/Y becomes a normed space in the quotient norm defined
as follows.

le+Y|=inf{llz+yl|:yeY} zeX.

The quotient map ¢: X — X/Y is a surjective linear map that is bounded with
llgll < 1. It maps the open unit ball Dx = {z € X : [|z|| < 1} onto Dx,y. It
follows that ||¢|| =1 (if X # Y") and that ¢ is an open map (it maps open sets
onto open sets).



If T: X — Z is a bounded linear map with Y C ker(T"), then there is a
unique map T': X/Y — Z such that the diagram

X -7

XY
commutes, and moreover T is linear, bounded and ||| = [T
Theorem 6. Let X be a normed space. If X* is separable, then so is X.
Remark. The converse is false. E.g., X = {1 is separable but X* =/, is not.

Theorem 7. Every separable normed space is isometrically isomorphic to a
subspace of .

Remarks. 1. The result says that (o, is isometrically universal for the class
SB of all separable Banach spaces. We will later see that there is a separable
space with the same property.

2. A dual version of the above result states that every separable Banach spaces
is a quotient of /1.

Theorem 8. (Vector-valued Liouville) Let X be a complex Banach space and
f: C — X be a bounded, holomorphic function. Then f is constant.

Locally Convex Spaces. A locally convez space (LCS) is a pair (X, P), where
X is a real or complex vector space and P is a family of seminorms on X that
separates the points of X in the sense that for every z € X with « # 0, there
is a seminorm p € P with p(z) # 0. The family P defines a topology on X: a
set U C X is open if and only if for all z € U there exist n € N, p1,...,p, € P
and € > 0 such that

{yeX:pk(y—x)<5for1<k:<n}CU.

Remarks. 1. Addition and scalar multiplication are continuous.
2. The topology of X is Hausdorff as P separates the points of X.
3. A sequence z,, — z in X if and only if p(z,, —x) — 0 for all p € P. (The
same holds for nets.)
4. For a subspace Y of X define Py = {p[y: p € P}. Then (Y, Py) is a locally
convex space, and the corresponding locally convex topology on Y is nothing
else but the subspace topology on Y induced by X.
5. Let P and Q be two families of seminorms on X both of which separate the
points of X. We say P and Q are equivalent and write P ~ Q if they define the
same topology on X.

The topology of a locally convex space (X,P) is metrizable if and only if
there is a countable @ with O ~ P.

Definition. A Fréchet space is a complete metrizable locally convex space.



Examples. 1. Every normed space (X, ||-||) is a LCS with P = {||-||}.

2. Let U be a non-empty, open subset of C, and let O(U) denote the space
of all holomorphic functions f: U — C. For a compact set K C U and for
f € OU) set p(f) = sup,ex|f(2)]. Set P = {px : K C U, K compact}.
Then (O(U),P) is a locally convex space whose topology is the topology of
local uniform convergence.

There exist compact sets K,, C U, n € N, such that K, C int(K,+1) and
U=U,Kn Then {pg, : n € N} is countable and equivalent to P. Hence
(O(U),P) is metrizable and in fact it is a Fréchet space.

The topology of local uniform convergence is not normable: the topology
is not induced by a norm. This follows, for example, from Montel’s theorem:
given a sequence (f,) in O(U) such that (f,,[x) is bounded in (C(K), ||leo)
for every compact K C U, there is a subsequence of (f,,) that converges locally
uniformly.

3. Fix d € N and a non-empty open set @ C R Let C(Q) denote the
space of all infinitely differentiable functions f: Q — R. Every multi-index

d . . . . .
a=(a,...,aq) € (220) gives rise to a partial differential operator

(%} a2 (o)
poo (2N (2N (2"
0x 0o 0xq
For a multi-index «, a compact set K C , and f € O(U) define

pr.al(f) =sup {|(D*f)(z)|: 2 € K} .

Set P = {pk,o : K C Q compact,a € (Z30)?}. Then (C>(Q),P) is a locally
convex space. It is a Fréchet space and is not normable.

Lemma 9. Let (X, P) and (Y, Q) be locally convex spaces. Let T: X — Y be
a linear map. Then TFAE:

(i) T is continuous.
(ii) T is continuous at 0.
(iii) For all ¢ € Q there exist n € N, p1,...,p, € P and C > 0 such that
q(Tz) < Clr<naé< pr(z) forall x € X .

IR

Dual space. Let (X, P) be a locally convex space. The dual space X* of X is
the space of all linear functionals on X that are continuous with respect to the
locally convex topology of X.

Lemma 10. Let f be a linear functional on a locally convex space X. Then
f € X* if and only if ker f is closed.

Theorem 11. (Hahn-Banach) Let (X, P) be a locally convex space.
(i) Given a subspace Y of X and g € Y*, there exists f € X* with fly=g.

(ii) Given a closed subspace Y of X and zp € X \ 'Y, there exists f € X* such
that fly=0 and f(x¢) # 0.

Remark. It follows that X* separates the points of X.



The dual space of L,. We fix a measure space (Q, F,u). Let 1 < p < o0
and let ¢ be the conjugate index of p (i.e., 1 < ¢ < oo and % + % = 1). For
g € Ly = Ly(p) define

@g: Ly — scalars , we(f) = /Qfgdy .

By Hélder’s inequality we have ¢4 is well-defined and [¢4(f)| < || fllp - lgllq- By
linearity of integration, ¢, is linear, and hence ¢, € Ly with [[pg|| < ||gll,- We
have thus obtained a function

w:Lg—L,, g g
This is linear by linearity of integration and bounded with ||¢|| < 1.
Theorem 12. Let (Q, F, 1), p,q, p be as above.
(i) If 1 < p < oo, then ¢ is an isometric isomorphism. Thus L} = L.

(ii) If p = 1 and in addition p is o-finite, then ¢ is an isometric isomorphism.
Thus, in this case, we have L] = L.

Remarks. 1. Recall that p is o-finite if there is a sequence (4, ) in F such
that @ = J A, and u(4,) < oo for all n € N.

2. One approach for proving surjectivity of ¢ is via the Radon—Nikodym theo-
rem. We shall follow a different path via uniform convexity in Chapter 4.

Complex measures. Let 2 be a set and F be a o-field on Q. A complex
measure on F is a countably additive set function v: F — C. The total variation
measure |v| of v is defined at A € F as follows.

|v|(A) = sup { Z|I/(Ak)| A= U Ay, is a measurable partition of A} .
k=1 k=1

(Measurable partition means that Ay € F for all k, and A; N Ay = (0 for all
j # k.) It is easy to check that |v|: F — [0,00] is a positive measure. (The
expression positive measure simply means measure but is used for emphasis to
distinguish it from complex and signed measures.) It is also straightforward to
verify that |v| is the smallest positive measure that dominates v. It is in fact a
finite measure, i.e., that |v|(2) < co. We define the total variation ||v|1 of v
by vl = [v](9).

Signed measures. Let (2, F) be as before. A signed measure on F is a
countably additive set function v: F — R. Every signed measure is in particular
a complex measure.

Theorem 13. Let v: F — R be a signed measure on the o-field . Then there
exist unique finite positive measures v and v~ satisfying v = v+ — v~ and
lv|=vt +v.

Remarks. 1. This decomposition v = v+ — v~ of v is called the Jordan
decomposition of v.



2. Let v: F — C be a complex measure. Then Re(r) and Im(v) are signed
measures, so they have Jordan decompositions 11 — v and vs — vy, respectively.
We then obtain the expression v = v| — vy +ivs — ivy called the Jordan decom-
position of v. It follows that vy < |v| for all k, and |v| < vy + v +v3 + 4. From
this we deduce that |v| is a finite measure.

Integration with respect to complex measures. Let 2 be a set, F be a o-
field on 2, and v be a complex measure on F. A measurable function f: Q — C
is v-integrable if [,|f|d|v| < oo. In that case we define

/Qfdz/:/ﬂfdylf/ﬂfdl/g+i/ﬂfd1/3fi/Qfdz/zl,

where v = v1 — vy + ivg — ivy is the Jordan decomposition of v. Note that f is
v-integrable if and only if f is vg-integrable for each k. The following properties
are easy to check:

1. fQ 1adv =v(A) for all A e F.

2. Linearity: given v-integrable functions f, g and complex numbers a, b, the
function af + bg is v-integrable, and [,(af +bg)dv =a [, fdv +b [, gdv.

3. Dominated convergence (D.C.): let f,,, n € N, be measurable functions that
converge a.e. to a measurable function f. Assume that there exists g € Ly (|v|)
with |f,| < g for all n. Then f,, f are v-integrable and [, f, dv — [, fdv.

4. ’ I fdz/’ < J,|f1d]v| for all v-integrable f.

C(K) spaces. We fix a compact Hausdorff space K. We shall be interested in
the following spaces and sets.

C(K)={f: K — C: fis continuous}

C*(K)={f: K —R: fis continuous}

CT(K)={feC(K): f>00n K}

M(K)=C(K)"={¢: C(K) — C: ¢ is linear and continuous}

MR(K) ={pc M(K): o(f) €R for all f<c C*(K)}

MY (K) ={p: C(K) — C: ¢ is linear and o(f) >0 for all f € CT(K)}
Note. 1. M®(K) is a closed, real-linear subspace of M (K). C®(K)* = M®(K).

= flerry: MR(K) — C®(K)* is an isometric real-linear isometry.

2. Elements of M (K) are called positive linear functionals. These are auto-
matically continuous, and in fact

MT(EK) ={p € M(K) : |lo] = ¢(1x)} .

Borel measures and regularity. Let X be a Hausdorff topological space and
G be the collection of open subsets of X. The Borel o-field on X is defined to be
B = 0(G), the o-field generated by G, i.e., the smallest o-field on X containing G.
Equivalently, B is the intersection of all o-fields on X that contain G. Members
of B are called Borel sets.



A Borel measure on X is a measure on . Given a Borel measure p on X,
we say w is regular if the following hold:

(i) p(E) < oo for all compact E C X;
(ii) p(A) =inf{u(U): ACU e G} forall A € B;
(iii) p(U) =sup{u(E): E C U, E compact} for all U € G.

A complex Borel measure v on X is defined to be regular if |v| is a regular
measure on X.

Note that if X is compact Hausdorff, then a Borel measure p on X is regular
if and only if

u(X)<oo and wp(A)=inf{u(U): ACUeG} VAeB
which in turn is equivalent to

w(X) <oo and p(A)=sup{u(E): ECA, Eclosed} VAe€B.

Example. Lebesgue measure on R is a regular Borel measure.

The dual space of C(K). Let v be a complex Borel measure on K. For
f € C(K) we have

/ 1Al < oo - (K |
K

and hence f is v-integrable. The function ¢: C(K) — C given by ¢(f) =
Jy fdv is linear and bounded with ||| < [[v|1. Thus ¢ € M(K). Note that
if v is a signed measure, then p € M®(K), and if v is a positive measure, then
v € MT(K).

Theorem 14. (Riesz Representation Theorem) For every ¢ € M(K) there is
a unique regular complex Borel measure v on K that represents ¢:

<,0(f)=/deV for all f € C(K) .

Moreover, we have ||| = |[v||1. If ¢ € M®(K) then v is a signed measure, and
if o € M+ (K), then v is a positive measure.

Corollary 15. The space of regular complex Borel measures on K is a complex
Banach space in the total variation norm, and it is isometrically isomorphic to
M(K)=C(K)*.

The space of regular signed Borel measures on K is a real Banach space in the
total variation norm, and it is isometrically isomorphic to M®(K) = C®(K)*.

2 Weak topologies
Let X be a set and F be a family of functions such that each f € F is a function

f: X — Yy where Yy is a topological space. The weak topology o(X, F) of X is
the smallest topology on X with respect to which every f € F is continuous.



Remarks. 1. The family S = {f~'(U) : f € F, U C Yy an open set} is a
sub-base for o(X,F). This means that o(X,F) is the topology generated by
S, i.e., the smallest topology containing S§. Equivalently, the family of finite
intersections of members of S is a base for o(X, F), i.e., o(X,F) consists of
arbitrary unions of finite intersections of members of S. To spell this out, a set
V C X is open in the weak topology o(X,F) if and only if for all x € V there
exist n €N, f1,..., f, € F and open sets U; C Yy, 1 < j < n, such that

ze () f(U)cV.
j=1

To put it in another way, V C X is open in the weak topology if and only if
for all x € V there exist n € N, fi,..., f, € F and open neighbourhoods U; of
Ji(x) in Yy, 1 < j < n, such that ﬂ;;l fj_l(Uj) cV.

2. Suppose that Sy is a sub-base for the topology of Yy for each f € F. Then
{f~Y(U): feF, UeS;}is asub-base for o(X, F).

3. If Y is a Hausdorff space for each f € F and F separates the points of X
(for all x # y in X there exists f € F such that f(z) # f(y)), then o(X,F) is
Hausdorff.

4. Let Y C X and set Fy = {f]y: f € F}. Then o(X, F)ly= o(Y, Fy), i.e.,
the subspace topology on Y induced by the weak topology o(X,F) of X is the
same as the weak topology on Y defined by Fy.

5. (Universal property) Let Z be a topological space and g: Z — X a function.
Then g is continuous if and only if fog: Z — Y} is continuous for every f € F.
This universal property characterizes the weak topology (cf. Examples Sheet 2).

Examples. 1. Let X be a topological space, Y C X and ¢: Y — X be the
inclusion map. Then the weak topology (Y, {¢}) is the subspace topology of Y’
induced by X.

2. Let I' be an arbitrary set, and let X, be a topological space for each v € I'.
Let X be the Cartesian product [] . X,. Thus

X = {x: x is a function with domain I', and z(y) € X, for all y € T'} .

For z € X we often write ., instead of x(7), and think of = as the “I-tuple”
(24)yer. For each v we consider the function 7,: X — X, given by « — z(v)
(or (x5)ser +— ) called evaluation at y or projection onto X.. The product
topology on X is the weak topology o(X,{m, : v € I'}). Note that V' C X is
open if and only if for all = (z4)yer € V there exist n € N, 71,...,7, € T
and open neighbourhoods U; of z.,; in X, such that

{y:(yy),yep: Yy, € Uj forlgjgn}cv.
Proposition 1. Assume that X is a set, and for each n € N we are given
a metric space (Y,,d,) and a function f,: X — Y,. Further assume that

F ={fn: n € N} separates the points of X. Then the weak topology (X, F)
of X is metrizable.

Remark. Without the assumption that F separates the points of X, we can
conclude that o(X, F) is pseudo-metrizable.

Theorem 2. (Tychonov) The product of compact topological spaces is compact
in the product topology.

10



Weak topologies on vector spaces. Let E be a real or complex vector space.
Let F' be a subspace of the space of all linear functionals on E that separates
the points of E (for all z € E, x # 0, there exists f € F such that f(z) # 0).
Consider the weak topology o(E, F) on E. Note that U C E is open if and only
if for all x € U there exist n € N, f1,..., f, € F and € > 0 such that

yeE: |fily—x)|<eforl<i<n}CU.

For f € F define ps: E — R by ps(x) = |f(x)|. Set P ={ps: f € F}. Then P
is a family of seminorms on F that separates the points of E, and the topology
of the locally convex space (F,P) is precisely o(E, F'). In particular, o(E, F) is
a Hausdorff topology with respect to which addition and scalar multiplication
are continuous.

Lemma 3. Let F be as above. Let f,g1,99,...,9, be linear functionals on F.
If (j_, ker g; C ker f, then f € span{gi,...,gn}.

Proposition 4. Let E and F' be as above. Then a linear functional f on F is
o(E, F)-continuous if and only if f € F. In other words (E,o(E,F))* = F.

Note. Recall that (E,o(F, F))* denotes the dual space of the locally convex
space (E,0(E, F)), i.e., the space of linear functionals that are continuous with
respect to o(E, F).

Examples. The following two examples of weak topologies on vector spaces
are the central objects of interest in this chapter.

1. Let X be a normed space. The weak topology on X is the weak topology
o(X,X*) on X. Note that X* separates the points of X by Hahn-Banach. We
shall sometimes denote X with the weak topology by (X, w). Open sets in the
weak topology are called weakly open or w-open. Note that U C X is w-open if
and only if for all z € U there exist n € N, f1,..., f, € X* and € > 0 such that

fveX:|fily—a)<efor1<i<n}CU.

2. Let X be a normed space. The weak-star topology (or w*-topology) on X* is
the weak topology o(X*, X) on X*. Here we identify X with its image in X**
under the canonical embedding. We shall sometimes denote X* with the w*-
topology by (X*, w*). Open sets in the weak-star topology are called w*-open.
Note that U C X* is w*-open if and only if for all f € U there exist n € N,
T1,...,T, € X and € > 0 such that

{ge X" : |g(x;) — flay)|<eforl1<i<n}CU.

Properties. 1. (X,w) and (X*, w*) are locally convex spaces, so in particular
they are Hausdorff, and addition and scalar multiplication are continuous.

2. o(X,X*) C ||-||-topology with equality if and only if dim X < oco.

3. o(X*, X) C o(X*, X*) C ||-|-topology with equality in the second inclusion
if and only if dim X < oo, and with equality in the first inclusion if and only if
X is reflexive (¢f. Proposition 5 below).

4. If Y is a subspace of X, then o(X,X*)|y= o(Y,Y*). This follows from
Remark 4 on page 10 and from the Hahn-Banach theorem.

11



Similarly, we have o(X**, X*)|x= o(X, X™*), i.e., the subspace topology on
X induced by the w*-topology of X** is the weak topology of X. Thus, the
canonical embedding X — X** is a w-to-w*-homeomorphism from X onto its
image (as well as being an isometric isomorphism).

Proposition 5. Let X be a normed space. Then

(i) alinear functional f on X is weakly continuous (i.e., continuous with respect
to the weak topology on X) if and only if f € X*. Briefly, (X, w)* = X*;

(ii) a linear functional ¢ on X* is w*-continuous (i.e., continuous with respect
to the weak-star topology on X*) if and only if ¢ € X, i.e., there exists
x € X with ¢ = . Briefly, (X*,w*)* = X.

It follows that on X™* the weak and weak-star topologies coincide, i.e., we have
o(X*, X**) = o(X*, X) if and only if X is reflexive.

Definition. Let X be a normed space.

A set A C X is weakly bounded if {f(x): x € A} is bounded for all f € X*.
Equivalently, for each w-open ngbd U of 0, there exists A > 0 such that A C \U.
A set B C X* is weak-star bounded if {f(x) : f € B} is bounded for all
x € X. Equivalently, for each w*-open ngbd U of 0, there exists A > 0 such
that B C AU.

Principal of Uniform Boundedness (PUB). If X is a Banach space, Y is
a normed space, 7 C B(X,Y) is pointwise bounded (sup{||Tz| : T € T} < o
for all x € X), then T is uniformly bounded (sup{||T||: T € T} < o).

Proposition 6. Let X be a normed space.

(i) Any weakly bounded set in X is bounded in norm.

(ii) If X is complete then any weak-star bounded set in X* is bounded in norm.

Notation. 1. We write z,, — x and say x, converges weakly to x if x, — x
in the weak topology (in some normed space X). This happens if and only if
(T, f) = (z, f) for all f e X*.

2. We write f, v, f and say f, converges weak-star to f if f, — f in
the weak-star topology (in some dual space X*). This happens if and only if
(@, fn) = (z, f) for all x € X.

A consequence of PUB. Let X be a Banach space, Y a normed space, and
(T,) a sequence in B(X,Y) that converges pointwise to a function 7. Then
T € B(X,Y), sup||Ty,|| < oo and ||T|| < liminf||T5,].

Proposition 7. Let X be a normed space.

(i) If z, — 2 in X, then sup||z,|| < co and ||z|| < Iminf|z,].

(i) If f, v, fin X* and X is complete, then sup| f,|| < oo and ||f]| <
lminf|| f,. -

12



The Hahn—Banach Separation Theorems. Let (X,P) be a locally convex
space. Let C' be a convex subset of X with 0 € int C. Define

po: X - R po(z) =inf{t >0: z € tC} .

This function is well-defined and is called the Minkowski functional or gauge
functional of C.

Example. If X is a normed space and C = By, then puc = ||-||.

Lemma 8. The function p¢ is a positive homogeneous, subadditive functional.
Moreover, we have

{reX:po(x)y<l}cCc{zeX: puc(zr) <1}

with equality in the first inclusion when C' is open and equality in the second
inclusion when C' is closed.

Remark. If C' is symmetric in the case of real scalars, or balanced in the case
of complex scalars, then puc is a seminorm. If in addition C' is bounded, then
Lo is a norm.

Theorem 9. (Hahn-Banach separation theorem) Let (X, P) be a locally convex
space and C be an open convex subset of X with 0 € C. Let 2o € X \ C. Then
there exists f € X* such that f(xg) > f(x) for all z € C if the scalar field is R,
and Ref(x¢) > Ref(z) for all x € C if the scalar field is C.

Remark. From now on, for the rest of this chapter, we assume that the scalar
field is R. It is straightforward to modify the statements of theorems, their
proofs, etc, in the case of complex scalars.

Theorem 10. (Hahn-Banach separation theorem) Let (X,P) be a locally
convex space and A, B be non-empty disjoint convex subsets of X.

(i) If Ais open, then there exists f € X* and o € R such that f(z) < a < f(y)
forallz € A, y € B.

(ii) If A is compact and B is closed, then there exists f € X* such that sup 4 f <
infB f

Theorem 11. (Mazur) Let C' be a convex subset of a normed space X. Then
Cl'l = Cv, i.e., the norm-closure and weak-closure of C' are the same. It follows
that C' is norm-closed if and only if C is weakly closed.

Corollary 12. Assume that z,, — 0 in a normed space X. Then for all € > 0
there exists « € conv{x, : n € N} with ||z <e.

Remark. It follows that there exist p1 < ¢1 < p2 < g2 < ... and convex
combinations Zg;pn t;x; that converge to zero in norm. In some but not all
cases a stronger conclusion can be obtained: see Examples Sheet 2, Question 13.

Theorem 13. (Banach—-Alaoglu) The dual ball Bx« is w*-compact for any
normed space X.

13



Proposition 14. Let X be a normed space and K be a compact Hausdorff
space.

(i) X is separable if and only if (Bx«,w*) is metrizable.

(ii) C(K) is separable if and only if K is metrizable.

Remarks. 1. If X is separable, then (Bx~,w*) is a compact metric space. In
particular, Bx« is w*-sequentially compact.

2. If X is separable, then X* is w*-separable. It is an easy consequence of
Mazur’s theorem that X is separable if and only if X is weakly separable. Thus,
the previous statement reads: if X is w-separable, then X* is w*-separable.
The converse is false, e.g., for X = ly (see the remark following Goldstine’s
theorem).

3. The proof shows that any compact Hausdorff space K is a subspace of
(Be(xys w™).

4. The proof shows that every normed space X embeds isometrically into C'(K)
for some compact Hausdorff space. In particular, this holds with K = (Bx«, w*)
(¢f. Theorem 19 below).

Proposition 15. X* is separable if and only if (Bx,w) is metrizable.

Theorem 16. (Goldstine) Bx = Bx«-, i.e., the w*-closure of the unit ball
Bx of a normed space X in the second dual X** is Bxx.

Remark. It follows from Goldstine that X® = X**. Thus, if X is separable,
then X** is w*-separable. For example, ¢ is w*-separable.

Theorem 17. Let X be a Banach space. Then TFAE.
(i) X is reflexive.
(ii) (Bx,w) is compact.
(iii) X™ is reflexive.
Remark. It follows that if X is separable and reflexive, then (Bx,w) is a
compact metric space, and hence sequentially compact.

Lemma 18. For every non-empty compact metric space K there is a continuous
surjection p: A — K, where A = {0, 1} with the product topology.

Note. A is homeomorphic via the map (g;) — >_,(2;)37* to the middle-third
Cantor set.

Theorem 19. Every separable Banach space embeds isometrically into C[0, 1].
Thus the separable space C[0, 1] is isometrically universal for the class of sepa-
rable Banach spaces.
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3 Schauder bases

Definition. A Schauder basis or simply basis of a Banach space X is a sequence
(en) in X such that for all x € X there exists a unique sequence (a,,) of scalars

such that z is the norm-convergent sum z = > o7

n=1an€n-

Notation. For a sequence (e,,) in X, we let [e,] = span{e, : n € N}.

Note. If (e,) is a basis of X, then (e,) is linearly independent and X = [e,].
Thus, X is separable and infinite-dimensional.

Definition. A sequence (e,) in a Banach space X is called a basic sequence if
it is a basis of its closed linear span [ey].

Theorem 1. Let (e,,) be a sequence in a Banach space X. Then (e,) is a basis
of X if and only if the following three conditions hold:

(i) en # 0 for all n € N.

(ii) There exists C' > 1 such that

m n
H E a;€; éC’H E a;e;
=1 1=1

for all scalar sequences (a;) and all 1 < m < n in N.

(iil) X = [en)-

It follows that (e,,) is a basic sequence if and only if conditions (i) and (ii) hold.
Remark. If (e,) is a basis of X, then the projections P,: X — X defined
by P, (Y002, aiei) = i, ae; are called the basis projections. By the above
theorem, {P, : n € N} is uniformly bounded. The constant C' = sup,,cy|| Py || is
called the basis constant of (ey), and it is the least C' that satisfies condition (ii)
above. A basis with basis constant 1 is called a monotone basis.

Examples. 1. The Schauder system is a monotone basis of C10, 1].

2. The unit vector basis is a monotone basis of £,, 1 < p < oo, and of co.

3. The Haar system is a monotone basis of L,[0,1] for 1 < p < 0.

Remark. A famous result of Per Enflo shows that there are separable infinite-
dimensional Banach spaces without bases. However, we have the following.

Theorem 2. (Mazur) Every infinite-dimensional Banach space contains a basic
sequence. More precisely, for any £ > 0, every infinite-dimensional Banach space
contains a normalised basic sequence with basis constant at most 1 + ¢.

Lemma 3. Let F be a finite-dimensional subspace of an infinite-dimensional
Banach space X, and let & > 0. Then there exists y € Sx such that ||z| <
(14 ¢)|lz + Ay|| for all x € F and all scalars A.

Remark. The proof of the lemma shows that there is a finite-codimensional
subspace Y of X such that any y € Sy works.
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Dual bases. Let (e,) be a basis of a Banach space X, let P,, n € N, be the
corresponding basis projections, and let C' be the basis constant. For n € N,
define the n'" coordinate functional e} by

<Zaiei,ez> =a, .

Then e}, € X* with L < |lef|| < 2% . Moreover,
n llenl n llexn

P;(J:*):Za?*(ei)ef (z* € X*, neN)
i=1

It follows that (e}) is a basic sequence in X* whose n'® basis projection is the

restriction to [ef] of P, and hence its basis constant is at most C'. We call (e})
the dual basis or biorthogonal sequence of (e;).
Equivalence of bases and perturbation. We begin with a simple result.

Proposition 4. For two basic sequences (e,,) and (f,) in possibly different
Banach spaces the following conditions are equivalent.

(i) > ae; converges if and only if 3 a, f; converges for all (a;).
(ii) The map T'(e,) = f extends to an isomorphism T': [e,] — [fn]-

(iii) There exist constants A > 0 and B > 0 such that

AHZaiei éHZaifi <BHZCH€¢

for all (a;) € cgo.

Definition. Two basic sequences (e,) and (f,) in possibly different Banach
spaces are equivalent, written (e,) ~ (fn), if any of the conditions (i), (ii)
or (iii) in the proposition above is satisfied. More precisely, we say that (ey)
and (f,,) are C-equivalent, written (e, ) ~ (fn), if (iii) holds with A/B < C, or

equivalently, if (ii) holds with || ||| 77| < C.

Proposition 5. Let (e,) be a basic sequence in a Banach space X with dual
basis (eX). If a sequence (f,) in X satisfies

(1) > _lleqllllen = fall <1
n=1
then (f,) is a basic sequence which is C-equivalent to (e, ), where C' = if—j{ and

v=>.llexllllen — fnll. Moreover, if [e,] is complemented in X, then so is [f,].

Block bases. Let (e,) be a basis of a Banach space X with basis constant C'.
For x =3 ane, € X, we define the support of X (with respect to (e,)) to be
the set

supp(z) = {n € N: q, # 0} .
Note that supp(z) = {n € N: e} (z) # 0} where (e}) is the dual basis.
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For subsets A, B of N, we write A < Bifa <bforalla € A and b € B. For
vectors x,y € X, we write z < y if supp(z) < supp(y). A block basis of (ey) is
a sequence u; < ug < ... of non-zero vectors in X. Note that (u,) is then a
basic sequence with basis constant at most C.

A sequence (z,,) in a Banach space X is seminormalised if there exist con-
stants a > 0 and b > 0 such that a < ||z,|| < b for all n € N.

Proposition 6. Let (e,,) be a basis of a Banach space X with basis projections
P,, n € N. Let (z,,) be a seminormalised sequence in X such that Py(x,) — 0
as n — oo for each k € N. Then (z,) has a basic subsequence equivalent to
some block basis of (e,,).
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