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1 The Hahn–Banach extension theorems

Dual space. Let X be a normed space. The dual space X∗ of X is the space
of all bounded linear functionals on X. The dual space is a Banach space in the
operator norm which is defined for f ∈ X∗ as

‖f‖ = sup
{
|f(x)| : x ∈ BX

}
.

Recall that BX = {x ∈ X : ‖x‖ 6 1} is the closed unit ball of X and that
SX = {x ∈ X : ‖x‖ = 1} is the unit sphere of X.

Examples. `∗p
∼= `q for 1 6 p < ∞, 1 < q 6 ∞ with 1

p + 1
q = 1. We also have

c∗0
∼= `1. If H is a Hilbert space then H∗ ∼= H (conjugate-linear in the complex

case).

Notation. 1. Given normed spaces X and Y , we write X ∼ Y if X and Y
are isomorphic, i.e., when there is a linear bijection T : X → Y such that both
T and T−1 are continuous. (Recall that by the Open Mapping Theorem, if X
and Y are both complete and T is a continuous linear bijection, then T−1 is
automatically continuous.)
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2. Given normed spaces X and Y , we write X ∼= Y if X and Y are isometrically
isomorphic, i.e., when there is a surjective linear map T : X → Y such that
‖Tx‖ = ‖x‖ for all x ∈ X. It follows that T is a continuous linear bijection and
that T−1 is also isometric, and hence continuous.
3. For x ∈ X and f ∈ X∗, we shall sometimes denote f(x), the action of f on
x, by 〈x, f〉. By definition of the operator norm we have

|〈x, f〉| = |f(x)| 6 ‖f‖ · ‖x‖ .

When X is a Hilbert space and we identify X∗ with X in the usual way, then
〈x, f〉 is the inner product of x and f .

Definition. Let X be a real vector space. A functional p : X → R is called

• positive homogeneous if p(tx) = tp(x) for all x ∈ X and t > 0, and

• subadditive if p(x+ y) 6 p(x) + p(y) for all x, y ∈ X.

Theorem 1. (Hahn–Banach) Let X be a real vector space and p be a positive
homogeneous, subadditive functional on X. Let Y be a subspace of X and
g : Y → R be a linear functional such that g(y) 6 p(y) for all y ∈ Y . Then
there is a linear functional f : X → R such that f�Y = g and f(x) 6 p(x) for all
x ∈ X.

Zorn’s Lemma. This is used in the proof, so we recall it here. Let (P,6) be a
poset (partially ordered set). An element x ∈ P is an upper bound for a subset
A of P if a 6 x for all a ∈ A. A subset C of P is called a chain if it is linearly
ordered by 6. An element x ∈ P is a maximal element of P if whenever x 6 y
for some y ∈ P , we have y = x. Zorn’s Lemma states that if P 6= ∅ and every
non-empty chain in P has an upper bound, then P has a maximal element.

Definition. A seminorm on a real or complex vector space X is a functional
p : X → R such that

• p(x) > 0 for all x ∈ X;

• p(λx) = |λ|p(x) for all x ∈ X and for all scalars λ;

• p(x+ y) 6 p(x) + p(y) for all x, y ∈ X.

Note. “norm” =⇒ “seminorm” =⇒ “positive homogeneous+subadditive”.

Theorem 2. (Hahn–Banach) Let X be a real or complex vector space and p
be a seminorm on X. Let Y be a subspace of X and g be a linear functional on
Y such that |g(y)| 6 p(y) for all y ∈ Y . Then there is a linear functional f on
X such that f�Y = g and |f(x)| 6 p(x) for all x ∈ X.

Remark. It follows from the proof given in lectures that for a complex normed
space X, the map f 7→ Re(f) :

(
X∗
)
R →

(
XR
)∗

is an isometric isomorphism.
Here YR, for a complex vector space Y , denotes the real vector space obtained
from Y by restricting scalar multiplication to the reals.
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Corollary 3. Let X be a real or complex vector space and p be a seminorm
on X. For every x0 ∈ X there is a linear functional f on X with f(x0) = p(x0)
and |f(x)| 6 p(x) for all x ∈ X.

Theorem 4. (Hahn–Banach) Let X be a real or complex normed space.
Then

(i) Given a subspace Y of X and g ∈ Y ∗, there exists f ∈ X∗ with f �Y = g
and ‖f‖ = ‖g‖.

(ii) Given a non-zero x0 ∈ X, there exists f ∈ SX∗ with f(x0) = ‖x0‖.

Remarks. 1. Part (i) can be viewed as a linear version of Tietze’s extension
theorem. The latter states that if L is a closed subset of a compact Hausdorff
space K, and g : L→ R (or C) is continuous, then there is a continuous function
f : K → R (respectively, C) such that f�L= g and ‖f‖∞ = ‖g‖∞.
2. Part (ii) implies that X∗ separates the points of X: given x 6= y in X, there
exists f ∈ X∗ such that f(x) 6= f(y). Thus there are “plenty” bounded linear
functionals on X.
3. The element f ∈ X∗ in part (ii) is called a norming functional for x0. It
shows that

‖x0‖ = max
{
|〈x0, g〉| : g ∈ BX∗

}
.

Another name for f is support functional at x0. Assume X is a real normed
space and that ‖x0‖ = 1. Then BX ⊂ {x ∈ X : f(x) 6 1}, and hence the
hyperplane {x ∈ X : f(x) = 1} can be thought of as a tangent to BX at x0.

Bidual. Let X be a normed space. Then X∗∗ =
(
X∗
)∗

is called the bidual or
second dual of X. It is the Banach space of all bounded linear functionals on X∗

with the operator norm. For x ∈ X we define x̂ : X∗ → R (or C) by x̂(f) = f(x)
(evaluation at x). Then x̂ ∈ X∗∗ and ‖x̂‖ 6 ‖x‖. The map x 7→ x̂ : X → X∗∗ is
called the canonical embedding.

Theorem 5. The canonical embedding defined above is an isometric isomor-
phism of X into X∗∗.

Remarks. 1. Using the bracket notation, we have

〈f, x̂〉 = 〈x, f〉 = f(x) x ∈ X, f ∈ X∗ .

2. The image X̂ = {x̂ : x ∈ X} of the canonical embedding is closed in X∗∗ if
and only if X is complete.
3. In general, the closure of X̂ in X∗∗ is a Banach space which contains an
isometric copy of X as a dense subspace. We have thus proved that every
normed space has a completion.

Definition. X is reflexive if the canonical embedding of X into X∗∗ is surjec-
tive.

Examples. 1. The spaces `p, 1 < p < ∞, Hilbert spaces, finite-dimensional
spaces are reflexive. Later we prove that the spaces Lp(µ), 1 < p <∞, are also
reflexive.
2. The spaces c0, `1, L1[0, 1] are not reflexive.
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Remark. Every reflexive space X is complete with X ∼= X∗∗. There are
Banach spaces X with X ∼= X∗∗ which are not reflexive. So for 1 < p < ∞,
it is not sufficient to say that `∗∗p

∼= `∗q
∼= `p (where q is the conjugate index

of p) to deduce that `p is reflexive. One also has to verify that this isometric
isomorphism is the canonical embedding.

Dual operators. Recall that for normed spaces X,Y we denote by B(X,Y )
the space of all bounded linear maps T : X → Y . This is a normed space in the
operator norm:

‖T‖ = sup
{
‖Tx‖ : x ∈ BX

}
.

Moreover, B(X,Y ) is complete if Y is.
For T ∈ B(X,Y ), the dual operator of T is the map T ∗ : Y ∗ → X∗ defined

by T ∗(g) = g ◦ T for g ∈ Y ∗. In bracket notation:

〈x, T ∗g〉 = 〈Tx, g〉 x ∈ X, g ∈ Y ∗ .

T ∗ is linear and bounded with ‖T ∗‖ = ‖T‖ (uses Theorem 4(ii)).

Remark. When X and Y are Hilbert spaces, the dual operator T ∗ corresponds
to the adjoint of T after identifying X∗ and Y ∗ with X and Y , respectively.

Example. Let 1 < p < ∞ and consider the right shift R : `p → `p. Then
R∗ : `q → `q (q the conjugate index of p) is the left shift.

Properties of dual operators. 1.
(

IdX
)∗

= IdX∗

2. (λS + µT )∗ = λS∗ + µT ∗ for scalars λ, µ and for S, T ∈ B(X,Y ). Note that
unlike for adjoints there is no complex conjugation here. That is because the
identification of a Hilbert space with its dual is conjugate linear in the complex
case.
3. (ST )∗ = T ∗S∗ for T ∈ B(X,Y ) and S ∈ B(Y,Z).
4. The map T 7→ T ∗ : B(X,Y )→ B(Y ∗, X∗) is an into isometric isomorphism.
5. The following diagram

X
T - Y

X∗∗
? T ∗∗- Y ∗∗

?

commutes, where the vertical arrows represent canonical embeddings.

Remark. It follows from the above properties that if X ∼ Y then X∗ ∼ Y ∗.

Quotient space. Let X be a normed space and Y a closed subspace. Then
the quotient space X/Y becomes a normed space in the quotient norm defined
as follows.

‖x+ Y ‖ = inf
{
‖x+ y‖ : y ∈ Y

}
x ∈ X .

The quotient map q : X → X/Y is a surjective linear map that is bounded with
‖q‖ 6 1. It maps the open unit ball DX = {x ∈ X : ‖x‖ < 1} onto DX/Y . It
follows that ‖q‖ = 1 (if X 6= Y ) and that q is an open map (it maps open sets
onto open sets).
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If T : X → Z is a bounded linear map with Y ⊂ ker(T ), then there is a

unique map T̃ : X/Y → Z such that the diagram

X
T - Z

X/Y

T̃

-

q
-

commutes, and moreover T̃ is linear, bounded and ‖T̃‖ = ‖T‖.

Theorem 6. Let X be a normed space. If X∗ is separable, then so is X.

Remark. The converse is false. E.g., X = `1 is separable but X∗ ∼= `∞ is not.

Theorem 7. Every separable normed space is isometrically isomorphic to a
subspace of `∞.

Remarks. 1. The result says that `∞ is isometrically universal for the class
SB of all separable Banach spaces. We will later see that there is a separable
space with the same property.
2. A dual version of the above result states that every separable Banach spaces
is a quotient of `1.

Theorem 8. (Vector-valued Liouville) Let X be a complex Banach space and
f : C→ X be a bounded, holomorphic function. Then f is constant.

Locally Convex Spaces. A locally convex space (LCS) is a pair (X,P), where
X is a real or complex vector space and P is a family of seminorms on X that
separates the points of X in the sense that for every x ∈ X with x 6= 0, there
is a seminorm p ∈ P with p(x) 6= 0. The family P defines a topology on X: a
set U ⊂ X is open if and only if for all x ∈ U there exist n ∈ N, p1, . . . , pn ∈ P
and ε > 0 such that{

y ∈ X : pk(y − x) < ε for 1 6 k 6 n
}
⊂ U .

Remarks. 1. Addition and scalar multiplication are continuous.
2. The topology of X is Hausdorff as P separates the points of X.
3. A sequence xn → x in X if and only if p(xn − x) → 0 for all p ∈ P. (The
same holds for nets.)
4. For a subspace Y of X define PY = {p�Y : p ∈ P}. Then (Y,PY ) is a locally
convex space, and the corresponding locally convex topology on Y is nothing
else but the subspace topology on Y induced by X.
5. Let P and Q be two families of seminorms on X both of which separate the
points of X. We say P and Q are equivalent and write P ∼ Q if they define the
same topology on X.

The topology of a locally convex space (X,P) is metrizable if and only if
there is a countable Q with Q ∼ P.

Definition. A Fréchet space is a complete metrizable locally convex space.
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Examples. 1. Every normed space (X, ‖·‖) is a LCS with P = {‖·‖}.
2. Let U be a non-empty, open subset of C, and let O(U) denote the space
of all holomorphic functions f : U → C. For a compact set K ⊂ U and for
f ∈ O(U) set pK(f) = supz∈K |f(z)|. Set P = {pK : K ⊂ U,K compact}.
Then (O(U),P) is a locally convex space whose topology is the topology of
local uniform convergence.

There exist compact sets Kn ⊂ U , n ∈ N, such that Kn ⊂ int(Kn+1) and
U =

⋃
nKn. Then {pKn

: n ∈ N} is countable and equivalent to P. Hence
(O(U),P) is metrizable and in fact it is a Fréchet space.

The topology of local uniform convergence is not normable: the topology
is not induced by a norm. This follows, for example, from Montel’s theorem:
given a sequence (fn) in O(U) such that (fn �K) is bounded in (C(K), ‖·‖∞)
for every compact K ⊂ U , there is a subsequence of (fn) that converges locally
uniformly.
3. Fix d ∈ N and a non-empty open set Ω ⊂ Rd. Let C∞(Ω) denote the
space of all infinitely differentiable functions f : Ω → R. Every multi-index

α = (α1, . . . , αd) ∈
(
Z>0

)d
gives rise to a partial differential operator

Dα =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

. . .

(
∂

∂xd

)αd

.

For a multi-index α, a compact set K ⊂ Ω, and f ∈ O(U) define

pK,α(f) = sup
{
|(Dαf)(x)| : x ∈ K

}
.

Set P = {pK,α : K ⊂ Ω compact, α ∈ (Z>0)d
}

. Then (C∞(Ω),P) is a locally
convex space. It is a Fréchet space and is not normable.

Lemma 9. Let (X,P) and (Y,Q) be locally convex spaces. Let T : X → Y be
a linear map. Then TFAE:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) For all q ∈ Q there exist n ∈ N, p1, . . . , pn ∈ P and C > 0 such that

q(Tx) 6 C max
16k6n

pk(x) for all x ∈ X .

Dual space. Let (X,P) be a locally convex space. The dual space X∗ of X is
the space of all linear functionals on X that are continuous with respect to the
locally convex topology of X.

Lemma 10. Let f be a linear functional on a locally convex space X. Then
f ∈ X∗ if and only if ker f is closed.

Theorem 11. (Hahn–Banach) Let (X,P) be a locally convex space.

(i) Given a subspace Y of X and g ∈ Y ∗, there exists f ∈ X∗ with f�Y = g.

(ii) Given a closed subspace Y of X and x0 ∈ X \ Y , there exists f ∈ X∗ such
that f�Y = 0 and f(x0) 6= 0.

Remark. It follows that X∗ separates the points of X.
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The dual space of Lp. We fix a measure space (Ω,F , µ). Let 1 6 p < ∞
and let q be the conjugate index of p (i.e., 1 < q 6 ∞ and 1

p + 1
q = 1). For

g ∈ Lq = Lq(µ) define

ϕg : Lp → scalars , ϕg(f) =

∫
Ω

fg dµ .

By Hölder’s inequality we have ϕg is well-defined and |ϕg(f)| 6 ‖f‖p · ‖g‖q. By
linearity of integration, ϕg is linear, and hence ϕg ∈ L∗p with ‖ϕg‖ 6 ‖g‖q. We
have thus obtained a function

ϕ : Lq → L∗p , g 7→ ϕg .

This is linear by linearity of integration and bounded with ‖ϕ‖ 6 1.

Theorem 12. Let (Ω,F , µ), p, q, ϕ be as above.

(i) If 1 < p <∞, then ϕ is an isometric isomorphism. Thus L∗p
∼= Lq.

(ii) If p = 1 and in addition µ is σ-finite, then ϕ is an isometric isomorphism.
Thus, in this case, we have L∗1

∼= L∞.

Remarks. 1. Recall that µ is σ-finite if there is a sequence (An) in F such
that Ω =

⋃
An and µ(An) <∞ for all n ∈ N.

2. One approach for proving surjectivity of ϕ is via the Radon–Nikodym theo-
rem. We shall follow a different path via uniform convexity in Chapter 4.

Complex measures. Let Ω be a set and F be a σ-field on Ω. A complex
measure on F is a countably additive set function ν : F → C. The total variation
measure |ν| of ν is defined at A ∈ F as follows.

|ν|(A) = sup
{ n∑
k=1

|ν(Ak)| : A =

n⋃
k=1

Ak is a measurable partition of A
}
.

(Measurable partition means that Ak ∈ F for all k, and Aj ∩ Ak = ∅ for all
j 6= k.) It is easy to check that |ν| : F → [0,∞] is a positive measure. (The
expression positive measure simply means measure but is used for emphasis to
distinguish it from complex and signed measures.) It is also straightforward to
verify that |ν| is the smallest positive measure that dominates ν. It is in fact a
finite measure, i.e., that |ν|(Ω) < ∞. We define the total variation ‖ν‖1 of ν
by ‖ν‖1 = |ν|(Ω).

Signed measures. Let (Ω,F) be as before. A signed measure on F is a
countably additive set function ν : F → R. Every signed measure is in particular
a complex measure.

Theorem 13. Let ν : F → R be a signed measure on the σ-field F . Then there
exist unique finite positive measures ν+ and ν− satisfying ν = ν+ − ν− and
|ν| = ν+ + ν−.

Remarks. 1. This decomposition ν = ν+ − ν− of ν is called the Jordan
decomposition of ν.
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2. Let ν : F → C be a complex measure. Then Re(ν) and Im(ν) are signed
measures, so they have Jordan decompositions ν1− ν2 and ν3− ν4, respectively.
We then obtain the expression ν = ν1 − ν2 + iν3 − iν4 called the Jordan decom-
position of ν. It follows that νk 6 |ν| for all k, and |ν| 6 ν1 +ν2 +ν3 +ν4. From
this we deduce that |ν| is a finite measure.

Integration with respect to complex measures. Let Ω be a set, F be a σ-
field on Ω, and ν be a complex measure on F . A measurable function f : Ω→ C
is ν-integrable if

∫
Ω
|f |d|ν| <∞. In that case we define∫

Ω

f dν =

∫
Ω

f dν1 −
∫

Ω

f dν2 + i

∫
Ω

f dν3 − i

∫
Ω

f dν4 ,

where ν = ν1 − ν2 + iν3 − iν4 is the Jordan decomposition of ν. Note that f is
ν-integrable if and only if f is νk-integrable for each k. The following properties
are easy to check:
1.
∫

Ω
1A dν = ν(A) for all A ∈ F .

2. Linearity: given ν-integrable functions f, g and complex numbers a, b, the
function af + bg is ν-integrable, and

∫
Ω

(af + bg) dν = a
∫

Ω
f dν + b

∫
Ω
g dν.

3. Dominated convergence (D.C.): let fn, n ∈ N, be measurable functions that
converge a.e. to a measurable function f . Assume that there exists g ∈ L1(|ν|)
with |fn| 6 g for all n. Then fn, f are ν-integrable and

∫
Ω
fn dν →

∫
Ω
f dν.

4.
∣∣∣ ∫Ω f dν

∣∣∣ 6 ∫Ω|f |d|ν| for all ν-integrable f .

C(K) spaces. We fix a compact Hausdorff space K. We shall be interested in
the following spaces and sets.

C(K) = {f : K → C : f is continuous}

CR(K) = {f : K → R : f is continuous}

C+(K) = {f ∈ C(K) : f > 0 on K}

M(K) = C(K)∗ = {ϕ : C(K)→ C : ϕ is linear and continuous}

MR(K) = {ϕ ∈M(K) : ϕ(f) ∈ R for all f ∈ CR(K)}

M+(K) = {ϕ : C(K)→ C : ϕ is linear and ϕ(f) > 0 for all f ∈ C+(K)}

Note. 1. MR(K) is a closed, real-linear subspace of M(K). CR(K)∗ ∼= MR(K).
f 7→ f�CR(K) : MR(K)→ CR(K)∗ is an isometric real-linear isometry.

2. Elements of M+(K) are called positive linear functionals. These are auto-
matically continuous, and in fact

M+(K) = {ϕ ∈M(K) : ‖ϕ‖ = ϕ(1K)} .

Borel measures and regularity. Let X be a Hausdorff topological space and
G be the collection of open subsets of X. The Borel σ-field on X is defined to be
B = σ(G), the σ-field generated by G, i.e., the smallest σ-field onX containing G.
Equivalently, B is the intersection of all σ-fields on X that contain G. Members
of B are called Borel sets.
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A Borel measure on X is a measure on B. Given a Borel measure µ on X,
we say µ is regular if the following hold:

(i) µ(E) <∞ for all compact E ⊂ X;

(ii) µ(A) = inf{µ(U) : A ⊂ U ∈ G} for all A ∈ B;

(iii) µ(U) = sup{µ(E) : E ⊂ U, E compact} for all U ∈ G.

A complex Borel measure ν on X is defined to be regular if |ν| is a regular
measure on X.

Note that if X is compact Hausdorff, then a Borel measure µ on X is regular
if and only if

µ(X) <∞ and µ(A) = inf{µ(U) : A ⊂ U ∈ G} ∀A ∈ B

which in turn is equivalent to

µ(X) <∞ and µ(A) = sup{µ(E) : E ⊂ A, E closed} ∀A ∈ B .

Example. Lebesgue measure on R is a regular Borel measure.

The dual space of C(K). Let ν be a complex Borel measure on K. For
f ∈ C(K) we have ∫

K

|f |d|ν| 6 ‖f‖∞ · |ν|(K) ,

and hence f is ν-integrable. The function ϕ : C(K) → C given by ϕ(f) =∫
K
f dν is linear and bounded with ‖ϕ‖ 6 ‖ν‖1. Thus ϕ ∈ M(K). Note that

if ν is a signed measure, then ϕ ∈MR(K), and if ν is a positive measure, then
ϕ ∈M+(K).

Theorem 14. (Riesz Representation Theorem) For every ϕ ∈ M(K) there is
a unique regular complex Borel measure ν on K that represents ϕ:

ϕ(f) =

∫
K

f dν for all f ∈ C(K) .

Moreover, we have ‖ϕ‖ = ‖ν‖1. If ϕ ∈MR(K) then ν is a signed measure, and
if ϕ ∈M+(K), then ν is a positive measure.

Corollary 15. The space of regular complex Borel measures on K is a complex
Banach space in the total variation norm, and it is isometrically isomorphic to
M(K) = C(K)∗.

The space of regular signed Borel measures on K is a real Banach space in the
total variation norm, and it is isometrically isomorphic to MR(K) ∼= CR(K)∗.

2 Weak topologies

Let X be a set and F be a family of functions such that each f ∈ F is a function
f : X → Yf where Yf is a topological space. The weak topology σ(X,F) of X is
the smallest topology on X with respect to which every f ∈ F is continuous.
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Remarks. 1. The family S = {f−1(U) : f ∈ F , U ⊂ Yf an open set} is a
sub-base for σ(X,F). This means that σ(X,F) is the topology generated by
S, i.e., the smallest topology containing S. Equivalently, the family of finite
intersections of members of S is a base for σ(X,F), i.e., σ(X,F) consists of
arbitrary unions of finite intersections of members of S. To spell this out, a set
V ⊂ X is open in the weak topology σ(X,F) if and only if for all x ∈ V there
exist n ∈ N, f1, . . . , fn ∈ F and open sets Uj ⊂ Yfj , 1 6 j 6 n, such that

x ∈
n⋂
j=1

f−1
j (Uj) ⊂ V .

To put it in another way, V ⊂ X is open in the weak topology if and only if
for all x ∈ V there exist n ∈ N, f1, . . . , fn ∈ F and open neighbourhoods Uj of
fj(x) in Yfj , 1 6 j 6 n, such that

⋂n
j=1 f

−1
j (Uj) ⊂ V .

2. Suppose that Sf is a sub-base for the topology of Yf for each f ∈ F . Then
{f−1(U) : f ∈ F , U ∈ Sf} is a sub-base for σ(X,F).
3. If Yf is a Hausdorff space for each f ∈ F and F separates the points of X
(for all x 6= y in X there exists f ∈ F such that f(x) 6= f(y)), then σ(X,F) is
Hausdorff.
4. Let Y ⊂ X and set FY = {f�Y : f ∈ F}. Then σ(X,F)�Y = σ(Y,FY ), i.e.,
the subspace topology on Y induced by the weak topology σ(X,F) of X is the
same as the weak topology on Y defined by FY .
5. (Universal property) Let Z be a topological space and g : Z → X a function.
Then g is continuous if and only if f ◦ g : Z → Yf is continuous for every f ∈ F .
This universal property characterizes the weak topology (cf. Examples Sheet 2).

Examples. 1. Let X be a topological space, Y ⊂ X and ι : Y → X be the
inclusion map. Then the weak topology σ(Y, {ι}) is the subspace topology of Y
induced by X.
2. Let Γ be an arbitrary set, and let Xγ be a topological space for each γ ∈ Γ.
Let X be the Cartesian product

∏
γ∈ΓXγ . Thus

X = {x : x is a function with domain Γ, and x(γ) ∈ Xγ for all γ ∈ Γ} .

For x ∈ X we often write xγ instead of x(γ), and think of x as the “Γ-tuple”
(xγ)γ∈Γ. For each γ we consider the function πγ : X → Xγ given by x 7→ x(γ)
(or (xδ)δ∈Γ 7→ xγ) called evaluation at γ or projection onto Xγ . The product
topology on X is the weak topology σ(X, {πγ : γ ∈ Γ}). Note that V ⊂ X is
open if and only if for all x = (xγ)γ∈Γ ∈ V there exist n ∈ N, γ1, . . . , γn ∈ Γ
and open neighbourhoods Uj of xγj in Xγj such that{

y = (yγ)γ∈Γ : yγj ∈ Uj for 1 6 j 6 n
}
⊂ V .

Proposition 1. Assume that X is a set, and for each n ∈ N we are given
a metric space (Yn, dn) and a function fn : X → Yn. Further assume that
F = {fn : n ∈ N} separates the points of X. Then the weak topology σ(X,F)
of X is metrizable.

Remark. Without the assumption that F separates the points of X, we can
conclude that σ(X,F) is pseudo-metrizable.

Theorem 2. (Tychonov) The product of compact topological spaces is compact
in the product topology.
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Weak topologies on vector spaces. Let E be a real or complex vector space.
Let F be a subspace of the space of all linear functionals on E that separates
the points of E (for all x ∈ E, x 6= 0, there exists f ∈ F such that f(x) 6= 0).
Consider the weak topology σ(E,F ) on E. Note that U ⊂ E is open if and only
if for all x ∈ U there exist n ∈ N, f1, . . . , fn ∈ F and ε > 0 such that

{y ∈ E : |fi(y − x)| < ε for 1 6 i 6 n} ⊂ U .

For f ∈ F define pf : E → R by pf (x) = |f(x)|. Set P = {pf : f ∈ F}. Then P
is a family of seminorms on E that separates the points of E, and the topology
of the locally convex space (E,P) is precisely σ(E,F ). In particular, σ(E,F ) is
a Hausdorff topology with respect to which addition and scalar multiplication
are continuous.

Lemma 3. Let E be as above. Let f, g1, g2, . . . , gn be linear functionals on E.
If
⋂n
j=1 ker gj ⊂ ker f , then f ∈ span{g1, . . . , gn}.

Proposition 4. Let E and F be as above. Then a linear functional f on E is
σ(E,F )-continuous if and only if f ∈ F . In other words (E, σ(E,F ))∗ = F .

Note. Recall that (E, σ(E,F ))∗ denotes the dual space of the locally convex
space (E, σ(E,F )), i.e., the space of linear functionals that are continuous with
respect to σ(E,F ).

Examples. The following two examples of weak topologies on vector spaces
are the central objects of interest in this chapter.

1. Let X be a normed space. The weak topology on X is the weak topology
σ(X,X∗) on X. Note that X∗ separates the points of X by Hahn–Banach. We
shall sometimes denote X with the weak topology by (X,w). Open sets in the
weak topology are called weakly open or w-open. Note that U ⊂ X is w-open if
and only if for all x ∈ U there exist n ∈ N, f1, . . . , fn ∈ X∗ and ε > 0 such that

{y ∈ X : |fi(y − x)| < ε for 1 6 i 6 n} ⊂ U .

2. Let X be a normed space. The weak-star topology (or w∗-topology) on X∗ is
the weak topology σ(X∗, X) on X∗. Here we identify X with its image in X∗∗

under the canonical embedding. We shall sometimes denote X∗ with the w∗-
topology by (X∗, w∗). Open sets in the weak-star topology are called w∗-open.
Note that U ⊂ X∗ is w∗-open if and only if for all f ∈ U there exist n ∈ N,
x1, . . . , xn ∈ X and ε > 0 such that

{g ∈ X∗ : |g(xi)− f(xi)| < ε for 1 6 i 6 n} ⊂ U .

Properties. 1. (X,w) and (X∗, w∗) are locally convex spaces, so in particular
they are Hausdorff, and addition and scalar multiplication are continuous.
2. σ(X,X∗) ⊂ ‖·‖-topology with equality if and only if dimX <∞.
3. σ(X∗, X) ⊂ σ(X∗, X∗∗) ⊂ ‖·‖-topology with equality in the second inclusion
if and only if dimX <∞, and with equality in the first inclusion if and only if
X is reflexive (cf. Proposition 5 below).
4. If Y is a subspace of X, then σ(X,X∗)�Y = σ(Y, Y ∗). This follows from
Remark 4 on page 10 and from the Hahn–Banach theorem.

11



Similarly, we have σ(X∗∗, X∗)�X= σ(X,X∗), i.e., the subspace topology on
X induced by the w∗-topology of X∗∗ is the weak topology of X. Thus, the
canonical embedding X → X∗∗ is a w-to-w∗-homeomorphism from X onto its
image (as well as being an isometric isomorphism).

Proposition 5. Let X be a normed space. Then

(i) a linear functional f onX is weakly continuous (i.e., continuous with respect
to the weak topology on X) if and only if f ∈ X∗. Briefly, (X,w)∗ = X∗;

(ii) a linear functional ϕ on X∗ is w∗-continuous (i.e., continuous with respect
to the weak-star topology on X∗) if and only if ϕ ∈ X, i.e., there exists
x ∈ X with ϕ = x̂. Briefly, (X∗, w∗)∗ = X.

It follows that on X∗ the weak and weak-star topologies coincide, i.e., we have
σ(X∗, X∗∗) = σ(X∗, X) if and only if X is reflexive.

Definition. Let X be a normed space.
A set A ⊂ X is weakly bounded if {f(x) : x ∈ A} is bounded for all f ∈ X∗.
Equivalently, for each w-open ngbd U of 0, there exists λ > 0 such that A ⊂ λU .
A set B ⊂ X∗ is weak-star bounded if {f(x) : f ∈ B} is bounded for all
x ∈ X. Equivalently, for each w∗-open ngbd U of 0, there exists λ > 0 such
that B ⊂ λU .

Principal of Uniform Boundedness (PUB). If X is a Banach space, Y is
a normed space, T ⊂ B(X,Y ) is pointwise bounded (sup{‖Tx‖ : T ∈ T } < ∞
for all x ∈ X), then T is uniformly bounded (sup{‖T‖ : T ∈ T } <∞).

Proposition 6. Let X be a normed space.

(i) Any weakly bounded set in X is bounded in norm.

(ii) If X is complete then any weak-star bounded set in X∗ is bounded in norm.

Notation. 1. We write xn
w−→ x and say xn converges weakly to x if xn → x

in the weak topology (in some normed space X). This happens if and only if
〈xn, f〉 → 〈x, f〉 for all f ∈ X∗.
2. We write fn

w∗

−→ f and say fn converges weak-star to f if fn → f in
the weak-star topology (in some dual space X∗). This happens if and only if
〈x, fn〉 → 〈x, f〉 for all x ∈ X.

A consequence of PUB. Let X be a Banach space, Y a normed space, and
(Tn) a sequence in B(X,Y ) that converges pointwise to a function T . Then
T ∈ B(X,Y ), sup‖Tn‖ <∞ and ‖T‖ 6 lim inf‖Tn‖.

Proposition 7. Let X be a normed space.

(i) If xn
w−→ x in X, then sup‖xn‖ <∞ and ‖x‖ 6 lim inf‖xn‖.

(ii) If fn
w∗

−→ f in X∗ and X is complete, then sup‖fn‖ < ∞ and ‖f‖ 6
lim inf‖fn‖.
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The Hahn–Banach Separation Theorems. Let (X,P) be a locally convex
space. Let C be a convex subset of X with 0 ∈ intC. Define

µC : X → R , µC(x) = inf{t > 0 : x ∈ tC} .

This function is well-defined and is called the Minkowski functional or gauge
functional of C.

Example. If X is a normed space and C = BX , then µC = ‖·‖.

Lemma 8. The function µC is a positive homogeneous, subadditive functional.
Moreover, we have

{x ∈ X : µC(x) < 1} ⊂ C ⊂ {x ∈ X : µC(x) 6 1}

with equality in the first inclusion when C is open and equality in the second
inclusion when C is closed.

Remark. If C is symmetric in the case of real scalars, or balanced in the case
of complex scalars, then µC is a seminorm. If in addition C is bounded, then
µC is a norm.

Theorem 9. (Hahn–Banach separation theorem) Let (X,P) be a locally convex
space and C be an open convex subset of X with 0 ∈ C. Let x0 ∈ X \C. Then
there exists f ∈ X∗ such that f(x0) > f(x) for all x ∈ C if the scalar field is R,
and Ref(x0) > Ref(x) for all x ∈ C if the scalar field is C.

Remark. From now on, for the rest of this chapter, we assume that the scalar
field is R. It is straightforward to modify the statements of theorems, their
proofs, etc, in the case of complex scalars.

Theorem 10. (Hahn–Banach separation theorem) Let (X,P) be a locally
convex space and A,B be non-empty disjoint convex subsets of X.

(i) If A is open, then there exists f ∈ X∗ and α ∈ R such that f(x) < α 6 f(y)
for all x ∈ A, y ∈ B.

(ii) If A is compact and B is closed, then there exists f ∈ X∗ such that supA f <
infB f .

Theorem 11. (Mazur) Let C be a convex subset of a normed space X. Then
C‖·‖ = Cw, i.e., the norm-closure and weak-closure of C are the same. It follows
that C is norm-closed if and only if C is weakly closed.

Corollary 12. Assume that xn
w−→ 0 in a normed space X. Then for all ε > 0

there exists x ∈ conv{xn : n ∈ N} with ‖x‖ < ε.

Remark. It follows that there exist p1 < q1 < p2 < q2 < . . . and convex
combinations

∑qn
i=pn

tixi that converge to zero in norm. In some but not all
cases a stronger conclusion can be obtained: see Examples Sheet 2, Question 13.

Theorem 13. (Banach–Alaoglu) The dual ball BX∗ is w∗-compact for any
normed space X.
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Proposition 14. Let X be a normed space and K be a compact Hausdorff
space.

(i) X is separable if and only if (BX∗ , w∗) is metrizable.

(ii) C(K) is separable if and only if K is metrizable.

Remarks. 1. If X is separable, then (BX∗ , w∗) is a compact metric space. In
particular, BX∗ is w∗-sequentially compact.
2. If X is separable, then X∗ is w∗-separable. It is an easy consequence of
Mazur’s theorem that X is separable if and only if X is weakly separable. Thus,
the previous statement reads: if X is w-separable, then X∗ is w∗-separable.
The converse is false, e.g., for X = `∞ (see the remark following Goldstine’s
theorem).
3. The proof shows that any compact Hausdorff space K is a subspace of
(BC(K)∗ , w

∗).
4. The proof shows that every normed space X embeds isometrically into C(K)
for some compact Hausdorff space. In particular, this holds with K = (BX∗ , w∗)
(cf. Theorem 19 below).

Proposition 15. X∗ is separable if and only if (BX , w) is metrizable.

Theorem 16. (Goldstine) BX
w∗

= BX∗∗ , i.e., the w∗-closure of the unit ball
BX of a normed space X in the second dual X∗∗ is BX∗∗ .

Remark. It follows from Goldstine that Xw∗
= X∗∗. Thus, if X is separable,

then X∗∗ is w∗-separable. For example, `∗∞ is w∗-separable.

Theorem 17. Let X be a Banach space. Then TFAE.

(i) X is reflexive.

(ii) (BX , w) is compact.

(iii) X∗ is reflexive.

Remark. It follows that if X is separable and reflexive, then (BX , w) is a
compact metric space, and hence sequentially compact.

Lemma 18. For every non-empty compact metric space K there is a continuous
surjection ϕ : ∆→ K, where ∆ = {0, 1}N with the product topology.

Note. ∆ is homeomorphic via the map (εi) 7→
∑
i(2εi)3

−i to the middle-third
Cantor set.

Theorem 19. Every separable Banach space embeds isometrically into C[0, 1].
Thus the separable space C[0, 1] is isometrically universal for the class of sepa-
rable Banach spaces.
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3 Schauder bases

Definition. A Schauder basis or simply basis of a Banach space X is a sequence
(en) in X such that for all x ∈ X there exists a unique sequence (an) of scalars
such that x is the norm-convergent sum x =

∑∞
n=1 anen.

Notation. For a sequence (en) in X, we let [en] = span{en : n ∈ N}.

Note. If (en) is a basis of X, then (en) is linearly independent and X = [en].
Thus, X is separable and infinite-dimensional.

Definition. A sequence (en) in a Banach space X is called a basic sequence if
it is a basis of its closed linear span [en].

Theorem 1. Let (en) be a sequence in a Banach space X. Then (en) is a basis
of X if and only if the following three conditions hold:

(i) en 6= 0 for all n ∈ N.

(ii) There exists C > 1 such that∥∥∥ m∑
i=1

aiei

∥∥∥ 6 C∥∥∥ n∑
i=1

aiei

∥∥∥
for all scalar sequences (ai) and all 1 6 m 6 n in N.

(iii) X = [en].

It follows that (en) is a basic sequence if and only if conditions (i) and (ii) hold.

Remark. If (en) is a basis of X, then the projections Pn : X → X defined
by Pn

(∑∞
i=1 aiei

)
=
∑n
i=1 aiei are called the basis projections. By the above

theorem, {Pn : n ∈ N} is uniformly bounded. The constant C = supn∈N‖Pn‖ is
called the basis constant of (en), and it is the least C that satisfies condition (ii)
above. A basis with basis constant 1 is called a monotone basis.

Examples. 1. The Schauder system is a monotone basis of C[0, 1].

2. The unit vector basis is a monotone basis of `p, 1 6 p <∞, and of c0.

3. The Haar system is a monotone basis of Lp[0, 1] for 1 6 p <∞.

Remark. A famous result of Per Enflo shows that there are separable infinite-
dimensional Banach spaces without bases. However, we have the following.

Theorem 2. (Mazur) Every infinite-dimensional Banach space contains a basic
sequence. More precisely, for any ε > 0, every infinite-dimensional Banach space
contains a normalised basic sequence with basis constant at most 1 + ε.

Lemma 3. Let F be a finite-dimensional subspace of an infinite-dimensional
Banach space X, and let ε > 0. Then there exists y ∈ SX such that ‖x‖ 6
(1 + ε)‖x+ λy‖ for all x ∈ F and all scalars λ.

Remark. The proof of the lemma shows that there is a finite-codimensional
subspace Y of X such that any y ∈ SY works.
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Dual bases. Let (en) be a basis of a Banach space X, let Pn, n ∈ N, be the
corresponding basis projections, and let C be the basis constant. For n ∈ N,
define the nth coordinate functional e∗n by〈∑

aiei, e
∗
n

〉
= an .

Then e∗n ∈ X∗ with 1
‖en‖ 6 ‖e

∗
n‖ 6 2C

‖en‖ . Moreover,

P ∗n(x∗) =

n∑
i=1

x∗(ei)e
∗
i (x∗ ∈ X∗, n ∈ N)

It follows that (e∗i ) is a basic sequence in X∗ whose nth basis projection is the
restriction to [e∗i ] of P ∗n , and hence its basis constant is at most C. We call (e∗i )
the dual basis or biorthogonal sequence of (ei).

Equivalence of bases and perturbation. We begin with a simple result.

Proposition 4. For two basic sequences (en) and (fn) in possibly different
Banach spaces the following conditions are equivalent.

(i)
∑
aiei converges if and only if

∑
aifi converges for all (ai).

(ii) The map T (en) = fn extends to an isomorphism T : [en]→ [fn].

(iii) There exist constants A > 0 and B > 0 such that

A
∥∥∥∑ aiei

∥∥∥ 6 ∥∥∥∑ aifi

∥∥∥ 6 B∥∥∥∑ aiei

∥∥∥
for all (ai) ∈ c00.

Definition. Two basic sequences (en) and (fn) in possibly different Banach
spaces are equivalent, written (en) ∼ (fn), if any of the conditions (i), (ii)
or (iii) in the proposition above is satisfied. More precisely, we say that (en)
and (fn) are C-equivalent, written (en) ∼

C
(fn), if (iii) holds with A/B 6 C, or

equivalently, if (ii) holds with ‖T‖‖T−1‖ 6 C.

Proposition 5. Let (en) be a basic sequence in a Banach space X with dual
basis (e∗n). If a sequence (fn) in X satisfies

(1)

∞∑
n=1

‖e∗n‖‖en − fn‖ < 1

then (fn) is a basic sequence which is C-equivalent to (en), where C = 1+γ
1−γ and

γ =
∑
n‖e∗n‖‖en − fn‖. Moreover, if [en] is complemented in X, then so is [fn].

Block bases. Let (en) be a basis of a Banach space X with basis constant C.
For x =

∑
n anen ∈ X, we define the support of X (with respect to (en)) to be

the set
supp(x) = {n ∈ N : an 6= 0} .

Note that supp(x) = {n ∈ N : e∗n(x) 6= 0} where (e∗n) is the dual basis.
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For subsets A,B of N, we write A < B if a < b for all a ∈ A and b ∈ B. For
vectors x, y ∈ X, we write x < y if supp(x) < supp(y). A block basis of (en) is
a sequence u1 < u2 < . . . of non-zero vectors in X. Note that (un) is then a
basic sequence with basis constant at most C.

A sequence (xn) in a Banach space X is seminormalised if there exist con-
stants a > 0 and b > 0 such that a 6 ‖xn‖ 6 b for all n ∈ N.

Proposition 6. Let (en) be a basis of a Banach space X with basis projections
Pn, n ∈ N. Let (xn) be a seminormalised sequence in X such that Pk(xn)→ 0
as n → ∞ for each k ∈ N. Then (xn) has a basic subsequence equivalent to
some block basis of (en).

Proposition 7. Let X be either `p for some 1 6 p < ∞ or c0. Let (un) be a
seminormalised block basis of the unit vector basis (en) of X. Then (un) ∼ (en)
and [un] is complemented in X.

Lemma 8. Let X be either `p for some 1 6 p < ∞ or c0. Then every closed,
infinite-dimensional subspace Y of X contains a further subspace Z that is
isomorphic to X and complemented in X.

Definition. An infinite-dimensional Banach space is said to be prime if every
infinite-dimensional complemented subspace of X is isomorphic to X.

Theorem 9. (Pe lczyński) The Banach spaces `p, 1 6 p <∞, and c0 are prime.

Remark. The proof uses the Pe lczyński Decomposition Method.

Theorem 10. (Pitt) Let 1 6 p < q <∞. Then B(`q, `p) = K(`q, `p), i.e., every
operator from `q to `p is compact. Similarly, B(c0, `p) = K(c0, `p).

Definition. Let X be a normed space and Z be a subspace of X∗. Given c > 0,
we say Z is c-norming for X if

c‖x‖ 6 sup{|z∗(x)| : z∗ ∈ BZ} for all x ∈ X.

We say Z is norming for X, if it is c-norming for X for some c > 0.

Note. X∗ is 1-norming for X by Hahn–Banach.

Proposition 11. Let K be a seminormalised subset of a Banach space X, and

let Z be a subspace of X∗ that is norming for X. If 0 ∈ K
σ(X,Z)

, then K
contains a basic sequence.

Note. K
σ(X,Z)

is the closure of K in the locally convex space (X,σ(X,Z)).
Taking Z = X∗, if 0 ∈ Kw

, then K contains a basic sequence.

Lemma 12. If ϕ ∈ X∗∗ \X, then kerϕ is norming for the Banach space X.

Theorem 13. (Eberlein–Šmulian) Let X be a Banach space and K ⊂ X. Then
the following are equivalent.

(i) K
w

is weakly compact (i.e., K is relatively weakly compact).

(ii) Every sequence in K has a subsequence that converges weakly in X.

In particular, K is weakly compact ⇔ K is weakly sequentially compact.
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4 Convexity

Let X be a real (or complex) vector space and K be a convex subset of X. We
say a point x ∈ K is an extreme point of K if whenever x = (1 − t)y + tz for
some y, z ∈ K and t ∈ (0, 1), then y = z = x. We denote by ExtK the set of
all extreme points of K.

Examples. ExtB`21 = {±e1,±e2}, ExtB`22 = S`22 , ExtBc0 = ∅.

Theorem 1. (Krein–Milman) Let (X,P) be a locally convex space and K a
compact convex subset of X. Then K = conv ExtK. In particular, ExtK 6= ∅
provided K is not empty.

Corollary 2. Let X be a normed space. Then BX∗ = convw
∗

ExtBX∗ . In
particular, ExtBX∗ 6= ∅.

Remark. It follows that c0 is not a dual space, i.e., there is no normed space
X with c0

∼= X∗.

Definition. Let (X,P) be a locally convex space and K ⊂ X be a non-empty
convex compact set. A face of K is a non-empty convex compact subset F of
K such that for all y, z ∈ K and t ∈ (0, 1), if (1− t)y + tz ∈ F , then y, z ∈ F .

Examples. 1. K is a face of K. For x ∈ K, we have x ∈ ExtK if and only if
{x} is a face of K.
2. For f ∈ X∗ and α = supK f , the set F = {x ∈ K : f(x) = α} is a face
of K. Note that throughout this chapter we will use real scalars in statements
of results and in their proofs. Obvious modifications yield the complex case, so
here for example one would replace f by Ref in the definition of α and F .
3. If F is a face of K and E is a face of F , then E is a face of K. In particular,
if F is a face of K and x ∈ ExtF , then x ∈ ExtK.

Definition. A linear map T : X → Y between Banach spaces is weakly compact
if TBX is weakly compact.

Note. By Mazur’s theorem (Theorem 2.11) TBX = TBX
w

. So, by the
Eberlein–Šmulian theorem, T is weakly compact if and only if for every bounded
sequence (xn) inX, the sequence (Txn) has a subsequence that converges weakly
in Y . Note also that a weakly compact linear map is bounded by Proposition 2.6.

Proposition 3. For a bounded linear map T : X → Y between Banach spaces
the following are equivalent.

(i) T is weakly compact.

(ii) T ∗∗(X∗∗) ⊂ Y .

(iii) T ∗ : Y ∗ → X∗ is w∗-w continuous.

(iv) T ∗ is weakly compact.

Note. W(X,Y ) = {T ∈ B(X,Y ) : T is w-compact} is a closed subspace of
B(X,Y ) with the ideal property: ATB ∈ W(W,Z) whenever A ∈ B(Y, Z),
T ∈ W(X,Y ) and B ∈ B(W,X).
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Theorem 4. (Krein–Šmulian) Let K be a w-compact subset of a Banach space.
Then convK is also w-compact.

Definition. A Banach space X is said to be uniformly convex if for all ε > 0,
there exists δ > 0 such that for all x, y ∈ BX if ‖x−y‖ > ε, then

∥∥x+y
2

∥∥ 6 1−δ.

Note. This definition is only meaningful for ε ∈ (0, 2].

Examples. 1. Any Hilbert space is uniformly convex with δ = 1−
√

1− ε2

4 .

2. `21 is not uniformly convex. Similarly, `1, c0, `∞, L1[0, 1] and L∞[0, 1] are
not uniformly convex.

3. Given pn ↘ 1, the space X =
(⊕∞

n=1 `
2
pn

)
`2

is strictly convex, which means

that
∥∥x+y

2

∥∥ < 1 for x 6= y and BX , but not uniformly convex.

Proposition 5. Let (Ω,F , µ) be an arbitrary measure space and 2 6 p < ∞.
Then Lp(µ) is uniformly convex.

Note. Lp(µ) is also uniformly convex in the range 1 < p < 2.

Theorem 6. (Milman–Pettis) A uniformly convex Banach space is reflexive.

Remarks. 1. The converse is false. E.g., if pn ↘ 1, then X =
(⊕∞

n=1 `
2
pn

)
`2

is reflexive but not uniformly convex.

2. We are now in a position to complete the proof of Theorem1.12.

Theorem 7. Let (Ω,F , µ) be a measure space. Let 1 6 p < ∞ and let
1 < q 6∞ be the index conjugate to p.

(i) If 1 < p <∞, then Lp is reflexive and L∗p
∼= Lq.

(ii) If p = 1 and in addition µ is σ-finite, then L∗1
∼= L∞.

5 Banach algebras

A real or complex algebra is a real or, respectively, complex vector space A with
a multiplication A×A→ A, (a, b) 7→ ab satisfying

(i) (ab)c = a(bc) for all a, b, c ∈ A;

(ii) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ A;

(iii) (λa)b = a(λb) = λ(ab) for all a, b ∈ A and all scalars λ.

The algebra A is unital if there is an element 1 ∈ A such that 1 6= 0 and
a1 = 1a = a for all a ∈ A. This element is unique and is called the unit of A.

An algebra norm on A is a norm ‖·‖ on A such that ‖ab‖ 6 ‖a‖‖b‖ for all
a, b ∈ A. Note that multiplication is continuous with respect to the norm (as
are addition and scalar multiplication). A normed algebra is an algebra together
with an algebra norm on it. A Banach algebra is a complete normed algebra.

19



A unital normed algebra is a normed algebra A with an element 1 ∈ A such
that ‖1‖ = 1 and a1 = 1a = a for all a ∈ A. Note that if A is a normed algebra
containing an element 1 6= 0 such that a1 = 1a = a for all a ∈ A, then

|||a||| = sup{‖ab‖ : ‖b‖ 6 1}

defines an equivalent norm on A that makes A a unital normed algebra. A
unital Banach algebra is a complete unital normed algebra.

A linear map θ : A → B between algebras A and B is a homomorphism if
θ(ab) = θ(a)θ(b) for all a, b ∈ A. If A and B are unital algebras with units 1A
and 1B , respectively, and in addition θ(1A) = 1B then θ is called a unital homo-
morphism. In the category of normed algebras, an isomorphism is a continuous
homomorphism with a continuous inverse, however, homomorphisms will not be
assumed continuous.

Note. From now on the scalar field is always the field of complex numbers.

Examples. 1. If K is a compact Hausdorff space, then C(K) is a commutative
unital Banach algebra with pointwise multiplication and the uniform norm.
2. Let K be a compact Hausdorff space. A uniform algebra on K is a closed sub-
algebra of C(K) that contains the constant functions and separates the points
of K. For example, the disc algebra

A(∆) =
{
f ∈ C(∆) : f is holomorphic on the interior of ∆

}
is a uniform algebra on the unit disc ∆ = {z ∈ C : |z| 6 1}. More generally, for
a non-empty compact subset K of C, the following are uniform algebras on K:

P(K) ⊂ R(K) ⊂ O(K) ⊂ A(K) ⊂ C(K)

where P(K), R(K) and O(K) are the closures in C(K) of, respectively, poly-
nomials, rational functions without poles in K, and functions holomorphic on
some open neighbourhood of K, whereas A(K) is the algebra of continuous
functions on K that are holomorphic on the interior of K. We will later see
that R(K) = O(K) always holds, whereas R(K) = P(K) if and only if C \K
is connected (Runge’s theorem). In general, R(K) 6= A(K), and A(K) = C(K)
if and only if K has empty interior.
3. L1(R) with the L1-norm and convolution as multiplication defined by

f ∗ g(x) =

∫ ∞
−∞

f(t)g(x− t) dt

is a commutative Banach algebra without a unit (Riemann–Lebesgue lemma).
4. If X is a Banach space, then the algebra B(X) of bounded linear maps on X
is a unital Banach algebra with composition as multiplication and the operator
norm. It is non-commutative if dimX > 1. An important special case is when
X is a Hilbert space, in which case B(X) is a C∗-algebra (see Chapter 7).

Elementary constructions. 1. If A is a unital algebra with unit 1, then a
unital subalgebra of A is a subalgebra B of A with 1 ∈ B. If A is a normed
algebra, then the closure of a subalgebra of A is a subalgebra of A.
2. The unitization of an algebra A is the vector space direct sum A+ = A⊕ C
with multiplication (a, λ)(b, µ) = (ab+λb+µa, λµ). Then A+ is a unital algebra
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with unit 1 = (0, 1) and A is isomorphic to the ideal {(a, 0) : a ∈ A}. Identifying
this ideal with A, we can write A+ = {a+ λ1 : a ∈ A, λ ∈ C}.

When A is a normed algebra, its unitization A+ becomes a unital normed
algebra with norm ‖a+ λ1‖ = ‖a‖+ |λ| for a ∈ A, λ ∈ C. Note that A is then
a closed ideal of A+. When A is a Banach algebra, so is A+.
3. The closure of an ideal of a normed algebra A is an ideal of A. If J is a
closed ideal of A, then the quotient algebra A/J is a normed algebra with the
quotient norm. If A is a unital normed algebra and J is a closed proper ideal
of A, then A/J is a unital normed algebra in the quotient norm.

4. The (Banach space) completion Ã of a normed algebra A is a Banach algebra

with multiplication defined as follows. Given a, b ∈ Ã choose sequences (an) and
(bn) in A converging to a and b, respectively, and set ab = limn→∞ anbn. One of
course needs to check that this is well-defined and has the required properties.
5. Let A be a unital Banach algebra. For a ∈ A, the map La : A→ A, b 7→ ab,
is a bounded linear operator. The map a 7→ La : A → B(A) is an isometric
unital homomorphism. It follows that every Banach algebra is isometrically
isomorphic to a closed subalgebra of B(X) for some Banach space X.

Elementary spectral theory.

Lemma 1. Let A be a unital Banach algebra, and let a ∈ A. If ‖1 − a‖ < 1,
then a is invertible, and moreover ‖a−1‖ 6 1

1−‖1−a‖ .

Notation. We write G(A) for the group of invertible elements of a unital
algebra A.

Corollary 2. Let A be a unital Banach algebra.

(i) G(A) is an open subset of A.

(ii) x 7→ x−1 is a continuous map on G(A).

(iii) If (xn) is a sequence in G(A) and xn → x /∈ G(A), then ‖x−1
n ‖ → ∞.

(iv) If x ∈ ∂G(A), then there is a sequence (zn) in A such that ‖zn‖ = 1 for all
n ∈ N and znx → 0 and xzn → 0 as n → ∞. It follows that x has no left
or right inverse in A, or in any unital Banach algebra that contains A as a
(not necessarily unital) subalgebra.

Definition. Let A be an algebra and x ∈ A. The spectrum σA(x) of x in A is
defined as follows: if A is unital, then

σA(x) = {λ ∈ C : λ1− x /∈ G(A)} ,

and if A is non-unital then σA(x) = σA+
(x).

Examples. 1. If A = Mn(C) then σA(x) is the set of eigenvalues of x.
2. If A = C(K), K compact Hausdorff, then σA(f) = f(K), the set of values
taken by the function f .
3. If X is a Banach space and A = B(X), then for T ∈ A the spectrum of T in
A has the usual meaning: λ ∈ σA(T ) if and only if λI−T is not an isomorphism.
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Theorem 3. Let A be a Banach algebra and x ∈ A. Then σA(x) is a non-empty
compact subset of {λ ∈ C : |λ| 6 ‖x‖}.

Corollary 4. (Gelfand–Mazur) A complex unital normed division algebra is
isometrically isomorphic to C.

Definition. Let A be a Banach algebra and x ∈ A. The spectral radius rA(x)
of x in A is defined as

rA(x) = sup{|λ| : λ ∈ σA(x)} .

This is well-defined by Theorem 3 and satisfies rA(x) 6 ‖x‖.

Note. If x, y are commuting elements of a unital algebra A, then xy is invertible
if and only if x and y are both invertible.

Lemma 5. (The Spectral Mapping Theorem for polynomials.) LetA be a unital
Banach algebra and let x ∈ A. Then for a complex polynomial p =

∑n
k=0 akz

k,
we have

σA(p(x)) = {p(λ) : λ ∈ σA(x)} ,

where p(x) =
∑n
k=0 akx

k and x0 = 1.

Theorem 6. (The Beurling–Gelfand Spectral Radius Formula.) Let A be a
Banach algebra and x ∈ A. Then rA(x) = lim‖xn‖1/n = inf‖xn‖1/n.

Theorem 7. Let A be a unital Banach algebra, let B be a closed unital
subalgebra of A, and let x ∈ B. Then

σB(x) ⊃ σA(x) and ∂σB(x) ⊂ ∂σA(x) .

It follows that σB(x) is the union of σA(x) together with some of the bounded
components of C \ σA(x).

Proposition 8. Let A be a unital Banach algebra and C be a maximal com-
mutative subalgebra of A. Then C is a closed unital subalgebra of A and
σC(x) = σA(x) for all x ∈ C.

Commutative Banach algebras.

Definition. A non-zero homomorphism ϕ : A→ C on an algebra A is called a
character on A. We denote by ΦA the set of all characters on A. Note that if
A is unital, then ϕ(1) = 1 for all ϕ ∈ ΦA.

Lemma 9. Let A be a Banach algebra and ϕ ∈ ΦA. Then ϕ is continuous and
‖ϕ‖ 6 1. Moreover, if A is unital then ‖ϕ‖ = 1.

Lemma 10. Let A be a unital Banach algebra and J be a proper ideal of A.
Then the ideal J is also proper. It follows that every maximal ideal of A is
closed.

Notation. For an algebra A we denote byMA the set of all its maximal ideals.

Theorem 11. Let A be a commutative unital Banach algebra. Then the map
ϕ 7→ kerϕ is a bijection ΦA →MA.
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Corollary 12. Let A be a commutative unital Banach algebra and x ∈ A.

(i) x ∈ G(A) if and only if ϕ(x) 6= 0 for all ϕ ∈ ΦA.

(ii) σA(x) = {ϕ(x) : ϕ ∈ ΦA}.

(iii) rA(x) = sup{|ϕ(x)| : ϕ ∈ ΦA}.

Corollary 13. Let A be a Banach algebra and let x and y be commuting
elements of A. Then rA(x+ y) 6 rA(x) + rA(y) and rA(xy) 6 rA(x)rA(y).

Examples. 1. Let K be a compact Hausdorff space and A = C(K). Then
ΦA = {δk : k ∈ K}. (Recall that δk(f) = f(k) for k ∈ K and f ∈ C(K).)
2. Let K ⊂ C be non-empty and compact. Then ΦR(K) = {δw : w ∈ K}.
3. Let A = A(∆) be the disc algebra. Then ΦA = {δw : w ∈ ∆}.
4. The Wiener algebra W = {f ∈ C(T) :

∑
n∈Z|f̂n| < ∞} is a commutative

unital Banach algebra under pointwise operations and norm ‖f‖1 =
∑
n∈Z|f̂n|.

It is isomorphic to the Banach algebra `1(Z) with pointwise vector space opera-
tions, the `1-norm, and convolution as multiplication: (a ∗ b)n =

∑
j+k=n ajbk.

The characters on W are again given by point evaluations: ΦW = {δz : z ∈ T}.
Hence by Corollary 12(i) we obtain Wiener’s theorem: if f ∈ C(T) has abso-
lutely summing Fourier series and f(z) 6= 0 for all z ∈ T, then 1/f also has
absolutely summing Fourier series.

Definition. Let A be a commutative unital Banach algebra. Then ΦA is a
w∗-closed subset of BA∗ , and hence it is w∗-compact and Hausdorff. The w∗-
topology on ΦA is called the Gelfand topology and ΦA with its Gelfand topology
is the spectrum of A or the character space or the maximal ideal space of A.

For x ∈ A define the Gelfand transform x̂ : ΦA → C of x by x̂(ϕ) = ϕ(x).
Thus x̂ is the restriction to ΦA of the image of x in the second dual A∗∗ under
the canonical embedding. Thus x̂ ∈ C(ΦA). The map x 7→ x̂ : A → C(ΦA) is
called the Gelfand map.

Theorem 14. (The Gelfand Representation Theorem) Let A be a commutative
unital Banach algebra. Then the Gelfand mapA→ C(ΦA) is a continuous unital
homomorphism. For x ∈ A we have

(i) ‖x̂‖∞ = rA(x) 6 ‖x‖

(ii) σC(ΦA)(x̂) = σA(x)

(iii) x ∈ G(A) if and only if x̂ ∈ G
(
C(ΦA)

)
.

Note. In general, the Gelfand map need not be injective or surjective. Its
kernel is

{x ∈ A : σA(x) = {0}} = {x ∈ A : lim‖xn‖1/n = 0} =
⋂

ϕ∈ΦA

kerϕ =
⋂

M∈MA

M .

An element x ∈ A with lim‖xn‖1/n = 0 is called quasi-nilpotent. The inter-
section

⋂
M∈MA

M is called the Jacobson radical of A and is denoted by J(A).
We say A is semisimple if J(A) = {0}, i.e., precisely when the Gelfand map is
injective.
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6 Holomorphic functional calculus

Recall that for a non-empty open subset U of C we denote by O(U) the locally
convex space of complex-valued holomorphic functions on U with the topology of
local uniform convergence. The topology is induced by the family of seminorms
f 7→ ‖f‖K = supz∈K |f(z)| defined for each non-empty compact subset K of
U . Note that O(U) is also an algebra under pointwise multiplication, which
is continuous with respect to the topology of O(U). This is an example of a
Fréchet algebra: a complete metrizable locally convex space which is also an
algebra with a continuous multiplication.

Notation. We define elements e and u of O(U) by e(z) = 1 and u(z) = z for
all z ∈ U . Note that O(U) is a unital algebra with unit e.

Theorem 1. (Holomorphic Functional Calculus) Let A be a commutative,
unital Banach algebra, let x ∈ A and U be an open subset of C with σA(x) ⊂ U .
Then there exists a unique continuous unital homomorphism Θx : O(U) → A
such that Θx(u) = x. Moreover, ϕ

(
Θx(f)

)
= f(ϕ(x)) for all ϕ ∈ ΦA and

f ∈ O(U). It follows that σA
(
Θx(f)

)
= {f(λ) : λ ∈ σA(x)} for all f ∈ O(U).

Remark. Think of Θx as “evaluation at x” and write f(x) for Θx(f). Then the
conclusions above can be briefly expressed as ϕ(f(x)) = f(ϕ(x)) and σA(f(x)) =
f(σA(x)). The requirement that e(x) = 1 and u(x) = x implies that for a
complex polynomial p =

∑n
k=0 akz

k =
∑n
k=0 aku

k we have p(x) =
∑n
k=0 akx

k as
defined in Lemma 5.5. Thus, Holomorphic Functional Calculus can be thought
of as a far-reaching generalization of the Polynomial Spectral Mapping Theorem.

Theorem 2. (Runge’s Approximation Theorem) Let K be a non-empty com-
pact subset of C. Then O(K) = R(K), i.e., if f is a holomorphic function on
some open set containing K, then for all ε > 0 there is a rational function r
without poles in K such that ‖f − r‖K < ε. More precisely, given any set Λ
containing exactly one point from each bounded component of C \K, if f is a
holomorphic function on some open set containing K, then for all ε > 0 there
is a rational function r whose poles lie in Λ such that ‖f − r‖K < ε.

Note. If C \K is connected, then Λ = ∅ which yields the polynomial approxi-
mation theorem O(K) = P(K).

Vector-valued integration. Let [a, b] be a closed bounded interval in R, let
X be a Banach space and f : [a, b] → X a continuous function. We define the

integral
∫ b
a
f(t) dt as follows. Let Dn : a = t

(n)
0 < t

(n)
1 < · · · < t

(n)
kn

= b, n ∈ N,
be a sequence of dissections of [a, b] with

|Dn| = max
16j6kn

|t(n)
j − t(n)

j−1| → 0 as n→∞ .

It follows from uniform continuity of f that the limit

lim
n→∞

kn∑
j=1

f(t
(n)
j )(t

(n)
j − t(n)

j−1)

exists inX and is independent of the sequence of dissections chosen. The integral
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∫ b
a
f(t) dt is defined to be this limit. It follows easily from the definition that

ϕ

(∫ b

a

f(t) dt

)
=

∫ b

a

ϕ(f(t)) dt for all ϕ ∈ X∗ .

Applying the above with a norming functional ϕ at the element
∫ b
a
f(t) dt of X,

we obtain ∥∥∥∫ b

a

f(t) dt
∥∥∥ 6 ∫ b

a

‖f(t)‖ dt .

Now let γ : [a, b]→ C be a path, and f : [γ]→ X be a continuous function. We
then define the integral of f along γ by∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt .

If Γ is a chain (γ1, . . . , γn), then the integral along Γ of a continuous function
f : [Γ] → C is defined to be the sum of the integrals along the paths γj , i.e.,∫

Γ
f(z) dz =

∑n
j=1

∫
γj
f(z) dz.

Using the results about Banach space valued integrals over an interval, we
immediately obtain the following results about Banach space valued integrals
along a chain Γ:

ϕ

(∫
Γ

f(z) dz

)
=

∫
Γ

ϕ(f(z)) dz for all ϕ ∈ X∗

and ∥∥∥∫
Γ

f(z) dz
∥∥∥ 6 `(Γ) · sup

z∈[Γ]

‖f(z)‖

where `(Γ) denotes the length of Γ. These properties together with the Hahn–
Banach theorem allow us to deduce Banach space valued versions of classical
scalar theorems.

Vector-valued Cauchy’s theorem. Let U be a non-empty open subset of
C, and let Γ be a cycle in U such that n(Γ, w) = 0 for all w /∈ U (Γ does not
wind round any point outside U). If X is a Banach space and f : U → X is
holomorphic, then ∫

Γ

f(z) dz = 0 .

This follows by applying a norming functional to the integral and by applying
the scalar Cauchy’s theorem.

Lemma 3. Let A, x, U be as in Theorem 1. Set K = σA(x) and fix a cycle Γ
in U \K such that

n(Γ, w) =

{
1 if w ∈ K
0 if w /∈ U

Define Θx : O(U)→ A by letting

Θx(f) =
1

2πi

∫
Γ

f(z)(z1− x)−1 dz

for f ∈ O(U). Then
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(i) Θx is well-defined, linear and continuous.

(ii) For a rational function r without poles in U we have Θx(r) = r(x) in the
usual sense.

(iii) ϕ
(
Θx(f)

)
= f(ϕ(x)) for all ϕ ∈ ΦA and f ∈ O(U), and hence

σA
(
Θx(f)

)
= {f(λ) : λ ∈ σA(x)} .

Note. Lemma 3 can be viewed as a Banach algebra valued version of Cauchy’s
Integral Formula. It comes close to proving Theorem 1. What is missing is
that Θx is multiplicative (which in fact follows from Lemma 3 for semisimple
algebras) and that Θx is unique. Our strategy is to deduce Runge’s theorem
(Theorem 2) from Lemma 3 and then use it to complete the proof of Theorem 1
by first showing the following corollary of Runge’s theorem.

Corollary 4. Let U be a non-empty open subset of C, and let R(U) be the set
of rational functions without poles in U . Then R(U) is dense in O(U) in the
topology of local uniform convergence.

7 C∗-algebras

A ∗-algebra is a complex algebra A with an involution: a map x 7→ x∗ : A→ A
such that

(i) (λx+ µy)∗ = λx∗ + µy∗ (ii) (xy)∗ = y∗x∗ (iii) x∗∗ = x

for all x, y ∈ A and λ, µ ∈ C. Note that if A is unital with unit 1, then 1∗ = 1.
A C∗-algebra is a Banach algebra A with an involution that satisfies the

C∗-equation:
‖x∗x‖ = ‖x‖2 for all x ∈ A .

A complete algebra norm on a ∗-algebra that satisfies the C∗-equation is called
a C∗-norm. Thus, a C∗-algebra is a ∗-algebra with a C∗-norm.

Remarks. 1. If A is a C∗-algebra, then ‖x∗‖ = ‖x‖ for all x ∈ A. It follows
that the involution is continuous. A Banach ∗-algebra is a Banach algebra A
with an involution such that ‖x∗‖ = ‖x‖ for all x ∈ A. Thus, every C∗-algebra
is a Banach ∗-algebra.
2. A C∗-algebra which has a multiplicative identity 1 6= 0, is automatically a
unital C∗-algebra, i.e., ‖1‖ = 1.

Definitions. A subalgebra B of a ∗-algebra A is a ∗-subalgebra of A if x∗ ∈ B
for every x ∈ B. A closed ∗-subalgebra (called a C∗-subalgebra) of a C∗-algebra
is a C∗-algebra. The closure of a ∗-subalgebra of a C∗-algebra A is a ∗-subalgebra
of A, and hence a C∗-subalgebra of A. A homomorphism θ : A → B between
∗-algebras is a ∗-homomorphism if θ(x∗) = θ(x)∗ for all x ∈ A. A ∗-isomorphism
is a bijective ∗-homomorphism.

Examples. 1. Let K be a compact Hausdorff space. Then C(K) is a com-
mutative unital C∗-algebra with the uniform norm and with involution f 7→ f∗,
where f∗(k) = f(k) for k ∈ K, f ∈ C(K).
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2. Let H be a Hilbert space. Then the algebra B(H) of bounded linear operators
on H is a C∗-algebra in the operator norm and involution T 7→ T ∗, where T ∗ is
the adjoint of T defined by the equation 〈Tx, y〉 = 〈x, T ∗y〉, x, y ∈ H.
3. Every C∗-subalgebra of B(H) is a C∗-algebra.

Remark. The Gelfand–Naimark theorem states that for every C∗-algebra A
there is a Hilbert space H and an isometric ∗-isomorphism between A and
a C∗-subalgebra of B(H). We will prove only a commutative version of this
(Theorem 4 below).

Definition. Let A be a C∗-algebra and x ∈ A. We say x is

(i) hermitian or self-adjoint if x∗ = x;

(ii) unitary if (A is unital and) x∗x = xx∗ = 1.

(iii) normal if x∗x = xx∗.

Examples. 1. The unit 1 is both hermitian and unitary. In general, hermitian
and unitary elements are normal.
2. In C(K) a function f is hermitian if and only if f(K) ⊂ R (i.e., f has real
spectrum), and f is unitary if and only if f(K) ⊂ T. This will be generalized
in Corollary 3 below.

Remarks. 1. For all x ∈ A there exits unique hermitian elements h, k such
that x = h+ ik. It follows that x∗ = h− ik, and that x is normal if and only if
hk = kh.
2. If A is unital then x ∈ G(A) if and only if x∗ ∈ G(A), in which case (x∗)−1 =
(x−1)∗. It follows that σA(x∗) = {λ : λ ∈ σA(x)}, and thus rA(x∗) = rA(x).

Lemma 1. Let A be a C∗-algebra and x ∈ A be normal. Then rA(x) = ‖x‖.

Lemma 2. Let A be a unital C∗-algebra. Then ϕ(x∗) = ϕ(x) for all x ∈ A and
for all ϕ ∈ ΦA.

Remark. The condition that A is unital is superfluous. However, unitization
for a C∗-algebra is not quite straightforward (see Examples Sheet 4) and the
above will suffice for us.

Corollary 3. Let A be a unital C∗-algebra.

(i) If x ∈ A is hermitian then σA(x) ⊂ R.

(ii) If x ∈ A is unitary then σA(x) ⊂ T.

If B is a unital C∗-subalgebra of A and x ∈ B is normal, then σA(x) = σB(x).

Theorem 4. (Commutative Gelfand–Naimark) Let A be a commutative unital
C∗-algebra. Then A is isometrically ∗-isomorphic to C(K) for some compact
Hausdorff space K. More precisely, the Gelfand map x 7→ x̂ : A→ C(ΦA) is an
isometric ∗-isomorphism.

Application: positive square roots. Let A be a unital C∗-algebra. We say
that an element x ∈ A is positive if x is hermitian and σA(x) ⊂ [0,∞).
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Every positive element x of A has a unique positive square root: there exists a
unique positive element y ∈ A such that y2 = x. The unique positive square
root of x is denoted x1/2.

Remark. This applies in particular to positive elements of B(H), H a Hilbert
space. Recall that T ∈ B(H) is positive if and only if 〈Tx, x〉 > 0 for all x ∈ H.

Application: polar decomposition. Let T be an invertible operator on a
Hilbert space H. Then there exist unique operators R and U such that R is
positive, U is unitary and T = RU .

8 Borel functional calculus and spectral theory

Throughout, H is a (non-zero) complex Hilbert space, B(H) is the C∗-algebra
of all bounded, linear operators on H, K is a compact Hausdorff space and B
is the Borel σ-field on K.

Bounded Borel functions. Let L∞(K) denote the set of all bounded Borel
functions f : K → C. This is a commutative, unital C∗-algebra equipped with
the ‘sup norm’ ‖f‖K . The simple functions form a dense ∗-subalgebra of L∞(K).

Theorem 1. (Spectral theorem for commutative C∗-algebras.) Let A
be a commutative, unital C∗-subalgebra of B(H) and let K = ΦA. Then there
is a unique (norm-decreasing) ∗-homomorphism Ψ: L∞(K)→ B(H) such that

(i) Ψ(T̂ ) = T for all T ∈ A, where T̂ is the Gelfand transform of T , and

(ii) letting P (E) = Ψ(1E) for E ∈ B, the map

Px,y : B → C , Px,y(E) = 〈P (E)x, y〉

is a regular complex Borel measure on K for every x, y ∈ H.

Moreover,

(iii) P (U) 6= 0 for every non-empty open subset U of K; and for S ∈ B(H),

(iv) S commutes with every T ∈ A if and only if it commutes with every P (E)
(E ∈ B).

Remark. We can think of the map P : B → B(H) as an operator-valued Borel
‘measure’ on K. For f ∈ L∞(K), we define its integral

∫
K
f dP to be Ψ(f).

Note that for E ∈ B, we have∫
K

1E dP = Ψ(1E) = P (E)

is an orthogonal projection. Also, for T ∈ A, we have∫
K

T̂ dP = Ψ(T̂ ) = T .

Thus, we can think of the spectral theorem above as an operator-valued Riesz
Representation Theorem.
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Exponentials in Banach algebras. Let A be a unital Banach algebra. Then
for x ∈ A we define ex =

∑∞
n=0

xn

n! . The sum converges absolutely, and hence it
converges in A. It is easy to check that if x, y ∈ A commute then ex+y = exey.

Lemma 2. (Fuglede-Putnam-Rosenblum) Let A be a unital C∗-algebra and
x, y, z ∈ A. Assume that x and y are normal and xz = zy. Then x∗z = zy∗. In
particular, if z commutes with x, then it commutes with x∗.

Theorem 3. (Spectral theorem for normal operators.) Let T ∈ B(H)
be a normal operator. Then there is a unique operator-valued Borel measure P
on σ(T ) such that

T =

∫
σ(T )

λ dP .

Moreover, S ∈ B(H) commutes with every projection P (E) (E ∈ B) if and only
if ST = TS.

Remarks. 1. Let K = σ(T ) and z ∈ L∞(K) be the function z(λ) = λ (λ ∈ K).
The first statement of the theorem above is shorthand for the following: there is
a unique (norm-decreasing) unital ∗-homomorphism Ψ: L∞(K) → B(H) such
that Ψ(z) = T and Px,y as defined in Theorem 1 is a regular complex Borel
measure on K for all x, y ∈ H.

2. The integral representation of T is called the spectral decomposition of T .
The orthogonal projections P (E) (E ∈ B) are the spectral projections of T .

Theorem 4. (Borel functional calculus for a normal operator) Let
T ∈ B(H) be a normal operator and let K = σ(T ). For f ∈ L∞(K) define

f(T ) =

∫
K

f dP ,

where P is the unique operator-valued Borel measure on K = σ(T ) given by
Theorem 3. The map f 7→ f(T ) has the following properties:

(i) it is a unital ∗-homomorphism from L∞(K) to B(H) with z(T ) = T (where
z(λ) = λ, λ ∈ K);

(ii) ‖f(T )‖ 6 ‖f‖K for all f ∈ L∞(K) with equality for f ∈ C(K);

(iii) if S ∈ B(H) and ST = TS, then Sf(T ) = f(T )S for all f ∈ L∞(K).

(iv) σ(f(T )) ⊂ f(K) for all f ∈ L∞(K).

Polar decomposition of normal operators. Let T ∈ B(H) be a normal
operator. Then T = RU , where R is positive, U is unitary, and R,U, T pairwise
commute.

Representation of unitary operators. Let U ∈ B(H) be a unitary operator.
Then U = eiQ for some hermitian operator Q.

Connectedness of G(B(H)). The group of all invertible operators in B(H) is
connected. Moreover, every invertible operator is the product of two exponen-
tials.
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