Measure Theory

We list here definitions and results from basic measure theory. These can be
found in any good book on measure theory, e.g., the one by S. J. Taylor.

1 Measures
1.1 A measure space is a triple (Q, F, u), where
(i) Qis a set;
(ii) Fis a o-field on Q, i.e., F C P(§) such that
(a) 0 e F,
(b) if A€ F then Q\ A€ F,

(c) if A, € F for all n € N, then | J A4, € F;

n=1
(iii) p: F — [0,00] is a measure on F:

(a) p(®) =0,

(b) u( U An) = Z 1(A,) for pairwise disjoint sets A,, n € N, in F.
n=1

n=1

Here we use the usual conventions regarding co. E.g., x + 0o = 0o + x = oo for
all x € R.

1.2 A measure p is finite if u(2) < oo. In this case u(A) < oo for all A € F.
1.3 N € F is called a null set (or p-null set) if u(N) = 0.

1.4 If A is an arbitrary family of subsets of a set €2, then there is a (unique)
smallest o-field on Q2 containing A, which is the intersection of all o-fields on €
that contain A. It is called the o-field generated by A.

1.5 Let X be a topological space. We denote by G the family of open subsets
of X. The Borel o-field on X is the o-field B generated by G. Elements of B
are called Borel sets. A Borel measure on X is a measure on B.

2 Outer measures

2.1 Given a set , an outer measure on § is a function p*: P(Q2) — [0, 0]
such that

(ii) p*(A) < p*(B) whenever A C B

o0
An) < Z 1" (Ay) for arbitrary subsets A, of €.
1 n=1



2.2 A C Qis called u*-measurable if
p'(B) =p"(BNA)+p*(B\ A)
holds for all B C .

2.3 Theorem The family M of p*-measurable subsets of 2 is a o-field on 2,
and the restriction p of p* to M is a measure on M.

3 Measurable functions

3.1 Let ©Q be a set and F be a o-field on 2. A function f: Q@ — R (or C) is
measurable if f~1(B) € F for every Borel set B C R (respectively, C).

3.2 Examples

(i) If Q is a topological space, F is the Borel o-field on €2, and f is a continuous
scalar-valued function on €2, then f is measurable.

(ii) In general, any simple function, i.e., a function of the form Y, _; azla,
where A € F and ay, is a scalar for all 1 < k < n, is measurable.

3.3 The set of all measurable functions on ) is an algebra under pointwise
operations. If f: Q — C is measurable, then so are |f|, the real part R(f)
of f, and the imaginary part Z(f) of f. If f,g: Q@ — R are measurable, then
so are their maximum f V g, and their minimum f A g. Finally, if (f,) is a
sequence of measurable functions that converges pointwise to a function f, then
f is measurable.

4 Integration

Let (2, F, 1) be a measure space. We define fQ fdu for certain scalar-valued,
measurable functions on 2.

4.1 If f > 0 is a simple function, i.e., f = Y ;_, axla, where Ay € F and
ar = 0 for all 1 < k < n, then we define

[ ran=" awntan
Q k=1

which is a number in [0, co]. We use the convention 0-co = o0 -0 = 0.

4.2 If f > 0 is measurable, then we let

/fdu—sup{/gd,u: 0<g< f, gasimple function}
Q Q

which is again a number in [0, co].

4.3 f:Q — R is called integrable if it is measurable and fQ|f\ dy is finite. We

then set
/Qfdu:/Qﬁdu—/Qf*du

where f* = fVvO0and f~ = (—f)VO0.



4.4 f:Q — C is called integrable if it is measurable and fQ|f\ dp is finite. We
then set

fu= [ R()du+i- [ 2()du
Q Q Q
where R(f) and Z(f) are the real and imaginary parts of f, respectively.
4.5 Properties
(i) Linearity:

(a) If f >0, g > 0 are measurable, and « > 0, 8 > 0 are real numbers,

then
/Q(Oéerﬁg)du:a-/Qfdquﬂ-/diu.

(b) If f,g are integrable functions and a, § are scalars, then af + (g is
integrable and

[er+san=a- [ ran+s- [ gau.

(ii) Monotone convergence: if 0 < f,,  f pointwise a.e. (almost everywhere),

then [, fndp 7 [ fdp.

(iii) Fatou’s lemma: if (f,) is a sequence of measurable functions such that
fn = g for all n € N for some integrable function g, then

/ liminf f,, dp < liminf/ fodu .
Q Q

(iv) Dominated convergence: if f,, (n € N), f and g are measurable functions
such that |f,| < g for all n € N, f,, — f pointwise a.e., and ¢ is integrable,
then f is integrable and [, fn dp — [¢, f dp.

4.6 A property of points of 2 is said to hold almost everywhere (or a.e. for
short) if it holds for all w € Q\ N for some null set N € F. We sometimes use
the term p-almost everywhere (or p-a.e. for short) to emphasize the measure p.
5 L, spaces

Throughout this section, (2, F, i) is a measure space.

5.1 Let 1 < p < oo. We define L, (€, F, i) or simply L,(u), to be the real (or
complex) vector space of all measurable functions f: Q — R (respectively, C)
such that [,|f[? dp < oo.

5.2 Let 1 < p<oo. For f € L,(n) we define its L,-norm by

1l = (/Qlfl"du)p .

5.3 A measurable function f: Q@ — R (or C) is essentially bounded if there is
a p-null set N € F such that f is bounded on 2\ N.



5.4 We define Lo (2, F,u), or simply Lo (1), to be the real (or complex)
vector space of all measurable, essentially bounded functions f: 2 — R (respec-
tively, C).

5.5 For f € Loo(u) we define its essential sup norm or Lo,-norm by
I fllcc = esssup|f| = 1nf{;1\1£|f| : NeF, u(N) = 0} .

Note that the essential supremum is attained: there is a p-null set N € F such
that esssup|f| = supg\ x| f]-

5.6 Theorem (Holder) Let 1 < p,q < oo with % —I—% = 1. Then for all
feLy(n) and g € Ly(u) we have fg € L1(u) and

1Fgll < W fllp - llgllg -

5.7 Theorem (Minkowski) Let 1 < p < oo and let f,g € L,(p). Then
f+9g € Lp(p) and
1 +gllo < fllp + llgllp -

5.8 It follows from the above that for 1 < p < oo the space Lp(u) is a normed
space in the L,-norm provided we identify functions f and g if f = g a.e. (almost
everywhere), i.e., when {w € Q: f(w) # g(w)} is a p-null set (has p-measure
7€ero).

5.8.1 Remark Strictly speaking |||, is a seminorm on L,(u) for 1 < p < oo.
In general, if ||-|| is a seminorm on a real or complex vector space X, then
N ={z€ X : ||z|]| =0} is a subspace of X, and ||z + N|| = ||=|| defines a norm
on the the quotient space X/N. However, we will not do this for L,(x). We
prefer to think of elements of L, () as functions rather than equivalence classes
of functions. One must remember that equality in L, (1) means a.e. equality.

5.9 Theorem For 1 < p < o0, the space Lp(,u) is complete in the L,-norm.



