- 1. Prove Bessel's inequality: if (e_n) is an orthonormal sequence in an inner product space, then $\sum_n |\langle x, e_n \rangle|^2 \leq ||x||^2$ for every x.
- 2. Show that $T \in \mathcal{B}(H)$ is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in H$.
- 3. Let $a=(a_n)\in \ell_\infty$. Define $T\colon \ell_2\to \ell_2$ by $T(\sum x_ne_n)=\sum a_nx_ne_n$. Find the eigenvalues, approximate eigenvalues and the spectrum of T. Show that T is compact if and only if $(a_n)\in c_0$.
- 4. Let U be a unitary operator on a complex Hilbert space. Show that $\sigma(U) \subset \mathbb{T}$.
- 5. Let H be a complex Hilbert space with orthonormal basis $(e_n)_{n=-\infty}^{\infty}$. The bilateral shift is the operator T on H defined by $Te_n = e_{n+1}$ $(n \in \mathbb{Z})$. Find the spectrum of T.
- 6. Let K be a non-empty compact subset of \mathbb{C} . Show that there is an operator on ℓ_2 whose spectrum is K.
- 7. Prove that if T is a normal operator then $\sigma(T) = \sigma_{ap}(T)$.
- 8. Let T be a unitary operator on a Hilbert space H, and suppose that T acts on a closed subspace Y of H. Must the restriction of T to Y be unitary?
- 9. Let T be a positive compact operator on a Hilbert space H. Show that there is a unique positive operator S on H with $S^2 = T$.
- 10. Show that $\mathcal{F}(\ell_2)$ is dense in $\mathcal{K}(\ell_2)$. Is $\mathcal{G}(\ell_2)$ dense in $\mathcal{B}(\ell_2)$?
- 11. Let $A = (a_{ij})_{i,j=1}^{\infty}$ be a complex matrix whose rows and columns form a bounded set in ℓ_2 . Must A be the matrix of a bounded linear operator on ℓ_2 ?
- 12. Construct a compact operator T on a (non-zero) Hilbert space H so that T has no eigenvalues.
- 13. Let T be an operator on a Banach space X with ||T|| < 1. Show that I T has a square root, *i.e.*, there exists $S \in \mathcal{B}(X)$ such that $S^2 = I T$.
- 14⁺. Let X be a separable infinite-dimensional Banach space. Suppose that there is a constant C such that every finite-dimensional subspace E of X satisfies $d(E, \ell_2^n) \leq C$, where $n = \dim E$. Prove that X is isomorphic to ℓ_2 .