- 1. Let $a = (a_n) \in \ell_{\infty}$. Define $T: \ell_2 \to \ell_2$ by $T(\sum x_n e_n) = \sum a_n x_n e_n$. Prove that $T \in \mathcal{B}(\ell_2)$ and that $||T|| = ||a||_{\infty}$.
- 2. Let f be a linear functional on a normed space X. Prove that f is continuous if and only if $\ker f$ is closed.
- 3. Show that no two of the spaces $\ell_1, \ell_2, \ell_\infty, c_0$ are isomorphic.
- 4. Assume that X is an infinite-dimensional normed space. Show that there is a sequence (x_n) in the unit ball of X with $||x_m x_n|| \ge 1$ whenever $m \ne n$. Is it possible to replace \ge by >?
- 5. Let X, Y be normed spaces that are dense in Banach spaces $\widetilde{X}, \widetilde{Y}$, respectively. Let $T \in \mathcal{B}(X,Y)$. Show that T extends to a unique $\widetilde{T} \in \mathcal{B}(\widetilde{X},\widetilde{Y})$ with $\|\widetilde{T}\| = \|T\|$. So we may regard $\mathcal{B}(X,Y)$ as a subspace of $\mathcal{B}(\widetilde{X},\widetilde{Y})$. Is $\mathcal{B}(X,Y)$ dense in $\mathcal{B}(\widetilde{X},\widetilde{Y})$? If T is surjective, must \widetilde{T} be surjective? If T is injective, must \widetilde{T} be injective?
- 6. Let X be a non-empty countable complete metric space. Show that X has an isolated point.
- 7. Let Y be a proper subspace of a Banach space X. Can Y be dense \mathcal{G}_{δ} , i.e., can Y be the intersection of a sequence of dense open sets in X?
- 8. Let $1 \leq p < q$. Consider the subset $Y = \ell_p$ of the Banach space $X = (\ell_q, \|\cdot\|_q)$. Show that Y is meagre in X.
- 9. Suppose that $T: X \to Y$ satisfies the conditions in the Open Mapping Lemma. Show that Y is complete.
- 10. Let X be a closed subspace of ℓ_1 . Assume that every $y = (x_{2n}) \in \ell_1$ extends to a sequence $x = (x_n) \in X$. Show that there is a constant C such that x can always be chosen to satisfy $||x|| \leq C||y||$.
- 11. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that for every x > 0 we have $f(nx) \to 0$ as $n \to \infty$. Show that $f(x) \to 0$ as $x \to \infty$.
- 12. Assume that X is a closed subspace of $(C[0,1], \|\cdot\|_{\infty})$ such that every element of X is continuously differentiable. Show that X is finite-dimensional.
- 13. Let $f: [0,1] \to \mathbb{R}$ be a pointwise limit of a sequence of continuous functions. Show that f has a point of continuity.
- $^{+}$ 14. Let X be a normed space that is homeomorphic to a complete metric space. Prove that X is complete.
- ⁺15. Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that for every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ with $f^{(m)}(x) = 0$ for all $m \ge n$. Prove that f is a polynomial.