- 1. Let $1 \leq p < q < \infty$. Show that $\ell_p \subsetneq \ell_q \subsetneq c_0$. Is $\bigcup_{p \in [1,\infty)} \ell_p = c_0$?
- 2. (i) Prove carefully that C[0,1] is incomplete in the L_1 -norm $\|\cdot\|_1$.
- (ii) Show that the space $C^1[0,1]$ is incomplete in the uniform norm $\|\cdot\|_{\infty}$ but complete in the norm $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$.
- 3. Let $T: \ell_p^n \to \ell_q^n$ be the identity map of the underlying vector space \mathbb{R}^n . Compute the operator norm of T for all possible values of p and q.
- 4. Show carefully that $\ell_1^* \cong \ell_\infty$ and $c_0^* \cong \ell_1$.
- 5. Show directly that the spaces ℓ_p , $1 \leq p \leq \infty$, and c_0 are complete.
- 6. Prove that C[0,1] is separable and that ℓ_{∞} is not separable.
- 7. Let X be a normed space. For $x \in X \setminus \{0\}$ write $\pi(x) = x/\|x\|$. Is it true that $\|\pi(x) \pi(y)\| \le \|x y\|$ whenever $\|x\|$, $\|y\| \ge 1$?
- 8. Prove that a normed space X is a Banach space if and only if every series $\sum x_n$ in X with $\sum ||x_n|| < \infty$ is convergent.
- 9. Show that the spaces c_0 and c are isomorphic. Are they isometrically isomorphic?
- 10. Let Y and Z be dense subspaces of a normed space X. Is $Y \cap Z$ dense in X?
- 11. Give two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ on a vector space X such that $(X, \|\cdot\|)$ and $(X, \|\cdot\|')$ are isomorphic.
- 12. Assume that the vector space X is the (algebraic) direct sum of subspaces Y and Z, *i.e.*, $Y \cap Z = \{0\}$ and X = Y + Z. Let $\|\cdot\|$ and $\|\cdot\|'$ be two norms on X that are equivalent on Y and on Z. Must they be equivalent on X?
- 13. Let Y be a proper closed subspace of a normed space X. Is there always a non-zero vector $x \in X$ that is 'orthogonal' to Y in the sense that $||x + y|| \ge ||y||$ for all $y \in Y$?
- ⁺14. Construct two normed spaces X, Y such that d(X, Y) = 1 but X and Y are not isometrically isomorphic.