- 1. Let $(T_k)_{k\in\mathbb{N}}$ be a sequence in $L(\mathbb{R}^m,\mathbb{R}^n)$. Show that if $T_k\to 0$ in the euclidean metric, then $T_k\to 0$ pointwise. Is the converse true? Do your answers change if (T_k) is a sequence in $\mathrm{Bil}(\mathbb{R}^m\times\mathbb{R}^n,\mathbb{R}^p)$?
- 2. At which points is each of the following functions $\mathbb{R}^2 \to \mathbb{R}$ differentiable?
- (i) f(x,y) = |x||y|;
- (ii) $g(x, y) = xy \sin(1/x)$ when $x \neq 0$ and g(0, y) = 0;
- (iii) $h(x,y) = \frac{xy}{(x^2+y^2)^{1/2}}$ when $(x,y) \neq (0,0)$ and h(0,0) = 0.
- 3. Consider the map $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x) = x/||x|| if $x \neq 0$ and f(0) = 0. Show that f is differentiable on $\mathbb{R}^3 \setminus \{0\}$ with

$$f'(x)(h) = \frac{h}{\|x\|} - \frac{\langle x, h \rangle x}{\|x\|^3}$$
.

Verify that f'(x)(h) is orthogonal to x and explain geometrically why this is the case.

- 4. (a) Show that the set \mathcal{G}_n of invertible $n \times n$ real matrices is an open subset of \mathcal{M}_n . By quoting appropriate results, explain why the function $f: \mathcal{G}_n \to \mathcal{M}_n$ given by $f(A) = A^{-1}$ is differentiable.
- (b) Given an open subset U of \mathcal{M}_n , show that if functions $g, h: U \to \mathcal{M}_n$ are differentiable at $A \in U$, then so is the product gh given by (gh)(X) = g(X)h(X). Hence, or otherwise, find the derivative of the function f given in part (a).
- 5. Show that the function $\det : \mathcal{M}_n \to \mathbb{R}$ is differentiable at the identity matrix I with $\det'(I)(H) = \operatorname{tr}(H)$. Deduce that det is differentiable at every invertible matrix A with $\det'(A)(H) = \det(A)\operatorname{tr}(A^{-1}H)$. Show further that det is twice differentiable at I and find $\det''(I)$ as a bilinear map. Is det differentiable at any non-invertible matrix?
- 6. Assume that all directional derivatives $D_u f(0)$ exist for $f: \mathbb{R}^2 \to \mathbb{R}$, and moreover the map $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(u) = D_u f(0)$ if $u \neq 0$ and T(0) = 0 is linear. Does it follow that f is differentiable at 0? What if we assume instead that $f \circ \gamma$ is differentiable at 0 for every differentiable curve $\gamma: (-1,1) \to \mathbb{R}^2$ with $\gamma(0) = 0$?
- 7. Let $U \subset \mathbb{R}^2$ be an open set and $f \colon U \to \mathbb{R}$ be a function such that for each $x \in \mathbb{R}$ the map $y \mapsto f(x,y)$ is continuous, and for each $y \in \mathbb{R}$ the map $x \mapsto f(x,y)$ is continuous. Show that f need not be continuous on U. Now assume that $D_1 f$ exists and is bounded on U and that for each $x \in \mathbb{R}$ the map $y \mapsto f(x,y)$ is continuous. Show that f is continuous.

- 8. Define $f: \mathcal{M}_n \to \mathcal{M}_n$ by $f(A) = A^2$. Show that f is continuously differentiable on \mathcal{M}_n . Deduce that there is a continuous square-root function on some neighbourhood of I: there exist r > 0 and a continuous function $g: D_r(I) \to \mathcal{M}_n$ such that $g(A)^2 = A$ for all $A \in D_r(I)$. Is it possible to define a continuous square-root function on the whole of \mathcal{M}_n ?
- 9. Let $C = \{(x,y) \in \mathbb{R}^2 : x^3 + y^3 3xy = 0\}$. Define a function $F : \mathbb{R}^2 \to \mathbb{R}^2$ by $F(x,y) = (x,x^3+y^3-3xy)$. Show that for every $(x_0,y_0) \in C \setminus \{(0,0),(2^{\frac{2}{3}},2^{\frac{1}{3}})\}$ there are open sets U containing (x_0,y_0) and V containing $F(x_0,y_0)$ such that $F \upharpoonright_U$ is a bijection from U onto V with a continuously differentiable inverse. Deduce that for every such point (x_0,y_0) there is an open neighbourhood U of (x_0,y_0) , an open interval I containing x_0 and a continuously differentiable function $g \colon I \to \mathbb{R}$ such that $g(x_0) = y_0$ and $C \cap U$ is the graph of g, i.e., $C \cap U = \{(x,y) \in \mathbb{R}^2 : x \in I, y = g(x)\}$.
- 10. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(0,0) = 0 and

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$.

Show that D_1D_2f and D_2D_1f exist on \mathbb{R}^2 and take the value 1 and -1 at (0,0), respectively. Where are D_1D_2f and D_2D_1f continuous?

- 11. Let $U \subset \mathbb{R}^m$ be an open set, and $f: U \to \mathbb{R}^n$ be differentiable on U. Show carefully that if f' has directional derivative $D_u f'(a)$ for some $a \in U$ and $u \in \mathbb{R}^m \setminus \{0\}$, then for every $v \in \mathbb{R}^m \setminus \{0\}$, the directional derivative $D_u D_v f(a)$ exists and equals $D_u f'(a)(v)$.
- 12. Let U be an open subset of \mathbb{R}^2 containing the rectangle $[a,b] \times [c,d]$. Suppose that $f: U \to \mathbb{R}$ is continuous and that $D_2 f$ exists and is continuous on U. Show that $F(y) = \int_a^b f(x,y) \, \mathrm{d}x$ is differentiable on some open interval containing [c,d] with $F'(y) = \int_a^b D_2 f(x,y) \, \mathrm{d}x$.
- 13. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^p$ be twice differentiable functions on \mathbb{R}^m and \mathbb{R}^n , respectively. Show that $g \circ f$ is twice differentiable on \mathbb{R}^m and find $(g \circ f)''$.