
Mich. 2021 ANALYSIS AND TOPOLOGY AZ

In lectures we defined the product topology on the product of finitely many
topological spaces. Here we are going to extend this to arbitrary products. Note
that this is non-examinable material and is not part of the course.

Before we begin, let us define the notion of base. A base for a topology on a set
X is a family B of open subsets of X such that every open set is a union of some
members of B; equivalently, for U ⊂ X, we have that U is open in X if and only if
for all x ∈ U there exists B ∈ B such that x ∈ B ⊂ U .

Examples The family of open balls in a metric space is a base for the metric
topology. For topological spaces X and Y , the family of open box sets U × V with
U open in X and V open in Y , is a base for the product topology of X × Y .

We now turn to products of an arbitrary number of spaces. Fix a set Γ, and
assume that for each γ ∈ Γ, a topological space (Xγ , τγ) is given. We consider the
product space

X =
∏
γ∈Γ

Xγ = {x : x is a function with domain Γ and xγ ∈ Xγ for all γ ∈ Γ} .

We often write xγ instead of x(γ) for the value of the function x at γ. For x ∈ X we
write x = (xγ)γ∈Γ, and think of x as a “Γ-tuple” in analogy with finite products.
For each γ ∈ Γ, we let qγ : X → Xγ denote the coordinate-projection defined by
qγ
(
(xδ)δ∈Γ

)
= xγ .

Guided by the definition of the product topology for finite products, it is natural
to guess that the product topology on X should be the one with base∏

γ∈Γ

Uγ : Uγ ∈ τγ for all γ ∈ Γ

 .

This is indeed a base for a topology, called the box topology, for X. However,
this has too many open sets. For example, the product of connected or compact
spaces is not necessarily connected or, respectively, compact in the box topology.
Instead, we shall define the product topology τ on X to be the smallest topology
that makes the coordinate-projections continuous. So τ must contain all sets of the
form q−1

γ (U) where γ ∈ Γ and U is an open set in Xγ . Since a topology is closed
under finite intersections, τ must contain the family

B =

{
n⋂
i=1

q−1
γi (Ui) : n ∈ N, γi ∈ Γ, Ui ∈ τγi for i = 1, . . . , n

}
.

Then τ must also contain the family σ of arbitrary unions of members of B. It is
easy to check that σ is a topology on X, and hence τ = σ. Thus, a subset W of
X is open in the product topology τ if and only for all x ∈ W there exist n ∈ N,
γ1, . . . , γn ∈ Γ and open sets Ui in Xγi for i = 1, . . . , n such that

x ∈
n⋂
i=1

q−1
γi (Ui) ⊂W .

To put it in another way, W is open in the product topology if and only if for all
x = (xγ)γ∈Γ ∈ W there exist n ∈ N, γ1, . . . , γn ∈ Γ and neighbourhoods Ui of xγi
in Xγi for i = 1, . . . , n such that

{y = (yγ)γ∈Γ ∈ X : yγi ∈ Ui for i = 1, . . . , n} ⊂W .

So a typical neighbourhood of a point places restrictions on finitely many coordi-
nates only whereas all the other coordinates can vary arbitrarily. So open sets are
in some sense quite big in the product topology.
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The following result is an extension to arbitrary products of a similar result in
lectures. The proof is essentially the same.

Theorem 1. With the above notation, the coordinate-projections qγ are continuous
for all γ ∈ Γ. Moreover, for any space Z and function f : Z → X the following
holds: f is continuous if and only if the composite functions qγ ◦ f : Z → Xγ are
continuous for all γ ∈ Γ.

By far the most important result concerning the product topology is Tychonov’s
theorem.

Theorem 2 (Tychonov). The product of compact topological spaces is compact in
the product topology.

This was stated and proved in lectures for finite products. A proof for the general
case can be found in most books on topology, e.g., Kelley’s General Topology.
Showing that the product of connected spaces is connected is easier and is left as
an exercise.

We conclude by considering a special case. Assume that Xγ = Y for all γ ∈ Γ.
In this case X = Y Γ is the set of all functions Γ → Y . The coordinate-projection
qγ maps f ∈ X to f(γ) ∈ Y and is referred to as the evaluation map at γ and is
sometimes denoted εγ . Given a sequence (fn) in X and f ∈ X, it is easy to check
that fn → f as n → ∞ in the product topology if and only if fn → f pointwise
on Γ. For this reason the product topology on X is also called the topology of
pointwise convergence.

Exercises (not for supervisions!)

1. Let σ be a topology on X =
∏
γ∈ΓXγ such that for any space Z and function

f : Z → X the following holds: f is continuous if and only if the composites
qγ ◦ f : Z → Xγ are continous for all γ ∈ Γ. Show that σ is the product topology.

2. Show that the product of Hausdorff spaces is Hausdorff in the product topology.

3. For each n ∈ N we are given a metric space (Xn, dn). Show that

d(x, y) =

∞∑
n=1

2−n min{1, dn(xn, yn)}

defines a metric on X =
∏
n∈NXn and that the metric topology induced by d is the

product topology. Thus, a countable product of metrizable spaces is metrizable.

4. Let X = [0, 1][0,1] be equipped with the topology of pointwise convergence.
Let Y be the subset of X consisting of all functions f : [0, 1] → [0, 1] for which
{x ∈ [0, 1] : f(x) 6= 0} is countable. Show that if fn ∈ Y for all n ∈ N and
fn → f in X, then f ∈ Y . Show also that Y is dense in X. Deduce that X is not
metrizable.

5. For n ∈ N and A ⊂ N set xn(A) = 1 if n ∈ A and xn(A) = 0 otherwise.
Show that the sequence (xn) in X = {0, 1}P(N) has no convergent subsequence in
the product topology ({0, 1} is given the discrete topology). Deduce that X is not
metrizable.

6. Prove that the product of connected spaces is connected. [Hint: fix x ∈ X =∏
γ∈ΓXγ and for a finite F ⊂ Γ consider CF = {z ∈ X : zγ = xγ for all γ /∈ F}.]

7. Show that a countable product of sequentially compact topological spaces is
sequentially compact. Deduce the following special case of Tychonov’s theorem: a
countable product of compact metric spaces is compact.
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8. Let A be an infinite set and consider Y = RA with the box topology. Show that
the connected component of x ∈ Y is{

y ∈ Y : {a ∈ A : ya 6= xa} is finite
}
.


