AZ

1. Show that a continuous real-valued function on a sequentially compact topological space is bounded and attains its bounds. Show also that a continuous function from a compact metric space to an arbitrary metric space is uniformly continuous.

2. Show that if A and B are closed subsets of \mathbb{R}^n and if A or B is bounded, then A + B is closed. Give an example in \mathbb{R} to show that the boundedness condition cannot be omitted.

3. Let M be a non-empty compact metric space and $f: M \to M$ be a function.

(a) Show that if d(f(x), f(y)) < d(x, y) for all $x \neq y$ in M, then f has a unique fixed point.

(b) Show that if f is isometric, *i.e.*, d(f(x), f(y)) = d(x, y) for all $x, y \in M$, then f is surjective.

4. (a) A topological space is *normal* if disjoint closed subsets can be separated by open sets: given disjoint closed subsets A and B, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Show that a compact Hausdorff space is normal.

(b) Let (C_n) be a decreasing sequence of compact connected subsets of a Hausdorff space. Show that $\bigcap_{n \in \mathbb{N}} C_n$ is connected. (Part (a) will be useful here.) Give an example in \mathbb{R}^2 of a decreasing sequence of closed connected sets whose intersection is disconnected.

5. Show that C[0, 1] in the uniform metric D is separable. Let $B = \{f \in C[0, 1] : D(0, f) \leq 1\}$ and $B' = \{f \in B : f \text{ differentiable and } f' \in B\}$. Show that B is closed but not compact. On the other hand, show that every sequence in B' has a subsequence convergent in C[0, 1]. Deduce that $\overline{B'}$ is compact.

6. At which points is each of the following functions $\mathbb{R}^2 \to \mathbb{R}$ differentiable?

(i) f(x, y) = |x||y|; (ii) $g(x, y) = xy \sin(1/x)$ when $x \neq 0$ and g(0, y) = 0; (iii) $h(x, y) = \frac{xy}{(x^2+y^2)^{1/2}}$ when $(x, y) \neq (0, 0)$ and h(0, 0) = 0.

7. Consider the map $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x) = x/||x|| if $x \neq 0$ and f(0) = 0. Show that f is differentiable on $\mathbb{R}^3 \setminus \{0\}$ with

$$f'(x)(h) = \frac{h}{\|x\|} - \frac{\langle x, h \rangle x}{\|x\|^3}$$

Verify that f'(x)(h) is orthogonal to x and explain geometrically why this is the case.

8. (a) Show that the set \mathcal{G}_n of invertible $n \times n$ real matrices is an open subset of \mathcal{M}_n . By quoting appropriate results, explain why the function $f: \mathcal{G}_n \to \mathcal{M}_n$ given by $f(A) = A^{-1}$ is differentiable.

(b) Given an open subset U of \mathcal{M}_n , show that if functions $g, h: U \to \mathcal{M}_n$ are differentiable at $A \in U$, then so is the product gh given by (gh)(X) = g(X)h(X). Hence, or otherwise, find the derivative of the function f given in part (a).

9. Show that the function det: $\mathcal{M}_n \to \mathbb{R}$ is differentiable at the identity matrix I with $\det'(I)(H) = \operatorname{tr}(H)$. Deduce that det is differentiable at every invertible matrix A with $\det'(A)(H) = \det(A)\operatorname{tr}(A^{-1}H)$. Show further that det is twice differentiable at I and find $\det''(I)$ as a bilinear map. Is det differentiable at any non-invertible matrix?

10. Assume that all directional derivatives $D_u f(0)$ exist for $f : \mathbb{R}^2 \to \mathbb{R}$, and moreover the map $T : \mathbb{R}^2 \to \mathbb{R}$ given by $T(u) = D_u f(0)$ if $u \neq 0$ and T(0) = 0 is linear. Does it follow that f is differentiable at 0? What if we assume that $f \circ \gamma$ is differentiable at 0 for every differentiable curve $\gamma : (-1, 1) \to \mathbb{R}^2$ with $\gamma(0) = 0$?

11. Let $U \subset \mathbb{R}^2$ be an open set and $f: U \to \mathbb{R}$ be a function such that for each $x \in \mathbb{R}$ the map $y \mapsto f(x, y)$ is continuous, and for each $y \in \mathbb{R}$ the map $x \mapsto f(x, y)$ is continuous. Show that f need not be continuous on U. Now assume that $D_1 f$ exists and is bounded on U and that for each $x \in \mathbb{R}$ the map $y \mapsto f(x, y)$ is continuous. Show that f is continuous.

12. Define $f: \mathcal{M}_n \to \mathcal{M}_n$ by $f(A) = A^2$. Show that f is continuously differentiable on \mathcal{M}_n . Deduce that there is a continuous square-root function on some neighbourhood of I: there exist r > 0 and a continuous function $g: D_r(I) \to \mathcal{M}_n$ such that $g(A)^2 = A$ for all $A \in D_r(I)$. Is it possible to define a continuous square-root function on the whole of \mathcal{M}_n ?

13. Let $C = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 - 3xy = 0\}$. Define a function $F : \mathbb{R}^2 \to \mathbb{R}^2$ by $F(x, y) = (x, x^3 + y^3 - 3xy)$. Show that for every $(x_0, y_0) \in C \setminus \{(0, 0), (2^{\frac{2}{3}}, 2^{\frac{1}{3}})\}$ there are open sets U containing (x_0, y_0) and V containing $F(x_0, y_0)$ such that $F \upharpoonright_U$ is a bijection from U onto V with a continuously differentiable inverse. Deduce that for every such point (x_0, y_0) there is an open neighbourhood U of (x_0, y_0) , an open interval I containing x_0 and a continuously differentiable function $g: I \to \mathbb{R}$ such that $g(x_0) = y_0$ and $C \cap U$ is the graph of g, *i.e.*, $C \cap U = \{(x, y) \in \mathbb{R}^2 : x \in I, y = g(x)\}.$

14. (a) Show that there exist $\varepsilon > 0$ and C^1 functions $F, G: D_{\varepsilon}(\mathbf{0}) \to \mathbb{R}$ on the open ball $D_{\varepsilon}(\mathbf{0}) \subset \mathbb{R}^2$ such that (x, y, z, w) = (x, y, F(x, y), G(x, y)) is a solution of the equations

$$\sin xz + \cos yw = e^z$$
$$\cos yz + \sin xw = e^w$$

for all $(x, y) \in D_{\varepsilon}(\mathbf{0})$.

(b) Deduce that on an open interval in \mathbb{R} containing 0 the system of differential equations

$$\sin y_1 y'_1 + \cos y_2 y'_2 = e^{y'_1} \\ \cos y_2 y'_1 + \sin y_1 y'_2 = e^{y'_2}$$

has a unique solution $\mathbf{y}(t) = (y_1(t), y_2(t))$ with $\mathbf{y}(0) = \mathbf{0}$.