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A p-point is an ultrafilter F on w which has the following proper-
ties;: |
(.1) F contains the Fréchet filter of all cofinite subsets of w
(.2) if X; (i < w) are elements of F, there is an Xe F such that for

each i X‘\Xi is finite.

&

p-points have been constructed on w using the continuum hypothesis
(Rudin [12]) or Martin's axiom (Booth [1]). It is however unknown

whether their existence is provable in ZFC.

A filter F which enjoys the properties {(.1l) and {.2) need not be
an ultrafilter; for example, F might be the Fréchet filter. However
the Fréchet filter is clearly much smaller than an ultrafilter. In

(10], the author introduced the concept of a feeble filter : a filter

F is feeble if there is some weakly monotonic map £ of w onto w such
that {X]f_l“XE:F} is the Fréchet filter. Evidently no ultrafilter

is feeble. It is shown in [10] that every *2: filter is feeble, and
that provided that w -+ {w)m, every filter is feeble. Jalali-Naini [5]
and Talagrand (14] have independently discovered the following charac-
terization:

a filter F is feeble if and only if considered as a subset of the Cantor

space 2Y it is of the first category.

Thus the following property is a reasonable notion of largeness

of a filter F:
(.3) F is not feeble.

In [6], Kanamori introduced the concept of a coherent filter and
remarking that the proof of Theorem 1.9 of [6] shows that a filter is
coherent if and only if it has properties (.l); (.2} and {.3), has asked

as an approach to the p-point problem whether the existence of a cohe-
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rent filter is provable in ZFC. We shall use the term coherent filter

in this paper to mean one having properties (.1),(.2) and {.3).
The principal result of this paper is the following partial answer

to Kanamori's gquestion:

THEQREM 1. If O% does not exist, there is a coherent filter.

Here O# is the real number defined in Solovay [13]. Its existence
is unprovable in ZFC, and it lies in no Boolean extension of L. We
denote the assertion of its non-existence by 'TO%. The paper [3] of
Dodd and Jensen shows that the hypothesis '70* can be considerably
weakened, e.g. to the non-existence of an inner model with a measur-
able cardinal. Our method does not permit us to prove the existence
of a coherent filter in ZFC alone, but we have the following partial

result:

THEOREM 2. If 2 B, < §?w+l » there is a cocherent filter.

1
Kunen shows in [8] that the existence of rare p-points is unprov-
able in ZFC, where a filter F is rare if it satisfies (.1) and every:
weakly monotonic map f of w onto w is, restricted to some Xt F, one-

to-one. Our method gives the following amusing result:

TEEOREM 3. 1If ZHL = 3’2 s either there is a p-point or there is a

rare filter.

A.Miller [11] has shown that in Laver's model [9] of Borel's conjecture
there is no rare filter, or indeed 2-rare, where we call F 2-rare if
it satisfies (.1l) and every weakly monotonic map f of w onto w is,
restricted to some X ¢ F, at-most-two-to-one; or equivalently, if given
a partition of w into disjoint finite intervals siSE(EF with each
X ns; of power at most 2. No feeble filter is 2-rare.

If U is a subset of P(w), we write [U] for {x| 3yeU y = x}. 1If

~1.

T: w > w we write m,U for {x < w| w “"xeU}.
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We say that f dominates g if f is strictly monotonic, and for all
m, g(m) < £f(m). We call a subset F of “uw = {f|f: w + w} dominant if
every ge % is dominated by some member of ¥ . Note that the mini-
mum cardinality of a dominant family is the minimum cardinality of a
family G such that Vge®s 3fc63ImVYn > m £(n) > g(n); as given
such a family G, the set of all functions h of the form
h{n) = r + § (f(n)+1) for rew and feG is a dominant family of
the same caié?nality as G.

Following Ketecnen [7] we write (H) for the assertion that no
dominant family is of cardinality less than ZHL . We shall use the

following result of [7]:

(K1) If (H) holds then there is a p-point.

Definition 4 For f: w +» w define f: w + w by recursion thus:

£(0) =0, T(n+l) = £(E(n) + 1).

Lemma 5 If £ dominates ¢ and ¥i i < w{(i), then for no 1 and n can the

following hold:
(6) (i) s £(n) < E(n+l) < w(i+1)

Thus for all n with f(n) 2 7(0), there is a value of strictly between

f(n) and f(n+l).

Proof £ is strictly monotonic, as f is. From (6), f(n+l) = £(f(n)+l).
« S m(i+l) < £{i+1l); as f is monotonic, f(n) + 1 <i 4+ 1; so

f(n) s i < T{1) < E(n); so i = w(i) - a contradiction.d

Lemma 7 Suppose that M is an inner model of ZFC such that “w n M is

dominant, and let F eM be a filter in M.
(i) If F is not feeble in M, neither is [F] in V, the universe.
(ii) If F is rare in M, [F] is 2-rare; consequently any ultrafilter

extending (FJ] is rare, and {F)] is rare if F is, in M, an ultrafilter.

Proof Let 7 be strictly monotonic, and let fe M dominate it. Then



378

(i) Define g(n) = f£(2n). If F is not feeble in M, there is an Xe M
such that for infinitely many n, [g(n),g(n+l))n X is empty. By Lemma
5, for all such n with n(0) < ¥(2n), there are k r% ~ such that

gi(n) = £(2n) < ik ) < f(2n+l) < T2, ) < £(2n+2) = g(n+l); consequently

[n(kn),n(kn+l»n X

In

[n(kn).w(ln))n X

|0

[g{n),g(n+1)}n X = @g. As the set
of such k_'s is infinite, and X e [F], it is clear that T.LF] is not

the Fréchet filter.

(ii) If F is rare in M,tnere is an X ¢F such that Yi [E(1),F(i+1)n X
has cardinality 1. Let h enumerate X monotonically. Then for all i
3 at least one j with h(i) < £(j) s h(i+l). (Recall that £(0) = O).
It follows that for all i, [7(i),n(i+l1))n X has at most 2 members; for
if 3k (i) < h(k) < h(k+l) < h{k+2) < m(i+l), we would have j,3' with
£(3) € (h(k},h(k+1)] and E(3') € (h(k+1l),h{(k+2)1, and by Lemma 5 m(i')
£ (E(j),%(j+l)) for some i', contradicting the monotonicity of 7.
Thus [F] is 2-rare.
in M,

If F is an ultrafilter either {h(2n)|ne w} or {h(2n+l)|ncuw} e F,

and both meet each ([#(i),w(i+l)) in at most one element. Thus [F] is

rare. An ultrafilter extending {F] is rare for the same reason.?

Lemma 8 Let M be an inner model of ZFC such that every countable sub-
set X of P(w) nM is a subset of some Ye M with ¥ countable in M. If

Fe M has preoperty (.2) in M, LF] has (.2) in V.

Proof Let Xi el[Fl. Pick Yie F with Yi i’

Ex hypothesis, X = YeM where ¥ is countable in M. As F has (.2) in

£ X;. and set X = {Y, |i < w}.
M, 3Z¢ F such that ¥YWeVY n P(w) nF 2\ W is finite. A fortiori 2\ X;
is finite for each i.-

For the rest of this paper, let G be a dominant family of least

possible cardinality, and let x be its cardinal.

Proposition 9 cfi(x) > $§,




379

Proof Suppose the contrary and let ¢ = sup{liii < w} where A\ < A, <
}‘2 ++v. and the )‘i are regqular cardinals. Write G as the union of

sets G, with Ei = }‘i' and let h‘i = {An{r+£f(n)) [chi & rsm}.2 Then

Hi = Ai. By the minimality of g, there is a function fi not dominated

A

by any member of Hi. Define f(n) = sup{f:.L (n) }i n}. Suppose Jg EGio

A n.dgin) + § £(m}).
msi,
Then hef;, and ¥Yn h(n) 2 £, (n), contrary to the choice of f;. 4
(-4

-

Vn f(n) s g(n). V¥n 2 i,f;(n) < £(n). Let h

Proposition 10 If « = 391 then there is a filter which is both rare

and coherent.3

Proof For each countable ordinal Z let hC e“w code ¢; let A be a sub-
set of ﬁ’l coding each h‘: and all elements of G. Set M = L{A]. Then
Sbf = 5’1; GeM, and in M, 2% = S’l. There is consequently a Ramsey
ultrafilter U in M. G = (ww)n M which is therefore dominant. By
Lemma 7(ii), [U] is rare. Lemma 8 will tell us that [U] is coherent
provided we know that each countable subset X of P{w) n M is a subset

of a set countable in M. But let <x,[v < wy> be an enumeration in

M of P{(w) n M in order type wt;.' Set ¢ = sup{lev e X}. g < wy = mrf

so X ¢ {xviv < ¢} which is countable in M as required. 4

PROOF OF THEOREM 3 1If 2% = sé’z, K =§§’l or &2. If ¢ = S’l, by

Proposition 10 there is a rare filter; if x = 5'2 by Ketonen's result

(K1) there is a p-point.

Proposition 11 If E’l < g < .‘.{’m there is a coherent filter.

Proof Let k=P . For each infinite v < ¥ , let £ be a 1-1 map
of v onto v, and let A be a subset of }é’n coding each f, and each ge G.
Set M = L{A]J. Then for 1 =i s n, B’? = B’i; in M, 28: = &«I’n; as
GeM, (Yw)nM is dominant, and so by the minimality of ¥ and the
transitivity of dominance, there is in M no dominant family of power

less than B’n. Consequently the hypothesis (H) holds in M, and
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therefore there is in M a p-point U. As U is an ultrafilter in M it is
not feeble in M, and so by Lemma 7(i) [U] is not feeble. Trivially
(UJ has property (.1).

We now show that any countable subset X of P(w)n M is a subset
of a set countable in M; Lemma 8 will immediately imply that [U] satis-
fies (.2) and is thus coherent.

Let <x3}v < w, > be an enumeration in M of P(w)n M in order type

w ., and set A = {v]xg € X}. Set tn = Sup A ; by the regularity of

"'""M - E———3 _ - M -
Bty <® ,and [ +1 = ther = ¥ 8 7 - Now let

n-1
X
v

< v < w._1 > be an enumeration in M of {xﬁ[u < ¢} of order

= n-1 =
type w_ _, , and set A 1 = {v[x  “e X}. As before, Lp-1 = SUP A__,

is less than ¥’ We are assuming that n > 1; if n-1 = 1,

n-1"°
{xn—l v £z } is the desired set countable in M of which X is a sub-
v n—~-1

set; if n-1 > 1, we enumerate {xs—llv < Cn—l} in order type w as

n-2
< xg-zlv < mn_2> and repeat the argument. After a total of n—1 steps

We obtain an enumeration in M of a subset of P{w)n M, in order type wl,
of which X is a bounded subset, and thus of which a suitable countable

initial segment is the desired superset of X countable in M. 4

PROOF OF THEOREM 2: The only case not covered by Propositions 9,10 and
llis that when x = Z*Q = }¥w+l’ when Ketonen's theorem (K1} immedia-

tely yields a p-point.

In proving Theorem 1 we shall use the following result of Jensen, which

is Theorem 1 of Devlin and Jensen [21:

THE COVERING LEMMA Suppose that O% does not exist. If X is an uncoun-

table set of ordinals, there is a set Ye L of ordinals such that X = 4

and X = ?.

The covering Lemma has the following consequence:

Proposition 12 [‘JO#J Let M be an inner model of 2FC such that

§?T = §§l and %‘g = j?z. Any countable subset of P(w)n M is a
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subset of a set countable in M.

Proof: Let (Zgﬁ»)M = A, let <x4+v < X > be an enumeration in M of
P(w) n M in order type A, and let X be a countable subset of P(w)n M.

Let A = {v]|x eX}v o A is an uncountable set of ordinals, so by

1°
the Covering Lemma, there is a B in L, which is therefore in M, such

that A < B and A = B. As & = }?l and 5?? = ¥, the cardinal of

—

2'
B in M cannot be S’? or more, and so must be ‘ﬁ‘?. Enumerate the

elements of B in M in order type w; as < nglg < w, > . There is a
¢ < w; such that {v}xue:X} = {nglg <z} e M; consequently
X

In

(xn € < £} which is countable in M. o
g

ROOF OF THEOREM 1: In view of Proposition 10 we may assume that
K 2 §§2. We first establish Theorem 1 on the further assumption that
X is regular, and then show how to do the singular case.
Suppose then that x is regular. Let A ¢ x be such that Ge L[AJ,
LAl _ Lial _
81 = K’l and K‘z = K’z.

apply the theorem of Hajnal [4] that P(w) n L[A] =U{P(u)n chAnellc,

Put M = L[A]. As x is regular we may

8 < x} to conclude that in M Zﬁk = x. {*w)aM is dominant and so
Ketonen's hypothesis that there is no dominant family of power < ZQL
holds in M: then there is in M a p-point, U. By Proposition 12 and
Lemmas 7 and 8, [U] is coherent.

The case of singular « would be easy were an affirmative answer

known to the following, which appears to be an open gquestion:

Problem 13 Let A ¢ 8 where 68 is a cardinal of uncountable cofinality.
Is it true that in LIA] 2% < g2

Fortunately we can by-pass that problem in proving Theorem 1.
Suppose that k is singular; by Proposition 9 we know that cf(x) > 2, .
Let Av (v < cf(x}) be an increasing sequence of successor cardinals
with supremum x and with ko = &92. Enumerate G without repetitions
as < ggli < k > and let Gs{ggla < A,

We shall define a sequence of filter bases Fv such that ?V = Av
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and v < v' < ¢cf{x) = F_ = F , .
v — Tv

We shall need a variant of Ketonen's result. If B is a sub-
algebra of P(w} and H a subset of Y& such that for all heH and
all icw h-l"{i}s B, we shall say that a subset F of P(w) is a (B,H)~
point if it is an ultrafilter in B containing all cofinite sets and
for all heH either h-l”{i}s F for some i < w or there is an
XeF with Xewh—l"{i} finite for all i, so that in the latter case
@\ h" (i} cF for each i. The following is implicit in Theorem 1.2

of [7] and is readily provable in ZFC by transfinite induction using

Proposition 1.3 of [7]:

(K2) Let B be a subalgebra of P(w) containing all finite sets and of
cardinality < x; let H be a subset of “u of cardinality sx. Then every

filter in ©§ generatea oy fewer thian Kk sets can be extended to a {5,H)
point.

If M is an inner-model of ZFC we shall mean by an M-point an
(MnP(w), Mn“w) - point. An M-point need not be a member of M. We

shall say that M is i-correct if 5‘9? = Kl' }5’? = 8 and {2 y’;,)M = A,

2
We proceed to the constuction of the seguence FV.

v = Q Let Mo be a ko—correct inner model with GOE:MO, and let FO be

an Mo—p01nt: FO exists by (K2). FO = X .

o
v = £+1 Let M€+l be a K£+l-correct inner model with G€+l€ M£+l
and FEE:M£+1 . Let F£+l be an Mg+l-p01nt extending Fg‘ F€ = F€+l
and F£+l = AE+1.

lim{v) Let F! = U{ngg < v}. Let M, be a A -correct model containing

t X . [ =1
F“ and Gv‘ and let Fv be an Mv-p01nt extending Fv' Note that Fv
= sup {Agii < v} o< hyi SO such an F, may be found by (K2). F, = A,.

Let F = U {Fvlv < cf(k)}. I assert that [F] is coherent. By con-
struction of FO,[FJ satisfies (.1). Let X be a countable subset of F.

As cfix) > ﬁ; r X = FV for some v, so that X is a countable subset

of P(w)n M .1+ By Proposition 12, there is a 7 , countable in Moi1r
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with X = Z. FoeM .., so {Xe Z[Xe:Fv} e M and is countable in
Mu+l' Enumerate it in Mv+l as < Xi§i < w > . 5till working in Mv+l
set Y. =/ X, and 2, =Y, \Y. .. } X.e M ; if N X, ¢ F
i<3 i 3 3 J+1 i<e * v+l jcw T v+l
there is nothing left to prove; otherwise w\ N Xie Fv+l ; and we may
i<w
define fE:Mv+l by £(n) =0 4if n (N X. v (w \YO)), and f£(n) = 1

i<w

if ne Z;_1- In that case, m\f_l"{i} eF ., for each i, and so
32:€E§+J_ Vi(z nf-l”{i} is finite); such a 2 has the desired property
that VXe X(Z2\ X is finite). As X was arbitrary we have shown that
F and therefore LF] have property (.2).

To see that LF] is not feeble, let f: w + u be strictly monotenic.
There is a g ¢ some Mv+l that dominates f. Define § as before;
§£:Mv+l' Recall that g(0) = 0. Let X be whichever of U {(g(4n),

g{4n+2)) |ne w} and U {{g(4n+2), g(4n+4){ne w} belongs to Foel-

As strictly between any two values of § greater than f£(0) there is a
value of f, the set {i|[lf(v), £(v+l)) n X = @} is infinite,whicih siows
that {Y|f l"Ys:LFJ} is not the Fréchet filter; and thus by the arbi-

trary nature of £, [F] is not feeble. <

Notes

1 Rare p-points are called 'Ramsey ultrafilters' and ‘'selective ultra-
filters' in the literature. See (11, [8] and the author's paper

'Happy Families' in Volume 12, part 1, of the Annals of Mathematical
Logic.

2 Here and three lines lower the ) notation for functions is being

used.

3 Taylor has also noticed that if x = &?l there is a rare filter.
Arguments of this type were first adumbrated by Blass in conversations
at Oberwoclfach in 1975.
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£6]
L73
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£10]
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[12]

{133

147
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