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Abstract

SAUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and

Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing,

Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the

principle, TCo, of Transitive Containment, we shall refer as MAC.

His system is naturally related to systems derived from topos-theoretic notions concerning the category

of sets, and is, as Mac Lane emphasizes, one that is adequate for much of mathematics.

In this paper we show that the consistency strength of Mac Lane’s system is not increased by adding

the axioms of Kripke–Platek set theory and even the Axiom of Constructibility to Mac Lane’s axioms; our

method requires a close study of Axiom H, which was proposed by Mitchell; we digress to apply these

methods to subsystems of Zermelo set theory Z, and obtain an apparently new proof that Z is not finitely

axiomatisable; we study Friedman’s strengthening KPP + AC of KP + MAC, and the Forster–Kaye subsystem

KF of MAC, and use forcing over ill-founded models and forcing to establish independence results concerning

MAC and KPP ; we show, again using ill-founded models, that KPP + V = L proves the consistency of KPP ;

turning to systems that are type-theoretic in spirit or in fact, we show by arguments of Coret and Boffa

that KF proves a weak form of Stratified Collection, and that MAC + KP is a conservative extension of MAC

for stratified sentences, from which we deduce that MAC proves a strong stratified version of KP; we analyse

the known equiconsistency of MAC with the simple theory of types and give Lake’s proof that an instance

of Mathematical Induction is unprovable in Mac Lane’s system; we study a simple set theoretic assertion —

namely that there exists an infinite set of infinite sets, no two of which have the same cardinal — and use it

to establish the failure of the full schema of Stratified Collection in Z; and we determine the point of failure

of various other schemata in MAC.

The paper closes with some philosophical remarks.
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Chart of the set-theoretic systems considered

§ Exty ∅ {x, y}
⋃
x xr y P(x) Sepn Foundn TCo ω Choice Replmt Colln V=L ON=ℵω Ax H RAS

S0 X X X X X

 S1 X X X X X X

 KF X X X X [X] X a-∆0[a-∆P
0 ] [a-∆P

0 ]

M0 X X X X [X] X ∆0[∆
P
0 ] [a-∆P

0 ]

 M1 X X X X [X] X ∆0[∆
P
0 ] set X [a-∆P

0 ]

 KFI X X X X [X] X a-∆0[a-∆P
0 ] AxInf [a-∆P

0 ]

M X X X X [X] X ∆0[∆
P
0 ] set X X

 ZBQC X X X X [X] X ∆0[∆
P
0 ] set X X

MAC X X X X [X] X ∆0[∆
P
0 , a-Σ1] set X X X [oa-Σ1]

 MOST X X X X [X] X Σ1 set[Σ1,Π1] X X X [Σ1] ∆0[s-Σ1] [X]

KP X X X X [X] ∆0[∆1] Π1 [X] ∆0[Σ1]

KPI X X X X [X] ∆0[∆1] Π1 [X] X ∆0[Σ1]

 KPL X X X X [X] ∆0[∆1] Π1 [X] X [X] ∆0[Σ1] X

 KPR X X X X [X] [X] ∆0[∆1] Π1 [X] X ∆0[Σ1] X

 KPP X X X X [X] X ∆0[∆
P
1 ] ΠP

1 [X] X ∆P
0 [ΣP

1 ] [X]

 Zk X X X X [X] X Σk set X

 KZk X X X X [X] X Σk Π1[Σk,Πk] [X] X ∆0[(s)-Σ1] [k > 1]

 KLZk X X X X [X] X Σk Π1[Σk,Πk] [X] X [X] ∆0[s-Σ1] X [k > 0]

 KLMZk X X X X [X] X Σk Π1[Σk,Πk] [X] X [X] ∆0[s-Σ1] X X [k > 2]

 Z X X X X [X] X full set X [strat]

ZC X X X X [X] X full set X X [strat]

 KLMZ X X X X [X] X full Π1[full] [X] X [X] [strat] ∆0[s-Σ1] X X [X]

ZF X X X X [X] X full set[full] [X] X [full] X [•] [X] [X]

ZFC X X X X [X] X full set[full] [X] X X [full] X [•] [X] [X]

Notes

1. Unexplained terms are defined in the text of the paper. Most systems are introduced in section 0. Under § is

given the number of a later section where the given system is discussed.

2. The entries [X] and [•] mean respectively that the statement is derivable or refutable in the given system; not

all facts of this nature appear in the chart.

3. In M0, TCo implies the existence of the transitive closure of a set.

4. The equivalence AC ⇐⇒ WO of the Axiom of Choice and the Well-ordering Principle is provable in M0, using

the power set axiom and the existence of Cartesian products.

5. Save for KFI, those systems with an axiom of infinity take it as asserting the existence of the infinite von Neumann

ordinal ω. AxInf is the statement that there is a Dedekind infinite set.

6. s-Σ1 collection is strong Σ1 collection; it and Axiom H are provable in KZk for k > 1, and in KLZk for k > 0.

Σ1 collection is provable in KZ0; indeed in KP.

7. a-Σ1 means stratified Σ1; o-Σ1 means strong Σ1; oa-Σ1 collection means strong stratified Σ1 collection.

8. RAS is the assertion that ∀ζ {x | %(x) < ζ} ∈ V , where %(x) is the set-theoretical rank of x.

9. Quine’s New Foundations, NF, is mentioned briefly in sections 0 and 7, and two versions—TSTI, TST; TKTI,

TKT—of the simple theory of types with and without infinity are discussed in section 8.
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0: Introduction

We describe here the scope and results of this paper in the semi-formal style, customary among logicians, that
makes no visual distinction between levels of language; at the end of this introduction we shall summarise
certain more rigorous conventions that will be used, with occasional relaxations, in later sections.

Our underlying logic is classical throughout the paper. We suppose that set theory is formalised with
two primitive notions, ∈ and =, a class-forming operator { | . . . }, and apart from the usual quantifiers
∀ and ∃, restricted quantifiers ∀x :∈ y and ∃x :∈ y , (in which x and y are distinct variables) for which the
following axioms are provided. for each formula A of the language:

∀x :∈y A⇐⇒ ∀x(x ∈ y ⇒ A)

∃x :∈y A⇐⇒ ∃x(x ∈ y & A)

Formulæ in which all quantifiers occurring are restricted are called ∆0. A ∆0 formula prefixed by a single
unrestricted existential or universal quantifier is called Σ1 or Π1 respectively.

Denote by S0 the system with axioms of Extensionality, Null Set, Pairing, Union, Difference (“x \ y ∈
V ”); by S1 the system S0 plus Power Set (“{y | y ⊆ x} ∈ V ”); by M0 the system S1 plus the scheme of
Restricted Separation (“x∩A ∈ V ”, for each ∆0 class A), known also as ∆0 Separation and as Σ0 Separation;
by M1 the system M0 + Foundation (“Every non-empty set x has a member y with x∩y empty”) + Transitive
Containment (“Every set is a member of a transitive set”): using the Axiom of Pairing, that may be seen
to be equivalent to saying that each set is a subset of a transitive set; by M the system M1 + Infinity, the
latter taken in the form ω ∈ V asserting that there exists an infinite von Neumann ordinal; and by MAC the
system M plus the Axiom of Choice, which we may take either as the assertion AC of the existence of selectors
for sets of non-empty sets, or as the assertion WO that every set has a well-ordering, since M0 suffices for
Zermelo’s 1904 proof of their equivalence.

We shall also consider the system KF studied recently by Forster and Kaye [B3], which differs from M0

in that Separation is admitted only for formulæ that are both ∆0 and also stratifiable in the sense, recalled
below, of Quine. For that system, ω ∈ V is an unsuitable, because unstratifiable, formulation of the axiom
of infinity; a suitable one is AxInf, the assertion that there is a Dedekind-infinite set, that is, a set in bijection
with a proper subset of itself; for two other versions, define a set to be finite if it has a well-ordering 6 whose
reflection > is also a well-ordering, and then formulate the axiom of infinity either as ExInf, the assertion
that there is a set which is not finite, or as InfWel, the assertion that there exists a well-ordering 6 whose
reflection > is not.

Fortunately, KF proves, with the help of the Power Set axiom, the equivalence of those three formulations,
so formally we need not decide between them. Forster and Kaye favour AxInf; the present author does not.
We write KFI for the system KF with any one formulation added.

KF proves the equivalence of WO and the stratifiable form of AC that asserts the existence of a function
choosing a one-element subset, rather than an element, of each non-empty set in a given family.

We abbreviate Transitive Containment as TCo. We write P(x) for the power set {y | y ⊆ x} of x.
We call an axiom of the form x ∩ A ∈ V a separation axiom, reserving the term comprehension axiom for
an axiom, such as occurs in type theory, of the form {x | Φ(x)} ∈ V , where intersection with a set is not
required. The Axiom of Foundation, as given above, will sometimes be called Set Foundation for emphasis,
to distinguish it from schematic versions for certain classes, such as the scheme of Π1 Foundation, introduced
below, or the full scheme of Class Foundation, whereby foundation is assumed for all classes, which latter
scheme we sometimes call Π∞ Foundation.

Π1 Separation and Σ1 Separation are of course equivalent in any system containing the Axiom of
Difference. We use both names.

It will be remembered that Zermelo set theory, Z, results by dropping TCo from M and adding the full
unrestricted Separation scheme, which we sometimes call Π∞ Separation. We write ZC for Z+AC. In Z+TCo

the Axiom of Foundation is self-improving to the scheme of Class Foundation, in that for each class A it
is provable that ∃y(y ∈ A) =⇒ ∃y(y ∈ A & y ∩ A = ∅); but Jensen and Schröder [C2] and Boffa [C3],
[C4] have shown that there are instances of the scheme of Class Foundation which are not theorems of ZC,
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and consequently that TCo is not provable in ZC. The system ZBQC introduced by Mac Lane on page 373
of his book [L1],which is in our notation M0 + Foundation + ω ∈ V + AC, being a subsystem of ZC, therefore
cannot prove TCo; thus our system MAC, which is ZBQC + TCo, is a proper extension of ZBQC, albeit, by the
discussion of §1, equiconsistent with it.

In a companion, but much easier, paper, Slim Models of Zermelo Set Theory [E1], the author gives a
method for building models of Z with strong failures of ∆0 Collection. That paper will be cited at points
in the present work. Its methods easily give a proof of the fact, known to Drabbe [E2] and Boffa [E3], that
ω ∈ V is not derivable from (say) InfWel even in Zermelo’s system without its axiom of infinity, and is thus
stronger than any of the stratifiable versions of the Axiom of Infinity considered above.

Mac Lane, perhaps surprisingly in view of his expressed distrust of von Neumann ordinals, gives the
axiom of infinity for ZBQC as the assertion of the existence of a set that contains ∅ and with every element
x its successor x∪ {x}; but then the formula ω ∈ V can be derived in his system. We shall see in the model
building of §2 that ω would re-emerge even were we to replace his formulation of infinity by a stratifiable
one.

Zermelo–Fraenkel set theory, ZF, is the result of adding to Z either all instances of Replacement

∀x :∈a ∃!yR(x, y)⇒ ∃b∀y(y ∈ b⇐⇒ ∃x :∈a R(x, y))

or of Collection
∀x∃yA⇒ ∀u∃v∀x :∈u ∃y :∈v A

where the variables u, v have no occurrence in the wff A. ZFC is ZF + AC.
We shall at times examine variants of those, namely strong Collection,

∀u∃v∀x :∈u ((∃yA)⇒ ∃y :∈v A)

and strong Replacement

∀x :∈a ∃61yR(x, y)⇒ ∃b∀y(y ∈ b⇐⇒ ∃x :∈a R(x, y)).

In those formulations of Replacement, ∃!y and ∃61y abbreviate the assertions “there is exactly one y” and
“there is at most one y”: intuitively Replacement says that the image of a set by a total function is a set,
and strong Replacement makes the same assertion for partial functions.

Replacement for a given formula R can easily be derived from Collection for the same R, but the converse
can fail, so that in some sense Collection is stronger. For example we shall in §7 prove Coret’s theorem that
strong stratifiable Replacement is provable in Z and shall show in §9 that stratifiable Collection is not.
Nevertheless full Collection can be derived from full Replacement in Z.

Replacement and Collection are natural in systems studying recursive definitions: a well-developed
subsystem of ZF focusing on this concern is that developed independently by Kripke, Platek and others in
the 1960’s.

The system KP may be given thus: Extensionality, Null set, Pairing, Union, Restricted Separation, plus
Π1 foundation (A 6= 0 ⇒ ∃x :∈A x ∩ A = 0, for each Π1 class A) and Restricted (or ∆0 or Σ0) Collection
(“∀x∃yA ⇒ ∀u∃v∀x :∈ u ∃y :∈ v A” for each ∆0 wff A in which the variables u, v do not occur.) As
shown below, Transitive Containment is provable in KP, but it should be noted that strong ∆0 Collection,
(“∀u∃v∀x :∈u ((∃yA)⇒ ∃y :∈v A)” for A a ∆0 wff), is not. We emphasize that the Power Set axiom is not
among those of KP, nor has KP an axiom of infinity; we shall write KPI for the system KP + ω ∈ V .

A system we shall call Mostowski set theory, or MOST for short, will be of particular interest to us. It is
the result of adding strong ∆0 Collection to MAC: an easily equivalent axiomatisation is ZBQC + KP + Σ1

Separation, and other axiomatisations will be given in §3.
KP is to some extent “orthogonal” to Z, as it builds up the height of the universe without making

it very fat. Many formulations of it omit our strengthening of foundation for sets to foundation for Π1

classes, because they are concerned with admissible sets, that is, with transitive models of KP, for which
even Π∞ Foundation is automatically true. Gödel’s axiom of constructibility, V = L, can be handled very
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naturally in KPI; we shall write KPL for the system KPI + V = L. Discussion of constructibility is almost
certainly impossible in KF, for, as we shall see in §7, the global choice function available in L is irredeemably
unstratifiable; and awkward in M or Z, which lack suitable axioms of replacement.

However it is possible sufficiently to simulate in M the generation of L by Gödel’s functions, as expounded
in [A3], to prove, in arithmetic:

Theorem 1. If M is consistent then so is MOST + V = L.

Proving Theorem 1 by keeping that simulation purely within M, which was our original approach, is
most cumbersome. In §2 we shall introduce the hypothesis we call Axiom H, or, simply, H, following Cole
[H2], who credits Mitchell [H1] with first noticing its importance. As a first estimate of the strength of this
axiom we show that M + H proves that ∀κ∃κ+, meaning that there is no greatest initial (von Neumann)
ordinal. H emerges as the pivotal principle of the paper, and enables us in §4 to present, besides the original
working in M, two much simpler proofs of Theorem 1 working in M + H.

We begin the paper by giving in §1 a simple but illustrative construction which derives the consistency
of MAC from that of ZBQC. The main part of §2 is devoted to establishing the consistency of H relative to
M without any use of the axiom of choice. The proof easily adapts to yielding other relative consistencies,
giving, in arithmetic:

Theorem 2. The consistency of M implies that of M + H; the consistency of MAC that of MAC + H; and the
consistency of Z that of Z + TCo + H.

In §3 we examine Axiom H in detail, and show in particular that

Theorem 3. All axioms of MOST are theorems of MAC + H. Conversely H is derivable without use of the
Axiom of Choice in M + KP + Σ1 Separation.

Note the one-sided reliance on the Axiom of Choice in the proof of that theorem, and its corollary that
MOST may be given as MAC + H.

From Theorems 2 and 3 we have

Theorem 4. The consistency of MAC implies that of MOST, and of ZC that of ZC + KP.

In §5 we look at level-by-level results for subsystems of Zermelo. For k a natural number of the meta-
language, we write Zk for Z with separation only for Σk classes, KZk for Zk with KP added, and KLZk for Zk

with KPL added. Our results are not quite as expected. Corresponding to the above theorems we have

Theorem 5. For each k ≥ 2, if Zk+1 is consistent, so is Zk +TCo +H; Zk together with either KP or H proves
the truth of KLZk in L; hence if Zk+1 + AC is consistent, so is Zk + AC + KP, if Zk+1 is consistent, so is KLZk,
and if Z is consistent, so is KLZ.

We show that after the first two, these systems are of strictly increasing strength:

Theorem 6. KLZ0 proves H, and hence KLZ0 and KLZ1 are the same system. The truth of KZ1 in L is
provable in KZ1 and in Z0 +H, but not in KZ0. Z0 and Z1 are equiconsistent, although they are not the same
system.

Theorem 7. For each k ≥ 2, KLZk proves the consistency of KLZk−1.

That implies a result that has been known since work of Wang and others in the fifties, of which our
proof is apparently new:

Theorem 8. Z is not finitely axiomatisable.

We begin the sixth section with a definition and discussion of the class, introduced by Takahashi, of ∆P
0

formulæ and of the corresponding variant KPP of KP, of which the transitive models are Harvey Friedman’s
power admissible sets, and of which M is a subsystem. With the help of the Gandy basis theorem and ideas
of constructibility and forcing in the context of non-standard models of KPP we obtain two theorems and a
new proof of a third:
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Theorem 9. KPP + V = L proves the consistency of KPP .

Theorem 10. (H. Friedman) KPP + AC does not prove the existence of an uncountable von Neumann
ordinal, nor even a non-recursive von Neumann ordinal.

Theorem 11. KPP + AC + ∀κ∃κ+ does not prove Axiom H.

In §7 we turn to a refreshingly different system of set theory, NF, the New Foundations of Quine, which
rests on the notion of a stratifiable formula, and emphasizes set formation by Comprehension at the expense
of well-foundedness. Here a stratifiable formula is a formula of the language of set theory in which integer
types may be assigned to the individual variables of a formula so that (i) different occurrences of the same
variable are assigned the same type, while (ii) in every subformula x ∈ y the type assigned to y is one higher
than the type assigned to x, whereas (iii) in every subformula x = y the types assigned to x and y are equal.

Once types have been assigned, of course, the resulting stratified formula is a formula of the language of
type theory; we may speak of it as a stratification of the original formula. A given stratifiable formula will
have many different stratifications. The non-logical axioms of NF are the Axiom of Extensionality and the
scheme of stratifiable Comprehension:

{x | Φ(x)} ∈ V

for each stratifiable formula Φ.

Here is one essential difference: in systems like ZF, the function F (x) = {y ∈ x | y /∈ y} is a set for every
x, and it is provable — by Russell — that for each x, F (x) is a set which is not a member of x. In NF, the
universe V is a set, so V ∈ V and any function G defined for all sets will have the property that G(V ) ∈ V :
the property x /∈ x not being stratifiable, the function F is simply not available in NF.

Now Quine’s theory is a theory of types in disguise; and it may be argued that the parts of mathematics
supported by Mac Lane set theory, with its emphasis on the power set operation and on the restricted
Separation scheme, are also type-theoretic in spirit.

Support for that view comes from the fact that M0 is equiconsistent with the simple theory of types and
with the system KF of Forster and Kaye mentioned above, and from the result of Coret that every instance
of strong stratified Replacement is provable in Zermelo set theory. For the first part of Coret’s argument KF

is sufficient:

Theorem 12. Let G be a class defined by a stratifiable formula. Then KF proves that if G is a partial
function then ∀u∃vG“u ⊆ v.

Coret, working in Z, is of course able to conclude using the Separation schema that the image G(u) of
a set by an arbitrary stratifiable function G is a set. In our context, his argument proves

Theorem 13. All instances of the scheme of strong stratifiable ∆P
0 Replacement are provable in KF; all

instances of the scheme of strong stratifiable Π1 Replacement are provable in MAC.

The orthogonality of KP to MAC is underlined by

Theorem 14. Every stratifiable sentence provable in MOST is provable in MAC; every stratifiable sentence
provable in ZC + KP is provable in ZC alone; and similarly M1 + H, M + H and Z + H are conservative over
M1, M and Z, respectively, for stratifiable sentences.

From Theorems 12 and 14 follows

Theorem 15. All instances of the scheme of strong stratifiable Σ1 Collection, and therefore also of the
schemes of strong stratifiable Σ1 Replacement, stratifiable Σ1 Separation, stratifiable Π1 Foundation and
stratifiable Σ1 Foundation, are provable in MAC.

which further elucidates the type-theoretic character of MAC.

In §8 we, following a method of Forster and Kaye, give detailed proofs of the known results that both
KF and M0 are equiconsistent with the simple theory of types, and that both KFI and M are equiconsistent
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with the simple theory of types with an axiom of infinity. Indeed we cover two presentations of type theory,
the classical one of Kemeny’s thesis and the more recent one employed by Forster and his co-workers.

Our equiconsistency proofs, however, are not optimal, in this sense: in each case, one direction is much
harder than the other, and our proofs of the harder direction are formalisable in second-order but not in
first-order arithmetic, relying as they do on an axiom of infinity in the meta-theory. To weaken the meta-
theory to primitive recursive arithmetic would require techniques of proof theory beyond the province of this
paper.

The final mathematical section, §9, is devoted to establishing limitations of KF, MAC and Z. We begin
with an example showing that the derivation of Collection from Replacement is non-trivial:

Theorem 16. The consistency of Z implies the consistency of ZC + H+ a failure of stratifiable ∆P
0 and of

stratifiable Π1 Collection: indeed there are instances of stratifiable ∆P
0 Collection and Π1 Collection that

over MAC prove the consistency of Z.

We give various examples of such failures: underlying them all is the stratifiable sentence “there is an
infinite set all of whose members are infinite and no two of whose members have the same cardinal” which
is provable in ZF, but not in Z, and which shows that Coret’s theorem cannot be improved to “ZF is a
conservative extension of Z for stratifiable wffs.”

We employ an unstratifiable variant of the formulæ used for Theorem 16 to prove

Theorem 17. Z + H, if consistent, proves neither the scheme of ∆P
0 Replacement nor the scheme of Π1

Replacement.

The failure of a scheme of induction in systems such as MAC was first noticed in the 1970’s:

Theorem 18. (Lake) There is a set-theoretical formula Φ(n) with one free variable, ranging over natural
numbers, such that M proves both Φ(0) and ∀n :∈ω [Φ(n) =⇒ Φ(n+1)] but MAC does not prove ∀n :∈ω Φ(n).

Lake’s result establishes other limitations to the strength of MAC. By a different argument, inspired by
an unpublished Bounding Lemma of Forster and Kaye, we show that

Theorem 19. MAC cannot prove that each initial segment of the function n 7→ ω+ n is a set; consequently
the scheme of Π1 Foundation is not provable in MAC.

We pause to give an illustration drawn from algebra of the inadequacy of MAC and Z for certain natural
mathematical constructions, and then conclude with some open problems and a summary, which we do not
repeat in toto here, of the success or failure of various systems in proving schemes of Separation, Foundation,
Replacement and Collection: for example,

Theorem 20. Any one of the following schemes, if added to MAC, would prove the consistency of MAC: and
all are therefore unprovable in MOST:

stratifiable ΣP
1 Separation; stratifiable Σ2 Separation;

stratifiable Π2 Foundation; stratifiable ΠP
1 Foundation.

In section 10 we outline the philosophical motivation of the paper and consider briefly the implications
for the philosophy of mathematics of the similarities and differences between the two systems ZBQC and
MOST.

The reader will have seen that there is a concern in this paper not only with comparing certain weak
systems, usually subsystems of Zermelo–Fraenkel set theory, by means of relative consistency results, but also
with establishing various theorems within those weak systems, some of which theorems assert the consistency
of, or even the existence of well-founded models of, other weak systems.

Thus, at times, and particularly in §5, we shall find ourselves in the dangerous part of logic where to
blur distinctions between languages is to jeopardise meaning.

Now if A is a subsystem of B we know that strictly it is ungrammatical nonsense to say that B proves
the consistency of A; but it may well be true that B proves the consistency of a system A that from a certain
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standpoint may be claimed to be a copy of A. Hence we must make the familiar, but often suppressed,
distinction between an object language — in our example, that in which the system A is formulated — and
its meta-language, in our example that of the system B. In the interests of readability, we shall keep this
distinction before the reader by the occasional use of a few typographical conventions rather than by a flood
of super-precise notation.

In fact, we regard ourselves as working at three levels of language: there is the language of set theory,
formulated with ∈ and =; we shall call that the language of discourse or the ∈-language; the range of its
variables is the domain of discourse. The language of discourse is the vehicle of our flow of mathematical
reasoning. We generally use fraktur letters A,B,C,D or capital Greek letters Φ,Θ,Ψ to indicate formulæ of
that language.

One level higher, there is the meta-language, English, in which we may comment on relationships
between different systems formulated in the language of discourse, as we do in Theorem 2; or on properties
of particular systems, as in Theorem 8 and Theorem 17. At the bottom level there are object languages, of
which the symbols and formulæ are all particular sets, that is, members of the domain of discourse.

Our conventions for such object languages are these: the letters Θ,Φ, Ψ , ϑ, ϕ, are reserved for formulæ
of some language that we are in our set theory discussing. Though, when in model-theoretic mood, we may
consider different object languages, there is one of particular importance for us, which we call the ε-language.
That language resembles the language of set theory; its equality symbol is denoted by =, its membership
symbol by ε, its connectives and quantifiers by ∧, q, ∨, −→ , ←→,

∨
,
∧

, corresponding to the symbols of
the set theory that we are talking, & , ¬, or , =⇒ , ⇐⇒, ∃, ∀. Its formal variables are indicated by
Fraktur letters x, y, z, . . . at the end of the alphabet.

Corresponding to the notion of a ∆0 formula of the ∈-language, we have a corresponding concept of a
formula of the ε-language with only restricted quantifiers, which we shall call a ∆̇0 formula. We may in fact
define ∆̇0 to be the set of all such formulæ and write “if ϕ ∈ ∆̇0, then ....”.

A Σ̇k formula is a formula of the ε-language that consists of an arbitrary ∆̇0 formula prefaced by the
unique string, which we write Q̇k, of length k of formal unrestricted quantifiers

∨
,
∧

, that starts with the
existential quantifier

∨
and strictly alternates existential and universal quantifiers.

Π̇k formulæ are those formulæ of the ε-language that consist of ∆̇0 formulæ prefaced by the alternating
string Ṙk of length k of unrestricted quantifiers starting with the universal quantifier

∧
.

Formulæ in the ∈-language can be copied into the ε-language: a useful device to indicate such copying
is to place a dot over a symbol or formula: Φ̇; x⊆̇y. Thus if A is a ∆0 ∈-formula, Ȧ will be a ∆̇0 ε-formula.

This transfer from one language to a lower one will work also for proofs; therefore discussions of ma-
nipulations of formulæ will tend to be presented as a discussion in the meta-language of formulæ of the
∈-language, in the knowledge that such discussions can be usually be transported to form discussions in the
∈-language of manipulations of formulæ of the ε-language.

An English phrase, or name of an axiom, in nine-point sansserif font, such as every von Neumann ordinal is

recursive or Foundation, denotes some reasonable formalisation in the ∈-language: the same word or phrase in
nine-point typewriter font denotes an appropriate formula of the ε-language: Foundation, every von Neumann

ordinal is recursive. Thus if Φ is the formula ranks are sets, both Φ̇ and ranks are sets specify the same
ε-formula.

A similar convention applies to the names of schemes and of systems: Class Foundation, Class Foundation,
ZF, ZF, ZBQC, ZBQC.

With these conventions, the statement of Theorem 7 would be more correctly given thus:

For each k ≥ 2, KLZk proves Consis(KLZk−1).

The use of Roman font, or, in statements of theorems, slanted font, does not in itself indicate a particular
level of language, though sometimes a particular level will be indicated by the context. Thus the phrase
“the Axiom of Foundation” will often denote exactly the same formula of the ∈-language as the single
word Foundation, the choice of font sometimes being influenced more by aesthetic than by mathematical
considerations; and Theorem 7 might also be given as

For each k ≥ 2, KLZk proves the consistency of KLZk−1.
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In §§8 and 9, we discuss various systems of type theory, and will introduce there the requisite extensions
of the above conventions.

We shall of course consider models of our various theories which are themselves sets, but the demands of
our subject dictate that we must look as well at inner models, such as L, or the class W0 defined in §1, which
are subcollections of the universe but are not sets; and also at what we might call outer models of the kind
produced by forcing, or by the construction of §2 that yields what we call the H-model; such constructions
portray a universe that goes beyond the initial universe of discourse and again is not a set.

In other contexts when we speak of a model, we shall mean a structure say N = (N, R), where N is
a set, and R a relation on it. When discussing the truth predicate |=, which may hold between a model
N and a formula ϕ of an appropriate object-language, an expression such as (N,R) |= ϕ[x] means that
x ∈ N and ϕ is true in (N,R) when its (implicitly, unique) free variable is interpreted as denoting x; and
similarly for a finite list of members of the model corresponding to a finite list of variables of ϕ. The exact
correspondence between variables and interpretations will usually not be indicated. However, when a formal
formula is explicitly given, such as x ε y we may write a ε b rather than x ε y[a, b].

We use the unadorned symbol |= only for the truth predicate for a structure that is a set; as we eschew
the inaccurate convention of using |= also for truth in proper classes, we must, for both inner and outer
models, employ other devices to capture truth. One such device for inner models is that of relativisation,
which we indicate by superscripts: thus (A)L is the formula that results from the formula A when it is
rewritten to restrict all variables to range over only members of the class L. Sometimes in the interest of
clarity or typographical elegance we shall write “A is true in L”, or “relative to L, A is true”, rather than
“(A)L”.

We have a second device for inner models: partial approximations to |= for classes. We shall introduce

a definition, symbolised by |=
k
, of truth for Σ̇k formulæ in the universe, and another, symbolised by |=

k

L
,

of truth in L for Σ̇k formulæ. Our definitions exploit the fact that provided we can define the transitive

closure of a set, we can give a truth definition |=
0

for ∆̇0 formulæ of the ε-language; strings of unrestricted
quantifiers are then added “by hand” so that there is no quantification over such strings within the language
of discourse, but only in the meta-language.

1: Adding Foundation and Transitive Containment

Our first observation is very simple: the system S0 is strong enough to define an inner model, W0 say,
as the union of all well-founded transitive sets, and prove that relative to W0, Foundation and Transitive
Containment and the axioms of the system S0 are true; indeed if we adopt the convention whereby if T is a
system of set theory, T+ will be the system T + set Foundation + Transitive Containment — for example,
M

+
0 is M1, and Z

+
0 is M — then for many natural systems T, the class W0 defined below will, provably in T,

be an inner model of T+.

In preparation for the more complex model-building in later sections, it will be helpful to set that out
in some detail. Define the class of transitive well-founded sets as follows:

F0 =df {a |
⋃

a ⊆ a and ∀x ⊆ a(x 6= ∅⇒ ∃y ∈ x y ∩ x = ∅)}

and the union of that class by

W0 =df {α | ∃a :∈F0 α ∈ a}.

It is immediate from the definition that W0 is transitive.

1·0 LEMMA If
⋃
a ⊆ a, any ∈-minimal element of x ∩ a is an ∈-minimal element of x.

The two closure principles 1·1 and 1·4 are the core of the relative consistency proof. The property given
in 1·3 is often written “W is supertransitive”.

1·1 P-CLOSURE OF F0: If a ∈ F0 and ∀x :∈b x ⊆ a then a ∪ b ∈ F0.
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1·2 COROLLARY a ∈ F0 =⇒ P(a) ∈ F0.

1·3 COROLLARY (A ⊆ b ∈W0 & A a set) =⇒ A ∈ W0.

1·4
⋃

-CLOSURE OF F0: ((∀a :∈A a ∈ F0) and A a set) =⇒
⋃
A ∈ F0.

1·5 REMARK The system S0 is strong enough to develop the very elementary theory of (von Neumann)
ordinals, such as the statement that given two ordinals ζ and η either one is a member of the other or they
are equal.

Certain results later in this section must be proved in stronger systems such as S1 or M0; the reader will
notice that, for some, KF will suffice; but we must defer to a later paper a detailed study of the sufficiency
or otherwise of KF for the various model-building techniques of the present paper.

1·6 REMARK About the principle of
⋃

-closure: it is enough, if all one wants is to prove Zermelo-hood, to
have it for A an unordered pair. In that form it is used in the definition of a fruitful class in the essay Slim
Models [E1] on the class of hereditarily finite sets in Zermelo set theory. In its present form, the statement
implies that x ⊂ W =⇒ x ∈ W , and so W will contain all ordinals and be a proper class. In this form,
too, the axioms of ZF would hold in W0 if true in V .

The two closure principles enable us to check easily that any of the axioms of M0 are true in W0 provided
they are true in V . The truth of the Power Set axiom follows from the supertransitivity of W0, and the
truth of ∆0 Separation follows from the absoluteness of ∆0 statements for transitive sets or classes. Further
TCo and Foundation are true in W0.

We write (A)0 for the formula that results from A when all variables are bound to range over W0: thus a
quantifier ∃z . . . must be replaced by ∃z∃w z ∈ w&

⋃
w ⊆ w& ∀v :⊆w (v 6= ∅ =⇒ ∃u :∈v u∩v = ∅) & . . ..

1·7 PROPOSITION (S0) (TCo)0

1·8 PROPOSITION (S0) (Foundation)0

1·9 PROPOSITION (S0 + Power Set) (Power Set)0

1·10 THEOREM SCHEME If A is an axiom of M0, then `M0
(A)0.

Hence, provably in arithmetic,

1·11 METATHEOREM If M0 is consistent, so is M1.

1·12 PROPOSITION (S0) ω ∈ V =⇒ (ω ∈ V )0.

If we extend our theory to Z, we have another

1·13 THEOREM SCHEME If A is an axiom of Z+, then `Z (A)0.

Hence, provably in arithmetic,

1·14 METATHEOREM If Z is consistent, so is Z+.

To prove these last, we need only note that by the supertransitivity of W0, it is enough to show that
for each formula A, p ∈ W0 &x ∈ W0 =⇒ x ∩ {y ∈ W0 | (A(y, p))0} ∈ V is provable in Z. That follows, of
course, from the axiom scheme of Separation.

The rewriting of a formula A to yield (A)0 potentially introduces more quantifiers: fortunately each new
one will be absorbed into the next until we come down to the matrix. Thus (A)0 for A Σ1 will be Σ2, and,
inductively, will prima facie be Σk+1 or Πk+1 if A is respectively Σk or Πk.

However the Axiom of Foundation is among those of Z0, and in its presence the definition of F0

simplifies to being the class of all transitive sets, and of W0 to being the union of all transitive sets. Hence
(A)0 will in Z0 be equivalent to a formula of the same quantifier level, and we have for each k > 0:

1·15 THEOREM SCHEME If A is an axiom of Z
+
k , then `Zk

(A)0.

Hence, provably in arithmetic,

1·16 METATHEOREM If Zk is consistent, so is Z
+
k .
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1·17 REMARK In the model to be built in §2, a corresponding obstacle seems to be insuperable. We shall
obtain (∆0 Separation)1 from ∆0 Separation, because for A ∆0 (A)1 will be ∆0 relative to some appropriate
set, and we obtain (full Separation)1 from full Separation because there is then no need to count quantifiers,
but in between we are one step out.

1·18 We record some observations concerning TCo and both set and class forms of the Axiom of Foundation.

1·19 REMARK In S0, the assertions that every set is a member of a transitive set and that every set is a
subset of a transitive set are equivalent.

I am grateful to Professor Jané of Barcelona for pointing out the following to me:

1·20 PROPOSITION Transitive Containment is provable in KP.

Proof : Consider {x | ¬∃y (x ∈ y &
⋃
y ⊆ y}. This is Π1: suppose it not empty, and let a be a minimal

element. Then ∀x :∈ a ∃y (x ∈ y &
⋃
y ⊆ y}. By ∆0 Collection, ∃b∀x :∈ a ∃y :∈ b (x ∈ y &

⋃
y ⊆ y}. By

∆0 Separation, b ∩ {y |
⋃
y ⊆ y} is a set, call it c. Then

⋃
c is a set, which is transitive, being the union of

transitive sets, and a ⊆ c. So c ∪ {a} is a transitive set of which a is a member, contradicting the choice of
a. Hence every set is a member of a transitive set. a (1·20)

1·21 PROPOSITION In Z+, class Foundation is provable.

Proof : let A be a non-empty class, x one of its members. Using TCo, let x ∈ y, with y transitive. Using
Separation, form the set y ∩ A, which is non-empty as x is a member. Apply set Foundation to y ∩ A.

a (1·21)

1·22 COROLLARY In Z + ∆0 Collection the following are equivalent:

i) TCo + set Foundation;

ii) Π1 Foundation;

iii) Π∞ Foundation.

Proof : (ii) implies (i) by 1·20. (iii) trivially implies (ii). The proof of the previous Proposition completes
the circle. a (1·22)

1·23 REMARK To adopt for a moment Boffa’s notation in [C4], it is known, and three different proofs are
given in [C2], [C3] and [C4], that the scheme D of Class Foundation is not provable in ZC (including the
axiom, D, of Set Foundation), assuming, of course, the consistency of the latter system. It follows from 1·21
that TCo is not a theorem of ZC.

Boffa in [C3] and [C4] indeed gives two proofs of a stronger result, that TCo is not a theorem of ZC +D.

That the relative consistency results presented in this section will extend easily to systems including
the well-ordering principle follows from the next two propositions.

1·24 PROPOSITION (M0) The Cartesian product of two sets is a set.

Proof : x × y = {〈a, b〉 | a ∈ x & b ∈ y}, where, with the usual definition of ordered pair, 〈a, b〉 =
{{a}, {a, b}}. So if a ∈ x and b ∈ y, both {a} and {a, b} are subsets of x∪y and so members of P(

⋃
{x, y});

hence 〈a, b〉 is a subset of P(
⋃
{x, y}) and so a member of P(P(

⋃
{x, y})); and hence x×y ⊆ P(P(

⋃
{x, y})).

An application of ∆0 Separation now suffices to prove that x× y ∈ V . a (1·24)

1·25 PROPOSITION (M0) WO =⇒ (WO)0.

Proof : X be a set in W0, say X ∈ a ∈ F0. Let R ⊆ X ×X be a well-ordering of X . Then R is a subset of
a × a which in turn is a subset of PP(a) and therefore a member of PPP(a), which is a member of F0 by
Corollary 1·2. Hence R is in the inner model W0 and will still be a well-ordering there. a (1·25)

1·26 REMARK The plausible implication AxInf =⇒ (AxInf)0 is not provable: we shall in section 8 construct
a model where it would fail.

1·27 REMARK In M0 + TCo, the transitive closure tcl(x) of a set x — the minimal transitive set including the
said set — may be shewn to exist: given x, let x ⊆ y with y transitive; form the set P(y)∩{z | x∪

⋃
z ⊆ z},
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using ∆0 Separation and Power Set; that set is non-empty (y being a member); its intersection is the desired
transitive closure.

1·28 REMARK Transitive closures may be also be proved to exist in KP, (without the Axiom of Infinity but
using Π1 Foundation and Transitive Containment), by the recursive definition

tcl(x) = x ∪
⋃

{tcl(y) | y ∈ x}.

With some effort we may see that that recursion also succeeds in M1: we give the details, as the
definability of tcl will be important in later sections. The reader will forgive the anticipatory use of the
symbol ∆P

0 : the concept of a ∆P
0 formula will be introduced in §6.

1·29 PROPOSITION The predicates y ∈ tcl(x) and u = tcl(x) are, provably in M1, equivalent to formulæ
that are Σ1 and Π1, and also, in the case of u = tcl(x), ∆P

0 .

Proof :

w ∈ tcl(x)⇐⇒ ∀u(
⋃

u ⊆ u ⊇ x =⇒ w ∈ u)
︸ ︷︷ ︸

Π1

⇐⇒ ∃n∃f Fn(f) & 0 < n = Dom (f) < ω & ∀k :<n f(k+1) ∈ f(k) & f(0) ∈ x & f(n−1) = w
︸ ︷︷ ︸

Σ1

u = tcl(x)⇐⇒ x ⊆ u&
⋃

u ⊆ u& ∀z :⊆u (x ∪
⋃

z ⊆ z =⇒ u = z)
︸ ︷︷ ︸

∆P

0 and Π1

.

Here is a ΣM
1 expression, using the axiom of infinity:

u = tcl(x)⇐⇒ ∃ff(0) = x & ∀n :∈ω f(n+ 1) =
⋃

f(n) & u =
⋃

n∈ω

f(n)

Without ω ∈ V , we must build attempts at the recursion as in KP. Our definition will be:

u = tcl(x)⇐⇒

∃v
(

x ∈ v&
⋃
v ⊆ v& ∃g

(
Fn(g) & Dom (g) = v& ∀y :∈v g(y) = y ∪

⋃
{g(z) | z ∈ y} & g(x) = u

))

︸ ︷︷ ︸

Σ1

Let us call a function g with transitive domain satisfying the recursion equation an attempt. We wish
to show that an attempt exists with domain any given transitive set v. So let v be transitive.

Note that for any attempt g with domain a transitive subset v′ of v, we have g : v′ −→ P(v); if not,
consider v′ ∩ {x | g(x) 6⊆ v}: that is a set by ∆0 Separation, and so if non-empty has a minimal element, by
Foundation, x̄ say: but then g(z) ⊆ v for each z ∈ x̄; x̄ ⊆ v as v is transitive; and so g(x̄) = x̄∪

⋃
{g(z) | z ∈ x̄}

is a subset of v after all.

So all such attempts are functions from v to P(v), hence are subsets of P(v)× v and therefore elements
of P(P(v)× v). This fact compensates for our lack of ∆0 Collection.

Put w = P(P(v)× v) and v ∩ {x | ¬∃g :∈w x ∈ Dom (g)}. That is a set by ∆0 Separation, and hence if
not empty has a minimal element, which we may again call x̄.

Now we may complete the proof as in the proof of the Σ1 recursion theorem for KP: we show that any
two attempts agree on the intersection of their two domains; therefore if we form the union of all attempts
in w, we get a set G which is an attempt and has domain containing all members of x̄. We may form its
restriction to x̄, and then use that to form an attempt with x̄ in its domain, a contradiction. a (1·29)
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2: Adding Axiom H

We start with the following näıve idea for adding the axioms of KP to those of M, working in ZF.
Consider Vω+ω. For each well-founded extensional relation in it, transitise it; the collection of all

members of such sets is exactly H(iω), which is a model of Z+ plus Σ0-replacement plus Π1-separation,

where we write H(κ) or Hκ for {x | tcl(x) < κ} and H6κ for {x | tcl(x) 6 κ}.
Thus we have a relative consistency proof: unfortunately our metatheory — ZF in this case — is so strong

as to prove the consistency of both theories outright, thus trivialising the fact of their relative consistency.
Our aim therefore, guided by the above idea, is to weaken the metatheory to elementary arithmetic.

To establish Π1 separation in the proof of Theorem 4, we shall first establish the truth in our model of
the following assertion, which we call Axiom H:

∀u∃T
(⋃

T ⊆ T & ∀z(
⋃
z ⊆ z & z ≤ u =⇒ z ⊆ T )

)

We shall call such a T u-large. We might express Axiom H in words as asserting the existence of
“universal” transitive sets.

As a first estimate of the strength of Axiom H, we show that it yields large von Neumann ordinals, given
the axiom of infinity.

2·0 PROPOSITION (M + H) To each ordinal κ there exists a larger initial ordinal. In short, ∀κ ∃κ+.

Proof : Let κ be an infinite ordinal, let u = κ, and let w be as supplied by Axiom H. Consider θ =df⋃
w ∩ ON . Since w is transitive, θ is a transitive set of ordinals and therefore an ordinal, and κ 6 θ since

κ ⊆ w. If θ ≤ κ, then θ + 2 ≤ κ, so θ + 2 ⊆ w, so θ ∈ θ, a contradiction: thus κ < θ. a (2·0)

2·1 REMARK Without the axiom of infinity, Axiom H is not strong, for it is true in HF , the class of
hereditarily finite sets. That may be seen via the following amusing

2·2 PROPOSITION If
⋃
z ⊆ z and z ≤ n then z ⊆ Vn.

Since Vω+ω ∩ON = ω + ω,

2·3 PROPOSITION (ZF) Axiom H is false in Vω+ω .

Hence (assuming the consistency of ZF), Axiom H is not a theorem of Z, of which theory Vω+ω is
well-known to be a model. We sketch a proof of the following theorem of arithmetic.

2·4 METATHEOREM If Z is consistent, so is Z + ¬H.

Proof : We work in Z to define a transitive model, which might be a proper class, of the theory Z +¬H. Set

HF =df

⋃

{x | x is finite and transitive}

T =df {x |
⋃
x ⊆ x & ∃n :∈ω

⋃ nx ⊆ HF}

The desired model will beM =df

⋃
T : to see thatM models Z+¬H, show thatM∩ON = ω+ω and that

T is otherwise fruitful in the sense of Slim Models, Definition 1·0. Proposition 1·2, as modified by Remark
1·1, both of that paper, completes the proof. a (2·4)

2·5 In the rest of this section we study a construction that starting from any model of M0 yields one of M1+H.
The latter model may be considered as an extension not of the original model of M0 but of its natural subclass,
defined in the previous section, which models M1. We reason in M0 = axioms of extensionality, ∅, pair, union,
(difference), power set, and scheme of ∆0 Separation.

We saw in the last section that the existence of cartesian products is provable in M0.

2·6 DEFINITION Put

F1 =df {(a, r) | r is an extensional well-founded relation on a}

and
W1 =df {(α, a, r) | (a, r) ∈ F1 and α ∈ a}.
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The elements of W1 will be the ingredients of our model: we think of (a, r) as denoting, in the model we
are building, a transitive set of which α names a member. We must say when two names denote the same
element. To assist our intuition we write β∈rα for β ∈ r“{α}, i.e. 〈β, α〉 ∈ r, when (a, r) ∈ F1 and β and
α are in a.

2·7 DEFINITION Given (a, r), (b, s) ∈ F1, a map φ from a subset of a to a subset of b will be called a partial
isomorphism from (a, r) to (b, s) if
(i) r“Domφ ⊆ Domφ;
(ii) for all α ∈ Domφ, φ(α) = “{φ(β) | β∈rα}s”; i.e., for all β∈rα, φ(β) ∈s φ(α), and for all δ ∈s φ(α)

there is a β∈rα with φ(β) = δ.

Thus the condition (ii) on φ is that {δ | δ ∈s φ(α)} = {φ(β) | β∈r{α}}; or, more succinctly, that
s“{φ(α)} = φ“r“{α}.

2·8 REMARK Note that, provably in M0, the property of being a partial isomorphism is ∆0 .

2·9 LEMMA The class of partial isomorphisms from (a, r) to (b, s) is a ∆0(a, r, b, s) subset of P(a× b).

2·10 LEMMA A partial isomorphism is 1-1 as far as it goes.

Proof : If not, let α be r-minimal in Domφ such that for some α′ 6= α, with α′ ∈ Dom (φ), φ(α) = φ(α′).
This exists in M0.

Let β∈rα: then φ(β)∈sφ(α) = φ(α′), so there is a δ ∈r α
′ with φ(δ) = φ(β); so β = δ, by the minimality

of α, so β ∈r α
′.

Conversely, let β∈rα
′: there is a δ∈rα with φ(δ) = φ(β), so again by the minimality of α, β∈rα. By

the extensionality of r, α = α′, and so φ is 1-1. a (2·10)

2·11 LEMMA Given (a, r) and (b, s) in F1, any two partial isomorphisms from (a, r) to (b, s) agree on their
common domain.

Proof : Given φ, ψ, r“(Domφ∩Domψ) ⊆ Domφ∩Domψ; let α be an r-minimal element of {x ∈ Dom φ∩
Dom ψ | φ(x) 6= ψ(x)} — which is easily a set. Then

δ ∈s ψ(α) =⇒ for some γ∈rα, ψ(γ) = δ

=⇒ for some γ∈rα, φ(γ) = δ, by minimality of α,

=⇒ δ∈sφ(α);

and conversely δ∈sφ(α) =⇒ δ ∈s ψ(α), so φ(α) = ψ(α) by extensionality of s. Contradiction ! a (2·11)

2·12 LEMMA There is a largest partial isomorphism from (a, r) to (b, s).

Proof : The union of all partial isomorphisms from a to b is a set by Lemma 2·9; its domain is closed under
r“, and, by the last lemma, that union is also a partial isomorphism — hence maximal and unique. a (2·12)

We write Ψarbs for the maximal partial isomorphism from (a, r) to (b, s). The following properties are
easily checked.

2·13 LEMMA Ψarar = id � a; Ψ−1
arbs = Ψbsar; ΨarbsΨbsct ⊆ Ψarct.

Now define two relations on W1:

(α, a, r) ≡1 (β, b, s)⇐⇒dfα ∈ Dom Ψarbs & Ψarbs(α) = β,

and
(α, a, r)E1(β, b, s)⇐⇒dfα ∈ Dom Ψarbs & Ψarbs(α)∈sβ.

2·14 REMARK If (a, r) and (c, t) are two members of F1 in a set A, then any partial isomorphism f between
them is a member of P(

⋃3
A×

⋃3
A), and hence locally the relations ≡1 and E1 are sets.

The above Lemma may be applied to prove the

2·15 PROPOSITION ≡1 is an equivalence relation, and a congruence with respect to E1.
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Proof : The first clause follows immediately from Lemma 2·13. Suppose that (α, a, r)E1(β, b, s) ≡1 (γ, c, t).
Then Ψarbs(α)∈sβ, so Ψarct(α) = Ψbsrt(Ψarbs(α))∈tγ, so (α, a, r)E1(γ, c, t).

Thus we have shown that

(α, a, r)E1(β, b, s) ≡1 (γ, c, t) =⇒ (α, a, r)E1(γ, c, t).

To see that

(γ, c, t) ≡1 (α, a, r)E1(β, b, s) =⇒ (γ, c, t)E1(β, b, s),

note that, assuming the antecedent, Ψctar(γ) = α, and so Ψctbs(γ)∈sβ. a (2·15)

2·16 DEFINITION Given (a, r) ∈ F1, define (a, r)+ = (b, s) where b = a ∪ {a} and s = (a× {a}) ∪ r.

2·17 LEMMA If (a, r) ∈ F1, (a, r)+ ∈ F1.

Corresponding to 1·1 we have

2·18 P-CLOSURE OF F1: “(a, r) ∈ F1 and B ⊆ P(a) =⇒ a ∪ B ∈ F1”

2·19 REMARK The statement is expressed in inverted commas because it suggests what is happening without
expressing it accurately; however, in true Wittgensteinian fashion, the meaning of the proposition will emerge
during its proof.

Proof of 2·18: suppose r is a well-founded extensional relation on a. Let B ⊆ P(a). We must first handle
an awkward point: it might be that a ∩ B 6= ∅: if so, let τ be some object not in a ∪

⋃ ⋃
a — easily found

even without Foundation, for if z is any set, z ∩ {x | x /∈ x} is a set by ∆0 separation which is not a member
of z, by Russell. Then ∀α :∈ a 〈τ, α〉 /∈ a. For b ⊆ a, let b̄ = {〈τ, α〉 | α ∈ b}. Each b̄ is a set, being a ∆0

subclass of {τ} × a.
By choice of τ and the definition of ordered pair, a ∩ ā = ∅. Let r̄ = {〈〈τ, α〉, 〈τ, β〉〉 | 〈α, β〉 ∈ r},

and let B̄ = {b̄ | b ∈ B}. r̄ is a set, being a ∆0 subclass of ā × ā, and B̄ is a set, being a ∆0 subclass of
P({τ} × a).

Suppose x ∈ ā ∩ B̄: then for some ξ ∈ a and b ∈ B, 〈τ, ξ〉 = x = b̄: but then for some α ∈ b,
{τ} = 〈τ, α〉 = {{τ}, {τ, α}}, so τ = α ∈ a, contradicting the choice of τ .

Thus ā∩ B̄ is empty, and the (ā, r̄), B̄ situation is plainly isomorphic to the (a, r), B one. So we assume
that that change, if necessary, has already been carried out, and that a ∩ B = ∅.

For each x ∈ B, ask if there is an α ∈ a such that ∀β :∈ a (β ∈ x iff β∈rα). If so, α is unique, by
extensionality of r: call it αx. αx = αy ⇒ x = y, by extensionality of ∈.

Write B′ =df {x ∈ B | no such αx exists}. We form c =df a ∪ B′, and we know that a and B′ are
disjoint.

Define a relation η on c by

αη β if (i) α, β ∈ a and α ∈r β or (ii) α ∈ a, β ∈ B′ and α ∈ β

The or here is exclusive as a ∩ B′ = ∅.
I assert that η is a well-founded extensional relation on c; and the existence of such (c, η) ∈ F1 is the

true import of the proposition.

To check extensionality: suppose β, β′ are such that {γ | γ η β} = {γ | γ η β′}. If β ∈ a, {γ | γ η β} =
{γ | γ ∈r β}. If β ∈ B′, {γ | γ η β} = {γ | γ ∈ β} = β. If β, β′ are both in a or both in B′, then β = β′ by
extensionality of ∈r or ∈. If β ∈ a, β′ ∈ B then β′ = αβ′ , contrary to the definition of B′.

To check well-foundedness: suppose z ⊆ a ∪B′. If z ∩ a 6= 0, let α be an ∈r-minimal element of it. For
x ∈ z, x η α⇒ x ∈ a and so x ∈r α, contradicting the minimality of α; thus α is an η-minimal element of z.
If z ∩ a = 0, any element of z is η-minimal. a (2·18)

We shall refer to (c, η) as a+B.

2·20 PROPOSITION E1 is set-like in the sense that given any x in W1, there is a set y with x ∈ y such that
∀z(zE1x =⇒ ∃w :∈y z ≡1 w).
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Proof : Given x = (α0, a0, r0), let y = {(α, a0, r0) | α ∈ a0}, which is a set, as it equals a0 × {(a0, r0)}. If
(β, b, s)E1(α, a0, r0), let γ = Ψbsa0r0(β): then (γ, a0, r0) is in y and (β, b, s) ≡1 (γ, a, r). a (2·20)

2·21 REMARK The equivalence classes under ≡1 will be proper classes and not sets; in our weak set theory,
Scott’s device for choosing subsets of these proper classes is not available to us. Hence all the details of our
construction have to be treated locally.

2·22 PROPOSITION E1 is extensional modulo ≡1: that is, if

∀(α, a, r) [(α, a, r)E1(β, b, s)⇐⇒ (α, a, r)E1(γ, c, t)]

then (β, b, s) ≡1 (γ, c, t).

Proof : Write Ψ for Ψbsct. Suppose that α ∈s β, then (α, b, s)E1(γ, c, t), so Ψ(α) ∈t γ, and in particular,
s“{β} ⊆ Dom Ψ. Conversely, if δ ∈t γ, (δ, c, t)E1(γ, c, t), so (δ, c, t)E1(β, b, s), so δ ∈ Dom(Ψ−1), and
Ψ−1(δ) ∈s β.

Thus γ = “{Ψ(α) | α ∈s β}t”, and so by the maximality of Ψ, β ∈ Dom Ψ and Ψ(β) = γ; hence
(β, b, s) ≡1 (γ, c, t), as required. a (2·22)

Now a counterpart to 1·4:

2·23
⋃

-CLOSURE OF F1: ∀A :⊆F1 ∃(b, s) :∈F 1∀(a, r) :∈A ∀α :∈a ∃β :∈b (α, a, r) ≡1 (β, b, s).

Proof : Given A ⊆ F1, let B =df {(α, a, r) | (a, r) ∈ A&α ∈ a}.† B is a set, being a ∆0 subclass of
(
⋃

3A)×A.
Factor B by ≡1; let b be the set of ≡1-classes and let s be the relation induced by E1 via the factoring.

(b, s) certainly represents all the ≡1 classes represented by “members” of A, but we have to verify that s is
well-founded and extensional.

That s is extensional follows from the previous Proposition, since in the present context whenever
(δ, d, u)E1(β, b, s), there is an (a, r) ∈ A and an α ∈ a with (δ, d, u) ≡1 (α, a, r). To see that s is well-
founded, let ∅ 6= X ⊆ b, and let [(α0, a, r)] be some member of X , where for x ∈ B we write [x] for the set
{y ∈ B | y ≡1 x}. Let P = {α ∈ a | [(α, a, r)] ∈ X}. α0 ∈ P , so P is a non-empty subset of a. Let α1 be an
r-minimal element of P . I assert that [(α1, a, r)] is an s-minimal element of X .

For if not, let [(γ, c, t)] ∈s [(α1, a, r)] where [(γ, c, t)] ∈ X , (c, t) ∈ A and (γ, c, t) ∈ B. (γ, c, t)E1(α1, a, r),
so let α2 = Ψctar(γ). Then (γ, c, t) ≡1 (α2, a, r) ∈ B. So [(α2, a, r)] = [(γ, c, t)], and thus α2 ∈ P and
α2 ∈r α1, contradicting the latter’s minimality.

Thus (b, s) ∈ F1. a (2·23)

2·24 DEFINITION We shall refer to (b, s) as the “union” of A.

2·25 PROPOSITION E1 is well-founded.

Proof : Let C be a non-empty subset of W1, and let A =
⋃2

C ∩ {(a, r) | ∃α :∈
⋃2

C (α, a, r) ∈ C}. Thus A
is a set, and equals the class {(a, r) | ∃α(α, a, r) ∈ C}.

A ⊆ F1, and so the “union” of A as supplied by our last proposition gives a member (b, s) ∈ F1 such
that

∀(α, a, r) :∈C ∃β :∈b (α, a, r) ≡1 (β, b, s).

Form the set b ∩ {β | ∃x :∈ C x ≡1 (β, b, s)}: that will be non-empty, and so let β̄ be an s-minimal
element of it. Any x ∈ C with x ≡1 (β̄, b, s) will be an E1-minimal element of C. a (2·25)

Notice that our arguments yield, without use of any form of the axiom of choice, the pivotal result that
the system M0 proves the existence of “universal” well-founded extensional relations:

2·26 PROPOSITION Let u be a set. There is an extensional well-founded relation (b, s) such that for any
extensional well-founded relation (a, r) with a 6 u, a = Dom Ψarbs, and thus the restriction of s to ImΨarbs

is isomorphic to (a, r).

† Remember that (x, y, z) = (x, (y, z)).
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Proof : consider the class Bu = {(c, t) | c ⊆ u & t is a well-founded extensional relation on c}. That is,
provably in M0, a set, for each c ∈ P(u) and each t ∈ P(u×u): thus Bu is a sub-class of P(u)×P(u×u). The
hardest clause defining membership of Bu is the well-foundedness of t, but that is expressible by quantification
over the subsets of c, and therefore over the members of P(u). Hence ∆0 separation suffices to establish the
set-hood of Bu. Thus Bu is a subset of F1; its “union” will be the required (b, s). a (2·26)

It is Proposition 2·26 that will yield the truth of Axiom H in the model we are about to build.

2·27 DEFINITION For A any wff in ∈ and =, let (A)1 be the wff where first ∈ and = are replaced by E1 and
≡1, and then all quantifiers are restricted to range over W1.

2·28 THEOREM SCHEME For A any theorem of M1 + H, (A)1 is provable in M0; and WO =⇒ (WO)1 and
InfWel =⇒ (InfWel)1 are also provable in M0, as, indeed, is InfWel =⇒ (ω ∈ V )1.

The proof will proceed by stages, some of which are left to the reader.

2·29 PROPOSITION (Extensionality)1.

Proof : by Proposition 2·22.

2·30 PROPOSITION (Empty Set)1.

2·31 PROPOSITION (Pairing)1.

Proof : given (α, a, r), (β, b, s), form “
⋃

”{(a, r), (b, s)}; if the pair set of α and β is not there, form
“

⋃
”{(a, r), (b, s)}+ {{α, β}}. a (2·31)

2·32 PROPOSITION (Union)1.

Proof : note first that β E1 γ E1 α ∈ a =⇒ ∃β′(β ≡1 β′ ∈ a). It suffices, therefore, given (α, a, r) ∈ W1, to
form a+ {{β | ∃γ(γ E1 α & β E1 γ}}. a (2·32)

2·33 PROPOSITION (Difference)1.

Proof : given (α, a, r) ∈W1, form (a, r) + {γ ∈ a | γ ∈r α & ¬[(γ, a, r)E1(β, b, s)]}. a (2·33)

2·34 PROPOSITION (Power Set)1.

Proof : given (α, a, r) ∈W1, form a+ {x | x ⊆ {β | β ∈r α}}. a (2·34)

2·35 PROPOSITION (Foundation)1:

Proof : given (α, a, r) ∈ W1, let β be an r-minimal element of α, and check that (β, a, r) is an E1-minimal
element of (α, a, r). a (2·35)

2·36 PROPOSITION (TCo)1:

Proof : given (α, a, r), form a+ {a}. a (2·36)

We prove the next lemma only for formulæ with two variables, but its proof plainly works for those with
more.

2·37 LEMMA Let A be a formula with (say) the free variables x, y. Let z = (α, a, r) and q be members of
W1. Let IA,z,q be the class a ∩ {γ | γ ∈r a & (A)1(z, p)}. If I ∈ V then (z ∩ {x | A(x, p)} ∈ V )1.

Proof : We seek (β, b, s) ∈W1 such that

∀(δ, d, t) :∈W1 (δ, d, t)E1(β, b, s)⇐⇒ ∃γ :∈a
[
γ ∈r α & (δ, d, t) ≡1 (γ, a, r) & (A)1((γ, a, r), p)

]
.

If I = IA,z,q is a set, let (b, s) = a+ {I}, and let β = I . Then (β, b, s) is as desired. a (2·37)

2·38 PROPOSITION (∆0 Separation)1.

Proof : by the Lemma, we need only prove that IA,z,q ∈ V , for A a ∆0 formula and z, q in W1. But the
property γ ∈r α is a ∆0(r, α) predicate of γ, and (A)1 will be ∆0 relative to some “universal” set of the kind
produced by Proposition 2·26 that includes copies of all the relevant members of F1. a (2·38)

2·39 LEMMA If k > 1 and A is a Σk formula, (A)1 will be a Σk+1 formula.
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Proof : E1 and ≡1 are ∆1 relations, and so in computing the complexity of (A)1 for A a Σk formula our
only problem will be the restrictions that the members of F1 are well-founded extensional relations on sets.
As with the case of (A)0, each such restriction requires a quantifier that can be absorbed into the next one,
until we reach the matrix. a (2·39)

2·40 PROPOSITION For each meta-integer k > 1: if Σk+1 Separation holds, then (Σk Separation)1 holds.

Proof : by the two Lemmata. a (2·40)

2·41 PROPOSITION (Axiom H)1

Proof : by Proposition 2·26.

2·42 PROPOSITION WO =⇒ (WO)1.

The proof is similar to that of Proposition 1·25. The next Proposition shows that we get an improved
version of the axiom of infinity in our new model.

2·43 PROPOSITION InfWel =⇒ (ω ∈ V )1.

Proof : again, essentially by Proposition 2·26. The details are spelt out in the proof of Lemma 3·0. a (2·43)

The proof of Theorem Scheme 2·28 is now complete, save for the details of the last two observations,
which will be covered by the discussion of §3. Our digression into computing the quantifier complexity of
(A)1 yields these further results:

2·44 THEOREM SCHEME For k > 1 and A any theorem of M + H + Σk Separation, (A)1 is provable in M +
Σk+1 Separation.

2·45 THEOREM SCHEME For A any theorem of Z + TCo + H, (A)1 is provable in Z.

Hence, provably in arithmetic, we have

2·46 METATHEOREM If M0 is consistent, so is M1 + H; if M0 + AxInf is consistent, so is M + H; if Zk+1 is
consistent, so is Zk + TCo + H; if Z is consistent, so is Z + TCo + H; and similarly for those systems with AC

added: in particular, if ZBQC is consistent, so is MAC + H.

That completes the proof of Theorem 2 and of the first part of Theorem 5.

We should note that there is a counterpart to Proposition 2·26 for well-orderings. Let us first observe
that although even in Z we cannot prove that every wellordering is isomorphic to an ordinal, we can prove
in M0 that any two well-orderings are comparable.

2·47 PROPOSITION (M0) Given any two well-orderings, there is an order-preserving isomorphism between
one of them and a (possibly improper) initial segment of the other.

Proof : given well-orderings (X,≤), (Y,≤), where X and Y are sets, call a function φ a partial isomorphism
from X to Y if Dom(φ) is an initial segment of X under ≤, Im(φ) is an initial segment of Y under ≤, and
for all x ∈ Dom(φ), φ(x) = least element of Y not of the form φ(x′) for any x′ < x. As we regard functions
as sets of ordered pairs, we may apply ∆0 separation to P(X × Y ) to show in M0 that

{φ ⊆ X × Y | φ is a partial isomorphism from X to Y }

is a set, the union of which is readily verified, as in Zorn’s Lemma type arguments, to be a isomorphism,
either between X and an initial segment of Y or between an initial segment of X and the whole of Y .a (2·47)

2·48 PROPOSITION (M0) Given any well-ordering there is another of a strictly larger cardinality.

Proof : Let <X well-order X . Consider the set of all well-orderings of subsets of X . Identify any two such
if they are the same length. Form the set of equivalence classes, and well-order them by comparability. All
that may be carried out in M0. The result will be a well-ordering of a higher cardinality than that of X .

a (2·48)

2·49 PROBLEM Might one prove the above by picking out a long well-ordering from the universal extensional
well-founded relation, along the following lines ? Let (X,R) be our universal well-founded extensional
relation. Extract a long well-ordering from it by putting

W = {x ∈ X | ∀z :∈X ∀y :∈X ∀w :∈X [(zRyRx =⇒ zRx) & (wRzRyRx =⇒ wRy)]}.



THE STRENGTH OF MAC LANE SET THEORY 20

That definition is inspired by a characterisation of the von Neumann ordinals as the hereditarily transi-
tive sets. It would lead to a new proof of the previous proposition if we had the Axiom H property in some
kind of Amalgamation form.

2·50 REMARK The constructions of Slim Models [E1] show that two different models of Z might lead to the
same model of Z + H.

3: Examination of Axiom H

We have two aims in this section:

1: to deduce Σ1 Separation from Axiom H in MAC, and thereby complete the proof of Theorems 3 and 4.

The Axiom of Choice plays an important rôle in the above deduction.

2: working in M + KP, to deduce Axiom H from Σ1 Separation.

Preparatory to the second we shall show that under AC several statements are equivalent.

One plausible statement that turns out not to be equivalent in general to Axiom H is the assertion that
for every von Neumann ordinal κ, a larger initial von Neumann ordinal exists, a statement that we have
abbreviated by the formula ∀κ ∃κ+.

We shall discuss this statement in §5, where we shall prove in M + KPL first that ∀κ ∃κ+ and then
deduce Axiom H. We shall in §6 in ZF prove that there is a transitive model for MAC + KP in which every
ordinal is countable, and that there is a transitive model for MAC + KP + ∀κ ∃κ+ in which Axiom H is false.

Our first step generalises the result we have already seen, that Axiom H implies that ∀κ κ+ exists.

3·0 LEMMA (M0 + H) suppose T is u-large as in the statement of Axiom H. Then every extensional well-
founded relation of cardinality at most u is isomorphic to a transitive subset of T .

Proof : let (a, r) be extensional, well-founded, with a 6 u. We define a T -attempt to be a map f with
domain a subset z of a with r“z ⊆ z, such that f satisfies the recursion equation:

∀x :∈Dom f f(x) = {f(y) | 〈y, x〉 ∈ r}.

We note that each such f is injective, since r is extensional, and its image is therefore a transitive set

of cardinality Dom (f) 6 u and thus a subset of T .
So since the image of any attempt is a subset of T , we can form the set of attempts, as it is a ∆0 (in

parameters a, r, etc.) subclass of P(T × a), and we can form the union, F , of the set of attempts, which
will be a set.

No two attempts disagree, for let f and g be attempts, and consider an r-minimal element x̄ of {x ∈
Dom (f)∩Dom (g) | f(x) 6= g(x)}. Then f � r“x̄ = g � r“x̄ and so f(x̄) = Im(f � r“x̄) = Im(g � r“x̄) = g(x̄),
a contradiction.

It follows that F is also an attempt. We assert that its domain is the whole of a: for consider per
impossibile an r-minimal element ȳ of a r DomF . Then r“ȳ ⊆ DomF , and hence we might extend F by
setting F (y) = Im(F � r“ȳ), so ȳ is in the domain of F after all. Thus DomF = a and the image of F is
the desired transitive subset of T isomorphic to 〈a, r〉. a (3·0)

3·1 REMARK No use of choice was made in that argument, nor was it in the formulation of Axiom H.

We have actually established the following equivalence:

3·2 PROPOSITION Over M0, the following are equivalent:
(i) Axiom H;
(ii) the statement that every extensional well-founded relation is isomorphic to a transitive set.

Proof : we have seen that (i) implies (ii). For the reverse, apply (ii) to the “universal” extensional well-
founded relations provided by Proposition 2·26. a (3·2)

The proof of 3·0 shows how recursive definitions succeed in M when a set containing the image of the
function can be given in advance. Here is another example:
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3·3 PROPOSITION (M0) Every subset of a von Neumann ordinal, defined as being a transitive set well-
ordered by the ∈-relation, is order-morphic to a von Neumann ordinal that is no greater than the first.

However, when the containing set has to be created — which is, of course, the purpose of ∆0 Collection—
we get into difficulties:

3·4 EXAMPLE Let a = {0, 1, 2, {2}}, b = {1, 2, {2}}, and c = {0, 1, {1}}. Then b is extensional and isomor-
phic to c, which is transitive but not a subset of a.

In an early draft of this paper it was asserted that “we can prove in M0 that an extensional subset of
a transitive set is isomorphic to a transitive set”, the reason offered being that “the implicit recursion is
contained within the power set of the given transitive set”.

The last example refutes the reason, and the following proposition and example counter-instance the
assertion.

3·5 PROPOSITION (Foundation + ∆0 Separation) No two transitive sets are isomorphic.

Proof : Let a and b be transitive and suppose that f : a −→ b is such that ∀x :∈a f(x) = {f(y) | y ∈ x ∩ a}.
Since a is transitive, x ∩ a = x for each x ∈ a, so ∀x :∈ a f(x) = {f(y) | y ∈ x}. Let x̄ be an ∈-minimal
element of the set {x ∈ a | x 6= f(x)}, supposing that to be non-empty. Then f(x̄) = {y | y ∈ x̄} = x̄, a
contradiction. Hence ∀x :∈a f(x) = x and so b = Imf = a. a (3·5)

3·6 REMARK Foundation is necessary in the above argument, since without Foundation we might have
x = {x}, y = {y} but x 6= y. In such a case, x and y are transitive and isomorphic but not equal. ‡

3·7 EXAMPLE By the remark preceding Lemma 4·1 of Slim Models there is a transitive model of Z+TCo for
which a set, called Z(ω) in the notation of that paper, is a member of the model, and indeed an extensional
subset of the transitive member T (ω) of the model, but that set is not isomorphic to any transitive set of
the model, since Z(ω) is isomorphic to HF = Z(0) which is not in the model.

In the proof of the next Proposition we shall use a little mild model theory, and therefore must adopt
the Axiom of Infinity to ensure that our languages are sets. We defer till §5, where they will be most needed,
a statement of our conventions regarding formal (Gödelised) languages. We use ϕ, ϑ as variables for formulæ
of such languages.

3·8 LEMMA (M0 + ω ∈ V ) If A is a set, so is <ωA, the set of finite sequences of members of A.

Proof : the set in question is a subclass of P(A× ω) which is ∆0 in suitably chosen parameters. a (3·8)

3·9 REMARK A corresponding result would hold in a set theory with an axiom of infinity but without the
assumption that ω ∈ V .

3·10 PROPOSITION We can define the model-theoretic satisfaction relation |= in the theory M0 + ω ∈ V , so
that for any model N = (N,R), the class

{
(ϕ,~a) | ~a ∈ N & N |= ϕ[~a]

}
is a set.

Proof : because in this case the recursions are contained. Since there is no reason to expect that Vω is a
set, we must regard the formulæ of formal languages as coded by members of ω. Then for any particular
model (N, R) say, {(ϕ,~a) | ~a ∈ <ωN & (N, R) |= ϕ[~a]} will be a subclass of ω × <ωN , and its characteristic
function will be definable by a contained recursion on the well-founded relation “ϕ is a subformula of ϑ”.

a (3·10)

In the proof of the next proposition we shall use the familiar model-theoretic notion of the Skolem hull
of a subset A of a model. In fact the ∆̇0 hull Hull0 will suffice. In §5 we shall define the Σ̇k hull of a subset
of the universe with some care, and therefore are content here to leave the reader to complete the details of
the following sketch.

To build the ∆̇0 hull of A, we first define Skolem functions fϕ using a fixed well-ordering of the domain
of the model: fϕ(~a) is to be the first element of the domain to satisfy a given ∆̇0 property ϕ, if such an
element exists, and some fixed element of the domain — its empty set will do — otherwise.

‡ See Aczel’s non-well-titled tome [C5] for a discussion of possible ways in which the Axiom of Foundation
might fail. Note that his Axiom of Infinity as given on page 117 can in his theory be satisfied by a two
element set and needs the Axiom of Foundation to produce an infinite set. In his new book Vicious circles
he corrects this slip.
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We then remark that if A ⊆ X and f : ω × <ωX −→ X is a function, then the f -closure of A may be
conveniently defined in M0 + ω ∈ V as

⋂

{B ∈ P(X) | A ⊆ B & f“<ωB ⊆ B}.

The ∆̇0 hull of A will be the closure of A under the function f given by f(ϕ,~a) = fϕ(~a).

3·11 PROPOSITION SCHEME (MAC + H) Strong ∆0 Collection.

Proof : We wish to show that ∀a∃b∀x :∈a
(
∃yD(x, y, d) =⇒ ∃y :∈b D(x, y, d)

)
, where D is ∆0 and d is some

parameter. Use TCo to find and fix a transitive C of which a and d are members. Let T be the transitive

set given by Axiom H such that ∀u(u ≤ C & u transitive =⇒ u ⊆ T ). We shall show that we may take
b = T .

Let x ∈ a, and suppose that y is such that D(x, y, d). Pick a transitive set B containing y, and C. Using
a well-ordering of B form H =df Hull0(B,C ∪ {y, x}). H is extensional and, by the Axiom of Foundation;
well-founded, and so we may by Proposition 3·0 build the collapsing map $H : H −→ T . As C ⊆ H and C
is transitive, $H � C is the identity, and so $(x) = x and $H(d) = d. Let ȳ = $H(y). Then since D is ∆0,
its truth is preserved by $: (D(x, y, d))B , so (D(x, y, d))H and hence D(x, ȳ, d).

Thus T contains a y such that D(x, y, d), for each x in a such that ∃D(x, y, d). a (3·11)

A modest extension of that argument yields

3·12 PROPOSITION SCHEME (MAC + H) Strong Σ1 Collection.

Proof : with the help of pairing functions adapt the previous proof to show, for D a ∆0 formula and d some
parameter, that ∀a∃b∀x :∈a

(
∃y∃zD(x, y, z, d) =⇒ ∃y :∈b ∃z :∈b D(x, y, d)

)
. a (3·12)

The following completes the proof of Theorem 4.

3·13 THEOREM SCHEME In the system MAC + H, all axioms of KP plus the scheme of Π1 Separation are
provable.

Proof : Strong Σ1 Collection implies Π1 Separation: to form a ∩ {x | ∀yA}, where A is ∆0, use strong Σ1

Collection to find a b such that ∀x :∈a (∃y ¬A =⇒ ∃y :∈b ¬A), so the desired set is a∩{x | ∀y :∈b A}, which
is a set by ∆0 Separation.

Once we have Π1 Separation, we may deduce Π1 Foundation from Foundation and Transitive Contain-
ment much as in the proof of Proposition 1·21. a (3·13)

We turn to the deducibility in MAC + KP of Axiom H from Σ1 Separation. That is part of the following
Proposition; the eccentric numbering of its clauses is induced by that of a later theorem.

3·14 PROPOSITION Over MAC, the following are equivalent:
(i′) Axiom H;
(v′) the scheme of strong Σ1 Collection;
(vi′) the schemes of ∆0 Collection and Π1 Separation.
(ii′) the schemes of Π1 Foundation and ∆0 Collection, with the statement that every well-ordering is

isomorphic to an ordinal.

Proof : We have seen in the proof of 3·12 that (i′) implies (v′) and in that of 3·13 that (v′) yields (vi′). We
assume (vi′) and derive (ii′). Π1 Foundation follows from Π1 Separation using set Foundation. To complete
the verification of (ii′), we must show that every well-ordering is isomorphic to an ordinal.

Given a well-ordering (X,R), we collapse R by the recursion

$R(x) = {$R(y) | yRx};

the class X r Dom ($) is Π1 and therefore a set by Π1 Separation. Had it a least member under R the
definition of $R could be extended; so it is empty, and $R is total. Its image is a von Neumann ordinal.

Finally we assume (ii′) and derive (i′). Note that MAC together with (ii′) includes all axioms of KP. We
must derive Axiom H. We know from 3·2 that it will be enough to prove that every well-founded extensional
relation is isomorphic to a transitive set.
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Let therefore (C,R) be a well-founded extensional relation. By WO, we know that C has a well-ordering,
and by our assumption that well-ordering will be isomorphic to some von Neumann ordinal κ. Further, by
considering ordinals isomorphic to well-orderings of P(C), we know that there will be ordinals of cardinality
greater than κ; the class of such is Π1 and therefore by Π1 foundation has a least member, which we may
call κ+. Our proof divides into two steps.

step 1: considering attempts into κ+, we see that there is a ranking on (C,R) given by:

$R(x) =
⋃

{$R(y) + 1 | yRx};

step 2: using that ranking, we see that the collapse of R is total.

Here is the proof of step 2. It is a commonplace that KP is not strong enough to prove that every
extensional well-founded relation has a Mostowski collapse. We prove that provided the relation is also
ranked and the ranks bounded, the collapse does indeed exist:

3·15 LEMMA (KP) Let R, X , θ and ψ be sets such that R is a relation on X , θ is an ordinal, ψ : X −→ θ
and

∀x, y :∈X xRy =⇒ ψ(x) < ψ(y).

Then the function $R : X −→ V defined by

$R(x) = {$R(y) | y ∈ X & yRx}

is defined on all of X .

Proof : we imitate the usual proof, using attempts, of the recursion theorem in KP; our only problem is to
finesse the point where Π1 foundation is applied to find a minimal counterexample to the conclusion.

So consider {ν < θ | ∃u :∈X u /∈ dom($R) & ψ(u) = ν}: that, by ∆0 Collection and the fact that ψ is a
set, is a Π1 class, and so if non-empty, has by Π1 Foundation a least element ν̄. Let ū ∈ X \ dom($R) have
ψ(ū) = ν̄. Then ∀y :∈X (yRū =⇒ ψ(y) < ν̄), and so each such y is in Dom ($R): further, {y ∈ X | yRū}
is a subclass of Dom ($R), and therefore a set, B say; we may now proceed to collect into a set v sufficiently
many attempts, at least one for each member of B, to define $R at ū, a contradiction. a (3·15)

3·16 COROLLARY (KP) If A ⊆ D, D is transitive and A extensional then A is isomorphic to a transitive
set.

Proof : we may take the usual set-theoretic rank function % for ψ. a (3·16)

The proof of Proposition 3·14 is complete. a (3·14)

3·17 REMARK Corollary 3·16 is false for Z, as shown by the model mentioned in 3·7.

The above methods yield the following:

3·18 THEOREM Over KP + MAC the following are equivalent:

(i) Axiom H;

(ii) every well-ordering is isomorphic to an ordinal;

(iii) every well-founded extensional relation is isomorphic to a transitive set;

(iv) every well-founded relation may be collapsed;

(v) the scheme of strong ∆0 Collection;

(vi) the scheme of Σ1 Separation;

(vii) ∀κ H6κ exists.

Clause 3·18(iii) is popularly called Mostowski’s isomorphism theorem. I am grateful to the anonymous
referee of an early draft of this paper for pointing out the following:

3·19 THEOREM Over KP + WO, the following are equivalent:

(i) Axiom H;

(ii) Power Set + Σ1 Separation.
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The arguments of §§5 and 6 will prove the following:

3·20 THEOREM Over KPL, the following are equivalent:
(i) Axiom H;
(ii) ∀κ∃κ+

(iii) Power Set.

and will also show that over KP + WO alone, without V = L, those three statements are not equivalent.

3·21 REMARK KZ1 proves Axiom H without use of choice, by Proposition 3·2 and the fact that KP + Σ1

Separation proves that every well-founded extensional relation is isomorphic to a transitive set. For the latter,
Π1 Separation enables us to find a minimal counter-example, should any exist, to totality of the recursively
defined collapsing function, and thus to prove that no counter-examples exist.

That observation yields the final clause of Theorem 3.

4: Adding KPL to M

The chief problem we encountered in §3 was in proving restricted collection: we may indeed prove directly
that (each transitive well-founded relation is isomorphic to a transitive set)1 and that (Axiom H)1, but in order to
show that Collection holds, we want a version of AC to imitate a downward Löwenheim-Skolem argument to
construct sets that are Σ̇1-elementary submodels of the universe.

So we apparently need AC in the ground model to get KP in the new one; and once we have KP we
can carry out the usual construction of L to get AC. There thus appears to be a circularity in what would
otherwise be a natural approach to proving that Consis(M) implies Consis(M + WO).

We avoid that circularity by proving that in the system M+H the definition of the constructible hierarchy
as given in Gödel’s monograph [A3] may be carried out. We have a long, a medium and a short proof of
that: the author only found the shorter proofs after working out the details of the long one. Nevertheless
the long one is of interest as illuminating the relationship between M and M + H. So in this section we shall
first demonstrate how to simulate the definition of L within the system M, making no use of Axiom H. Then
we put on our Axiom H spectacles, by which is meant utilising the translation from A to (A)1 developed in
section 2, and show that with the addition of Axiom H, the actual construction of L may be extracted from
our simulation. Finally we give a short direct definition of the constructible universe, working in M + H.
For the purpose of proving Theorem 1, that is all that is necessary: we have shown that Consis(M) implies
Consis(M + H), and we shall show that Consis(M + H) implies Consis(M + KPL).

The simulation of Gödel’s L in the system M by L-strings along well-orderings

Our building bricks in this first approach to L will not be elements of extensional well-founded relations
but “constructible” hierarchies along arbitrary well-orderings.

In his monograph Gödel sets up the constructible hierarchy by listing eight functions of two variables,
F1, . . . F8; he establishes an isomorphism π : ON × ON × 9 ←→ ON and decoding functions λ : ON →
ON, ρ : ON → ON, φ : ON → 9 so that for each ζ,

π
(
λ(ζ), ρ(ζ), φ(ζ)

)
= ζ;

the isomorphism is induced from a well-ordering of all triples and is such that if φ(ζ) 6= 0, λ(ζ) < ζ and
ρ(ζ) < ζ. For many ζ, π−1 � ζ : ζ ←→ ζ × ζ × 9.

Once this has been set up, he then defines a function F : ON → V by

F(ζ) =

{
Fφ(ζ)(F(λ(ζ)),F(ρ(ζ))) if φ(ζ) = 1, . . . , 8;
F“ζ if φ(ζ) = 0.

We shall mimic this by considering L-strings along any well-ordering equipped with decoding functions
λ, ρ, φ. The difference is that Gödel was making his definitions within an extensional universe; we have to
take steps to ensure that our L-strings are extensional; and we must do that by recursion.§

§ All Gödel’s eight functions are rudimentary functions in the sense of [A4] and [A8], the concept termed
basic in [A5]; the functions they generate coincide with those generated by the first seven of the canonical
list of eight rudimentary functions. Closure under Gödel’s eight guarantees the truth of ∆0 separation.
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The first step in our construction makes no use of the specific definition of the Gödel functions.

Let (X,<X) be a well-ordering. We shall develop the concept of an abstract construction on X . We shall
define, by recursion along the well-ordering <X , two two-place relations EX , ≡X on X , and shall prove that
≡X is an equivalence relation that is also a congruence with respect to EX , and that the induced relation
on the equivalence classes is well-founded and extensional.

Let x ∈ X , and suppose that we have achieved such a definition on {y | y <X x}. We have to extend
our definitions to x.

[i] We ordain that x ≡X x and ¬(xEX x);

[ii] we suppose that we have a function F such that F (x) ⊆ {y | y <X x} which is extensional in the sense
that if w <X x, y <X x, w ≡X y and y ∈ F (x) then w ∈ F (x). We then set, for y <X x,

yEXx⇐⇒ y ∈ F (x)

In the case that concerns us, F will mimic one of the Gödel functions; but for the moment we need not
know that. The definition has the consequence that for w and y less than x,

w ≡X y =⇒
(
wEXx⇐⇒ yEXx

)

[iii] we ensure the continued extensionality of EX modulo ≡X by defining, for y <X x, y ≡X x and x ≡X y
to hold if and only if ∀z :<X x (zEXx⇐⇒ zEXy);

[iv] finally we allow for the possibility that at x we are merely getting a repeat of an earlier object by
defining xEXy for y <X x thus:

xEXy ⇐⇒ ∃z :<X y (z ≡X x & z ∈ F (y)).

That completes the inductive step of the definition of ≡X and EX . We must show that these relations
continue to obey the laws of identity and extensionality. These laws are

a ≡X aLAW 1:

a ≡X b =⇒ b ≡X aLAW 2:

(a ≡X b & b ≡X c) =⇒ a ≡X cLAW 3:

a ≡X b =⇒ (aEXc⇐⇒ bEXc)LAW 4:

a ≡X b =⇒ (cEXa⇐⇒ cEXb)LAW 5:

We assume that for all a, b, c, less than x, the above laws hold, and must show that the above laws hold
for all a, b, c less than or equal to x.

Let us dispose of some easy cases: x ≡X x by definition [i]; for y <X x, y ≡X x ⇐⇒ x ≡X y by
definition clause [iii]; those are the only cases of Laws 1 and 2 needing to be covered. In Law 3, if at least
two of a, b and c are equal to x the law is easily verified; if none, then our induction hypothesis applies; so
by symmetry we need only show two things:

a <X x & c <X x & a ≡X x & x ≡X c =⇒ a ≡X c

and

b <X x & c <X x & x ≡X b & b ≡X c =⇒ x ≡X c

In the first of those, we know that ∀w <X x(wEXa ⇐⇒ wEXx) and ∀w <X x(wEXx ⇐⇒ wEXc),
then ∀w < x(wEXa ⇐⇒ wEXc); a fortiori, ∀w < maxX{a, c}(wE

Xa ⇐⇒ wEXc), and so a ≡X c. In the
second, we must show from our assumptions that for arbitrary w < x, wEXx⇐⇒ wEXc. But we know that
wEXx ⇐⇒ wEXb, as x ≡X b; and as b, c, and W are all less than x we know by our inductive hypothesis
that b ≡X c =⇒ (wEXb ⇐⇒ wEXc).
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Now note that we cannot have, for y ≤X x, x ≡X y & yEXx: if y = x, that holds by [i]; and for y <X x,
x ≡X y gives ∀w < x(wEXx ⇐⇒ wEXy); taking w = y, yEXx would by [iii] yield yEXy, which is false.

Note also that we cannot have, for y ≤ x, x ≡X y & xEXy: again by [i] for x = y, and for y < x, if
xEXy, then by [iv] ∃w < y(x ≡X w&wEXy); we have seen that w ≡X x&x ≡X y =⇒ w ≡X y, so if
x ≡X y, we would have wEXy&w ≡X y; but both w, y are less than x, so by our inductive assumption we
would have yEXy, a contradiction.

These remarks cover the cases of Laws 4 and 5 when c and either a or b are equal to x; in both laws
there is nothing to prove when a = x = b; so we are left with four things to check:

a <X x & c <X x & a ≡X x =⇒ (aEXc⇐⇒ xEXc)

a <X x & c <X x & a ≡X x =⇒ (cEXa⇐⇒ cEXx)

a <X x & b <X x & a ≡X b =⇒ (aEXx⇐⇒ bEXx)

a <X x & b <X x & a ≡X b =⇒ (xEXa⇐⇒ xEXb)

The first line: to see that (a ≡X x & aEXc) =⇒ xEXc, fix x and c, and let v be minimal (in the
well-ordering) such that v ≡X x& vEXc. v cannot equal c; I assert that v < c, which gives xEXz by [iv];
were c < v, then ∃w :<Xc v ≡

X w & wEXc, but we have seen that w ≡X v& v ≡X x =⇒ w ≡X x, so we
would have w ≡X x&wEXc, contradicting the minimality of v. Going the other way, suppose that a ≡X x
and xEXc: we must show that aEXc. By our supposition, ∃w < c(x ≡X w&wEXc); we have seen that
a ≡X x&x ≡X w =⇒ a ≡X w, so we have a ≡X w & wEXc; so by our inductive hypothesis, aEXc.

The second line holds by clause [iii]; the third line is covered by the extensionality of F assumed in
clause [ii]. We turn to the fourth line.

If a = b, there is nothing to prove; the assertion is symmetric, so without loss of generality assume that
a <X b. Then a ≡X b means that ∀w :<b (wEXa⇐⇒ wEXb).

If xEXa, then for some z <X a, (z ≡X x & zEXa); for this z, z ≡X x & zEXb, and so xEXb. Going
the other way, if xEXb, then for some z <X b, z ≡X x & zEXb; as a ≡X b, z ≡X x & zEXa; so for some
w <X a, w ≡X z & wEXa, so w ≡X x & wEXa, so finally xEXa.

Our verification of the laws of identity and extensionality is complete.

We may now factor both X and EX by ≡X , obtaining (Y, F ), say. Y has a well-order <Y naturally
resulting from <X thus: for distinct equivalence classes A and B, put A <Y B if the <X -least member of A
<X -precedes the <X -least member of B.

4·0 PROPOSITION (Y, F ) is a well-founded extensional relation

Proof : if Z is a non-empty subset of Y , consider the <X-least element z of X of which the equivalence class
belongs to Z. Then for no w can we have wEXz and the equivalence class of w is in Z. Extensionality holds
by our definition [iii].

4·1 REMARK The above recursive definitions are all confined to the power set of X × X , so they may be
carried out within the system M .

On elementary submodels

We pause while still in this abstract phase to lay the groundwork for the condensation lemma that will
be essential when we come, having defined L, to develop its properties.

4·2 Suppose (X,<X) is a well-ordering and FX is an extensional function defined on X with F (x) ⊆ {y |
y <X x}. Let H be a subset of X . We shall follow a convention that letters at the beginning of the alphabet
will denote members of H , whilst letters at the end denote arbitrary members of X . We write <H for the
restriction of <X to H .

We define FH(h) = H ∩FX(h), and write ≡H and EH for the relations on H defined using the function
FH as above. We seek mild conditions on H so that FH is extensional, and for each g, h,

(g ≡H h⇐⇒ g ≡X h) & (gEHh⇐⇒ gEXh).
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Indeed, suppose that H satisfies the following two “elementarity conditions”:

whenever c <H d & c 6≡Xd, ∃b : <Hd
(
bEXc⇐6=⇒ b ∈ FX(d)

)
(α)

whenever d >H e & dEXe, ∃a : <He
(
a ≡X d & a ∈ FX(e)

)
(β)

We shall show that those two suffice. We make the following definitions

ΨX,H(c) ⇐⇒df ∀d > c (dEXc =⇒ dEHc)

ΨH,X(c) ⇐⇒df ∀d > c (dEHc =⇒ dEXc)

ΦX,H(c) ⇐⇒df ∀d > c (d ≡X c =⇒ d ≡H c)

ΦH,X(c) ⇐⇒df ∀d > c (d ≡H c =⇒ d ≡X c)

Ψ(c) ⇐⇒df ΨX,H(c) & ΨH,X(c)

Φ(c) ⇐⇒df ΦX,H(c) & ΦH,X(c)

We say that FH is extensional at h if ∀f, g : <Hh f ≡
H g & g ∈ FH(h) =⇒ f ∈ FH(h).

4·3 LEMMA (i) cEXc⇐⇒ cEHc;

(ii) w <H c =⇒ (wEXc⇐⇒ wEHc);

(iii) if ΨH,X(c), ∀b :∈H (bEHc =⇒ bEXc);

(iv) if ΨX,H(c), ∀b :∈H (bEXc =⇒ bEHc);

(v) if Ψ(c), ∀b :∈H bEXc⇐⇒ bEHc;

(vi) c ≡X c⇐⇒ c ≡H c;

(vii) c ≡H d⇐⇒ d ≡H c.

Proof : (i) because both sides are, by definition, false; (vi) because both sides are true; (vii) by definition;
(ii) because both sides are equivalent to w ∈ FX(c) ∩H ; (iii), (iv) and (v) are then immediate. a (4·3)

4·4 LEMMA If ∀f : <Hh ΦH,X(f) then FH is extensional at h.

Proof : suppose b ∈ FH(h) and b ≡H c <H h. Let f be the <H-minimum of b and c. Using ΦH,X(f),
b ≡X c. By the extensionality of FX , c ∈ FX(h) ∩H = FH(h), as required. a (4·4)

4·5 LEMMA If Ψ(c) then ΦX,H(c).

Proof : Let c <H d and suppose that c ≡X d. Then ∀w : <Xd (wEXc ⇐⇒ w ∈ FX(d)), so ∀b :
<Hd (bEHc⇐⇒ b ∈ FH(d)), using Ψ(c) and Lemma 4·3 (v) , and thus c ≡H d. a (4·5)

4·6 LEMMA If Ψ(c) then ΦH,X(c).

Proof : suppose that c 6≡X d, where c <H d. We must show that ∃b : <Hd
(
bEHc ⇐6=⇒ bEH(d)

)
. By

property (α), ∃b : <Hd
(
bEXc⇐6=⇒ b ∈ FX(d)

)
. Parts (ii) and (i) of Lemma 4·3 forbid respectively b <H c

and b = c, so c <H b; from Ψ(c) we know that bEHc⇐⇒ bEXc. As b ∈ FX(d)⇐⇒ b ∈ FH(d), we conclude
that c 6≡H d, as required. a (4·6)

4·7 LEMMA If ∀a : <He ΦH,X (a) then ΨH,X(e)

Proof : let d >H e, and suppose that dEHe. Then ∃a : <He a ≡
H d & a ∈ FH(e). So ΦH,X(a) holds; as

a < d, we have a ≡X d; so as a ∈ FX(e), dEXe, as required. a (4·7)

4·8 LEMMA If ∀a : <He ΦX,H (a) then ΨX,H(e)

Proof : let d >H e, and suppose that dEXe. By property (β), ∃a : <He
(
a ≡X d & a ∈ FX(e)

)
. Then

a ∈ FH(e), and a <H d, so by ΦX,H(a), a ≡H d. Hence dEHe. a (4·8)

From the above,

4·9 PROPOSITION Ψ(c) =⇒ Φ(c) and ∀c : <He Φ(c) =⇒ Ψ(e),

whence by an induction along <H ,
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4·10 PROPOSITION If H satisfies properties (α) and (β), then FH is extensional and for all c, d in H ,

(c ≡H d⇐⇒ c ≡X d) & (cEHd⇐⇒ cEXd).

4·11 REMARK The above proposition is a very weak form of the condensation lemma, which places no
reliance on a particular definition of F .

4·12 PROPOSITION Suppose the first element 0X of X is in H , and H satisfies (α) and (β) Then for each h
in H , if FX(h) 6= ∅, FH(h) 6= ∅.

Proof : Given such h, 0X 6≡
X h, so by (α) ∃c : <Hh c ∈ F

H(h), since ¬(cEH0X). a (4·12)

Gödel’s operations

Hitherto we have carried out our definition in abstract form, without specifying the nature of the rule
F , because precise knowledge of that rule is not needed for the recursive verification of the laws of identity
and extensionality. The time has come to examine Gödel’s operations in detail. They are

F1(X,Y ) = {X, Y }

F2(X,Y ) = X ∩ {〈u, v〉 | u ∈ v}

F3(X,Y ) = X \ Y

F4(X,Y ) = X ∩ {〈u, v〉 | v ∈ Y }

F5(X,Y ) = X ∩ {z | ∃y 〈y, z〉 ∈ Y }

F6(X,Y ) = X ∩ {〈u, v〉 | 〈v, u〉 ∈ Y }

F7(X,Y ) = X ∩ {〈u, v, w, 〉 | 〈v, w, u〉 ∈ Y }

F8(X,Y ) = X ∩ {〈u, v, w, 〉 | 〈u,w, v〉 ∈ Y }

Notice that for 2 ≤ i ≤ 8 and for all X , Fi(X,Y ) ⊆ X .
We shall need to note the actual means of defining the isomorphism between single ordinals and triples:

〈α, β, i〉 < 〈γ, δ, j〉 ⇐⇒max{α, β} < max{γ, δ} or

max{α, β} = max{γ, δ}&α < γ or

max{α, β} = max{γ, δ}&α = γ & β < δ or

max{α, β} = max{γ, δ}&α = γ & β = δ & i < j

Thus the first few triples are (0, 0, 0), (0, 0, 1), (0, 0, 2), ... (0, 0, 8), (0, 1, 0), (0, 1, 1) . . . (0, 1, 8), (1, 0, 0),
. . . (1, 0, 8), (1, 1, 0), . . . (1, 1, 8), (0, 2, 0) . . . (0, 2, 8), (1, 2, 0), . . . (1, 2, 8), (2, 0, 0), . . . (2, 1, 0), . . . (2, 2, 0)
. . . (0, 3, 0), . . .

Examination of the definition shows that if a triple 〈α, β, i〉 has rank ζ in this ordering, then either
α = β = i = 0 = ζ or (α = 0 = i & β = ζ), or (α < ζ & β < ζ); whence max{λ(ζ), ρ(ζ), φ(ζ)} 6 ζ.

Hence if we, following Gödel, define an enumeration of the constructible universe by the equation

F(ζ) =

{
F“ζ if φ(ζ) = 0,
Fφ(ζ)(F(λ(ζ)),F(ρ(ζ))) if φ(ζ) = 1, . . . , 8;

then, for each ζ, F(ζ) ⊆ {F(ξ) | ξ < ζ}. Hence, provided we are working in a suitable set theory, we may
show by recursion on the ordinals that each {F(η) | η < ζ} is a transitive set. Of course, there are many
repetitions; for example F(0) = F(1) = . . . = F(8) = ∅, while F(9) = {∅}.

But in our present set theory, we do not know that Gödel’s recursive definition works. We set out,
therefore, to imitate it by an abstract construction of the kind defined above.

Thus, we have a well-ordering (X,<X), and we equip ourselves with decoding functions λ, ρ, φ, where
λ : X −→ X , ρ : X −→ X and φ : X −→ {0, 1, 2, 3, 4, 5, 6, 7, 8}. We use them to define a function F = FGödel

X
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so that the resulting abstract construction along X using F imitates, in its clause [ii], the rules of Gödel
defining F . The difference will be that

F(ζ) ⊆ {F(ξ) | ξ < η},

whereas F (x) ⊆ {y | y <X x}.

Clause [ii] in our definition of relations EX ,≡X on X by recursion along the well-ordering <X will read
as follows: we are at stage x, and we suppose that the two relations have been defined for all y, z <X x; then
[ii] for y <X x, we determine whether yEXx according to the value of φ(x), thus:

φ(x) = 0 : y EX x

φ(x) = 1 : y EX x⇐⇒ y ≡X λ(x) or y ≡X ρ(x)

φ(x) = 2 : y EX x⇐⇒ yEXλ(x) & ∃b :<X y ∃a :<X b
(
aEXb& y ≡X π(π(a, a, 1), π(a, b, 1), 1)

)

φ(x) = 3 : y EX x⇐⇒ y EX λ(x) &¬(y EX ρ(x))

and so on for the remaining functions in the basis.

4·13 LEMMA If a ≡X c and b ≡X d, π(a, b, i) ≡X π(c, d, i).

Proof : by the extensionality of clause [ii]. a (4·13)

Some interpretative remarks may be helpful. When φ(x) = 0 we collect together all previously obtained
sets. The case φ(x) = 1 does unordered pairs; it follows that we can build ordered pairs and ordered triples,
and indeed have explicit formulæ of ordinal arithmetic telling us when the ordered pair of two elements, or
the ordered triple of three elements, will be constructed. These will be useful in writing the defining clauses
of [ii] for the cases 4 ≤ φ(x) ≤ 8, which are all defined in terms of ordered pairs and triples, along the lines
we have illustrated in writing out the case φ(x) = 2.

The case φ(x) = 3 constructs the difference of two previously obtained sets: this is the only place in
the complete definition where negation occurs, and since z\z = 0 and z\0 = z it has the consequence that
the empty set occurs repeatedly in the construction, and therefore that every set constructed is constructed
repeatedly.

We call abstract constructions where we have followed Gödel’s rules, L-strings, or, for emphasis, un-
factored L-strings, to distinguish them from the result of applying the factoring by ≡X discussed above in
Proposition 4·0, which we shall call factored L-strings. Intuitively, the factored L string associated to a
well-ordering X is, when transitised, the initial segment {F(α) | α < η} of the constructible universe; the
unfactored L-string along X is isomorphic to the string 〈F(α) | α < η〉, η here being the ordinal that is the
length of the well-ordering X .

The above definition, being localised, can be carried out in the system M , and we have established that
along any well-ordering there is an L-string. We could now begin our formal development of the proof of
Theorem 1 as follows:

4·14 DEFINITION F2 =df the class of all L-strings;

W2 =df {(ξ, x, e) | (x, e) ∈ F2 & ξ ∈ x}.

There is a counterpart to the notion of partial isomorphism developed in Section 2, and we may show
that maximal partial isomorphisms exist: actually we do slightly better than previously, as we may show that
with L-strings every maximal partial isomorphism is at least half-total. We may then use the new notion of
maximal partial isomorphism to define relations ≡2 and E2 on W2; finally we define for any formula A the
formula (A)2 as that obtained from A by first replacing ∈ and = by E2 and ≡2 and then relativising the
quantifiers to the class W2.

4·15 THEOREM SCHEME For any theorem A of MAC + KPL, (A)2 is provable in M.

The proof would broadly imitate that of Theorem 2, except that since principles of P-closure and
⋃

-
closure are not available in full generality, we would resort in many places to Gödel’s Condensation Lemma
for L-strings, following the lines of [A3] or [A8]. To that we now turn.
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Condensation for L-strings

We start with observing that in the case of L-strings, Proposition 4·10 can be considerably strengthened:

4·16 PROPOSITION Suppose that (X,FX) is an L-string closed under πX , and that H is a subset of X
containing 0X , satisfying properties (α) and (β) and closed under πX , λX , ρX and φX . Then H is, in an
appropriate interpretation of the phrase, a ∆0-elementary submodel of X .

Proof : Let Φ(x, a, b) be a ∆0 formula with parameters a and b. We have to show that if a, b and c are in
H , and ∃x :∈FX (c) ΦX(x, a, b) then ∃x :∈FH (c) ΦX(x, a, b), where ΦX denotes the formula obtained from
Φ by replacing = by ≡X and ∈ by EX , and, as before, FH(c) = FX(c) ∩H .

Consider FX(c) ∩ {x | ΦX(x, a, b)}. We assert that there is a y computable using π, λ, ρ and φ from a,
b, and c, such that FX(y) is equal to that set, taking it to be extensionally closed. But then y ∈ H , since
H is closed under those functions computing y from a, b and c, and then FH(y) will be non-empty, by 4·12,
proving the proposition.

Our assertion follows from well-known facts about rudimentary functions. Details may be found in
Gödel’s monograph or in Devlin’s exposition of constructibility. a (4·16)

4·17 REMARK We could remove the vague phrase “in an appropriate interpretation” by factoring the L-
string X and regarding H as the submodel consisting of the equivalence classes of elements of H . However,
for the moment, we continue to avoid factoring.

We may now state the Condensation Lemma, which in our context takes the following pleasing form.

4·18 THE CONDENSATION LEMMA Let (X,F ) be an L-string closed under πX . Let H ⊆ X contain 0X

and be closed under the functions πX , λX , ρX , φX , and let it satisfy (α) and (β). Set FH(h) = H ∩ F (h)
for h ∈ H . Then (H,FH) is an L-string.

Proof : The proposition will give us that counterparts to each of 0, 1, 2, . . ., 8 are in H . Notice then that H
being closed under λ and the other functions implies that λH = λX � H , and similarly for ρ, φ and π. That
follows from the elementary way in which the well-ordering of triples has been defined and the fact that

ζ = π(λ(ζ), ρ(ζ), φ(ζ)),

so that each element of H is in the image of π � H ×H × 9.
Now we have to check that the function FH as defined above agrees with the definition via the Gödel

functions. But that readily follows from Proposition 4·16, as all the Gödel functions are defined by ∆0

formulæ, the apparently unrestricted quantifier ∃y in the definition of F5 being in its context equivalent to
the restricted quantifier ∃y :∈

⋃ ⋃
Y . a (4·18)

We could now, following Gödel, use the Condensation Lemma to develop properties of our version of
L. For example, it would now be easy to show that every “subset of ω” in our model is in some countable
L-string, and hence that the continuum hypothesis will be true in our model.

The proof of (∆0 Separation)2 would be straightforward, relying on the fact that our model is closed
under the functions F1, . . . F8, and indeed would have essentially been given in establishing the pivotal
assertion of the proof of Proposition 4·16.

The proof of the Power set axiom would use the fact, proved in §2, that given any well-ordering there
is one of a greater cardinality. We sketch the argument.

Let (ξ, x, e) ∈ W2. Let Y be a well-ordering of length ≥ x
+
. We show that every “subset” of ξ

“occurs” in the L-string on Y , by applying Gödel’s condensation argument to any π-closed L-string containing
an occurrence of a subset of ξ to shrink it to an L-string shorter than that on Y . We may then apply
(∆0 Separation)2 to the string on Y to obtain the “Power set” of ξ.

The proof of (strong Σ1 Collection)2 would proceed via (Axiom H)2, as in §2; (Axiom H)2 itself would be
verified by an application of the Condensation Lemma, imitating the standard proof in ZF + V = L that if
κ is a successor cardinal, Lκ = Hκ.

We would have to show that (V = L)2 is true; that would give us (AC)2, and then Axiom H would yield
(strong) ∆0 Collection. The proof of Theorem 1 would then be complete.
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The construction of Gödel’s L in the system M + Axiom H by transitised factored L-strings

However, it is conceptually much easier to take a different tack. We have developed the concepts of
unfactored and factored L-strings in the system M, and the result is a supply of well-founded equivalence
relations. But our model for M + H, studied in §2, is built from all well-founded equivalence relations.
Thus our current version of L may be construed as a sub-model of that, and is a Σ2 class: something is
constructible if there is a well-ordering and an L-string along that well-ordering such that . . .

Therefore it is much better, now that we have established the existence of these particular well-founded
equivalence relations, to put on our Axiom H spectacles and re-interpret what we have done. First, since,
under Axiom H, every well-ordering is isomorphic to a von Neumann ordinal, we save a quantifier in the
description of L, for now we may say that something is constructible if there is an ordinal and an L-string
along it such that . . ., and with the Axiom of Foundation to hand, being an ordinal is a ∆0 condition.

Secondly, our factored L-strings may, again using Axiom H, be transitised; and thus we are now very
close to the KP treatment of of the constructible hierarchy, except that (not having the Axiom of Choice to
hand) we have not established that the axioms of KP hold in our current context.

Let ζ be an ordinal. We have an (unfactored) L-string along (ζ,< � ζ), defined using F ζ =df F
Gödel
<�ζ .

We form the factored L-string as in Proposition 4·0, and using Proposition 3·2 obtain the transitive set, Aζ

say, isomorphic to it. We factor the object placed at each η < ζ, as follows. By definition of L-string, we
have for ξ < η < ζ,

ξEζη ⇐⇒ ξ ∈ F ζ(η) ⊆ {ν | ν < η},

so we define by recursion on the ordinals less than ζ, a function Gζ with domain ζ thus:

Gζ(η) =df {G
ζ(ξ) | ξ ∈ F ζ(η)}.

The recursion may be sustained in M + H because each Gζ(η) will be a member of Aζ . Then by our careful
choice of F ζ to imitate Gödel’s rules, 〈Gζ(η) | η < ζ〉 can be verified to satisfy Gödel’s recursive definition
of the sequence 〈F(η) | η < ζ〉. In particular, we may check that for η < ζ < θ, Gζ(η) = Gθ(η), and may
write F(η) for that common value.

We have now established in M + H that along every von Neumann ordinal ζ the Gödel sequence 〈F(η) |
η < ζ〉 exists. Now it is all plain sailing: we can define L to be the class {F(η) | η ∈ ON}. We know by 2·0
that ∀κ κ+ exists; and therefore there will be in L unboundedly many initial ordinals. We may establish
the truth of the axioms of S0, of ∆0 Separation and of AC in L, following Gödel’s monograph; so successor
initial ordinals will in L be regular. Let κ be an initial ordinal in L, and let λ be its successor in L, so that
λ is at most the successor of κ computed in V . Then we may prove using the Condensation Lemma that
each subset of κ in L is in Lλ, and thus establish the power set axiom. We now know that MAC is true in L.
The truth of TCo in L is immediate from its definition, since each member of L is a member of a transitised
factored L-string. We use the Condensation Lemma again to show that, in L, Lλ = Hκ+ , which is enough
to establish the truth of Axiom H in L. Proposition 3·14 then yields the truth of ∆0 Collection and of Π1

Separation in L.
We have established the truth in L of all axioms of MAC+KPL+Σ1 Separation, and the proof of Theorem

1 is complete.
a (Theorem 1)

The construction of Gödel’s L in the system M + Axiom H: a direct argument

4·19 PROPOSITION (M + H) Let κ be an uncountable von Neumann ordinal. Let H = H6κ be a transitive
set, supplied by Axiom H, of which every transitive set of cardinality at most κ is a subset. Then there is a
function f : κ+ −→ H which satisfies Gödel’s recursive definition of the sequence 〈F(ν) | ν < κ+〉.

Proof : essentially by the general principle that contained recursions succeed in M. Let Ψ(η, f) assert that f
is a function with domain η and values in H that satisfies Gödel’s rules and has the properties for all δ < η
that f(δ) ⊆ {f(ν) | ν < η} and that {f(ν) | ν < δ} is transitive. Ψ is ∆0 in the parameter H .
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We have seen in our previous discussion that those properties are indeed maintained by Gödel’s rules.
It is easily checked that for each η there is at most one such f .

We assert that ∀η :<κ+ ∃fΨ(η, f). If that fails, then consider the class

{η | η < κ+ & ¬∃f :∈P(H × κ+) Ψ(η, f)} :

that is ∆0 in the parameter P(H × κ+), which is, provably in M + H, a set. Hence that class is a set, and
by foundation, if non-empty, it will have a least element η̄.

Evidently η̄ > 0. The possibility that η̄ is a limit ordinal is easily refuted. Suppose that η̄ = η + 1.

We then have a function f : η −→ H that satisfies the defining clauses for 〈F(ν) | ν < η〉, and for which
{f(ν) | ν < η} is transitive. Our intended value F(η) is the subset of {f(ν) | ν < η} given by Gödel’s rules,
and thus {f(ν) | ν < η} ∪ {F(η)} is transitive. It is plainly of cardinality 6 κ, since η < κ+, and so is a
subset of H . Thus our intended value F(η) is a member of H and we may extend our definition of f to η,
giving a function g with Ψ(η + 1, g).

Our proof is complete. a (4·19)

A proof of Theorem 1 may now be reached by following the last two paragraphs of our previous proof.

4·20 REMARK In fact Z0 + H suffices for the definition of L and proves (Axiom H)L and therefore also (Z1)
L,

for, as we have just seen, M + H does, but Z
+
0 is M, (Axiom H)0 is provable in Z0 + H, and the procedure of

§1 for getting from Z0 to Z
+
0 makes no difference to L which is in any case built from transitive sets.

4·21 HISTORICAL NOTE Prior to the publication of his monograph [A3] Gödel published first a brief an-
nouncement [A1] and then a sketch [A2] of his proof in the Proceedings of the National Academy of Sciences
of the U.S.A., in which he proceeds by defining the constructible hierarchy, the stages of which are denoted
by Mν by Gödel and by Lν by more recent writers.

In the announcement a relative consistency result is stated in this form: if T is consistent it remains
so if four propositions are adjoined simultaneously as new axioms, the four propositions being the Axiom
of Choice, the generalised continuum hypothesis, the existence of a non-measurable ∆1

2
set of reals and the

existence of an uncountable Π1
1 set with no perfect subset. The result is stated to hold for T denoting either

von Neumann’s system S∗, or the system of Principia Mathematica or Fraenkel’s system of axioms, leaving
AC out in all cases, but including the axiom of infinity in the last two.

Footnote 1 of the sketch begins “This paper gives a sketch of the consistency proof for propositions 1,
2 of Proc. Nat. Acad. Sci., 24, 556 (1938), if T is Zermelo’s system of axioms for set theory (Math Ann.,
65 261) with or without axiom of substitution and if Zermelo’s notion of “Definite Eigenschaft” is identified
with “propositional function over all sets”.

He states in Theorem VII that Mωω
will be a model of Zermelo’s system, and mentions that certain

slight modifications will be needed for the corresponding relative consistency proof. Footnote 12 of the sketch
reads “In particular for the system without the axiom of substitution we have to consider instead of Mωω

an isomorphic image of it (with some other relation R instead of the ε-relation) because Mωω
contains sets

of infinite type, whose existence cannot be proved without the axiom of subst. The same device is needed
for proving the consistency of prop. 3, 4 of the paper quoted in footnote 1.”

Though Gödel never published details of his consistency proof for Z+V = L relative to Z, it seems that
he had developed something like the theory of factored L-strings presented in this section.
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5: The increasing strength of subsystems of Z

In this section we study systems intermediate in strength between M + KP and Z + KP, namely KZk, the
system KP + Zk; KLZk, which is KZk + V = L; for k > 2, KLMZk, which is KLZk with the addition of a
“minimality” axiom that we write informally as ON = ℵω; and KLMZ, the union of those systems over all
k > 2.

In particular, KLZ0 is the system M + KPL, of which WO is a theorem, and KZ0 is M + KP.

We shall use fraktur letters k, n for indexing the Lévy hierarchy, to remind us that it is very dangerous
to quantify over these variables, as we have no truth definition that works for all formulæ at once.

We have two principal aims in this section, for each k ≥ 2.

1: to show that each KLMZk proves the consistency of KLMZk−1, from which we shall infer
that Z is not finitely axiomatisable.

2: to show, reasoning in KZk, that KZk holds in L.

We shall see shortly that for k = 1, the first result fails while the second holds. In §6 we shall see that
the theory KZ0 is unable to prove that there is a non-recursive ordinal and hence that the second fails for
k = 0, for (KZ0)

L does prove that there is a non-recursive ordinal. We remarked in 4·20 that Z0 + H proves
(Z1)

L; we shall see in Theorem 5·33 that for k > 2, Zk + H proves (Zk)
L.

Proof of Axiom H in KLZ0

5·0 LEMMA (KLZ0) For all κ, κ+ exists.

Proof : fix κ, an infinite initial ordinal. Let S = P(κ). S is a set, so there is an ordinal λ such that S ⊆ Lλ.

An easy induction shows that Lν = ν for infinite ν; hence such λ must be of cardinality greater than κ,

as S > κ by Cantor. By Π1 Foundation, the class {µ > 0 | ¬∃f : κ
onto
−→ µ}, being non-empty, has a least

element, which will be κ+. a (5·0)

5·1 PROPOSITION (KLZ0) Axiom H.

Proof : let u be a set. Since V = L, u ∈ Lη for some infinite η, and therefore u 6 η = κ, say. By the Lemma,
κ+ exists. We take T = Lκ+ and show that T has the properties promised by Axiom H. That is, we must
show that if v is transitive and v 6 κ, then v ⊆ T .

Choose θ with v ∈ Lθ; as each Lθ is transitive, v ⊆ Lθ. We may, again by the Lemma, suppose
that θ is admissible, since if necessary we could replace θ by θ+. Hence we may without difficulty form
N = Hull(Lθ, v ∪ {v}): again we omit the definition of Hull, but the Σ̇1 hull, defined in analogy to the ∆̇0

hull discussed before the statement of Proposition 3·11, will do. By Gödel’s Condensation Lemma, which
will hold by Corollary 3·16 since it concerns a collapse into Lθ, there is a ζ with

$N : N ∼= Lζ

where $N is the Mostowski collapsing function.

By a familiar cardinality computation, ζ = Lζ = N = v 6 κ. Hence ζ < κ+. But $N(v) = v since v is
transitive and v ⊆ N ; so v ∈ Lζ ⊆ Lκ+ , as required. a (5·1)

5·2 METACOROLLARY KLZ0 and KLZ1 are the same system.

Proof : by 5·1 and 3·18. a (5·2)

5·3 METACOROLLARY Z0 and Z1 are equiconsistent.

Proof : If Z0 is consistent, so is Z
+
0 , by §1. Z

+
0 is the system M . By §2, the consistency of M implies that of

M +H , which by the results of §4 proves (KLZ0)
L, of which (Z1)

L is a subsystem by 5·2. a (5·3)

We saw in 3·21 that Axiom H is provable in KZ1, whereas the models to be built in §6 will show that it
is not provable in KZ0 + WO.

5·4 PROPOSITION KZ1 ` (KZ0)
L
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Proof : KP proves (KP)L, so that our only problem is with the power set axiom. Let a ∈ L. The predicate
“x ∈ L” is ΣKP

1 , and hence the class A =df P(a) ∩ L is a set. Then using Σ1 collection we find ∃η∀x :∈
A x ∈ Lη, so that with ∆0 Separation L may now be proved to satisfy the power set axiom. a (5·4)

5·5 COROLLARY KZ1 ` (KZ1)
L

Proof : since KLZ0 proves KLZ1. a (5·5)

Once the results promised above for section 6 have shown that KZ0 does not prove (KZ0)
L, we shall

have the

5·6 METACOROLLARY KZ0 and KZ1, though equiconsistent, are not the same system.

Our plan for the rest of the section is to begin with a discussion of Σ̇k hulls, reasoning in Zk; then to
discuss the minimality axiom and use it to establish a weak form of a general fine-structural result; reasoning
in KLMZk we then build a model of KLMZk−1, thus achieving our first goal; then we show how to strengthen
the fine structural result and avoid reliance on the minimality axiom; and finally, reasoning in KZk, and using
that strengthened result, prove that Σ̇k Separation holds in L.

Σ̇k hulls

5·7 We have remarked in 3·10 that the relation N |= ϕ can be defined satisfactorily in the system M for
any structure N = (N, R) where N is a set. Here we want to define truth in the universe, not in a set; no

definition works for all formulæ at once, but we may make in KZ0 for each k a truth definition |=
k

that works
for all Σ̇k formulæ and Π̇k formulæ; however, a formula of the form

∧
x : ε aΨ where Ψ is Σ̇3 is neither, and

need not be equivalent, say in KZ0, to, a Σ̇3 nor a Π̇3 formula, and therefore prima facie our definition of |=
3

will not apply.

We start by making this truth definition, |=
0

, for all ∆̇0 formulæ: such a formula is said to be true if it
holds in some, or, granted TCo, in every, transitive set containing all its parameters. Thus for ϕ ∈ ∆̇0,

|=
0
ϕ[a] ⇐⇒df ∃u

(
⋃
u ⊆ u & a ∈ u&

(
u, {〈x, y〉 | x ∈ y ∈ u}

)
|= ϕ[a]

)

.

We know from Remark 1·23 that Z does not prove TCo; but KP does, and indeed the function tcl is there

available, and of course KPI handles formal languages and the satisfaction relation |= with ease. Thus |=
0

is
a ∆KPI

1 relation.
We then, schematically for each k, extend the definition to allow for the two strings of length k of strictly

alternating unrestricted formal quantifiers. For example, for k = 3 we define for ϕ ∈ ∆̇0 and parameters a,

|=
3 ∨

x
∧

y
∨

zϕ(x, y, z)[a] ⇐⇒df ∃x∀y∃z |=
0
ϕ[a, x, y, z];

|=
3 ∧

x
∨

y
∧

zϕ(x, y, z)[a] ⇐⇒df ∀x∃y∀z |=
0
ϕ[x, y, z, a];

More generally, let Qk denote the unique string of length k of of strictly alternating unrestricted quantifiers
∀, ∃ of the ∈-language starting with ∃, and Rk the dual string starting with ∀. Then for ϕ ∈ ∆̇0, we define,
in a notation that suppresses details of the binding of variables of ϕ by quantifiers and their matching to
their interpretations,

|=
k
Q̇kϕ(x1, . . . , xk)[a] ⇐⇒df Qk |=

0
ϕ[x1, . . . , xk, a]

|=
k
Ṙkϕ(x1, . . . , xk)[a] ⇐⇒df Rk |=

0
ϕ[x1, . . . , xk, a]

Thus for ϕ ∈ ∆̇0 and a ∈ FinV , the class of finite sequences of sets, |=
k
Q̇kϕ[a] will be a ΣKPI

k predicate of ϕ

and a, and |=
k
Ṙkϕ[a] a ΠKPI

k one.

If 0 6 n < k, Σ̇n formulæ and Π̇n formulæ may be construed as Σ̇k formulæ and therefore |=
k

can be
applied to them. This fact will be used without comment.
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Now fix k, and reason in KZk. We show how to define the Σ̇k hull of a subset of the universe. Initially
we only consider hulls of the empty set,but we shall allow room for generalisation by speaking of “permitted
constants”.

We shall use certain manipulations of Σk formulæ that are available using the pairing functions. For
example, provably in S0,

∃a∀b∃cB(x, a, b, c) & ∃d∀e∃fD(x, d, e, f)⇐⇒ ∃p∀q∃r
[
B(x, (p)0, (q)0, (r)0) & D(x, (p)1, (q)1, (r)1)

]

and

∃a∀b∃cB(x, a, b, c) or ∃d∀e∃fD(x, d, e, f)⇐⇒ ∃p∀q∃r
[
B(x, (p)0, (q)0, (r)0) or D(x, (p)1, (q)1, (r)1)

]

Now if B and D are ∆0, then both

∃r
[
B(x, (p)0, (q)0, (r)0) & D(x, (p)1, (q)1, (r)1)

]

and

∃r
[
B(x, (p)0, (q)0, (r)0) or D(x, (p)1, (q)1, (r)1)

]

are ΣS0

1 , meaning that they are equivalent in the system S0 to Σ1 formulæ. It follows, generalising, that

both the conjunction and the disjunction of two Σk formulæ are ΣS0

k . Similarly a Σk formula prefaced by an

existential quantifier is ΣS0

k .
Corresponding manipulations will be available one level down for Σ̇k formulæ.

Let N k
0 = {ϕ | ϕ is a Σ̇k formula with one free variable and no constants}. N k

0 ∈ V .

Let N k
1 = N k

0 ∩ {ϕ | ∃x |=
k
ϕ[x]}. N k

1 ∈ V by Σk separation.

Let N k
2 = N k

0 ∩ {ϕ | ∃x∃y
(
x 6= y & |=

k
ϕ[x] & |=

k
ϕ[y]

)
}. N k

2 ∈ V by Σk separation.
Finally let N k = N k

1 \N
k
2 . N k ∈ V by the axiom of difference. N k is essentially a nominalist version of

the Σk hull of the universe. We may speak of it as the set of Σ̇k formulæ in one free variable with unique
witnesses.

We define an equivalence relation ∼k on N k by

ϕ ∼k ϑ⇐⇒ ∃x
(

|=
k
ϕ[x] & |=

k
ϑ[x]

)

Plainly for ϕ, ϑ in N k,

ϕ ∼k ϑ⇐⇒ ∀x∀y
(

|=
k
ϕ[x] & |=

k
ϑ[y] =⇒ x = y

)

;

the defining formula for ∼k has form Σ1(Σk ∧Σk), and the second version has form Π1Π1(Πk ∨Πk ∨∆0), so
∼k is a ∆k relation on the set N k.

We proceed to form the set of equivalence classes of N k induced by ∼k. Our oblique approach is caused
by the fact that we have no reason to believe that a Σk property prefaced by a varied string of restricted
quantifiers remains Σk.

For ϕ ∈ N k, {ϑ ∈ N k | ϑ ∼k ϕ} is a set, it being a ∆k subclass of the set N k; it is therefore a member
of the set P(N k).

Let Ak = P(N k) ∩ {x | ∃ϕ∃ϑ[ϕ ∈ x & ϑ ∈ x & ϕ 6∼k ϑ]}. Ak is a set by Σk separation, using
the Πk definition of ∼k. Set Jk =df P(N k) \ Ak. Jk ∈ V . Jk = {x ⊆ N k | x is a subset of some ∼k

-equivalence class}. Finally put

Kk =df J
k ∩

{
x

∣
∣ x 6= ∅ & ∀y :∈Jk

(
y ⊆ x or y ∩ x = ∅

)}

Kk is a set, by ∆0 Separation, and is the desired set of ∼k-equivalence classes.

Kk will form the underlying set of the structure that we shall show, using V = L+ON = ℵω, to model
Σ̇k−1 Separation. The (membership) relation Ek on Kk is defined by

xEky ⇐⇒df ∃ϕ :∈x ∃ϑ :∈y ∃a∃b
(
|=
k
ϕ[a] & |=

k
ϑ[b] & a ∈ b.

)
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Since

xEky ⇐⇒df ∀ϕ :∈x ∀ϑ :∈y ∀a∀b
[
|=
k
ϕ[a] & |=

k
ϑ[b] =⇒ a ∈ b

]
,

Ek is actually a ∆k subclass of Kk ×Kk, and thus is certainly a set.

5·8 Suppose now that a is some set: we may form the Σ̇k hull of a by modifying the definition of N k
0 to permit

constants for members of a to occur in ϕ. N k(a) will be the set of Σ̇k formulæ, in one free variable and the
permitted constants, with unique witnesses. We write Kk(a) and Ek(a) for the outcome of the discussion of
5·7 starting from a rather than from ∅.

We refer to structures of the kind (Kk(a), Ek(a)) as term models, in view of the natural correspondence
between their members and ι-terms of the kind ιxϕ, meaning “the one and only one x such that ϕ”.

The minimality axiom

We saw above that the theory KLZ0 proves that ∀κ∃κ+. We wish to consider here a “minimising”
addition to that theory, an axiom that we write as ON = ℵω. We outline the background to this axiom.

We wish to define the function g : ω → ON by

g(p) = ωp,

It will follow from Lemma 5·9 that given Π2 Foundation as well, the function g provably has domain ω.
Hence we can ask whether ∃ζ∀p :∈ω g(p) < ζ: the least such ζ, if it exists, we shall denote by ℵω, and write
the assertion of its existence as ℵω < ON . The denial that such a ζ exists we write as ON = ℵω and is the
minimality axiom, mentioned above.

5·9 LEMMA (KLZ0 + Π2 Foundation) ∀n ≥ 2 ∃f [f : n −→ ON & ∀m < n− 1 f(m+ 1) = (f(m))+]

Proof : we have seen above that KLZ0 proves that ∀κ κ+ exists. It follows that a contradiction will result if
we assume that there is a least element to the class

{

n
∣
∣
∣ 2 6 n 6 ω & ¬∃f

[
Dom (f) = n & f(0) = ω & ∀m :<n f(m) ∈ ON &

& ∀m :<n− 1 ∀ζ :<f(m+ 1) ∃g g : ζ
1−1
−→ f(m) &

& ∀m :<n− 1 ¬∃g g : f(m+ 1)
1−1
−→ f(m)

]}

That class is ΠKP
2 ; it can have no least member so by Π2 Foundation it must be empty; from which the

theorem follows. a (5·9)

5·10 COROLLARY (KLZ0 + Π2 Foundation) The function p 7→ ωp is well-defined and has domain ω.

5·11 REMARK Π2 Foundation will hold if we have set Foundation, Transitive Containment and Σ2 Separa-
tion, and thus is provable in KZ2. Hence the minimality axiom is well-defined in any system extending KZ2

and we may now define the system KLMZk for k > 2 as the system KLZk +ON = ℵω.

Continuing to reason in KLZ0 + Π2 Foundation, we distinguish two cases:

Case 1: ∃ζ ∀pωp < ζ:

Let ζ0 be one such ζ. Let a = P(ζ0 × ω). Then the class {ζ | ∀p < ω ωp < ζ} is non-empty, is definable
by a formula with the set a as a parameter, of the form ∀f :∈a (Π1 ∨ Σ1 ∨∆0), and so has a least element
by Π2 Foundation.

In this case (remembering that we are assuming that V = L) we write ℵω or ωω for the least such ζ.
Given the ordinal ωω, we may, reasoning in KP, build the corresponding initial segment of the constructible
hierarchy.

5·12 PROPOSITION (KLZ0 + Π2 Foundation) If ωω exists, then Lωω
|= KLMZ.

Proof : it models the Power set axiom by Gödel’s famous result, proved using his Condensation Lemma, that
each constructible subset of κ is constructed before κ+, that successor being computed in L. For the same
reason it will correctly compute cardinals as far as its own ordinals, and will therefore believe ON = ℵω, it
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is admissible (indeed a Σ̇1 elementary submodel of L), and it will model the full Separation scheme as it is
supertransitive in the sense that x ∈ L & x ⊆ y ∈ Lωω

=⇒ x ∈ Lωω
. a (5·12)

So if case 1 holds, we find a model of the theory in which we are reasoning, hence, by Gödel, case 1
cannot be proved to hold, and we must consider case 2. Note that our discussion of case 1 yields the following

5·13 METATHEOREM For each k > 2, the consistency of KLZk implies, in arithmetic, that of KLMZk.

Case 2: ∀ζ∃n ζ 6 ωn.

This is our minimality axiom, that ON = ℵω, and we turn now to using that to prove a weak fine
structural lemma.

A weak fine-structural lemma

Our task is to get a better estimate of the quantifier complexity of ∀x :∈ y A when A is Σn. We shall
prove two variants of a general fine-structural lemma of S. Friedman which is proved in Simpson [A6], and
which may be seen in further action in Steel [A7]. We use Jensen’s J hierarchy, as do Friedman, Simpson
and Steel, but the coarser L-hierarchy would suffice for our arguments.

We begin with the first variant in schematic or “undotted” form.

5·14 DEFINITION Let S be any system extending KPI. Write Fru(n, S) for the hypothesis that whenever
A(a, b, β) is a Σn formula, of which the variables a and b range over sets and the variable β over ordinals,
∀b :∈Jβ A(a, b, β) is ΣS

n+1.

5·15 LEMMA (i) Fru(0,KPI); indeed ∀b :∈Jβ A(a, b, β) is ∆KPI
1 whenever A is ∆0;

(ii) Fru(1,KPI): indeed, ∀b :∈Jβ A(a, b, β) is ΣKPI
1 whenever A is Σ1;

(iii) for n > 2, if Fru(n− 1, S) and S ` KLMZ2 & ∆n Separation, then Fru(n, S);

(iv) for n 6 k, Fru(n,KLMZk).

Proof : part (i) follows from the ∆KPI
1 definability of the constructible hierarchy; (ii) holds by Σ1 Collection

(a consequence in KP of ∆0 Collection), as the map β 7→ Jβ is ∆KPI
1 ; (iv) is immediate from the first three

parts. It remains to prove (iii).
Let n > 2. The difficulty is that although the easier quantifier manipulations of KP are available to us

— we may, for example, amalgamate like quantifiers — Σn Collection is not. We shall use the function g
defined by g(p) = ωp, which we have seen to be a ΣKZ2

2 function — this is where we lose the extra point we
gained when n = 1 — and we have the Axiom of Constructibility, our minimality axiom that

⋃
Im(g) = ON ,

and the hypothesis that Fru(n− 1, S).
Let G(a, β) be the formula β ∈ ON & ∀b :∈Jβ A(a, b, β). By assumption, A is Σn, and so of the form

∃cC(a, b, c, β) where C is Πn−1.
Suppose that G(a, β) holds: then

∀b :∈Jβ ∃p :∈ω ∃c :∈Jg(p) C(a, b, c, β).

Let H(b, p, β) ⇐⇒df b ∈ Jβ & p ∈ ω & ∀η(η = g(p) =⇒ ∃c :∈Jη C(a, b, c, β)).
By our hypothesis that Fru(n− 1, S), ∃c :∈Jη C(a, b, c, β)) is ΠS

n and so H is ΠS
n . But also

H(b, p, β)⇐⇒ b ∈ Jβ & p ∈ ω & ∃η∃c(η = g(p) & c ∈ Jη & C(a, b, c, β),

so that H is ΣS
n . Hence we may apply ∆n Separation to infer that {(b, p) | H(b, p, β)} ⊆ Jβ × ω is a set.

So, provably in S,

G(a, β)⇐⇒ β ∈ ON & ∃H







H ⊆ Jβ × ω &
& ∀b :∈Jβ ∃p :∈ω (b, p) ∈ H &
& ∀b :∈Jβ ∀p :∈ω ∀η

(
(b, p) ∈ H & η = g(p) =⇒ ∃c :∈Jη C(a, b, β, c)

)

which is ΣS
n+1, as required, since (as we have seen) ∃c :∈Jη C(a, b, c, β)) is ΠS

n . a (5·15)
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We wish, though, for each k to be able within our ∈-language to quantify over all formulæ in a class
corresponding to Σk. We therefore introduce a concept midway between Σk and Σ̇k.

5·16 DEFINITION A Σ̊k formula of the ∈-language is one of the form Qk |=
0
ϑ[a], where it is intended that

ϑ ∈ ∆̇0; similarly, we call Rk |=
0
ϑ[a] a Π̊k formula. Such formulæ are chiefly determined by ϑ: so we may

introduce one by the simple phrase “Let A be Σ̊k(ϑ)”, thus naming the ∆̇0 formula concerned.

If Φ denotes the Σ̇k formula Q̇kϕ, we denote by Φ̊ the Σ̊k formula Qk |=
0
ϕ, the formal variables of ϕ

being changed appropriately to ordinary variables.
Every Σ̊k(ϑ) predicate of a is a ΣKPI

k predicate of ϑ and a; to indicate the special rôle played by ϑ we
purloin Quine’s corners and write “A is Σk(pϑq, a)”.

Conversely every Σk formula A is equivalent over KPI to the Σ̊k formula where ϑ is Ȧ. In particular,
over a reasonable base theory such as KPI, the scheme of Σk separation is equivalent to a principle of Σ̊k

separation expressible in a single formula. But if we consider the result of interpreting our set theory with
non-standard integers, we see that there might be ϕ not of the form Ȧ; so there is a difference between the
two concepts. The important point is that we can practically quantify in the ∈-language over the Σ̊k formulæ,
as is illustrated by the following “dotted” definitions, which are of single formulæ of the ∈-language.

5·17 DEFINITION

(5·17·0) Frd(n) ⇐⇒df for every ∆̇0 formula ϕ there is a ∆̇0 formula ϑ such that for all β and for all
assignments of values to the relevant free variables of ϕ and ϑ,

(
∀x :∈Jβ Qk |=

0
ϕ
)
⇐⇒ Qn+1 |=

0
ϑ.

If we paraphrased that by the phrase “whenever A is Σ̊n,
(
∀x :∈Jβ A

)
is Σ̊n+1,” we may give two more

definitions periphrastically:
(5·17·1) Fr′d(n) is the ∈-formula similarly paraphrased as “whenever A(a, x, y) is Σ̊n, ∀x :∈y A(a, x, y) is

Σ̊n+1”; and
(5·17·2) Fr′′d(n) is the ∈-formula paraphrased as “whenever A(a, x, y) is Σ̊n, ∀x :<Ly A(a, x, y) is Σ̊n+1”.

5·18 PROPOSITION (i) KPI ` Frd(0) & Fr′d(0) & Fr′′d(0); indeed they hold in the same strengthened sense in

which Fru(0,KPI) holds;

(ii) KPI ` Frd(0), Fr′d(1) and Fr′′d(1) hold in the same strengthened sense in which Fru(1,KPI) holds;

(iii) for each n > 2, KPL ` if Frd(n) then both Fr′d(n) and Fr′′d(n).

(iv) for n 6 k, KLMZk ` Frd(n) & Fr′d(n) & Fr′′d(n)

Proof : for parts (i) and (ii), modify the proofs of parts (i) and (ii) of Lemma 5·15. For part (iii), we know
that the formula y ∈ Jβ and the truth predicate |= are ∆KPI

1 . Thus the formulæ
(
|=Jβ

x<̇Ly
)

=⇒ Ψ and

x ∈ y =⇒ Ψ are Σ̊KPI
n whenever Ψ is Σ̊n. We may then apply the equivalences

∀x :<Ly Ψ⇐⇒ ∃β
[

y ∈ Jβ & ∀x :∈Jβ

[
(Jβ |= x<̇Ly) =⇒ Ψ

]]

, and

∀x :∈y Ψ⇐⇒ ∃β
[

y ∈ Jβ & ∀x :∈Jβ

[
x ∈ y =⇒ Ψ

]]

.

For part (iv), modify the proof of Lemma 5·15, part (iii). a (5·18)

Consistency proofs for fragments of KLMZ

Let k > 2. We recall our discussion of 5·7 and 5·8. The following lemma may be understood informally
to imply that the structure (Kk, Ek) is Σk-elementarily embeddable in L, the embedding being the map that
sends each equivalence class to the unique witness to formulæ in that equivalence class. Remember that the
permitted constants are names for members of a set a. We write N k

0(a) for the set of Σ̇k formulæ in one free
variable and only permitted constants.

5·19 THE WITNESS LEMMA (KLMZk−1) Let Φ(x) be a Σ̇k formula with one free variable, the parameters
of which are either among the permitted constants or are unique witnesses to formulæ in N k

0(a). If Φ has a
witness, it has one which is itself the unique witness to some formula in N k

0(a).
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Proof : a first attempt would be, given a Σ̇k formula Φ(x), to consider

{x | Φ̊(x) & ∀y :<L x¬Φ̊(y)},

which if ∀x¬Φ̊(x) is empty, and otherwise has one member, that member witnessing Φ. But that class is not
Σk, so we must modify this approach. Further we must consider the presence of parameters.

Suppose then that ∃x Φ̊ holds where Φ is of the form
∨

yΨ(x, y, x1, b) where Ψ is Π̇k−1, b is one of the
permitted constants (or a finite list thereof), and x1 is the unique set satisfying a Σ̇k predicate Θ(x1, c), c
being a permitted constant (or a finite list of the same). Consider

{
〈x, y, z〉

∣
∣ Ψ̊(x, y, z, b) & Θ̊(z, c) & ∀〈x′, y′〉 :<L 〈x, y〉 ¬Ψ̊(x′, y′, z, b)

}
:

essentially by Fr′′d(k − 1), that is Σ̊k; and contains exactly one member, a triple. The first member of that
triple will be a witness to the original Φ, and will be equally definable as the unique witness to a Σ̇k predicate.

a (5·19)

5·20 THEOREM (KLMZk) (Kk, Ek) |= KLMZk−1; moreover the structure (Kk, Ek) is well-founded and iso-
morphic to some countable transitive set.

The proof splits into a series of lemmata, some of which we state in abstract model-theoretic form.

5·21 LEMMA Let M �Σ
k
N , where k > 2. If the Power Set axiom is true in N, then it is also true in M. a

5·22 REMARK The lemma fails for k = 1, for let δ = ωL
1 and κ = ωL

ω . Then Lδ �Σ1 Lκ, Lκ satisfies the
power set axiom, and Lδ does not.

Other axioms are easily transported: apply, for example, the fact that the “minimising” axiom, ON =
ℵω, is ΠKZ2

3 . Our problem reduces to proving that (Kk, Ek) |= Σ̇k−1-Separation.

5·23 LEMMA If M �Σ
k

N , where k ≥ 2, and Σk−1 Separation, KPL and the principle Fr′d(k − 1) are true in
N, then Σk−1 Separation will be true in M.

Proof : let Ψ(x) be Σk−1. Let a ∈M. Then, in N,

∃z
(
z ⊆ a & ∀w :∈z Ψ & ∀w(w /∈ a or ¬Ψ or w ∈ z)

)
.

The first clause is ∆0, the second is Σk by Fr′d(k − 1), and the third is Π1(Πk−1); so the whole is Σk.
Hence it is also true in M. a (5·23)

We have used Σk Separation to show that (Kk, Ek) is a set. Recall that its members are equivalence

classes of formulæ. The model we would really prefer to consider is H k =df {x | ∃ϕ :∈N k |=
k
ϕ[x]}, but that

is a ∆0Σk class; without Σk Collection we have no grounds for believing that it is a set. Thus instead we
must work with the set Kk, to which Hk is secretly isomorphic.

For ϕ ∈ N k we write (ϕ)k for its equivalence class with respect to ∼k. The following makes the sense
in which (Kk, Ek) is a Σk elementary submodel of L more precise. Note that in part of the statement of
Proposition 5·24 the ϕ’s are merely representatives of their equivalence classes which are members of some
model, whereas elsewhere they are functioning as formulæ the truth of which is being evaluated.

5·24 PROPOSITION (KLMZk) Let n 6 k, let ` ∈ ω and let Φ be a Σ̇n formula with free variables 〈xi | i < `〉.
For 〈ϕi | i < `〉 ∈ `N k,

(Kk, Ek) |= Φ[〈(ϕi)k | i < `〉]⇐⇒ ∃〈xi | i < `〉
(
(∀i :<` |=

k
ϕi[xi]) & |=

k
Φ[〈xi | i < `〉]

)

⇐⇒ ∀〈xi | i < `〉
(
(∀i :<` |=

k
ϕi[xi]) =⇒ |=

k
Φ[〈xi | i < `〉]

)

Proof : the result holds for atomic Φ by definition of the relations ∼k and Ek: for ϕ1 and ϕ2 in N k,
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(Kk, Ek) |= (ϕ1)k = (ϕ2)k ⇐⇒ ϕ1 ∼k ϕ2

⇐⇒ ∃x1∃x2

(
|=
k
ϕ1[x] & |=

k
ϕ2[x] & |=

0
x1 = x2

)

⇐⇒ ∀x1∀x2

(
(|=

k
ϕ1[x] & |=

k
ϕ2[x]) =⇒ |=

0
x1 = x2

)
, and

(Kk, Ek) |= (ϕ1)k ε (ϕ2)k ⇐⇒ ϕ1E
kϕ2

⇐⇒ ∃x1∃x2

(
|=
k
ϕ1[x] & |=

k
ϕ2[x] & |=

0
x1 ε x2

)

⇐⇒ ∀x1∀x2

(
(|=

k
ϕ1[x] & |=

k
ϕ2[x]) =⇒ |=

0
x1 ε x2

)
.

Then we do an ordinary induction to cover the case of Φ an arbitrary ∆̇0 wff: for example,

(Kk, Ek) |=
∨

x3 : ε (ϕ1)k ϑ(x3)[(ϕ1)k, (ϕ2)k]⇐⇒

⇐⇒ (Kk, Ek) |=
∨

x3
[
x3 ε (ϕ1)k ∧ ϑ(x3)[(ϕ1)k, (ϕ2)k]

]

⇐⇒ ∃ϕ3 :∈N k (Kk, Ek) |= (ϕ3)k ε (ϕ1)k ∧ ϑ[(ϕ3)k, (ϕ1)k, (ϕ2)k]

⇐⇒ ∃ϕ3 :∈N k ∃x1∃x2∃x3 |=
k
ϕ1[x1] & |=

k
ϕ2[x2] & |=

k
ϕ3[x3] & |=

0
x3 ε x1 ∧ ϑ[x3, x1, x2]

⇐⇒ ∃x1∃x2 |=
k
ϕ1[x1] & |=

k
ϕ2[x2] & |=

0 ∨
x3 : ε x1ϑ(x3)[x1, x2]

⇐⇒ ∀x1∀x2

(
|=
k
ϕ1[x1] & |=

k
ϕ2[x2]

)
=⇒ |=

0 ∨
x3 : ε x1ϑ(x3)[x1, x2]

The first equivalence is simply a reformulation of the restricted quantifier, the equivalence of lines 1 and
2 holds by the definition of |=, of lines 2 and 3 by the induction hypothesis, of lines 3 and 4 by the Witness
Lemma, and of lines 4 and 5 since ϕ1, ϕ2 determine x1, x2 uniquely.

That induction succeeds because we have Σ1 and Π1 Foundation available.
Finally, we work our way up from n = 0 to n = k. For example,

(Kk, Ek) |=
∧

yΨ(y)[(ϑ)k ]⇐⇒ ∀ϕ :∈N k (Kk, Ek) |= Ψ [(ϕ)k, (ϑ)k]

⇐⇒ ∀ϕ :∈N k ∀y∀z
((
|=
k
ϕ[y] & |=

k
ϑ[z]

)
=⇒ |=

k
Ψ [y, z]

)

⇐⇒ ∀z
(

|=
k
ϑ[z] =⇒ ∀ϕ :∈N k ∀y

(
|=
k
ϕ[y] =⇒ |=

k
Ψ [y, z]

))

⇐⇒ ∀z
(

|=
k
ϑ[z] =⇒

(
∀y |=

k
Ψ [y, z]

))

⇐⇒ ∀z
(
|=
k
ϑ[z] =⇒ |=

k ∧
yΨ(y)[z]

)

⇐⇒ ∃z
(
|=
k
ϑ[z] & |=

k ∧
yΨ(y)[z]

)

The first equivalence holds by the definition of |=, the equivalence of lines 1 and 2 by the induction
hypothesis, of lines 2 and 3 by predicate logic, of lines 3 and 4 by the Witness Lemma which tells us that if

there is a counter-example there is a Σk definable counter-example, of lines 4 and 5 by the definition of |=
k
,

and of lines 5 and 6 since ϑ defines z uniquely. a (5·24)

That (Kk, Ek) |= KLMZk−1 may now be proved by combining the reasoning of the above lemmata, where
Lemmata 5·21 and 5·23 must be adapted to the case that N is really V , M the model (K k, Ek), and “an
elementary submodel of” generalised to “elementarily embeddable in”.

The well-foundedness of (Kk, Ek) may be proved by the argument given in our proof below that KZk

proves (KZk)
L. a (5·20)

5·25 METACOROLLARY Zermelo set theory Z is not finitely axiomatisable.

Proof : It has long been known that KP + ω ∈ V is finitely axiomatisable; the above theorem shows by
Gödel that Z + KP + V = L + ON = ℵω is not finitely axiomatisable, and it is the result of adding three
axioms to Z (which system includes ω ∈ V .) a (5·25)
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5·26 METACOROLLARY KLZk proves that KLZk−1 has a countable transitive model.

Proof : We have just seen that KLZk + ON = ℵω proves the consistency of KLMZk−1, and therefore the
consistency of KLZk−1; and we have also seen that KLZk + ℵω < ON proves the consistency not merely of
KLZk−1 but of KLZ. In each case the term model constructed is well-founded, extensional and countable, and
we are in a set theory strong enough to transitise it. a (5·26)

Proving Σk Separation in L

Now we want to adapt those arguments to proving the following scheme:

5·27 THEOREM Let k > 2. Then in KZk we may show that KZk is true in L.

We have proved that result in 5·5 for the case k = 1 and shall see in §6 that it fails for k = 0.

5·28 COROLLARY For k > 2, KZk proves the consistency of KZk−1 and, further, that KZk−1 has a countable
transitive model.

Proof : we have seen that KLZk proves Consis(KLZk−1) and therefore also Consis(KZk−1); so by the theorem,
KZk proves (Consis(KZk−1))

L; but a consistency statement is arithmetical, and ωL = ω, and so KZk proves
Consis(KZk−1). For the second part, we need only observe that we are in a theory strong enough to transitise
a well-founded extensional relation, and that a countable transitive model in L remains that in V . a (5·28)

To show that b ∩ AL is a set of L, where b ∈ L and AL is a Σk class of L, we shall first show that
a ∩ AL ∈ L for a transitive a ∈ L containing all members of b and all relevant parameters.

To do that, we build a term model not quite as above: we must adjust the definitions of N1 and N2 as
we are no longer assuming that V = L, we have a constant for each member of a, and we obtain a structure
which intuitively is Σk-elementarily embeddable in L and which is a set containing a copy of the transitive
set a as a subset. The structure proves to be well-founded and therefore collapsible to some Lξ̄, and we are
then able to build a ∩ AL as a set by using Lξ̄ as an oracle telling us which members of a should go into
a ∩ AL.

Since we are no longer assuming the minimality axiom, we shall find that we must have as members of
a two sets we call the universal parameters, the presence of which will guarantee the continued truth of the
principles Fr(n) in a modified form, to the proof of which latter we now turn.

A strong fine-structural lemma

Fix k > 2. Let f be a ∆1 function — for example, f(x) = J%(x), or f(x̄) = {x | x <L x̄} — which has
these three properties:

x ∈ L =⇒ f(x) ∈ L

y ∈ L& z ∈ L =⇒
(
f(y) ⊆ f(z) or f(z) ⊆ f(y)

)

L =
⋃

{f(x) | x ∈ L}

5·29 PROPOSITION (KZk) There are constructible parameters pk and ak, and ϑk ∈ ∆̇0, such that for all n 6 k,
whenever Φ(x, y, z) = Q̇nϕ is Σ̇n, ā ∈ L and x̄ ∈ L, the formula ∀x :∈f(x̄) (Φ̊)L(x, x̄, ā) is Σn+1(pκq, x̄, ā, pk, ak)
for some κ ∈ ∆̇0 computed uniformly from ϕ and ϑk.

We shall refer to pk and ak as the universal parameters. Note that they and ϑk are independent of ϕ, ā
and x̄.

Proof : We prove this by induction on n, but there may be three phases to the induction. We have a very
easy start for n = 0 and 1, then we have a relatively simple argument that will maintain the induction so
long as a certain assumption holds; when we reach an n for which the assumption fails, we shall have to
change tack.

We begin by determining the point of change. For each n 6 k we ask if for some ϑ ∈ ∆̇0, some p̄ ∈ L,
and some ā ∈ L, we have, setting Ψ = Ṙn−1ϑ, that
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∀x :∈f(p̄) ∃y :∈L (Ψ̊)L(x, y, p̄, ā) but ¬∃ȳ :∈L ∀x :∈f(p̄) ∃y :∈f(ȳ) (Ψ̊)L(x, y, p̄, ā).

If so, take the least such n, which will be at least 2, and call it n̄, and choose instances for ϑ, p̄ and ā,
calling them ϑk, pk and ak. If no instances exist, we set n̄ = k + 1, pk = ak = ∅, and take ϑk to be w = w.
Then whatever the value of n̄ we shall have for all n < n̄ and for all Π̇n−1 predicates Ψ(s, t, u, v),

∀x̄ :∈L ∀ā :∈L
[

∀x :∈f(x̄) ∃y(Ψ̊)L(x, y, x̄, ā)⇐⇒ ∃ȳ :∈L ∀x :∈f(x̄) ∃y :∈f(ȳ) (Ψ̊)L(x, y, x̄, ā)
]

(∗∗)

Finally, set Ψk to be Ṙn̄−1ϑk.
First phase. For n = 0 and 1, the result follows simply from admissibility; moreover admissibility

shows us that n̄ > 2.
Second phase. The induction proceeds through all n < n̄, since if Φ is Σn, say Φ is

∨
yΘ where Θ is

Π̇n−1, then from (∗∗),

∀x :∈f(x̄) (Φ̊)L ⇐⇒ ∃ȳ :∈L ∀x
[
x ∈ f(x̄)
︸ ︷︷ ︸

∆1

=⇒ ∃y :∈f(ȳ) (Θ̊)L(x, y, x̄, ā)
︸ ︷︷ ︸

Πn−1
︸ ︷︷ ︸

Πn by induction

]

︸ ︷︷ ︸

Πn

︸ ︷︷ ︸

Σn+1

Third phase, for n > n̄. Again let Φ be
∨

yΘ where Θ is Π̇n−1, and let

H(x̄, ā) =
{

(x, p)
∣
∣
∣ x ∈ f(x̄) & p ∈ f(pk) &

& ∀z :∈L
(
∃y :∈f(z) (Ψ̊k)

L(p, y, pk, ak)
︸ ︷︷ ︸

Σn̄

=⇒ ∃y :∈f(z) (Θ̊)L(x, y, x̄, ā)
︸ ︷︷ ︸

Πn by induction

)

︸ ︷︷ ︸

Πn

}

H is a Πn(pϑkq, x̄, ā, pk, ak) subclass of f(x̄)×f(pk), and n 6 k, so we may apply Σk separation to conclude
that H is a set for each x̄, ā in L.

Hence for x̄ and ā in L,

∀x :∈f(x̄) (Φ̊)L ⇐⇒ ∃H
[

∆KP
1

︷ ︸︸ ︷

H ⊆ f(x̄)× f(pk) & ∀x :∈f(x̄) ∃p :∈f(pk) (x, p) ∈ H &

& ∀x∀p∀z :∈L
(

(x, p) ∈ H
︸ ︷︷ ︸

∆0

& ∃y :∈f(z) (Ψ̊k)
L(p, y, pk, ak)

︸ ︷︷ ︸

Σn̄

=⇒ ∃y :∈f(z) (Θ̊)L(x, y, x̄, ā)
︸ ︷︷ ︸

Πn

︸ ︷︷ ︸

Πn

)

︸ ︷︷ ︸

Πn

]

which for some κ ∈ ∆̇0 will express the formula ∀x :∈f(x̄) (Φ̊)L in Σn+1(pκq, x̄, ā, pk, ak) form. It only remains
therefore to verify this last equivalence.

Suppose first that x̄ and ā are two points in L such that ∀x :∈ f(x̄) (Φ̊)L(x, x̄, ā). Take H = H(x̄, ā).
Then H ⊆ f(x̄) × f(pk). Given x ∈ f(x̄), let y ∈ L be such that (Θ̊)L(x, y, x̄, ā) holds. For such x, let
p ∈ L be such that any f(z) (where z ∈ L) containing a witness t with (Ψ̊k)

L(p, t, pk, ak) is large enough to
contain a witness y to (Θ̊)L(x, y, x̄, ā). [Thus given x let y witness (Θ̊)L(x, y, x̄, ā). Let y ∈ f(y1): here we
use L =

⋃

w∈L f(w). There is a p in f(pk) such that no witness to (Ψ̊k)
L is in f(y1). For that p, if f(y2)
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contains a witness to Ψk, then f(y2) 6⊆ f(y1), and so f(y1) ⊆ f(y2), and therefore f(y2) contains a witness
to (Θ̊)L.] Then ∀x :∈f(x̄) ∃p :∈f(pk) (x, p) ∈ H .

The third condition on H is trivially seen to be satisfied by H(x̄, ā).

Conversely, if there is an H as above, then we must show that ∀x :∈ f(x̄) ∃y :∈L (Θ̊)L(x, y, x̄, ā). So
let x ∈ f(x̄): there will be a p with (x, p) ∈ H . Since such p will be in f(p̄), there will be a t ∈ L with
ΨL

k (p, t, pk, ak). Choose z ∈ L such that t ∈ f(z). Then ∃y :∈f(z) (Θ̊)L(x, y, x̄, ā). a (5·29)

Armed with that result, we turn to the proof of Σk Separation in L. First a convenient reduction:

5·30 LEMMA Suppose that whenever a is a transitive member of L containing the parameters pk and ak and
Φ is a Σk formula with sole free variable x and all its parameters in a, a∩{x | ΦL(x)} ∈ L. Then the scheme
of Σk separation is true in L.

Proof : let b ∈ L, and Φ a Σk formula in the sole free variable x, with parameters in L.

Let a ∈ L be a transitive set of which b, pk, ak, and every parameter in Φ are members. By hypothesis
c =df a ∩ {x | Φ

L(x)} is a member of L. Then b ∩ {x | ΦL(x)} = b ∩ c ∈ L. a (5·30)

So now let a be a transitive member of L with both universal parameters in a, and Φ a Σk formula with
sole free variable x and all its parameters in a. Write AL for the class {x | x ∈ L & ΦL(x)}. To show that
a∩AL is in L, we build a term model (K,E). However we must proceed slightly differently. In the previous
subsection we assumed both V = L and Σk Separation; here we have Σk Separation but not V = L.

Therefore we work with the formal language which has a constant for every member of a, and we start
from the set of Σ̇k formulæ which have unique witnesses when interpreted in L. We introduce a variant of

|=
k
, |=

k

L
which is defined for Σ̇k formulæ with all parameters in L, and interprets all unrestricted quantifiers

to range over the members of L.

Thus for A a Σk formula, and B a formula Σk formula equivalent in KPI to (A)L — possible since

membership of L is ΣKPI
1 — |=

k
Ḃ will be equivalent over KPI to |=

k

L
Ȧ when all parameters are members of L.

Hence “a ∈ L & |=
k

L
Q̇kϕ[a]” is ΣKPI

k (pϕq, a).

We proceed to define our term model. For the moment we do not always indicate a subscript L and a
superscript k in our notation.

5·31 Let N k
0(a) be as before the set of those ϕ which are a Σ̇k formula with one free variable and only

permitted constants. N k
0(a) ∈ V .

Let N1(a) = N k
0(a) ∩

{
ϕ
∣
∣∃x

(
x ∈ L & |=

k

L
ϕ[x]

)}
. N1(a) ∈ V by Σk separation.

Let N2(a) = N k
0(a) ∩

{
ϕ

∣
∣ ∃x∃y

(
x ∈ L & y ∈ L & x 6= y & |=

k

L
ϕ[x] & |=

k

L
ϕ[y]

)}
. N2(a) ∈ V by Σk

separation.

Finally let N k
L(a) = N1(a) \N2(a). N k

L(a) ∈ V by the axiom of difference.

We proceed as before to define an equivalence relation ∼k: it is not quite the same as the one we had
before, but it scarcely seems worthwhile to introduce a separate notation for it. We factor by that relation,
define a membership relation on the resulting set of equivalence classes, and thus obtain the structure
(Kk

L(a), Ek
L(a)), and prove that it is a set. We have (as yet) no reason to believe that it is a member of L.

For simplicity, we call it (K,E).

A new version of the Witness Lemma may now be proved: recall that by choice of a, constants for the
two universal parameters are among those permitted.

5·32 THE WITNESS LEMMA (KZk−1) Let Φ be a Σ̇k formula in one free variable whose parameters are either
permitted constants or themselves the unique witnesses in L to some member of N k

L(a) when interpreted in
L. If Φ has a witness in L, then it has one which is itself the unique witness in L to some member of N k

L(a)
when interpreted in L.

Proof : restriction of the variables to L does not raise the quantifier level, so the previous proof may be
followed, the chief modification being the use of the universal parameters in computing quantifier levels.

a (5·32)
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Then we may establish, using our strong version of Sy Friedman’s principle, a counterpart to 5·24. Our
term model will therefore be Σk-elementarily embeddable in L. It follows in particular that (K,E) is a model
of KPL.

We must show that (K,E) is well-founded. To do so, we use the map that associates to ϕ ∈ N k
L the

set-theoretic rank %(x) of the unique x ∈ L with |=
k

L
ϕ[x].

So let Z be a non-empty subset of N k
L closed under ∼k. Consider

Y =df

{
η

∣
∣ ∃ϕ :∈Z ∃y

(
y ∈ L & |=

k

L
ϕ[y] & %(y) = η

)}
:

Y is a non-empty Σk class, and so if η0 is some member of it, A ∩ η0 will be a set, by Σk Separation. If
empty, η0 = minA; otherwise min(A ∩ η0) = minA. So minA exists, call it η̄. Let ϕ ∈ Z, y be such that

%(y) = η̄ and |=
k

L
ϕ[y]. We assert that

ϑ ∈ Z =⇒ ¬
(
(ϑ)kEk(ϕ)k

)
:

for let z be the unique L-witness to a counterexample ϑ. Then z ∈ y and so %(z) < %(y), contradicting the
minimality of η̄.

We now know that (K,E) is a well-founded extensional relation modelling KPL: it is therefore isomorphic
to some Lξ̄ which itself models KP. Call the isomorphism $.

To each member x of a there corresponds a simple formula ϕx that defines it, namely x = x, where x is
the (permitted) constant for x.

Since a was transitive, we may check by recursion on %(x) that for x ∈ a, $((ϕx)k) = x. Hence for
x ∈ a,

ΦL(x)⇐⇒|=
k

L
Φ̇[x]

⇐⇒ Kk
L |= Φ̇[(ϕx)k]

⇐⇒ Lξ̄ |= Φ̇[x],

and so a ∩ {x | ΦL(x)} = a ∩ {x | Lξ̄ |= Φ̇[x]} ∈ L, as required. a (5·27)

a (Theorem 7)

A modification of the above argument yields:

5·33 THEOREM Let k > 2. Then in Zk + H we may show that KZk is true in L.

Proof : Remark 4·20 shows that KP will be true in L, and hence we have the admissibility required for the
first phase of the fine-structural lemma. At the end of the proof, where we collapse the term model (K,E)
to some Lξ̄, we must define the collapsing isomorphism by recursion into Lλ where λ is a cardinal greater
than that of (K,E), using the form of the condensation lemma that states that rudimentary functions are
preserved under collapse. a (5·33)

As KZ1 proves Axiom H, this last result is a slight sharpening of 5·27.

The proof of Theorem 5 is now complete, by 2·46, 5·27 and 5·33.

a (Theorem 5)
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6: Two independence results and a consistency proof

We turn to Harvey Friedman’s notion of a power admissible set, which is a transitive model of the theory
KPP to be defined below. Roughly, KPP is the theory that results from KP + ω ∈ V when “∆0” is replaced
by “recursive in the power set operation.” The theory KPP + AC extends MAC, and our study of KPP will
yield sharp forms of independence results concerning MAC.

6·0 REMARK We shall see that L(ℵω)L is not power-admissible, although it is admissible and satisfies the
power-set axiom.

There will be much model theory in this section; in particular we shall be much involved with non-
standard models of various set theories. It will be therefore be convenient to distinguish notationally between
a variable (x) in a formula and the interpretation [p] of another, possibly invisible, variable, as in M |=
∨
xϑ(x)[p], where ϑ is a formal formula with two formal variables x and y.

To give a precise definition of KPP we must consider a new class of formulæ, studied first by Takahashi
[K1], whose work was later utilised by Forster and Kaye [B3]. We adopt the notation of that latter pair. Thus
we shall not follow Friedman’s treatment [K2] but shall establish the equivalence of KPP to an appropriate
variant of Friedman’s system PAdms.

The Takahashi hierarchy

6·1 Following Forster and Kaye we call a formula ∆P
0 if all its quantifiers are of the form Qx :⊆y or Qx :∈y

where Q is ∀ or ∃ and x and y are distinct variables. We preserve “restricted” as a description of the
quantifiers Qx :∈ y , and speak of the occurrences of y in Qx :⊆ y or Qx :∈ y as limiting the range of the
bound variable x.

It is tempting, indeed, to adopt a different presentation of the language by taking there to be three
primitive signs, ∈, = and ⊆, to declare the class of atomic formulæ to consist of every formula of one of the
three forms

x ∈ y x = y x ⊆ y

and to have three kinds of quantifiers, ∀x, ∀x :∈ y and ∀x :⊆ y in the language; but we shall not formally
adopt this approach here, though we shall indicate some places where it would simplify our treatment.

6·2 We sketch a method of rewriting a ∆P
0 formula so that all variables are limited by terms constructed

from the free variables of the original formula using only
⋃

; thus ultimately the terms limiting variables
contain no variables that are themselves bound by other quantifiers.

Unlike ∈, ⊆ is transitive. Hence the following reduction is available:

∃x :⊆ t ∀y :⊆x A⇐⇒ ∃x :⊆ t ∀y :⊆ t [y ⊆ x =⇒ A].

Note here that on the left hand side the x limiting y in the quantifier ∀y :⊆ x is itself bound by the
preceding quantifier ∃x :⊆ t , whereas on the right hand side the t that limits both quantifiers is itself free.
We may speak of t in the above displayed formula or

⋃
t in the next as a free term.

Next we should bear in mind in calculating the terms to be used in limiting quantifiers that if t ∈ u
then t ⊆

⋃
u and that if u ⊆ v then

⋃
u ⊆

⋃
v, so that, for example, a restricted quantifier ∃x :∈ t may be

rewritten thus:

∃x :∈ t A⇐⇒ ∃x :⊆
⋃
t [x ∈ t & A].

We thus obtain these reductions:

∀x :∈a ∃y :∈x A⇐⇒ ∀x :∈a ∃y :∈
⋃
a [y ∈ x & A];

∀x :⊆a ∃y :∈x A⇐⇒ ∀x :⊆a ∃y :∈a [y ∈ x & A];

∀x :∈a ∃y :⊆x A⇐⇒ ∀x :∈a ∃y :⊆
⋃
a [y ⊆ x & A]

⇐⇒ ∀x :∈a ∃y :⊆
⋃
a [∀s1 :∈

⋃
a (s1 ∈ y =⇒ y1 ∈ x) & A];

∀x :⊆a ∃y :⊆x A⇐⇒ ∀x :⊆a ∃y :⊆a [y ⊆ x & A]

⇐⇒ ∀x :⊆a ∃y :⊆a [∀s2 :∈a (s2 ∈ y =⇒ s2 ∈ x) & A].
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Those equivalences, which are all valid in S0, and, where applicable, preserve the stratifiability of
the formula under consideration, show that one may progressively rewrite the formula to one in which all
limitations are of the form :⊆

⋃
ka or :∈

⋃
ka with a a free variable. We call such a formula one in

free form. Our expansion of y ⊆ x in the fourth and sixth lines, which would be unnecessary if we treated
y ⊆ x as atomic, helps to secure free form. We call the bound variables si introduced in those expansions
subsidiary variables: we shall suppress mention of them in our discussion below.

Given a formula in free form, we replace each limiting free term by a new variable and add a clause
expressing the equality of the term and the variable.

We have reached the

6·3 FIRST LIMITED NORMAL FORM Let Φ be a ∆P
0 formula with free variables a0, . . . an. Let m + 1 be

the number of quantifiers occurring in Φ. Then for 0 6 j 6 m, there are numbers 0 6 k(j) 6 n, 0 6 l(j),
determined by the quantifier structure of Φ, new variables y0, . . . ym, and a ∆P

0 formula Ψ1 with free variables
a0, . . . an, y0, . . . ym, in which every quantifier is limited by one of the parameters yi, such that, abbreviating
∀y0, . . . , ∀ym by ~∀y, we have

`S0
~∀a ~∀y

[ ∧

06j6m

yj =
⋃

l(j)ak(j) =⇒
[
Φ(~a)⇐⇒ Ψ1(~a, ~y)

]]

To take things to a second stage, if we know that we intend using the formula Φ(a) in a context where

ai will be constrained to be a member of bi, we may replace the restriction :∈
⋃l

ai by the restriction

:∈
⋃l+1

bi ; and each limitation :⊆
⋃l

ai by the limitation :⊆
⋃l+1

bi , since if a ∈ b,
⋃

la ⊆
⋃

l+1b, and make
a corresponding adjustment to the matrix.

We could also consider intended limitations ai ⊆ bi instead of restrictions ai ∈ bi: the replacements to
be made then would be :∈

⋃l ai by :∈
⋃l bi and :⊆

⋃l ai by :⊆
⋃l bi , since if a ⊆ b then

⋃
la ⊆

⋃
lb.

Further, we could mix our intentions, and also leave some ai untouched, which is tantamount to saying
ai = bi. We thus have the

6·4 SECOND LIMITED NORMAL FORM Continuing the notation of the First Limited Normal Form, let L,
R and U be disjoint sets partitioning [0, n], and let b0, . . . , bn be variables not occurring in Φ. Then for the
same numbers k(j), l(j), there is a ∆P

0 formula Ψ2 with free variables a0, . . . an, y0, . . . ym, in which every
quantifier is limited to one of the parameters yi, such that

`S0
~∀b ~∀a ~∀y

[[ ∧

i in R

ai ∈ bi &
∧

i in L

ai ⊆ bi &
∧

i in U

ai = bi &
∧

k(j) in R

yj =
⋃

l(j)+1bk(j) &
∧

k(j) in
L or U

yj =
⋃

l(j)bk(j)

]

=⇒

=⇒
[

Φ(~a)⇐⇒ Ψ2(~a, ~y)
]]

6·5 Back to free form: when the formula has been rewritten so that all quantifiers are limited by free terms
as above, we may, as a last step, replace each limitation :⊆

⋃k a by the restriction :∈P(
⋃k a) , but working

now in S1, which is S0 + Power Set.

6·6 EXAMPLE Let A be quantifier-free, with six variables a, b, x, y, z, w. Suppose we want to re-write the
formula Φ(a, b) ⇐⇒df ∃x :∈a ∀y :⊆x ∃z :∈x ∀w :⊆z A(a, b, x, y, z, w).

Let
B(a, b, x, y, z, w) ⇐⇒df

(
y ⊆ x =⇒ [z ∈ x & (w ⊆ z =⇒ A(a, b, x, y, z, w))]

)
.

Notice that B is ∆0, or indeed quantifier-free if we count s ⊆ t as atomic. Then

∃x :∈a ∀y :⊆x ∃z :∈x ∀w :⊆z A(a, b)⇐⇒

⇐⇒ ∃x :∈a ∀y :⊆
⋃
a ∃z :∈

⋃
a ∀w :⊆

⋃ ⋃
a

[
B(a, b, x, y, z, w)

]

⇐⇒ ∃x :∈a ∀y :∈P(
⋃
a) ∃z :∈

⋃
a ∀w :∈P(

⋃ ⋃
a)

[
B(a, b, x, y, z, w)

]

In order not to use P applied to a term that is not a variable, we introduce further variables zj .



47 A. R. D. MATHIAS

6·7 FIRST RESTRICTED NORMAL FORM Continuing the notation of the First Limited Normal Form, for
the same numbers k(j), l(j), there is a partition of {j | 0 6 j 6 m} into disjoint sets LΦ, RΦ; there are new
variables yj , zj for 0 6 j 6 m; and there is a ∆0 formula Ψ3, with free variables the a’s and the y’s; such
that every quantifier in Ψ3 is restricted to one of the parameters yi, and

`S1
~∀a ~∀y ~∀z

[[ ∧

j in RΦ

(
yj = zj & zj =

⋃
l(j)ak(j)

)
&

∧

j in LΦ

(
yj = P(zj) & zj =

⋃
l(j)ak(j)

)]

=⇒
[

Φ(~a)⇐⇒ Ψ3(~a, ~y)
]]

Taking that to the corresponding second stage, and noting that if a ⊆ b then P(
⋃

la) ⊆ P(
⋃

lb), whereas
if a ∈ b, P(

⋃
la) ⊆ P(

⋃
l+1b), we reach the

6·8 SECOND RESTRICTED NORMAL FORM Let Φ be a ∆P
0 formula with free variables a0, . . . an. Let L, R

and U be disjoint sets partitioning [0, n], and let b0, . . . , bn be variables not occurring in Φ. Let m + 1 be the
number of quantifiers occurring in Φ. Then there is a partition of {j | 0 6 j 6 m} into disjoint sets LΦ, RΦ;
for 0 6 j 6 m, there are numbers 0 6 k(j) 6 n, 0 6 l(j), determined by the quantifier structure of Φ, there
are new variables yj , zj for 0 6 j 6 m; and there is a ∆0 formula Ψ4 with free variables the a’s and the y’s,
in which every quantifier is restricted to one of the parameters yi; such that,

`S1
~∀b ~∀a ~∀y ~∀z

[[
∧

i in R

ai ∈ bi &
∧

i in L

ai ⊆ bi &
∧

i in U

ai = bi &

&
∧

j in RΦ,
k(j) in R

(
yj = zj & zj =

⋃
l(j)+1bk(j)

)
&

∧

j in RΦ,
k(j) in R

(
yj = P(zj) & zj =

⋃
l(j)+1bk(j)

)
&

&
∧

j in RΦ,
k(j) in L or U

(
yj = zj & zj =

⋃
l(j)bk(j)

)
&

∧

j in LΦ,
k(j) in L or U

(
yj = P(zj) & zj =

⋃
l(j)bk(j)

)
]

=⇒

=⇒
[

Φ(~a)⇐⇒ Ψ4(~a, ~y)
]
]

From the Second Restricted Normal Form we deduce the

6·9 THEOREM SCHEME (i) M0 proves all instances of the scheme of ∆P
0 separation.

(ii) KF proves all instances of the scheme of stratifiable ∆P
0 separation.

Proof : given Φ(~a), form Ψ4 as above; then to show in the system M0 that b1 ∩ {a1 | Φ(~y)} ∈ V , note that

M0 ` ~∀y b1 ∩ {a1 | Ψ4(~a, ~y)} ∈ V , and that S1 ` ~∃y ~∃z
∧

j

(

yj = P(zj) & zj =
⋃

l(j)+1bk(j)

)

. Part (i) follows

by predicate logic.
For Part (ii), note that if Φ is stratifiable, so is Ψ4, and hence KF ` ~∀y b1 ∩ {a1 | Ψ4(~a, ~y)} ∈ V . a (6·9)

6·10 We may continue the Takahashi hierarchy by defining a ΠP
1 formula to be the result of prefixing a single

unlimited universal quantifier, a ΣP
1 formula a single unlimited existential quantifier, to a ∆P

0 formula.
We are going to study the system KPP which we specify as KP + ω ∈ V + Power Set + ΠP

1 Foundation +
∆P

0 Collection, of which theory M is a subtheory.
Transitive models of the system KPP , which in some ways seems as strong as ZF but in others is no

stronger than KP, are termed by H. Friedman [K2] power-admissible: we shall in due course use his results
relating well-founded and ill-founded models of KPP .

6·11 REMARK Apart from his different axiomatisation of the class ∆P
0 , which we shall treat in a moment,

Friedman includes only set Foundation in his formulation PAdms of KPP , but remarks that it might be
better to include class Foundation. We choose ΠP

1 Foundation in analogy to our formalisation of KP with
Π1 Foundation.
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Takahashi’s reductions

We review some comparisons between the hierarchies of Lévy and of Moto-o Takahashi established by
the latter, who, however wrote ∆̃0, Σ̃1, . . . instead of ∆P

0 , ΣP
1 . . . He worked in ZFC, but suggested in [K1]

that it would be interesting to work with only ∆P
1 replacement. Indeed even less than that suffices for his

results:

6·12 PROPOSITION SCHEME (Takahashi) Σ1 ⊆ (∆P
1 )MOST; ∆P

0 ⊆ ∆S1
2 .

Proof : We define a predicate expressing with limited quantifiers the fact that b is a transitive set satisfying
the conclusion of H for u = tcl({a} ∪ ω), a transitive infinite set of which a is a member:

T (b, a, c, u) ⇐⇒df u = tcl({a} ∪ ω) & c = u× u&
⋃
b ⊆ b& ∀u′ :⊆u ∀r :⊆c

(

if r ⊆ u′ × u′ and (a′, r) is

well-founded and extensional then ∃d :⊆b
(⋃
d ⊆ d & ∃f :⊆b× a f : (u′, r) ∼= (d,∈ � d)

))

Note, with Proposition 1·29 in mind, that the predicate T is ∆P
0 , and that if T (b, a, c, u) then a ∈ b; so

if Φ(x, a) is ∆0, then the following equivalences, establishable using ω ∈ V , H and AC, much as in the proof
of 3·11,

∃xΦ(x, a)⇐⇒ ∀b∀c∀u
(
T (b, a, c) =⇒ ∃x :∈b (Φ)b

)

⇐⇒ ∃b∃c∃u
(
T (b, a, c) & ∃x :∈b (Φ)b

)

express ∃xΦ in ∆P
1 form.

On the other hand, if Ψ(~a) is ∆P
0 we may by expressing it in First Restricted Normal Form, find a ∆0

formula Ψ3(~a, ~y) and a conjunction Θ(~a, ~y, ~z) of finitely many equations, each of one of the forms y = P(z),
y = z or z =

⋃
la, so that, provably in S1,

Ψ⇐⇒ ∃~y∃~z
(
Θ(~a, ~y, ~z) & Ψ3(~a, ~y)

)

⇐⇒ ∀a∀c
(
Θ(~a, ~y, ~z) =⇒ Ψ3(~a, ~y)

)

so that Ψ is ∆S1
2 . a (6·12)

6·13 REMARK The predicate T , involving the concept of a transitive set, is not apparently stratifiable, and
hence we cannot refine the first inclusion above to showing that stratifiable Σ1 formulæ are equivalent to
stratifiable formulæ in (ΣP

1 )MOST and in (ΠP
1 )MOST.

However, if Ψ is stratifiable ∆P
0 , then the Ψ3 obtained above is stratifiable ∆0, and thus, easily, Ψ is

stratifiable ∆KF
2 , giving

strat-∆P
0 ⊆ strat-∆KF

2 .

We shall see during this section that KPP + AC cannot prove Σ1 separation whereas KPP does prove
(∆P

1 )KP
P

separation, so that there are Σ1 wffs not in (∆P
1 )KP

P+AC, still less in (∆P
1 )MAC: thus the use of

Axiom H in the proof of 6·12 is indispensable. We pause to note a consequence for various principles of
collection.

6·14 PROPOSITION Let Γ be any of the following classes of formulæ: Π1; ∆P
0 ; strat-Π1; strat-∆P

0 . Then it

is provable in KF that

(i) Γ Collection implies ∃Γ Collection;

(ii) strong Γ Collection implies strong ∃Γ Collection.

Thus ∆P
0 Collection implies ΣP

1 Collection; and similar results with the words “strong” or “stratifiable”
or both added to each hypothesis and each conclusion.

Proof : similar to that of 3·12, though we must take care if we are to preserve stratifiability. The general
form of the argument without concern for stratification is this. Let A be a formula in Γ.
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∀x∃y∃zA(x, y, z) =⇒ ∀x∃w[w is an ordered pair and A(x, (w)0, (w)1)]

=⇒ ∀u∃v∀x :∈u ∃w :∈v [w is an ordered pair and A(x, (w)0, (w)1)].

In a system which includes TCo, we may replace v by some transitive set v′ including it, and infer that

∀u∃v′∀x :∈u ∃y :∈v′ ∃z :∈v′ A(x, y, z)

as required. Without TCo, we remark that if v contains the ordered pair w then (w)0 and (w)1 are both
members of v′′ =

⋃ ⋃
v, and apply the Axiom of Sumset twice to infer that

∀u∃v′′∀x :∈u ∃y :∈v′′ ∃z :∈v′′ A(x, y, z).

For strong Collection, we wish to prove that

∀u∃v∀x :∈u (∃y∃zA =⇒ ∃y :∈v ∃zA)

so we begin by a similar rephrasing:

∀u∃v∀x :∈u
(
∃w[w is an ordered pair and A(x, (w)0, (w)1)] =⇒

=⇒ ∃w :∈v [w is an ordered pair and A(x, (w)0, (w)1)]
)

and reason that since the formula “w is an ordered pair ” is in ∆0, “w is an ordered pair and A” is in Γ.

To stay within a class Γ of stratifiable formulæ we must be more devious. Suppose, for example, that
we have stratified ∀x∃y∃zA giving y type 3 and z type 5; we cannot take w to be 〈x, y〉 and preserve the
stratification. Instead we raise the lower type, in our example that of y, to that of the higher type, that of
z, by applying the singleton function the appropriate number of times. In our example, we would have this
equivalence, for any x,

∃y3∃z5A(x, y3, z5)⇐⇒ ∃w7

[
w7 is an ordered pair &

& ∃y3 :∈
⋃ 3w7 (w7)0 = {{y3}} & ∃z5 :∈

⋃
w7 (w7)1 = z5 & A(x, y3, z5)

]

and we have successfully absorbed the extra existential quantifier whilst preserving the stratification and
staying within Γ. Applying Γ Collection, we have

∀u∃v8∀x :∈u ∃w7 :∈v8
[
w7 is an ordered pair &

& ∃y3 :∈
⋃ 3w7 (w7)0 = {{y3}} & ∃z5 :∈

⋃
w7 (w7)1 = z5 & A(x, y3, z5)

]

whence
∀u∃v8∀x :∈u ∃y3 :∈

⋃ 4v8 ∃z5 :∈
⋃ 2v8 A(x, y3, z5)

]

which implies ∀u∃t∀x :∈u ∃y :∈ t ∃z A(x, y, z), yielding ∃Γ Collection as desired.
Essentially the same device will work for the case of strong stratifiable Collection. a (6·14)

6·15 COROLLARY Over KF, the scheme of Π1 Collection implies that of ∆P
0 Collection; over MOST, the two

schemes are equivalent; over KF, the scheme of stratifiable Π1 Collection implies that of stratifiable ∆P
0

Collection. Similar results hold for strong Collection.

Proof : by 6·12 and 6·14. a (6·15)

6·16 REMARK Note that it is not being alleged that the classes of formulæ that are respectively (∆P
0 )MOST

and (Π1)
MOST are identical: a plainly suspect allegation, since the first class is closed under negation and

the second is not. For a specific counter-example, note that over MOST, the statement that every real is
constructible is, with the help of recursive pairing functions, a ∆P

0 statement about ω; but not Σ1 since it is
true in L but liable to be false in extensions of L; so “there is a non-constructible real” is ∆P

0 but not Π1.
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In the other direction, the allegation is close to being true: MOST proves that if a is transitive, infinite and
closed under pairing, and Φ(x, a) is ∆0, then

∃xΦ(a, x)⇐⇒ ∃u
⋃

u ⊆ u & a ∈ u & u = a & u |=
∨
xΦ̇(x)[a]

⇐⇒ ∃R :⊆a× a (a,R) is a well-founded extensional relation &

& ∃k :∈a k represents a & (a,R) |=
∨
xΦ̇(x)[k].

Here “k represents a” means that (a,R) |= [k] is transitive and there is an isomorphism between
(k,R � k) and (a,∈� a). When a is closed under pairing, we may replace :⊆ a × a by :⊆ a , and we have
therefore reached a ∆P

0 formulation of ∃xΦ(x, a). These remarks lead to the following

6·17 PROPOSITION If M |= MOST and N |= MAC and M ⊆P
e N then M �Σ1 N.

The relation M ⊆P
e N is that studied in the paper [B3] of Forster and Kaye on end-extensions preserving

power set. It implies the relation M �∆P

0
N of being an elementary submodel with respect to ∆P

0 formulæ.

Proof : Let a ∈ M. Reasoning in M, find an infinite transitive u containing a and closed under pairing
functions. Let Φ be Σ1 and suppose that N |=

∨
xΦ(x)[a]. Reasoning in N and using AC there, take Skolem

hulls inside an appropriate transitive set containing u, therefore a, and a witness x, and deduce that there
is a v, not necessarily transitive, with u = v, u ∈ v, u ⊆ v, x ∈ v, with v |= Φ[x, a].

Thus (still reasoning in N) there is a well-founded extensional relation R ⊆ u × u, there is a k ∈ u
representing the set u in (u,R), there is an ` ∈ u representing the set a in (u,R) — which means as in
§2 that there is a function f ⊆ u × u giving an isomorphism between (a, u,∈) and (`, k, R), such that
(u,R) |=

∨
xΦ(x)[`]. But that is a ∆P

0 statement about u and ` — it is here that we need all members of u
which are in N to be in M — and therefore pulls down to being true in M. Using the truth of Axiom H in
M we can turn the relation (u,R) back into a transitive set and recover a witness to Φ. a (6·17)

6·18 REMARK The Proposition becomes false if we weaken the hypothesis M |= MOST to M |= MAC: N might
see a non-recursive von Neumann ordinal invisible to M.

Equivalence of KPP and KPs(P)

6·19 HISTORICAL NOTE Friedman in [K2] attacked the problem mentioned but not addressed by Takahashi
in [K1], that of finding a formal system appropriate to the concept of recursion in the power set operation
P . Working later than but independently of Takahashi, he defined a possibly smaller class of formulæ than
∆P

0 , and proposed a system PAdms, defined below, besides treating other classes and systems with which we
are not concerned.

As we wish to apply the model-existence results of [K2], we shall review his treatment and show that
the transitive well-founded models of PAdms cöıncide with those of our sytem KPP .

We mention that in the syntax of Friedman’s presentation, certain symbols, which he calls parameters,
are used only as free variables, and others, which he calls variables, are used only as bound variables. If it
is wished to bind the occurrences of a parameter by a quantifier or class-forming operator, the parameter in
all its occurrences must first be changed to a variable.

Friedman introduces a class of formulæ that he calls pseudo-∆s
0(P) wffs, which are those built up from

P-terms which are terms of the form Pn(a): atomic P-wffs are s = t and s ∈ t where s and t are P-terms,
and then other formulæ are built from atomic ones using propositional connectives and restricted quantifiers
Qx :∈a .

He then defines the class of ∆s
0(P) wffs as the result of eliminating all the P-terms from the pseudo-

∆s
0(P) wffs; for that these reductions, all provable in S1, suffice:



51 A. R. D. MATHIAS

P(x) ⊆ P(y)⇐⇒ x ⊆ y

x ⊆ P(y)⇐⇒ ∀z :∈x z ⊆ y

x ⊆ Pk+1(y)⇐⇒ ∀z :∈x z ⊆ Pky

P(x) = P(y)⇐⇒ x = y

x = P(z)⇐⇒ ∀y :∈x y ⊆ z & ∀y :⊆z y ∈ x

x = Pk+1(y)⇐⇒ ∃z :∈x [x = P(z) & z = Pk(y)]

Pk(x) ⊆ y ⇐⇒ ∃z :⊆y z = Pk(x)

x ∈ P(y)⇐⇒ x ⊆ y

x ∈ Pk+1(y)⇐⇒ x ⊆ Pk(y)

Pk(x) ∈ y ⇐⇒ ∃w :∈y w = Pk(x)

Pk(x) ∈ P l+1(y)⇐⇒ Pk(x) ⊆ P l(y)

Those show that Friedman’s atomic formulæ can be written in ∆P
0 form; and therefore so can his

pseudo-∆s
0(P) formulæ and ∆s

0(P) formulæ.
As for a possible converse to the above discussion, the closest we come is to observe that Takahashi’s

proof that every ∆P
0 formula is ∆S1

2 shows too that every such formula is also (∆s
1(P))S1 . Hence every

Forster–Kaye ΠP
1 formula is also Πs

1(P): here is an illustrative equivalence. Let Φ(a, w) be ∆P
0 : then using

the First Restricted Normal Form,

∀wΦ(a, w) ⇐⇒ ∀w∀y1∀d1∀d2

[[
y1 =

⋃
l(a) & z2 =

⋃
k(a) & y2 = P(z2)

]
=⇒ Ψ3

]

,

which once we amalgamate like quantifiers, will evidently be in Πs
1(P) form. The unlimited quantifiers have

absorbed the extra variables introduced in Restricted Normal Form. Thus over S1 the formula classes ΠP
1

and Πs
1(P) are equivalent, as are the classes ΣP

1 and Σs
1(P).

It is not clear that every ∆P
0 formula is ∆s

0(P); but nevertheless if we denote by KPs(P) the system
KP + ∆s

0(P) Separation + ω ∈ V + Power Set + Πs
1(P) Foundation + ∆s

0(P) Collection, we have the following

6·20 METATHEOREM KPP and KPs(P) are the same system.

Friedman’s system PAdms is KPs(P) without the axiom of infinity and with only set Foundation.

Proof : Over S1, ∆s
0(P) Separation is included in ∆P

0 Separation; that, over M1, follows from ∆0 Separation;
that is included in ∆s

0(P); so over M1 the three schemata are equivalent.
We have just seen why the schemata of ΠP

1 Foundation and Πs
1(P) Foundation are equivalent. We

have only to prove the equivalence of the two versions of ∆0 Collection. Every ∆s
0(P) formula is (∆P

0 )S1 .
In the other direction, we know in analogy to previous arguments that ∆s

0(P) Collection will yield Σs
1(P)

Collection; but every ∆P
0 formula is Σs

1(P). Here is some further detail:

6·21 LEMMA (i) {
⋃

`a | a ∈ A} is a stratifiable ∆0 subclass of P(
⋃

`+1A);

(ii) {P(x) | x ∈ X} is a stratifiable ∆0 subclass of PP
⋃
X .

Proof of (ii): The class in question equals

PP
⋃
X ∩ {y | ∃x :∈X

[
[∀z :∈P

⋃
X (z ⊆ x =⇒ z ∈ y)] & [∀z :∈y z ⊆ x]

]
}. a (6·21)

We wish to show that every instance of ∆P
0 Collection is derivable from an instance of pseudo-∆s

0(P)
Collection.

Let Φ(a1, a2) be ∆P
0 . We assume that ∀a1∃a2Φ. We use the First Restricted Normal Form to express

that as:

∀a1∀y1∀z1∃a2∃y2∃z2

[

y1 = P(z1) & z1 =
⋃

l1a1 =⇒
[
y2 = P(z2) & z2 =

⋃
l2a2 & Φ3(a1, a2)

]

︸ ︷︷ ︸

∆s
0(P)

]
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We wish to deduce that ∀A1∃A2∀a1 :∈A1 ∃a2 :∈A2 Φ. So for given A1, form the class

C1 = A1 ∪ {
⋃

l1a1 | a1 ∈ A1} ∪ {P(
⋃

l1a1) | a1 ∈ A1}

which by the Lemma will be a set.
Applying ∆s

0(P) Collection, we find that

∃C2∀a1, y1, z1 :∈C1 ∃a2, y2, z2 :∈C2
[

y1 = P(z1) & z1 =
⋃

l1a1 =⇒
[
y2 = P(z2) & z2 =

⋃
l2a2 & Φ3(a1, a2)

]]

whence elementary set theory yields the desired conclusion that ∀a1 :∈A1 ∃a2 :∈C2 Φ(a1, a2).

6·22 REMARK The same method will derive strong ∆P
0 Collection from strong ∆s

0(P) Collection.

Henceforth we shall work solely with the version KPP .

Development of KPP and KPR

∆P
0 Separation, as we have seen, is provable in M0 and therefore in KPP . We therefore seek to develop

KPP in analogy to the development of KP: our treatment broadly parallels that of Takahashi in [K1] of a
calculus of ∆P

1 functions.
Our next aim is the ΣP

1 recursion theorem.

6·23 LEMMA KPP proves ΣP
1 Collection.

Proof : as in the KP case. If ∀a∃y∃zΦ(a, y, z) where Φ is ∆P
0 , collect pairs (y, z), so that

∀u∃v∀a :∈u ∃w :∈v [w is an ordered pair and Φ(a, (w)0, (w)1)]. a (6·23)

6·24 LEMMA KPP proves ∆P
1 Separation.

Proof : if ∀x :∈a either ∃yΦ or ∃zΨ but not both, where Φ and Ψ are ∆P
0 , apply ∆P

0 Collection to find a b
such that ∀x :∈a either ∃y :∈b Φ or ∃z :∈b Ψ. Then

a ∩ {x | ∃yΦ} = a ∩ {x | ∃y :∈b Φ},

and the right hand side is a set by ∆P
0 Separation. a (6·24)

6·25 LEMMA If G is total and ΣP
1 then x = G(y) is ∆P

1

Proof : x = G(y)⇐⇒ (x, y) ∈ G; x 6= G(y)⇐⇒ ∃z z 6= x & (z, y) ∈ G. a (6·25)

6·26 THE ΣP
1 RECURSION THEOREM. Let G be a ΣP

1 class. Then there is a ΣP
1 class F such that

KPP ` Fn(G) & Dom (G) = V =⇒ Fn(F ) & Dom (F ) = V & ∀x F (x) = G(F � x).

Proof : We define an attempt to be a set f such that

Fn(f) &
⋃

Dom (f) ⊆ Dom (f) & ∀x :∈Dom (f) f(x) = G(f � x).

By the lemma, that is in this context a ∆P
1 formula. We take F to be the union of all attempts. Then

F is ΣP
1 . We have to check that it is a function with domain V .

1) if f and g are attempts, we show ∀x :∈Dom (f) ∩ Dom (g) f(x) = g(x).

Deny, consider {x | x ∈ Dom (f)∩Dom (g) & f(x) 6= g(x)}. That is ∆KP
0 , and so is a set which if not empty

will have a least element, x̄ say. Then f(x̄) = G(f � x̄) = G(g � x̄) = g(x̄), a contradiction.
Thus F is a function.

2) Dom(F ) = V .
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Certainly Dom (F ) =
⋃
{Dom (f) | f is in attempt}. That is a ΣP

1 class. By ΠP
1 Foundation its complement,

if non-empty has a minimal element, x̄ say. By minimality, x̄ ⊆ Dom (F ). Hence

∀a :∈ x̄ ∃f
(
f is an attempt and a ∈ Dom (f)

)
.

Apply ΣP
1 Collection to find a y such that

∀a :∈ x̄ ∃f :∈y
(
f is an attempt and a ∈ Dom (f)

)
.

Using ∆P
1 Separation, form y ∩ {f | f is an attempt }. Its union is an attempt, g say, with domain a

transitive set⊇ x̄, and so can be extended to an attempt h with x̄ ∈ Dom (h) by setting h = g∪{(G(g � x̄), x̄)}
— a contradiction.

3) ∀x F (x) = G(F � x).

For any x F (x) = f(x) where f is any attempt with x in its domain. Then f(x) = G(f � x), but
f � x = F � x, for the domain of f is transitive and so x ⊆ Dom (f). a (6·26)

6·27 REMARK We have treated the easy case of ∈-recursion: definitions by recursion on other well-founded
relations are formally possible but the resulting functions might not be provably total.

In a set theory such as KP in which the set-theoretic rank % may be defined, the following hypothesis
makes sense.

∀ζ∃v v = {x | %(x) < ζ}.

We shall refer to that hypothesis by the English phrase “ranks are sets”. When the hypothesis holds,
we may write Vζ for the set {x | %(x) < ζ}. The following equations will then hold:

V0 = ∅; Vζ+1 = P(Vζ); Vλ =
⋃

ν<λ

Vν for limit λ.

Those equations show that, by the ΣP
1 recursion theorem,

6·28 PROPOSITION (KPP) ranks are sets.

6·29 REMARK KLZ1 does not prove that ranks are sets: a natural model for KLZ1 is, assuming V = L, Lℵω
.

Then Vω+ω is a subclass but not a set of that model.

Let KPR be the theory KP + ω ∈ V + RAS.

6·30 LEMMA (KPR) The Power Set axiom.

Proof : let a be a set, η its rank. Then each b ⊆ a has %(b) 6 η. So P(a) is a ∆0 subclass of Vη+1, which is
a set. a (6·30)

6·31 LEMMA (KPR) Z is consistent, and indeed has a transitive model.

Proof : ω + ω exists, and therefore Vω+ω is a set. It models Z, for if a and p are in Vω+ω , the class
{x | Vω+ω |= ϕ[x, p]} is ∆KP

1 in the set Vω+ω as parameter. Hence a ∩ {x | Vω+ω |= ϕ[x, p]} is a set; it is of
rank less than ω + ω, and therefore is in Vω+ω . a (6·31)

The following simplified restricted normal form becomes available once we assume that ranks are sets.
To return to our previous example with A and B: let η be an ordinal. Then for all a and b in Vη ,

∃x :∈a ∀y :⊆x ∃z :∈x ∀w :⊆z A(a, b)⇐⇒ ∃x :∈Vη ∀y :∈Vη ∃z :∈Vη ∀w :∈Vη B(a, b, x, y, z, w)

and if Vη is a set the right-hand side is a ∆0 formula, using the set (not the term) Vη as a parameter. That
equivalence uses only the simple facts that u ⊆ v =⇒ %(u) 6 %(v) and u ∈ v =⇒ %(u) < %(v). Further,
the left-hand side is independent of η, subject only to the condition that Vη contains all the parameters of
the formula, in this case a and b.
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6·32 LEMMA Let Φ(~x) be ∆P
0 , with free variables in the list ~x. Let w be a new variable. Then there is a

∆0 formula Θ(~x, w) in which all quantifiers are restricted by w such that

KPR ` ∀η ~∀x
[[
η ∈ ON &

∧

i

xi ∈ Vη

]
=⇒

(
Φ(~x)⇐⇒ Θ(~x)[Vη ]

)]

.

6·33 LEMMA (KPP + ∀κ∃κ+) ∀η∃ωη .

Proof : We must apply the ΣP
1 recursion theorem to a suitable G. Start from the observation that

β = α+ ⇐⇒ ¬∃f :⊆α× β f : β
1−1
−→ α & ∀γ :<β ∃f :⊆α× ν f : ν

1−1
−→ α.

In that formula the quantifiers are limited not by a variable but by a term of the form b× c. Now apply the
idea underlying Remark 6·16: in KPI it is easy to prove that each set is a member of a transitive set a such
that ∀x, y :∈a {x, y} ∈ a, which is thus closed under pairing; so for ordinals α and β, and writing Φ(a, α, β)
for the ∆KP

0 formula a× a ⊆ a &
⋃
a ⊆ a & β ∈ a & α ∈ a, we

β = α+ ⇐⇒ ∃a
(
Φ(a, α, β) & ¬∃f :⊆a f : β

1−1
−→ α & ∀γ :<β ∃f :⊆α× ν f : ν

1−1
−→ α

)

⇐⇒ ∀a
(
Φ(a, α, β) =⇒ ¬∃f :⊆a f : β

1−1
−→ α & ∀γ :<β ∃f :⊆α× ν f : ν

1−1
−→ α

)

which is ∆P
1 in our system. An appropriate ΣP

1 G may now be constructed. a (6·33)

6·34 PROPOSITION (KPP + ∀κ∃κ+) ∀ζ ∃ν (ζ < ν = ℵν).

Proof : We have just found a ΣP
1 function F defined on the class of ordinals such that ∀ν F (ν) = ων . G is

continuous at limits. For any ζ define by a further recursion on ω,

f(0) = ζ + 1; f(n+ 1) = F (f(n))

Then α0 =df

⋃

n<ω f(n) will exist by ΣP
1 collection and will satisfy F (α) = α > ζ. a (6·34)

We saw in §3 that KLZ0 proves that ∀κ∃κ+, and therefore so does KPR + V = L.

6·35 LEMMA (KPP + V = L) ∀ν
[
Vω+ν ⊆ Lων

]
.

Proof : an induction on ν. Vω = Lω. P(Lων
) ⊆ Lων+1 . The induction easily continues at limits. Hence

we need only show that if there is a counterexample, there is a minimal one. But consider {x | %(x) >

ω & x /∈ Lω%(x)−ω
}: that is a ∆P

1 class, and so if non-empty has a minimal element, the rank of which will
be a minimal ν for which the theorem fails. a (6·35)

6·36 PROPOSITION The theory KPP + V = L proves the existence of arbitrarily large transitive models of
KPR.

Proof : for any η = ωη, Lη will model KLZ + RAS. a (6·36)

Well-founded parts of ill-founded models

We shall show that the standard part of any non-standard ω-model of KPR is a model of KPP plus Class

Foundation, and use that fact to show that KPP + V = L proves the consistency of KPP .

6·37 An ω-model of a set theory including KP+ ω̇ ε V̇ is one of which the natural numbers are well founded.
Let N be such a model. Let $o(N), the standard ordinal of N, be the supremum of von Neumann ordinals
isomorphic to (well-founded) ordinals of N. ω < $o(N) as N is an ω-model. N can compute the rank of a
set, being a model of KP. Let

M = {x ∈ N | ∃ζ :<$o(N) %N(x) ∼= ζ}.

M is the well-founded or standard part of N, comprising those elements x of M whose rank %N(x), as
computed in N, is a well-founded ordinal; we may denote it by $p(N).
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6·38 REMARK We use Σ1 Separation, to form the standard part as a set, and we use the truth predicates
M |=, N |=, so that M + H suffices for the construction of M from N.

In the next two proofs, we shall need Σ1 Separation to ensure that the maximal well-founded initial
segment of a linear ordering is a set. KP of course enables us to form the truth predicate |= for N and M.

6·39 PROPOSITION (KZ1) The standard part M = $p(N) of an ill-founded ω-model N of KP + M +
Σ̇1 Foundation is a model of KP+ M + Class Foundation; further, WO will hold in $p(N) if it held in N.

Proof : (1) That KP might hold in the standard part of a non-standard model is a result that goes back to
Mlle Ville. The argument we give is from Barwise’s book [K3].

That M |= ∆̇0 Separation is readily checked, because ∆̇0 formulæ are absolute between M and N.
M |= Infinity because N is an ω-model. Union is easily checked, and pairing will hold because $o(N) is a
limit ordinal. Π1 Foundation, indeed full Class Foundation, will hold because M is a set and its membership
relation is well-founded.

The hardest part will be the verification of ∆̇0 Collection. So let p and b be in M, ϕ be ∆̇0 and suppose
that M |=

∧
x : ε b

∨
yϕ(x, y)[p]: here p is just a parameter which is hardly important. Let d be an ill-founded

ordinal of N. N |=
∧
x : ε b

∨
ζ :<d

∨
y
[
%̇(y) = ζ ∧ ϕ(x, y)[p]

]
. Form the class

A =
{
c

∣
∣ N |= c ε ˙ON ∧

∧
x : ε b

∨
ζ :<c

∨
y
[
%̇(y) = ζ ∧ ϕ(x, y)[p]

]}
.

That is non-empty, as it contains all ill-founded ordinals of N. Its defining formula is Σ̇KP

1 , and hence as N

models Σ̇KP

1 Foundation, there is a least element. That must be a well-founded ordinal, as there is no least
ill-founded ordinal. Call it η̄; so η̄ < $o(N) and

N |=
∧
x : ε b

∨
y
[
%̇(y) < η̄ ∧ ϕ(x, y, p)

]
.

Applying ∆̇0 Collection in N,

N |=
∨
z
∧
x : ε b

∨
y : ε z

[
%̇(y) < η̄ ∧ ϕ(x, y, p)

]
.

Let z witness that last statement, and form z ∩ {y | N |= %̇(y) < η̄}: that is a member of N by ∆̇KP

1

Separation, and is a set of rank at most η̄; hence it is in M, and we have established ∆̇0 Collection for M.

(2) The power set of a object of well-founded rank is also of well-founded rank. More exactly,

Let x ∈ M, and let y ∈ N be the object such that N |= y = Ṗ(x). Then y ∈ M and
M |= y = Ṗ(x).

(3) Evidently a well-ordering of an object of well-founded rank is also an object of well-founded rank.
a (6·39)

The following is a slightly sharpened version of Harvey Friedman’s extension of the above, in [K2], to
models of KPP .

6·40 PROPOSITION (KZ1) Let N be a non-standard ω-model of KPR. Let M be the standard part of N.
Then M is a model of KPP + Class Foundation. Further, WO will hold in M if it did in N.

Proof : We shall use repeatedly the fact that for ϕ a ∆̇P
0 formula with all parameters in M, N |= ϕ ⇐⇒

M |= ϕ. The truth of ∆̇P
0 Separation in M thus follows from its truth in N. The axiom of power set holds

in N by Lemma 6·30, and therefore also in M by our previous reasoning. M will satisfy full Foundation
because the standard part is a well-founded set. Our sole problem therefore will be proving ∆̇P

0 Collection.
Suppose that M |=

∧
x : ε a

∨
yϕ(a, b, x, y) where ϕ(a, b, x, y) is ∆̇P

0 , and a, b, are parameters in M.
Let ē be any non-standard ordinal. Then

N |=
∧
x : ε a

∨
y : ε Vē ϕ.

By the formal counterpart to Lemma 6·32, there is a ∆̇0 formula ϑ(a, b, x, y, w) with all quantifiers restricted
to w such that N |= ϕ⇐⇒ ϑ[Vē]. Therefore let us consider

{e | N |= e ε ˙ON ∧
∧
x : ε a

∨
y : ε V̇ē(%̇(y) < e ∧ ϑ[Vē]).}

N



THE STRENGTH OF MAC LANE SET THEORY 56

That class is ∆̇KP

1 in the parameter Vē since % is a ∆KP
1 function and ϑ is ∆̇0. It contains all non-standard

ordinals. By ∆̇KP
1 Separation in N (or by Π̇1 Foundation there) any non-empty initial segment of it will be

a set and it therefore has a minimal element. Therefore that minimal element is a standard ordinal η say.
Thus

N |=
∧
x : ε a

∨
y : ε Vη ϑ[a, b, Vē].

Replacing η if necessary by a larger standard ordinal so that all parameters a, b, of ϕ lie in Vη , and
using the equivalence of ϑ[Vη ] and ϑ[Vē], the fact that Vη ∈M since it is a well-founded member of N, and
the fact that ∆0 formulæ are absolute between N and M, we have

M |=
∧
x : ε a

∨
y : ε Vηϑ[a, b, Vη].

But the equivalence between ϑ and ϕ needs almost no set theory beyond the fact of Vη being a set, and
so we have

M |=
∧
x : ε a

∨
y : ε Vηϕ[a, b]

and we have proved that M satisfies ∆P
0 Collection for ϕ. a (6·40)

Note that in that second proposition the non-standard model is not required to satisfy Σ1 Separation.

For a ⊆ ω, we write ωa
1 for the least ordinal not recursive in a. We write 6T for Turing reducibility and

ωCK
1 , for the Church–Kleene ordinal, that is, the first non-recursive von Neumann ordinal.

Let R ⊆ ω × ω code an ω-model of a set theory extending KP + ω ∈ V ; we suppose that 2k represents
k in the model M = (ω, R). Let $o(M) be the standard ordinal of M.

6·41 LEMMA If η < $o(M) then η 6T R; so $o(M) 6 ωR
1 .

(For let η be represented by `. Then η is isomorphic to ({m | (m, `) ∈ R}, R).)

6·42 LEMMA If a ⊆ ω is represented in M, then ωa
1 6 $o(M).

Proof : Let e be an index such that the linear ordering {e}a is actually a well-ordering. That linear ordering
will be represented in M, which will attempt to build an isomorphism between it and an ordinal. The
complement of the domain of that attempt need not be a set of M, but externally to M we can, if it is
non-empty, find its minimal element, which will be some integer of M, and then can argue, once we have
the minimal failure, that the induction could have continued, and therefore the complement is indeed empty.
The ordinal of M isomorphic in M to that linear ordering is therefore in the standard part of M since that
linear ordering is actually a well-ordering. a (6·42)

6·43 PROPOSITION sup{ωa
1 | a is represented in M} 6 $o(M) 6 ωR

1 .

6·44 COROLLARY If ωR
1 = ωCK

1 , then $o(M) = ωCK
1 .

We shall use the Gandy basis theorem ([K4], or Corollary III.1.9 of [K5]), for the proof of which MOST

is more than enough:

6·45 PROPOSITION (Gandy) A non-empty Σ1
1(a) set of reals has a member x with ωx

1 6 ωa
1 .

We shall later use the Shoenfield absoluteness theorem:

6·46 PROPOSITION (Shoenfield) A Π1
2 sentence true in L is true in V .

6·47 THEOREM KPP + V = L proves the consistency of KPP+ Class Foundation.

Proof : reason in KPP +V = L, of which MOST is a subsystem, for by 5·0, 5·1 and 3·18, we know that ∀κ∃κ+

and that Σ1 Separation and Axiom H hold.

From Proposition 6·36 we know that there is an Lζ which models KPR + V = L. Therefore there is by
Gandy an ω-model M = (ω,R) of KPR+V = L with ωR

1 = $o(M) = ωCK
1 . Such an M cannot be well-founded,

since LωCK
1

does not model KPR. Hence it is ill-founded; but then its standard part, which Σ1 Separation

suffices to construct, is by Proposition 6·40 a model of KPP + Class Foundation. a (6·47)
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Hence KPP does not prove (KPP)L, in contrast to KP which proves (KP)L. For completeness, we show
now that the yet stronger system KPP + ∀κ∃κ+ does prove its own truth in L ! First a lemma:

6·48 LEMMA (KLZ0) Let ζ be an uncountable limit cardinal. Then Lζ �∆P

0
L.

Proof : let Φ be ∆P
0 . By Takahashi (6·12), there are a Π1 formula Ψ1 and a Σ1 formula Ψ2 such that

MOST `
(
Φ⇐⇒ ∃y Ψ1

)
&

(
Φ⇐⇒ ∀y Ψ2.

)

Now work in KLZ0, which equals MOST + V = L, let ζ be an uncountable limit cardinal — we do not,
of course, allege that KLZ0 proves that any such exist — and let Φ be a ∆P

0 formula with all parameters in
Lζ . We must show that Φ⇐⇒ (Φ)Lζ .

Lζ models MOST, by 5·1. Hence if (Φ)Lζ , then for some y ∈ Lζ , (Ψ1(y))
Lζ ; since Lκ �Σ1 L for every

uncountable cardinal κ, Ψ1(y) holds in L. Therefore Φ holds.
In the reverse direction we use Ψ2. a (6·48)

6·49 THEOREM KPP + ∀κ∃κ+ ` (KPP + ∀κ∃κ+)L.

Proof : KP + ω ∈ V + ∀κ∃κ+ proves its own truth in L. Our first problem, therefore, will be to show that
∆P

0 Collection holds in L. Let a ∈ L, let Φ be ∆P
0 and suppose that ∀x :∈a (Φ)L. We know from 6·33 that

there are arbitrarily large limit alephs, which will therefore be limit cardinals in L. Furthermore, for such
ζ, Lζ correctly computes the (constructible) power set of each of its members. So with the device of 6·16
and 6·33 in mind, of quantifying over the subsets of a transitive pairing-closed set containing the relevant
parameters, we have

∀x :∈a ∃ζ
(
ζ > ω & ∀α :<ζ ∃β :<ζ β = α+

︸ ︷︷ ︸

ΣP

1 ,at worst

& Lζ |= Φ̇
︸ ︷︷ ︸

∆KP
1

)
.

We may therefore apply ΣP
1 Collection in V to deduce that

∃η∀x :∈a ∃ζ :<η
(
ζ > ω & ∀α :<ζ ∃β :<ζ β = α+ & Lζ |= Φ̇

)
,

which tells us that ∀x :∈a ∃y :∈Lη Φ, as required.
Finally we should show that ΠP

1 Foundation holds in L. Suppose that Φ(x, y, a) is ∆P
0 , that a ∈ L, and

that the class A = {x | x ∈ L & (∀yΦ(x, y, a))L} is non-empty. We must find an ∈-minimal element. Let
x̄ ∈ A. Pick η̄ infinite with {a, x̄} ⊆ Lη. Consider the class

{
x

∣
∣ x ∈ Lη̄ & ∀y∀ζ

(
ζ > η̄ & ζ a limit cardinal & y ∈ Lζ =⇒ Lζ |= Φ̇[x, y, a]

)}
.

That is ΠP
1 , has a member, x̄, and therefore by ΠP

1 Foundation in V has an ∈-minimal element, which
will be ∈-minimal for A. a (6·49)

6·50 COROLLARY The theory KPP + ∀κ∃κ+ proves the consistency of KP
P + Class Foundation. as do

KPP + Σ1 Separation and KPP + H.

Proof : The first statement follows from Theorems 6·47 and 6·49; the other two then follow from Proposition
2·0 and and Remark 3·21. a (6·50)

6·51 REMARK Hence KPP , if consistent, cannot prove its own truth in the H-model.

A transitive model of KPP + AC in which every ordinal is recursive

To save our energies we work in ZF but that is certainly too strong. The following theorem was first
proved by Harvey Friedman in [K2] using the Barwise compactness theorem.

6·52 THEOREM (ZF) There is a countable transitive model of KPP + AC + every von Neumann ordinal is

recursive + Class Foundation. More generally, every real a is a member of a countable transitive model of
KP

P + AC+ Class Foundation in which every von Neumann ordinal is recursive in a.
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We give first a weaker result, the proof of which may amuse the reader:

6·53 PROPOSITION (ZF) There is a countable transitive model of KP + MAC + every von Neumann ordinal

is countable + Class Foundation.

Proof : the statement we are to prove is Σ1
2; by Shoenfield it will suffice to prove it in the theory ZF + “there

is a non-constructible real”. So fix a non-constructible real, a.
Note that in L, every real is a member of a countable ω-model of KPL+ Power Set + Class Foundation.

That is a Π1
2 statement, and so it is true in V . Hence there is a countable ω-model N of KPL+ Power Set +

Class Foundation with a ∈ N. N will model Σ̇1 Foundation by 3·20 and 3·19.
Let M be the standard part of N. Then a is in M. We shall prove that M is the desired model of

KP + MAC+ every von Neumann ordinal is countable + Class Foundation. In view of Proposition 6·39, it is
enough to show that M |= every von Neumann ordinal is countable. Note that

N |=
∧
ξ
(

q(a ε L̇ξ) −→ ξ is countable
)
.

For we have seen in 5·0 that KLZ0 proves that ω1 exists; in that theory we may also carry out Gödel’s
argument and prove that every real is constructed at a countable stage; the stages are cumulative, hence a
stage by which a given real has not been constructed is necessarily countable.

Let ζ ∈ M. Then a /∈ Lζ for ζ is well-founded and a is not constructible. So N |= a /∈ Lζ . So
N |= ζ is countable; so N thinks that there is a subset of ζ × ω which is the graph of a bijection between
ω and ζ. But that graph is a well-founded object, being of rank at most ζ + 2, and so is in M. a (6·53)

Now we shall prove the sharper form:
Proof of Theorem 10: let a be in L. There is certainly a countable well-founded M which models KPR+ V

= L with a ∈ M . The class of codes of such ω-models in which a is represented is therefore non-empty and
Σ1

1(a), so therefore contains an M with ωM
1 6 ωa

1 . Hence $o(M) = ωa
1 .

M cannot be standard, as the only standard model of KPL of height ωa
1 , should it contain a, cannot

model KPR. So M is non-standard; its standard part is therefore a model of KPP + AC, contains a and is of
height ωa

1 .
We have just proved a Π1

2 sentence assuming V = L; it is by Shoenfield therefore true in V . a (6·50)

a (Theorem 10)

6·54 REMARK Thus there is a power admissible set N of height ωCK
1 in which WO is true. Then N models

KP
P +WO+ every ordinal is recursive, and LN = LωCK

1
, so KPP fails to prove that there is a non-recursive

ordinal — giving the sharper version of Theorem 9 — and fails to prove (Power Set)L. In particular it fails
to prove Σ1 Separation, whereas it proves ∆P

1 Separation; which shows that there are Σ1 formulæ which are
not contained in (∆P

1 )MAC, and thus establishes the need for Axiom H in Takahashi’s reduction 6·12.

6·55 REMARK Friedman in his paper obtains Theorem 10, and many other results, by using the Barwise
compactness theorem.

A transitive model of KPP + AC + ∀κ∃κ+ with a long well-ordering of the continuum

We shall now use forcing over ill-founded models, to show that in the absence of V = L, the system
KPP + AC + ∀κ∃κ+ does not prove that every well-ordering is isomorphic to an ordinal, and â fortiori fails
to prove Σ1 Separation.

We start then from the assumption that there is a countable transitive power-admissible set A in which
V = L and, therefore, ∀κ ∃κ+ are true. The reader unused to forcing over weak systems of set theory
may like to assume on a first reading that A = Lθ where θ is a countable ordinal that in L is strongly
inaccessible. But a suitable θ satisfying a weaker condition may easily be found by applying Lévy reflection
to an appropriate conjunction of finitely many axioms inside L.

By H. Friedman, [K2], Theorem 2.3, there is a non-standard power-admissible set N of which A is the
standard part: N can be chosen to satisfy AC. So all the initial ordinals of A are initial ordinals of N.
Working in N we pick a non-standard initial ordinal `, which is regular in the opinion of N, and add ` Cohen
reals, so the enlarged model N′ has the same ordinals as N, models AC and thinks the continuum is size `;
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further its cardinals are the same as N. The partial ordering, call it P, which does that will be a member of
N.

There are three problems here: one is to show that the generic filter can be built, then that the model
can be defined, and finally that truth respects forcing.

We suppose that we are treating forcing in the manner of Shoenfield, in which every element of the
ground model is interpreted as a name for a member of the extension.

If one were dealing with a well-founded model N , one would proceed by first choosing a filter G that
meets every subclass of P that is definable over N , so that we may call G (N,P)-generic, and then making
the following recursive definition:

6·56 PUTATIVE DEFINITION Define (externally to N) φG : N → V by

φG(b) = {φG(a) | ∃p :∈G (a, p) ∈ b}.

Then we would prove the following

6·57 PUTATIVE LEMMA For all a and b the following hold:

φG(a) ∈ φG(b)⇐⇒ ∃p :∈G p ‖−a ε b(6·58)

φG(a) ⊆ φG(b)⇐⇒ ∃p :∈G p ‖−a ⊆̇ b(6·59)

φG(a) = φG(b)⇐⇒ ∃p :∈G p ‖−a = b(6·60)

In our present context, the model N is ill-founded, and so prima facie we cannot carry out that recursive
definition. However we may choose G as before, meeting every N-definable subclass of P. Then we treat the
above Lemma as a definition:

6·61 DEFINITION Define for all a and b in N the following equivalence relation:

a ≡G b⇐⇒ ∃p :∈G p ‖−a = b

Let Q = QG be the set of equivalence classes. Write [a]G for the ≡G-equivalence class of a ∈ N.
Define a relation ∈G on Q by

[a]G ∈G [b]G ⇐⇒ ∃p :∈G p ‖−a ε b

That that relation is independent of the chosen representives a, b, of their equivalence classes follows
from general facts about forcing established within N.

Then (Q,∈G) is a perfectly reasonable countable set with a two-place relation on it, and we can ask
which of the sentences of the language of set theory are true in that model when we interpret = by equality
and ε by ∈G.

We establish the familiar principle that what is true in this model is what is forced by some member of
G: but the proof of that relies entirely on the fact that G meets all the necessary dense classes, and makes
no use of the well-foundedness of the model under consideration.

Once that has been done, we may strengthen the ties between Q and N, by showing that we may treat
Q as an extension of N by considering the map x 7→ [x̂]; we may also show that G is in Q, being [Ġ]. Here
x̂ is the canonical forcing name for the member x of the ground model, defined recursively inside N, (using
which we may define a predicate V̂ of the forcing language for membership of the ground model) and Ġ is
the canonical forcing name for the generic being added.

We show that every name has a unique rank of N attached, chosen from all possible by the completeness
of G. Those ranks are simply the ordinals of N.

So loosely we may say that the extension Q is no more ill-founded than is the starting model N. Further,
Q considers itself to be a generic extension of N via P and G, the corresponding statement about P̂ and Ġ
being forced. Hence inside Q the recursive definition of φG : N→ Q by

φG(b) = {φG(a) | ∃p :∈G 〈a, p〉 ∈ b}.
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succeeds, using the predicate V̂ identifying the members of N.

Since the forcing P is a member of N, Q will be a model of KP + AC; that Q |= ranks are sets will
follow from the observation that KPP can support the following transfinite recursion and prove that each Kν

is a set:

K0 = ∅

Kν+1 = P(Kν × P)

Kλ =
⋃

ν<λ

Kν for 0 < λ =
⋃
λ

Now let M be the well-founded part of Q. Then M is of height θ, since the ordinals of Q are the same
as those of N, and since Q |= ranks are sets, it follows from 6·40 that M is power admissible.

Now the ordinals of M are the standard ordinals of N, in short the ordinals of A. Cofinalities (and
therefore cardinalities) in A are preserved in N, since A is exactly the standard part of N; the extension from
N to Q preserves cofinalities, being from the point of view of N a c.c.c. extension, and are further preserved
in the restriction to the standard part M of Q. Thus M is an extension of A in which all cofinalities and
cardinalities are preserved; thus in M, the initial ordinals are cofinal in the ordinals. However, every real of
Q is in M, and every well-ordering in Q of the continuum of Q will lie in M, but although the continuum of
the model M is well-orderable in the opinion of the model M , none of its well-orderings in M are isomorphic
to any ordinal of M. Those well-orderings are all pseudo-wellorderings, being isomorphic to an ill-founded
ordinal of Q. a (Theorem 11)

6·62 REMARK Another version of Theorem 10 can be proved by the method of forcing over non-standard
models. As before let A be a countable power-admissible set, N a non-standard power-admissible set with A
as its standard part, and ` a non-standard ordinal of N. This time use Lévy forcing to to add a generic subset
of ω coding `, and take the standard part of the extension. That standard part will be power admissible, and
the real added, g, will have the property that the ordinals in A are precisely the ordinals recursive in g. Thus
we have shown that any countable power-admissible set (and therefore by Friedman any countable admissible
set) is contained in a power-admissible set in which there is a real in which every ordinal is recursive.

7: Stratifiable formulæ

We continue the study of stratifiable formulæ, a concept that was defined in §0. We follow M. Boffa, [B2].

First, suppose that a and b are disjoint sets, φ a bijection between them, and that the class F : V ←→ V
is defined by

F (x) =

{
φ(x), for x ∈ a;
φ−1(x) for x ∈ b;
x otherwise.

Define a sequence of classes Fi for each concrete natural number i thus:

F0 = F ; Fi+1(x) = Fi“x.

7·0 PROPOSITION SCHEME (KF) F0 : V ←→ V ; Fi“x ∈ V ; Fi+1 : V ←→ V .

Proof : The only problem is in showing that each Fi“x ∈ V . Note first that the chain

x0 ∈ x1 ∈ x2 ∈ x3 ∈ . . . =⇒ F0(x0) ⊆ x1 ∪ a ∪ b ⊆ (
⋃
x2) ∪ a ∪ b ⊆ (

⋃ ⋃
x3) ∪ a ∪ b . . .

=⇒ F1(x1) ⊆ P
(
(
⋃
x2) ∪ a ∪ b

)
⊆ P

(
(
⋃ ⋃

x3) ∪ a ∪ b
)
. . .

=⇒ F2(x2) ⊆ PP
(
(
⋃ ⋃

x3) ∪ a ∪ b
)
. . .

will show that for each k, once Fk is known to be a total function,

Fk“(xk+1) ⊆ P
k+1

(
(
⋃

k+1xk+2) ∪ a ∪ b
)
.
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We then prove successively that

F0(x0) ∈ V by examination of cases;

y0 = F0(x0)⇐⇒
[(
x0 ∈ a1 & y0 = φ3(x0)

)
or

(
x0 ∈ b1 & y0 = φ−1

3 (x0)
)
or

(
x0 /∈ a1 &x0 /∈ b1 & y0 = x0

)]
;

y0 ∈ F1(x1)⇐⇒ ∃z0 :∈x1 y0 = F0(z0) and F0“(x1) ⊆ P
(
(
⋃
x2) ∪ a ∪ b

)
; hence

F1(x1) = F0“(x1) ∈ V by stratifiable ∆0 Separation;

y1 = F1(x1)⇐⇒ [∀z0 :∈y1 ∃t0 :∈x1 z0 = F0(t0) & ∀t0 :∈x1 ∃z0 :∈y1 z0 = F0(t0)];

y1 ∈ F2(x2)⇐⇒ ∃z1 :∈x2 y1 = F1(z1) and F1“(x2) ⊆ PP
(
(
⋃ ⋃

x3) ∪ a ∪ b
)
; hence

F2(x2) = F1“(x2) ∈ V by stratifiable ∆0 Separation;

. . . . . .

Fk(xk) ∈ V

yk = Fk(xk)⇐⇒ [∀zk−1 :∈yk ∃tk−1 :∈xk zk−1 = Fk−1(tk−1) & ∀tk−1 :∈xk ∃zk−1 :∈yk zk−1 = Fk−1(tk−1)];

yk ∈ Fk“(xk+1)⇐⇒ ∃zk :∈xk+1 yk = Fk(zk) and Fk“(xk+1) ⊆ P
k+1

(
(
⋃

k+1xk+2) ∪ a ∪ b
)
; hence

Fk+1(xk+1) = Fk“(xk+1) ∈ V by stratifiable ∆0 Separation;

. . . . . .

a (7·0)

From the bijectivity of Fi will follow for each i that

∀x, y ((x ∈ y ⇐⇒ Fi(x) ∈ Fi+1(y)) & (x = y ⇐⇒ Fi(x) = Fi(y)))

whence a straightforward induction on the length of formulæ leads to a proof of the

7·1 PROPOSITION SCHEME For each stratifiable formula Φ(x1, . . . xk) with free variables as shown, and for
each stratification of Φ by type assignments i1, . . . ik to x1 . . . xk:

`KF Φ(x1, . . . xk)⇐⇒ Φ(Fi1 (x1), . . . , Fik
(xk))

An embedding elementary for stratifiable formulæ

We saw in §1 that the function tcl is available in M1* as a provably total ∆1 function, and therefore so
is the function T defined by

T (x) = (x, tcl({x}),∈� tcl({x}));

and we recall the translation (·)1 of formulæ introduced in Definition 2·27.

7·2 PROPOSITION SCHEME For any stratifiable formula Φ(x1, . . . , xk),

`M1
(Φ)1(

−−→
T (x))⇐⇒ Φ(~x)

Proof by induction on the length of Φ.
(i) x ∈ y ⇐⇒ T (x)E1 T (y)
(ii) x = y ⇐⇒ T (x) ≡1 T (y)
The above hold since any partial isomorphism between transitive sets is, by an application of Foundation,

a restriction of the identity.
(iii) The induction for propositional connectives is trivial.

* but not in ZBQC, therefore not in M0, still less in KF.
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(iv) The hard case: suppose Φ is ∃yΨ(y, x1, . . . , xk), where in some stratification of Ψ(y, x1, . . . , xk)
the variables are of types j, i1, . . . , ik respectively. It will be convenient to present the argument model-
theoretically, as we are in effect proving that the mapping T embeds the universe as a submodel of W1 that
is elementary with respect to all stratifiable formulæ.

Let us therefore place ourselves in the larger model, W1, which we will now call H , and denote by R
the image of the smaller model, the original universe, under T . By assumption, the axioms of M1 are true in
R, and therefore by our discussion of Theorem 2, are also true in H ; so the function tcl is available in both
R and H ; and it is readily checked that R is a transitive submodel of H , and indeed supertransitive in the
sense that a ⊆ b ∈ R =⇒ a ∈ R.

Our problem is this: given a1, . . . , ak ∈ R and y ∈ H such that Ψ(y, a1, . . . , ak) holds in H , to show that
there is a z in R with Ψ(z, a1, . . . , ak) holding again in H .

Let u = tcl({a1, . . . , ak}), and t = tcl({y, a1, . . . , ak}). u ∈ R, so u ⊆ R, but if y /∈ R, as is probable,
t 6⊆ R. Pick z ∈ R disjoint from tr u such that there is a bijection φ : t r u ←→ z — here we use the fact
that each element of W1 is coded by an element of V — and write y = z ∪ u. Extend φ to a permutation
F : H ←→ H , and define the sequence Fi as above for 0 ≤ i ≤ m =df max{j, i1, . . . , ik}.

For x ∈ t, F0(x) ∈ y ∈ R, so F0(x) ∈ R. F1(x) = F0“x ⊆ F0“t = y, so F1(x) ∈ P(y) ∈ R so F1(x) ∈ R.
F2(x) = F1“x ⊆ P(y) so F2(x) ∈ P(P(y)) ∈ R, so F2(x) ∈ R, and so on till we have shown for 0 ≤ i ≤ m

that Fi(x) ∈ (P)i(y) and so Fi(x) ∈ R.
On the other hand, for each x ∈ u, F (x) = x and so for each i, Fi(x) = x: here we use the fact that u

is transitive. In particular, Fi`
(a`) = a` for 1 ≤ ` ≤ k.

We may now apply the preservation of stratified formulæ under the F ’s to deduce from Ψ(y, a1, . . . , ak)
that Ψ(Fj(y), Fi1 (a1), . . . , Fik

(ak)), i.e. that Ψ(Fj(y), a1, . . . , ak). Thus Fj(y) is the desired witness in R, and
our proof is complete. a (7·2)

Proof of Theorem 14: let A be a stratifiable formula without free variables. If A is provable in MOST then
(A)1 is provable in MAC, by Theorem 3 and Theorem 2·28, and so A is provable in MAC, by Proposition 7·2.
The corresponding results that for stratifiable sentences, M + H is conservative over M, Z + H over Z and
ZC + H over ZC follow from 7·2 and 2·45.

a (Theorem 14)

Stratifiable schemata provable in MAC

7·3 PROPOSITION MAC proves strong stratifiable Σ1 Collection.

Proof : We shall apply our conservative extension result. We have a stratifiable Ψ(x, y, b, c) in which u and
v have no occurrence, though x and y may do.

We know that since Ψ is Σ1, MAC + H proves the sentence

∀b∀c∀u∃v∀x :∈u
(
∃yΨ(x, y, b, c) =⇒ ∃y :∈v Ψ(x, y, b, c)

)
.

That is still stratifiable: take a stratification of Ψ and extend it by assigning to u type 1 more than that
assigned to x in Ψ, and likewise to v type 1 more than that of y. By Theorem 13, the sentence is a theorem
of MAC. a (7·3)

7·4 COROLLARY MAC proves strong stratifiable Σ1 Replacement and stratifiable Σ1 Separation.

a (Theorem 15)

7·5 PROPOSITION MAC proves stratifiable Π1 Foundation and stratifiable Σ1 Foundation.

Proof : immediate, using stratifiable Σ1 separation and TCo. a (7·5)

7·6 REMARK We shall see in §9 that ZC cannot prove schemes of stratifiable Π1 or ∆P
0 Collection.

Coret’s argument in KF and MAC

Coret showed in [B1] that the scheme of strong stratifiable Replacement is provable in Z. His proof, as
presented by Boffa, proceeds in two steps: the first is to show that if Φ(x1, . . . xn, y) is stratified with types
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i1, . . . , in, j respectively, and for given x1, . . . xn there is exactly one y such that Φ, then that y is a member
of P j+1(

⋃ i1 x1 ∪ . . . ∪
⋃ in xn) — were it not to be, there would be a permutation T of the universe with

each Ti`
(x`) = x` but Tj(y) 6= y; he then applies elementary set theory plus an instance of the full Separation

scheme of Z to conclude that the image of a set under a partial function defined by a stratifiable formula is
a set.

The first part of Coret’s argument may be carried out in KF. For completeness, here are the details,
following a manuscript of Boffa.

We first establish two properties of the sequence of functions Fi:

7·7 PROPOSITION SCHEME (i) If ∀x ∈ u F (x) = x then F1(u) = u;
(ii) If ∀x ∈

⋃
u F (x) = x then F2(u) = u;

(iii) for each j, if ∀x ∈
⋃ j

u F (x) = x, then Fj+1(u) = u.

Proof of (ii): Under the given hypothesis,

F2(u) = {F1(v) | v ∈ u} = {{F (w) | w ∈ v} | v ∈ u} = {{w | w ∈ v} | v ∈ u} = {v | v ∈ u} = u

as each w is in
⋃
u. a (7·7)

7·8 PROPOSITION SCHEME (i)
⋃
F2(y) = F“(

⋃
y);

(ii)
⋃ 2

F3(y) = F“(
⋃ 2

y);
(iii) for each j,

⋃ j
Fj+1(y) = F“(

⋃ j
y).

Proof of (ii): a ∈
⋃ ⋃

F3(y)⇐⇒ ∃c :∈F3(y) ∃b :∈c a ∈ b

⇐⇒ ∃x :∈y ∃b :∈F2(x) a ∈ b

⇐⇒ ∃x :∈y ∃w :∈x a ∈ F1(w)

⇐⇒ ∃x :∈y ∃w :∈x ∃v :∈w a = F (v)

⇐⇒ a ∈ F“
⋃⋃

y a (7·8)

The following is the nub of Coret’s argument, though presented here for functions of several variables.

7·9 PROPOSITION Let Φ(x1, . . . xn, y) be stratified with types i1, . . . , in, j respectively. Then it is provable
in KF that if for given x1, . . . xn there is exactly one y such that Φ, then that y is a member of P j+1(

⋃ i1 x1 ∪
. . . ∪

⋃ in xn)

Proof : For the x1, . . . , xn, y under consideration, it suffices to prove that
⋃ j

y ⊆
⋃ i1 x1 ∪ . . . ∪

⋃ in xn, for
then y ∈ P j+1

⋃ j
y ⊆ P j+1

( ⋃ i1 x1 ∪ . . . ∪
⋃ in xn

)
.

If the inclusion we want is false, let a ∈
⋃ j

y, a /∈
⋃ i1 x1 ∪ . . . ∪

⋃ in xn, and b /∈
⋃ j

y ∪
⋃ i1 x1 ∪

. . . ∪
⋃ in xn. Let F be the transposition of a and b. Then by the first property above of the sequence Fi,

Fi1+1(x1) = x1, . . . , Fin+1(xn) = xn; hence Φ(x1, . . . xn, Fj+1(y)) and so by the uniqueness of y, y = Fj+1(y).

From this and the second property of sequences established above,
⋃ j

y =
⋃ j

Fj+1(y) = F“
⋃ j

y 6=
⋃ j

y, a
contradiction. a (7·9)

Proof of Theorem 12: continuing the notation of Proposition 7·9, if x1 ∈ a1, . . . xn ∈ an, then the given y is
in P j+1(

⋃ i1+1
a1 ∪ . . . ∪

⋃ in+1
an), and we take this last set for our v. a (Theorem 12)

7·10 COROLLARY KF proves strong stratifiable ∆P
0 Replacement.

Proof : We have u, and a stratifiable ∆P
0 function G; working in KF we have found v such that G“u ⊆ v.

We now apply stratifiable ∆P
0 separation to conclude that v ∩ {x | ∃y :∈u (x, y) ∈ G} is a set; but that set

is exactly the image of u under G. a (7·10)

7·11 COROLLARY MAC proves strong stratifiable Π1 Replacement.

Proof : we suppose that for all x ∈ a there is at most one y such that Ψ(x, y, b) where Ψ is stratifiable Π1, say
of the form ∀wΦ where Φ is stratifiable ∆0. By Coret there is a v such that ∀x :∈a ∀y(Ψ(x, y, a) =⇒ y ∈ v).

By Proposition 7·3 we may apply strong stratifiable ∆0 collection, and we then infer that there is a set
A such that

∀x :∈a ∀y ∈ v(∃w¬Φ =⇒ ∃w :∈A ¬Φ).
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So v∩{y | ∃x :∈A ∀w :∈A Φ} is by ∆0 separation, a set, and is the desired image of a by the partial function
defined by Ψ. a (7·11)

a (Theorem 13)

8: The simple theory of types.

The simple theory of types was developed independently by Chwistek and Ramsey as a simplification of the
earlier ramified theory of types proposed by Russell and Whitehead. Of the various formulations found in
the literature, we shall consider only two: that studied by Kemeny in his Princeton thesis of 1949, and that
by Forster and his collaborators in various writings. We call their systems, when taken without an axiom of
infinity, respectively TKT and TST, and, when with, TKTI and TSTI. ¶

That M has something of the flavour of type theory is plain from the previous section. Indeed, many
writers have remarked the equiconsistency of the simple theory of types including an axiom of infinity with
a system of set theory such as Mac Lane set theory. The equiconsistency, though, is asymmetric: in one
direction there is an interpretation in Tarski’s sense, and the relative consistency is provable in arithmetic.
It might be said that one only needs partial information about a model of M to build an initial segment of a
model of TSTI. In the other direction, the difficulty is much greater, and the methods of the present paper
require the existence of a model of the whole of TSTI at the outset, from which one can, given a sufficiently
strong metatheory, build a model of M. We shall find that the relative consistency in this direction and,
therefore, the equiconsistency are provable in analysis, that is, in second-order arithmetic.

In this section we sketch a proof of the equiconsistency, for we shall need that fact for our final mathe-
matical section, in which we establish the unprovability of various hypotheses in MAC.

Our method of proof there is somewhat oblique. We exhibit a set-theoretic formula Φ(n) such that
∀n :∈ω Φ(n) is derivable in M from various assumptions such as Induction(introduced in §9), Π2 Foundation,
or ∆P

0 Collection, and we show that the theory M + ∀n :∈ω Φ(n) proves the consistency of TSTI.

Then we shall recover from that consistency statement the consistency of the theory MAC, and invoke
the second Incompleteness Theorem of Gödel to deduce the failure of Induction and the other schemata in
MAC. Thus the mathematical aims of the present section are dictated by the needs of that argument, which
we shall refine to avoid the Axiom of Infinity where possible and to incorporate other theories such as KF

into our equiconsistency results. So our present programme is:

1: to introduce the version TST of the simple theory of types;

2: to show in arithmetic that the consistency of KF implies that of TST, and that the
consistency of KFI implies that of TSTI ;

3: to derive in analysis the consistency of M0 from that of TST, and the consistency of
M0 + InfWel from that of TSTI;

4: to sketch Kemeny’s variant TKTI;

5: to complete the set of equiconsistencies by showing that TST may be interpreted in TKT,
TSTI in TKTI, TKT in M0, TKTI in M, and MAC in M0 + InfWel.

The process needed in the third step, of getting from a model of type theory to a model of set theory,
has been considerably illuminated by a paper of Forster and Kaye on their weak set theory KF, and we shall
adopt their method.

The system TST

We consider a typed language: each variable and each constant has a type, shown as a subscript, which
is a natural number. Thus xk denotes a variable of type k. For each type n we have a 2-place relation ∈n.
The atomic formula xn ∈n ym is well-formed provided m = n + 1. We shall have a equality symbol =n for
each type; xm =n yk is well-formed only if m = n = k.

¶ For further reading, Gandy’s review [G4] and Forster’s book [B4] are suggested.
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The simple theory of types, TST, has as its axioms Extensionality for each type m, and at each type, the
axiom scheme of Comprehension. Thus the axioms are

∀xm

(
(xm ∈m ym+1 ⇐⇒ xm ∈m zm+1)

)
=⇒ ym+1 =m+1 zm+1

and for each formula Φ(xn) of the language, possibly with other free variables and with constants,

∃xn+1∀xn

(
xn ∈n xn+1 ⇐⇒ Φ(xn)

)

By extensionality, that xn+1 will be unique, and we denote it by {xn | Φ(xn)}n+1, the subscript n + 1
being a reminder that the object is of type n + 1. For other constructs, too, we use subscripts to remind
readers of their type. Thus {xk, yk}k+1 is the term of type k+1 which the axioms of TST prove to exist and
to have as sole members the objects xk and yk of type k.

We introduce at each positive type the subset relation by definition:

yn+1 ⊆n+1 zn+1 ⇐⇒df ∀xn

(
xn ∈n yn+1 =⇒ xn ∈n zn+1

)

The relation x0 ⊆0 y0 at type 0 is not defined.

An identity model of TST is a structure T = 〈T 0, T 1, . . . ;E0, E1, . . .〉 which is a sequence of sets T i

and binary relations Ei ⊆ T i × T i+1, such that the axioms of TST become true when variables of type k
are interpreted as ranging over the members of T k, constants of type k, (if any there be) as denoting some
member of T k, =k is interpreted as identity restricted to T k, and ∈k is interpreted as Ek. We write vk+1

for the relation on T k+1 that is the induced interpretation of ⊆k+1.
When discussing such a model, we may add a superscript T in naming the interpretation in the model

of a term of TST. Thus {xk, yk}
T
k+1 would be the object in T k+1 which the model T believes to have as sole

members the objects xk and yk in T k.
Note that the sets T i need not be disjoint. If for example we take T 0 to be ω, and T 1 to be P(ω), T 0

is actually a subset of T 1, ω being transitive; but these strange coincidences are simply not expressible in
our presentation of TST, and cause no problem: thus the emphasis is different from those studied by Boffa
in his paper [G7] on cumulative models of type theory.

We assume that T 0 is not empty.

The interpretation of TST in KF

8·0 We sketch a proof — whose underlying idea is to be found in Kemeny’s thesis, pages 7 and 8 — that if
Consis(KF) then Consis(TST) by getting an interpretation of TST in KF. Let Ω be any set. For each concrete
type formula Φ let (Φ)3 be the result of restricting the variables of type 0 to Ω, the variables of type 1 to
P(Ω), and so on. Then each axiom of TST becomes a theorem of KF: for example, consider the following
instance of the comprehension scheme:

∀a2∀b5∃c4∀d3

[
d3 ∈3 c4 ⇐⇒ Φ(a2, b5, d3)

]
.

That translates to

∀a :∈P2(Ω)∀b :∈P5(Ω)∃c :∈P4(Ω)∀d :∈P3(Ω)
[
d ∈ c⇐⇒ Φ∗(a, b, d)

]

where Φ∗ is a further translation of Φ.
That is provable, because it is an instance of ∆0 separation, indeed a stratifiable instance since the

formula Φ∗ originates in a formula of TST.
If we take Ω to be an infinite set as provided by an Axiom of Infinity for KF, we shall get an interpretation

of TSTI —the simple theory of types with a corresponding axiom of infinity — in KFI.

A direct limit of types: the method of Forster and Kaye

8·1 DEFINITION The Forster–Kaye axiom, SC, is the assertion that
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for each set x the restriction of the map y 7→ {y} to x is a set;

in symbols, ∀x S � x ∈ V , where we write S for the singleton function y 7→ {y} that assigns to each set y
its singleton.

In the terminology of NF-istes, the axiom states that every set is strongly cantorian. SC is easily proved
in M0 using the power set axiom and (unstratified !) ∆0 separation; as the system KF is the system M0 with
the separation scheme confined to formulæ that are both ∆0 and stratified, KF + SC is a subsystem of M0,
but not a proper subsystem in view of Theorem 8·3.

8·2 HISTORICAL NOTE The central device in the following proof, that of finding names at lower types for a
strongly cantorian object, has long been NF folk-lore.

8·3 THEOREM The scheme of ∆0 separation is provable in the system S0 + strat-∆0 Separation + SC.

Proof : Let Φ(x, b) be a ∆0 formula with the distinct free variables x, b. Let a be a variable distinct from
both. We shall prove that ∀a∀b a ∩ {x | Φ(x, b)} ∈ V .

Suppose that Φ is in the natural prenex form for a ∆0 formula, with all its restricted quantifiers outside
the quantifier-free matrix, and that there are exactly l occurrences of restricted quantifiers in Φ, and that
distinct occurrences of quantifiers bind distinct variables: say for 1 6 i 6 l, the ith quantifier, Qi, counting
from the left, binds the variable yi, which is distinct from the variables x, a and b.

We invoke part of our rewriting system of §6: S0 proves such equivalences as

x ∈ a =⇒ [∃y :∈x A⇐⇒ ∃y :∈
⋃
a (y ∈ x & A)]

y ∈
⋃
d =⇒ [∀z :∈y A⇐⇒ ∀z :∈

⋃ ⋃
d (z ∈ y =⇒ A)]

z ∈
⋃ 2d =⇒ [∃w :∈z A⇐⇒ ∃w :∈

⋃ 3d (w ∈ z & A)]

Using those, and in particular treating the variable x as restricted by a, we write Φ in Second Limited
Normal Form, so that every quantifier is restricted by a term ti of the form (

⋃k+1 a) or (
⋃k b), where k is

some natural number of the meta-language, dependent on i and determined by the length of the relevant
chain of nested restrictions. Note that for each i, S0 proves ti ∈ V .

We then give ourselves a supply of new variables, c0, c1, . . . cl. Our rewriting will have led us to a
quantifier-free formula Θ(x, y1, . . . , yl, b, c0, . . . , cl) such that S0 proves the following:

[c0 = a& c1 = t1 & . . . & cl = tl &x ∈ c0] =⇒
(
Φ(x, b)⇐⇒ Q1y

1 :∈c1 Q2y
2 :∈c2 . . .Qly

l :∈cl Θ(x, ~y, b,~c)
)
.

It will be convenient to call the letters x, y1 . . . , yl variables and the letters a, b, c0, c1 . . . , cl parameters.
With the help of the formula Θ and three as yet unused letters, say f , g, h, we shall create a ∆0 formula
Ψ(x, b,~c, f, g, h) that will be stratifiable by assigning type 1 to each variable, type 2 to each parameter, and
types 4, 5, 4 respectively to f , g, and h, such that under appropriate conditions on ~c, f , g and h, Φ(x, b)
will, for x ∈ a, be equivalent to Ψ(x, b,~c, f, g, h).

Set VΦ =df a ∪ t1 ∪ . . . ∪ tl and PΦ =df {a, t1, . . . , tl}. S0 proves that both VΦ and PΦ are sets.
The intended values of the variables lie in VΦ, and those of the parameters in PΦ. Our intention is that
f = S � VΦ and that g = h = S � PΦ, both of which restrictions of S are, by SC, sets.

The formula Θ is a Boolean combination of atomic formulæ, each of the form r ∈ s or r = s for r and
s variables or parameters. Let us denote arbitrary, possibly identical, variables by w and z, and arbitrary,
possibly identical, parameters by d and e.

Let Ψ0 be the formula that results from Θ by making simultaneously the following replacements, which
include the addition of type suffices to variables, parameters and the letters f , g, and h:

replace w = z by w1 = z1

replace w ∈ z by f4(w1) ⊆ z1

replace w = e by w1 =
⋃
g5(e2)

replace e = w by
⋃
g5(e2) = w1

replace w ∈ e by w1 ∈ e2

replace e ∈ w by h4

(⋃
g5(e2)

)
⊆ w1

replace d = e by d2 = e2

replace d ∈ e by g5(d2) ⊆ e2
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Finally let Ψ(x, b,~c, f, g, h) be the formula Q1y
1
1 :∈c12 Q2y

2
1 :∈c22 . . .Qly

l
1 :∈cl2 Ψ0(x1, ~y1, b2,~c2, f4, g5, h4).

Ψ is ∆0 and stratified.

The intuition behind those replacements is this: in the world of stratified formulæ a function maintains
type values, whereas

⋃
lowers them by 1; and with the Wiener–Kuratowski definition of ordered pair, a

unary function must be 3 types higher than its argument. Now
⋃

S(p) = p, so provided p is in the domain
of some set that is a restriction of the function S,

⋃
S(p) names the same object as p but at one type lower.

Hence, provably in S0 + SC, and omitting type suffices,

(
c0 = a& c1 = t1 & . . . & cl = tl & f = S�VΦ & g = h = S�PΦ

)
=⇒ ∀x :∈a

(
Φ(x, b)⇐⇒ Ψ(x, b,~c, f, g, h)

)

Now it is an instance of stratifiable ∆0 separation that

~∀~c∀f∀g∀h a ∩ {x | Ψ(x, b,~c, f, g, h)} ∈ V ;

since our intended values for ~c, f , g and h are all, provably in S0 + SC, sets, we may conclude that

a ∩ {x | Φ(x, b)} ∈ V

as required.

We have for the sake of clarity only considered Φ with only one free variable other than x, and that
distinct from a; adding further free variables distinct from x and a is easy, and to prove that a class of the
form a ∩ {x | Φ(x, b, a)} is a set, take a new variable d, show that

∀d a ∩ {x | Φ(x, b, d)} ∈ V

and then take the case d = a. a (8·3)

We have established the first part of the following; and the second part is straightforward.

8·4 THEOREM (Forster, Kaye) (i) The theory M0 is exactly KF + SC;

(ii) Quine’s system NF is exactly KF + V ∈ V .

8·5 Suppose we have a structure T = 〈T 0, T 1, . . . ;E0, E1, . . .〉 which is a set, and which forms an identity
model of TST, the simple theory of types. We shall build a model of KF by defining embeddings πT

n from
each Tn to Tn+1, and then taking the direct limit of the resulting directed system.

We begin by defining the sequence of type-raising embeddings. We shall treat them ambiguously as
functions πT

n : Tn −→ Tn+1; but also as terms πn of TST. For x0 ∈ T
0, πT

0 (x0) will be {x0}
T
1 , the object of

type 1 which T thinks is the singleton of x0. Thereafter, inductively, we put πT
n+1(xn+1) = πT

n “xn+1, which
is an object of type n+ 2, namely the interpretation in T of

{yn+1 | ∃zn zn ∈n xn+1 & yn+1 =n+1 πn(zn)}n+2,

an expression from which, for each n, the π’s may progressively be eliminated.

Successive π’s may be composed: for ` < m we write π`,m for the composition πm−1 ◦ πm−2 . . . ◦ π`.

8·6 LEMMA (TST) (i) xn =n yn iff πn(xn) =n πn(yn); thus each πn is an injection.

(ii) xn ∈n yn+1 iff πn(xn) ∈n+1 πn+1(yn+1).

(iii) xn+1 ⊆n+1 yn+1 iff πn+1(xn+1) ⊆n+2 πn+1(yn+1).

8·7 DEFINITION We write ∃∞n . . . to mean that there are infinitely many n such that . . ., and accordingly
write ∀∞n . . . to mean ¬∃∞¬ . . . ; in other words, that for all sufficiently large n, . . .

8·8 DEFINITION Let M0 be the set of functions f ∈
∏

n∈ω T
n with domain ω such that ∀∞n πT

n (f(n)) =
f(n+ 1). On that set we define relations:



THE STRENGTH OF MAC LANE SET THEORY 68

f ∼ g ⇐⇒df ∀
∞nf(n) = g(n)

fEg ⇐⇒df ∀
∞nf(n)Eng(n+ 1)

f v g ⇐⇒df ∀
∞nf(n) vn g(n).

We may consider the modelM(T ) to have as its underlying set the equivalence classes ofM0 modulo the
equivalence relation∼, and to have as its membership relation the relation induced between those equivalence
classes by the relation E onM0. The relation v then corresponds to the subset relation in M(T ).

8·9 Which axioms of set theory are true inM(T ) ? There is one obvious failure, given that T 0 is non-empty,
in the model that we have built, namely the Axiom of Foundation, for let a0 be an object of type 0, and let
f(0) be a0 and f(n + 1) = πn(f(n)) for every n. Then fEf ; indeed in our model, f is a Quine atom, that
is, a set which equals its own singleton.

8·10 DEFINITION The start of a member x of M(T ), start(x), is the least natural number k such that x is
represented by a function, f say, which for all n > k observes the π-rule that πT

n (f(n)) = f(n+ 1).
We may write such x as [xk] where k = start(x).

8·11 LEMMA (i) x0E
0π0(y0)⇐⇒ x0 = y0;

(ii) xn+1E
n+1πn+1(yn+1)⇐⇒ ∃xn[xnE

nyn+1 & xn+1 = πn(xn)]

Rephrasing in terms of members of M(T ) gives us:

8·12 LEMMA (i) [x0]E[y0]⇐⇒ x0 = y0; (ii) for ` < m, [x`]E[ym]⇐⇒ π`,m−1(x`)E
m−1ym;

(iii) if xEy then either start(y) = 0 & x = y or start(y) > 0 & start(x) < start(y).

Proof of (ii):

x`Eym ⇐⇒ π`,m(x`)E
mπm(ym)

⇐⇒ ∃zm−1 : Em−1ym π`,m(x`) = πm−1(zm−1)

⇐⇒ π`,m−1(x`)E
m−1ym a (8·12)

8·13 PROPOSITION (i) The only members of M(T ) with start 0 are Quine atoms;

(ii) the empty set has start 1;

(iii) if start(y) > 0 and xEy then start(x) < start(y);

(iv) if xEx then start(x) = 0 and x is a Quine atom of M(T );

(v) if start(y) > 0 and x v y then start(x) 6 start(y).

Proof : immediate. Parts (ii) and (iv) make the hypothesis start(y) > 0 necessary for Part (v). a (8·13)

8·14 REMARK It would be ontologically simpler to think of the universe of the model M(T ) as

T 0 ∪
⋃

n

(Tn+1
r πn“Tn),

since that set forms an exact transversal of the equivalence classes; with the above lemma in mind, one would
then define the relation E on that transversal by the equations

x0Ey0 ⇐⇒ x0 = y0; for ` < m, x`Eym ⇐⇒ π`,m−1(x`)E
m−1ym

To this author at least, the “direct limit” version is conceptually simpler and we shall therefore continue
to have it in mind; but at the end of the section, where we must minimise the strength of the set theory
necessary for this construction, this second approach will be helpful.

We pause briefly, now that we have the concept of a Quine atom, to justify Remark 1·26.

8·15 REMARK Consider an infinite set X of Quine atoms, and iterate the power set operation ω times over
X . Call the result Q. AxInf, ExInf and InfWel are true in Q, but (W0)

Q will be precisely the hereditarily finite
sets, Vω , and hence contain no infinite set.
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8·16 Our pause over, we proceed to verify that in M(T ), each axiom of KF is true, as also the Forster–
Kaye axiom SC; and to establish that various forms of the axiom of infinity will transfer satisfactorily from
T to M(T ). Our verification takes the form of a series of lemmata of type theory, stated formally and
schematically with at most the baldest of proofs, accompanied by a commentary, stated less formally, on the
significance of those lemmata for our model.

Extensionality: We must show that if f v g and g v f then f = g; but that follows from the truth of
extensionality at each type level in T .

Empty Set: let ∅k be for k > 0 the empty set of type k in T k, and consider the function (∗,∅1,∅2, . . .),
where * denotes an arbitrary element from the correct type, here 0.

8·17 LEMMA (TST) πk(∅k) =k+1 ∅k+1.

That Lemma proves that the function in question is indeed inM0; it represents the empty set ofM(T ).

Pair set: given f and g, set h(0) = ∗, and h(n+ 1) = {f(n), g(n)}n+1. That h will be in M0 if both f and
g are, and will represent the pair set of the elements represented by f and g, follows from this

8·18 LEMMA (TST) πk+1

(
{xk, yk}k+1

)
=k+2 {πk(xk), πk(yk)}k+2.

Union:

8·19 LEMMA The union
⋃

n+1
(xn+2) of an object of type n+ 2 is of type n+ 1, namely

{
zn

∣
∣ ∃yn+1 zn ∈n yn+1 ∈n+1 xn+2

}

n+1
.

8·20 LEMMA (TST) πn+1

(⋃

n+1
(xn+2)

)
=n+2

⋃

n+2

(
πn+2(xn+2)

)
.

Proof :
⋃

n+2

(
πn+2(xn+2)

)
=n+2

⋃

n+2

(
πn+1“xn+2

)

=n+2

{
zn+1

∣
∣ ∃tn+1

(
tn+1 ∈n+1 xn+2 & zn+1 ∈n+1 πn+1(tn+1)

)}

n+2

=n+2

{
zn+1

∣
∣ ∃sn ∃tn+1

(
sn ∈n tn+1 & tn+1 ∈n+1 xn+2 & zn+1 =n+1 πn(sn)

)}

n+2

=n+2

{
zn+1

∣
∣ ∃sn :∈n

⋃

n+1
(xn+2) zn+1 =n+1 πn(sn)

}

n+2

=n+2 πn“
(⋃

n+1
(xn+2)

)

=n+2 πn+1

(⋃

n+1
(xn+2)

)
. a (8·20)

Thus given a set in M(T ) represented by the function f ∈ M0, the function g defined by setting
g(0) = ∗ and g(n+ 1) =

⋃

n+1
(f(n+ 2)) will be in M0 and will represent the union in M(T ) of that set.

Difference:

8·21 LEMMA The difference of two objects of type n, at least 1, is an object of type n.

8·22 LEMMA (TST) πn(xn rn yn) =n+1 πn(xn) rn+1 πn(yn).

Thus if A and B in M(T ) are represented by functions n 7→ an, n 7→ bn, the difference (A r B)M(T )

will be represented by the function n 7→ an rn bn.

Power Set:

8·23 LEMMA The power set Pn+2(xn+1) of an object of type n+ 1 is an object of type n+ 2, namely
{
yn+1

∣
∣ yn+1 ⊆n+1 xn+1

}

n+2
.

8·24 LEMMA (TST) πn+2

(
Pn+2(xn+1)

)
=n+3 Pn+3(πn+1(xn+1)).

πn+2

(
Pn+2(xn+1)

)
=n+3 πn+1“

(
Pn+2(xn+1)

)
Proof:

=n+3 {πn+1(yn+1) | yn+1 ⊆n+1 xn+1}n+3;

Pn+3(πn+1(xn+1)) =n+3 {zn+2 | zn+2 ⊆n+2 πn+1(xn+1)}n+3;
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By Lemma 8·6, part (iii), yn+1 ⊆n+1 xn+1 ⇐⇒ πn+1(yn+1) ⊆n+2 πn+1(xn+1); and each zn+2 ⊆n+2

πn+1(xn+1) is of the form πn+1(yn+1) for some yn+1 with yn+1 ⊆n+1 xn+1. a (8·24)

Thus if given f ∈M M0, we set g(0) = ∗, g(1) = ∗ and g(n+ 2) = Pn+2(f(n+ 1)), g will be in M0 and
will represent the power set of the set represented by f in M(T ).

The scheme of stratifiable ∆0 separation:

8·25 LEMMA Let ϕ(xn, ak) be a stratified ∆0 formula. Then

`TST ϕ(xn, ak)⇐⇒ ϕ+
(
πn(xn), πk(ak)

)
,

where ϕ+ is the result of increasing the type of each bound variable in ϕ by 1.

Proof : by induction on the length of ϕ, much as for Proposition 7·1. For atomic stratified formulæ apply
Lemma 8·6, parts (i) and (ii). Propositional connectives present no problem. For restricted quantifiers, note
that for ψ a proper sub-formula of ϕ, the induction hypothesis gives

ψ(xn, y`, b`+1 . . .)⇐⇒ ψ+(πn(xn), π`(y`), π`+1(b`+1) . . .),

whence, and from the definition of π`+1,

∃y` :∈` b`+1 ψ(xn, y`, b`+1 . . .)⇐⇒ ∃y`+1 :∈`+1 π`+1(b`+1) ψ
+(πn(xn), y`+1, π`+1(b`+1) . . .) a (8·25)

8·26 REMARK We have not yet defined the intersection xn ∩n yn of two objects of the same type, n, but
can easily do so as xn rn (xn rn yn): evidently another object of type n.

8·27 PROPOSITION Let ϕ(xn, ak) be a stratified ∆0 formula. Then

`TST πn+1

(
bn+1 ∩n+1 {xn | ϕ(xn, ak)}n+1

)
=n+2 πn+1(bn+1) ∩n+2

{
xn+1

∣
∣ ϕ+

(
xn+1, πk(ak)

)}

n+2
.

Proof : by Lemma 8·25, again with the fact in mind that the members of πn+1(bn+1) are the objects xn+1

of the form πn(xn) for some xn ∈n bn+1. a (8·27)

The Proposition shows that if Φ is a stratifiable ∆0 formula of the language of set theory, and B, A are
members of M(T ), represented by the functions n 7→ bn, n 7→ an in M0, B ∩ {x | Φ

M(T )(x,A)} will be a
member of M(T ), represented by the function

0 7→ ∗

n+ 1 7→

{

bn+1 ∩n+1 {xn | ϕ(xn, a`+n)}Tn+1, if `+ n > 0
∗ otherwise

where the lag `, some positive or negative integer, is determined by the chosen stratification ϕ of Φ.

The Forster–Kaye axiom: let A in the model M(T ) be represented by a function starting with the member
a of T of type n+1. For x ∈n a, x of type n, we define functions to represent x, {x}, . . . by giving one value
of the function and agreeing that later values of the function are governed by the π-rule.

gx(n) = x

g{x}(n+ 1) = {x}Tn+1

g{{x}}(n+ 2) = {{x}Tn+1}
T
n+2

g{{x}, x}(n+ 2) = {g{x}(n+ 1), gx(n+ 1)}Tn+2

g〈{x}, x〉(n+ 3) = {g{{x}, x}(n+ 2), g{{x}}(n+ 2)}Tn+3

gS � A(n+ 4) = {g〈{x}, x〉(n+ 3) | x ∈n a}
T
n+4

That final term may be written in more detail as
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{
yn+3

∣
∣ ∃xn xn ∈n a & yn+3 =n+3 g〈{xn}, xn〉(n+ 3)

}T

n+4

where we rely on the uniformity of our previous definitions in x to eliminate the g’s in favour of type-
theoretical expressions and thus show that a member of T n+4 is indeed being defined. Our previous lemmata
will show that the function gS � A is in M0 and represents S � A in the model M(T ).

If A can be represented by some element a0 of type 0, we are in the case of Quine atoms, and inM(T ),
A = {A}. Hence in that model, we may build S � A by hand, as it proves to be {〈A, A〉}.

We conclude from Theorem 8·3 that we have built a model, M(T ), of M0.

The axiom of infinity:

8·28 First let us remark that if T fails to satisfy an axiom of infinity, so will M(T ): for if T 0 is empty, we
may still create a model of M0 by requiring our functions only to have domain ω r {0}: the result will be
the familiar hierarchy of hereditarily finite sets; and if T 0 has exactly k elements for some positive natural
number k, the model T will consist solely of finite sets, and in the model M(T ) the axiom of infinity will
be false but the statement that there are exactly k Quine atoms will be true.

In all other cases, there will be an infinite well-ordering in the final model, even if T 0 is non-standard
finite in some sense. For then T 2 will certainly have a genuinely infinite well-ordering.

8·29 Now we wish, more specifically, to see how the three forms of the axiom of infinity, AxInf, ExInf and
InfWel, that we have proposed for use with KF, will survive the journey from a model of type theory to
one of set theory. Each has a natural translation into a type-theoretical formula, expressing that there is,
respectively, a set of objects of type 0 with an injection that is not a bijection; a set of objects of type 0
that has no double-well-ordering; a non-empty set of objects of type 0 that has a well-ordering with no last
element.

AxInf is the easiest of the three statements to transfer, simply because statements about bijections and
injections reduce to statements about various ordered pairs.

The other two statements require an examination of the manner in which subsets of elements ofM(T )
arise. We shall see that a well-ordering in the sense of T will transfer to a well-ordering in the sense of
M(T ), and, conversely, every well-ordering in M(T ) will arise from a well-ordering in the sense of T . The
following lemma, which amplifies part (v) of Proposition 8·13, is what we need.

8·30 LEMMA (TST) (i) z1 ⊆1 π0(y0) =⇒ z1 =1 ∅1 or z1 = π0(y0);

(ii) If zn+2 ⊆n+2 πn+1(yn+1), then ∃tn+1(πn+1(tn+1) = zn+2).

Proof : the first part is immediate, since π0(y0) is the singleton of y0. For the second part, take tn+1 to be
{wn | πn(wn) ∈ zn+2}n+1, and use the fact that πn+1(yn+1) =n+2 πn“yn+1. a (8·30)

So if b is an element of M(T ) that starts at level k, each “subset” a of b in the sense of that model
starts at level k or earlier. Hence the concept of well-ordering is preserved between the two models.

Finally, let us see how the infinite von Neumann ordinals fail to emerge in this context. We have seen how
the representative of the empty set starts at type 1 with ∅1; and we have seen how to form representatives of
unordered pairs. To simulate the von Neumann ordinals 0 = ∅, 1 = {0}, 2 = {0, {0}}, 3 = {0, {0}, {0, {0}}},
& c, while preserving correct type levels, we must begin thus:

0 = (∗,∅1, π1(∅1), . . .)

1 = (∗, ∗, {∅1}2, π2({∅1}2), . . .)

2 = (∗, ∗, ∗, {∅2, {∅1}2}3, π3({∅2, {∅1}2}3), . . .)

3 = (∗, ∗, ∗, ∗, {∅3, {∅2}3, {∅2, {∅1}2}3}4, π4({∅3, {∅2}3, {∅2, {∅1}2}3}4) . . .)

The impending difficulty with finding ω in the model is apparent, and indeed our modelM(T ) will not
think that ω ∈ V : where could its representing function start ?

We may now summarise the effect of our construction.

8·31 THEOREM To any identity model T of TST we may associate a modelM(T ) of M0 in which:
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if T 0 is empty, the axiom of foundation will hold;

if T 0 is non-empty, the axiom of foundation will fail and there will be Quine atoms;

if T 0 is finite, AxInf and other axioms of infinity will be false;

if an axiom of infinity is true in T , the corresponding axiom of infinity will be true;

each finite von Neumann ordinal will exist;

in no case will the existence of the von Neumann ordinal ω be true.

8·32 REMARK A model containing Quine atoms cannot be well-founded, butM(T ) will be well-founded in
a weak sense: if X is a non-empty subset ofM(T ) containing no elements of start 0, then any member y of
X with minimal start will have no members in common with X , by Proposition 8·13; in particular, if T 0 is
empty, M(T ) will be well-founded.

8·33 We must consider the strength of the metatheory needed to turn the above into a relative consistency
proof. Really there are two questions of interest:

(8·33·0) How strong a set theory is needed to constructM(T ) given T ?

(8·33·1) How strong a theory is needed to derive Consis(M) from Consis(TSTI) ?

The chief problem in each case is that of defining the sequence of functions πk and proving it to be a
set. A sufficient set theory for the construction of the modelM(T ) from T is the theory MAC+ Induction, but
we can do better: write T for

⋃

k T
k; then each πn is a partial map from T to T and therefore an element

of P(T × T ); hence, using P(T × T ) as a parameter, we may show that πn is defined for all n by appeal to
set Foundation rather than Π2 Foundation: so MAC suffices.

For the second question, the best answer this paper can supply — proof theorists can do better — is
that second-order arithmetic is sufficient. One is told that TSTI is consistent; one builds a model T of TSTI

following the procedures of Gödel’s completeness theorem; the underlying universe of that model is ω. One
then sets up the sequence of definitions of the functions πT

i , forms the transversal Q given in Remark 8·14,
defines the relation E on Q following the equations given in Remark 8·14, verifies that the outcome is a
model of M0 + InfWel, and infers that that latter theory is consistent, whence, essentially by Proposition 2·43,
there follows, in arithmetic, the consistency of M.

The derivation of Consis(M0) from Consis(TST) is similar but easier.

Kemeny’s Princeton thesis of 1949

Kemeny in his thesis (Princeton, 1949) [G1] studied versions of the simple theory of types and of
Zermelo’s set theory. Of his system of type theory, which he calls T, though we shall usually call it TKTI, or,
shorn of its axiom of infinity, TKT, he states that the basic ideas of T are taken from a system due to Tarski
[G6]. T differs from this system in that it contains axioms of infinity and choice, and it has a description
operator. He credits the main ideas of the formalisation of his version, which he calls Z, of Zermelo’s system
to Skolem: Z too is equipped with a description operator and axioms of infinity and choice. He recommends
Quine’s paper [G5] for a good discussion of the history of the systems he considers, but stresses that Quine’s
systems contain no axiom of infinity or of choice. We need not, in our discussion, consider the fine detail of
Z and therefore shall state his results as though he had adopted our formalisation Z.

In his thesis, which, regrettably, was never published, though an abstract [G2] exists, Kemeny refuted
the belief that Z and TKTI were of more or less the same strength by showing that Z would prove the
consistency of TKTI.

He wrote to the author on November 27th 1989 as follows:

Dear Professor Mathias,
My thesis was going to be written up jointly with a PhD student of mine. But his

interests shifted, and when he admitted that he would never get to the paper, my interests
had shifted too. So the only publication was the abstract.

Princeton used to provide photographic copies, at a fee. I know that several people
had gotten copies – but that was years ago. I hope that the statute of limitations has not
expired! The title was “Type Theory vs. Set Theory”, and the thesis is dated 1949.
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Incidentally it not only shows that one can prove the consistency of TT in ST, but
the latter is stronger in every sense. One can even give a truth definition (à la Tarski)
for TT in ST. And there were similar results for various transfinite extensions of the two
theories.

Sorry that I can’t be more helpful.

Sincerely yours,
John G. Kemeny

Dartmouth College

Intuitively the system T of Kemeny’s thesis concerns objects of type 0, 1, . . ., and each object of a given
type counts as an object of every higher type. To illustrate its style, we quote from pages 1–3 of his thesis,
giving Kemeny’s text in slanted type, with his footnotes incorporated, and our comments in Roman.

T is a system usually described as a singulary theory of types of type ω. It is a simple (not
ramified) theory of types having only one-place predicates in it, but of all finite types. This system
is as strong as the Russell–Whitehead system.

Primitive symbols: (, ), [, ], ∼, ⊃, ∀, ι, and for n = 0, 1, . . ., variables xn, yn . . . with subscript
n. These are individual and functional variables (i.e. set variables); thus no propositional variables
are used.

Well-formed formulæ and terms of type n: (Definition by recursion.)

1. If an is a variable with subscript n, then (an) is a term of type n.

2. If an is a variable with subscript n and A is a well-formed formula, then (ιanA) is a term of type n.

3. If A, B are w.f.f. and an is a variable then [∼ A], [A ⊃ B], [∀anA] are w.f.f.

4. If An1 , Bn2 are terms of type n1, n2, and n2 < n1, then [An1Bn2 ] is a w.f.f.

5. The sets of w.f.f. and of terms of type n are the smallest sets having all four of the above properties.

[Thus every term is enclosed in round brackets, and every w.f.f. in square ones.]

Convention: an, bn, . . . are used to stand for variables with subscript n;

An, Bn, . . . are used to stand for terms of type n.

A, B, . . . are used to stand for w.f.f.

We introduce all the usual abbreviations. In particular we introduce the abbreviations:

an1 = bn2 to stand for [cn3an1 ] ≡cn3
[cn3bn2 ] where n3 = max(n1, n2) + 1

In this, and similar definitions some convention, only too well known, must be adopted as to which

variable cn3 is.

[Note that equality is defined as anti-extensionality, since the intended meaning of [s t] is t ∈ s. Note
also that ≡ is not among the primitive symbols.]

S.
(an1) . . . (ank

)
Am1 . . . Amk

A|

to stand for the result of replacing all free occurrences of the (ani
) by Ami

, simultaneously for all i, in A.

[Note that there is no requirement that ni = mi.]

For each n > 0, we introduce 0n to stand for ιxn.∀yn−1. ∼ [xnyn−1]

{an, bn} to stand for ιcn+1[cn+1dn] ≡dn
.dn = an ∨ dn = bn.

〈an, bn〉 to stand for {{an, an}, {an, bn}}

Axiom schemata:

(1) A
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where A is a substitution instance of a tautology.

(2) A ⊃an
B ⊃ .A ⊃ .∀anB

where an is not free in A.

(3) [∀anA] ⊃ [S.
(an1)
Bn2

A
∣
∣]

where n2 6 n, and no free variable of Bn2 is bound in A.

8·34 REMARK Kemeny’s comma, written on a type-writer, and looking like a 1, may have misled him. I
suggest that (3) should read

(3′) [∀an1A] ⊃ [S.
(an1)
Bn2

A
∣
∣]

where n2 6 n1 and no free variable of Bn2 is bound in A.

[The next is the axiom of extensionality:]

(4) [(bn+1)(an) ≡an
(cn+1)(an)] ⊃ [bn+1 = cn+1]

[The next three define the workings of the ι symbol: really it would now be called Hilbert’s ε-symbol,
for uniqueness is not required. In particular this functions as an axiom of choice.]

(5∗) [∃anA] ⊃
[
S.

(an)
(ιanA)

A|
]

where no variable is both free and bound in A.

[Footnote: This axiom, the choice axiom, may be weakened into a description axiom

(5)
[
∃an.A & .S.

(an)
(bn1)

A| ⊃bn1
.bn1 = an

]
⊃

[
S.

(an)
(ιanA)

A|
]

where no variable is both free and bound in A, n1 6 n, and bn1 does not occur in A.]

(6) [∀an ∼ A] ⊃ [(ιanA) = 0n] n > 0

(7) [A ≡an
B] ⊃ [(ιanA) = (ιanB)]

[The next is the scheme of Comprehension:]

(8) ∃bn+1∀an.[(bn+1)(an) ≡ A]

where bn+1 is not free in A.

[Finally Kemeny formulates an axiom of infinity:]

∃a3.∃a0.∀b0
[
∼ [(a3)(〈b0, a0〉)]

]
&(9)

& ∀a1

[

∃c0
[
(a1)(d0) ⊃d0 .(a3)(〈e0, d0〉) ⊃e0 (a3)(〈e0, c0〉)

]
⊃

⊃ ∃f0[(a3)(〈g0, f0〉) ≡g0 (a1)(g0)]
]
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[If we write Xa = {b | b is of type 0 and 〈b, a〉 ∈ a3}, we may paraphrase the axiom thus:

∃a3∃a0

(

Xa0 is empty & ∀a1

[

if ∃c0∀d0 :∈a1 Xd0 ⊆ Xc0 then ∃f0Xf0 = a1

])

Thus the axiom generates objects f 0
0 , f1

0 , f2
0 , . . ., of type 0, with Xf0

0
= ∅, Xf1

0
= {f0

0 }, Xf2
0

= {f0
0 , f

1
0},

and so on, and we are therefore guaranteed an infinity of objects of type 0, and thence of every larger type.]

Rules of inference:

[I] From A and [A ⊃ B] infer B.

[II] From A infer [∀anA].

[Note that Axiom 3 gives copies of terms at higher types: let A be ∃bnan = bn. Let m < n, and let
am be a variable with subscript m. Then Axiom 3 yields, since ∀anA, by substitution, ∃bn(am) = bn. By
considering a more complicated formula involving ordered pairs of objects, we can ensure that if two terms
are “equal” their copies are “equal”.]

Completing the circles

We see that Kemeny’s system TKTI differs from TSTI by permitting the membership relation to hold
between a term and another term of any higher type, rather than just the next one; by defining an equality
relation which may hold between any two terms, even of different types; by having a different formulation
of the axiom of infinity; and by having ι- or rather ε-operators.

Nevertheless it may be verified that, provably in analysis, his system is equiconsistent with M and TSTI,
and his system without infinity is equiconsistent with M0, KF and TST. We outline the necessary steps.

First, we should show that each instance of our axioms of equality corresponds to a theorem of Kemeny’s
system. Then we should show that our chosen axiom of infinity in TSTI follows from that in TKTI .

That done, we may say that TST is a subsystem of TKT and TSTI of TKTI .
Then we may verify that TKTI is interpretable in M + KPL, for then we may simply interpret an iota

term as giving the first constructible example of whatever the formula might say. Here the fact that ω is
transitive is useful, for it enables us to accommodate the cumulative character of Kemeny’s types without
difficulty, since ω ⊆ P(ω) ⊆ PP(ω) . . .

For the case without the axiom of infinity, we must invoke the second epsilon theorem of Hilbert and
Bernays to know that the iota terms have not increased the strength of Kemeny’s system. For details, see
Chapter III of the treatise of Leisenring [J1].

We complete one circle of equiconsistency by applying the result of Theorem 8·31, that a model of M0 is
recoverable from a model of TST. For models of the axiom of infinity, there is one minor point that perhaps
should be repeated.

We have seen that armed with T , a model of TSTI, we may build a model of M0 plus an axiom of infinity
which we may take in the form InfWel, which model will however contain Quine atoms and therefore fail to
model Foundation, and moreover will contain no infinite von Neumann ordinal.

If we move to the union of all transitive sets, we retain the Quine atoms, since each Quine atom is a
member of a transitive set, namely itself. So the Axiom of Foundation will remain false.

We might be tempted to move from M(T ) to the union of all its well-founded transitive sets, which
will give us foundation and exclude the Quine atoms, but, as we saw in Remark 8·15, we might thereby have
lost the axiom of infinity altogether. Therefore to pick up ω it is necessary to go directly from M(T ) to
our model built from well-founded extensional relations. Thus we use our Axiom H spectacles to go from a
model of M0 to one of M1 + H, and the infinite well-ordering will form a well-founded extensional relation,
and by Proposition 2·43 the vague form InfWel of the axiom of infinity will have become true in the precise
form ω ∈ V . Hence the importance, in §2, of working in M0 rather than M1.

8·35 REMARK A curiosity of our discussion is that to derive the consistency of TKTI from that of TSTI, we
have first to establish the consistency of the set-theoretic system M, and thus our derivation is in analysis,
though we are assured that the machinery of proof theory can supply a derivation in primitive recursive
arithmetic. One natural idea does not work: the system TSTI is designed to relate well to stratified formulæ,
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but if one liberalises the notion of stratification to accept all formulæ which admit a type assignment such
that in an atomic formula xi ∈ yj the type j is any integer strictly greater than the type i, NF would become
inconsistent, since, as noted by Kirmayer, the Russell class would become a set, being then definable as

{
x3

∣
∣ ∃y2[¬(y2 ∈ x3) & ∀z1(z1 ∈ y2 ⇐⇒ z1 ∈ x3)]

}
.

8·36 HISTORICAL NOTE The detailed arguments of this section have been developed by the author starting
from the outlines given in unpublished work of Forster and Kaye. Flattered though the author of the present
paper is by the kind comment of the referee that it is the first to give a complete proof of the equiconsistency
of TSTI and MAC, he must allow that the detail is not yet complete, for he is unable, with his techniques and
their reliance on the axiom of infinity for the Gödelisation of formal languages and appeal to model-theoretic
notions, to reduce the requisite metatheory to primitive recursive arithmetic, though proof theorists assure
him that that can be done.

Jensen in [G8] mentions that the said equiconsistency is part of the folk-lore of the subject; he gives the
beginning of a sketch of a proof, but as correctly remarked by Lake [G9], his definitions and his arguments
are incomplete.

Lake in his very compressed paper [G9] shows how to define a model of M0 starting from a model of
TST; it is possible to see in his paper the precursors of the ideas underlying the proof sketched by Forster
and Kaye.

9: Limitations of MAC and Z

Failure of stratifiable Π1 Collection in Z

We begin with the following example of the scheme of Collection. Consider the formula

C`(a, f) ⇐⇒df Fn(f) & Dom (f) = a & ∀x :∈a f(x) 6< ℵ0 & ∀x, y :∈a f(x) 6= f(y),

which says that f associates a set to each member of a, the sets associated being none finite and no two of
the same cardinal.

That formula is stratifiable and Π1. In Z one may prove that ∀a :∈ω ∃fC`(a, f), as the set of failures
may be formed and the least member taken. That formula is the hypothesis of an instance of the scheme
of stratifiable Π1 Collection; but the conclusion, ∃c∀a :∈ ω ∃f :∈ c C`(a, f), is refutable in KLMZ, for the
existence of such a c entails in ZC + H the existence of ℵω, which would contradict the minimality axiom of
KLMZ.

We have seen that if Consis(Z) then Consis(KLZ); whence the consistency of the theory KLMZ, for if ℵω

exists in a model of KLZ, then in that model we may form Lℵω
which is itself a model of KLMZ. Hence

9·0 METATHEOREM ZC + H, if consistent, does not prove the scheme of stratifiable Π1 Collection.

9·1 REMARK As a curiosity, the conclusion, that there is an infinite set of infinite cardinals, is provable in
Z plus the existence of a Dedekind-finite set that is not finite: for if p 6= p + 1 66 ℵ0, and we pick P disjoint

from ω with P = p, we may, even in Z, form the family {P ∪ n | n ∈ ω}. Hence our use of the Axiom of
Choice in the above discussion, which use of the following variant, again stratifiable Π1, would obviate.

Cm(a, f) ⇐⇒df Fn(f) & Dom (f) = a & ∀x :∈a f(x) is a non-empty well-ordering with

no maximal element & ∀x,y :∈a Field(f(x)) 6= Field(f(y)).

9·2 REMARK NF-ists and type-theorists may object to ω; our counterexample may be purified by proving
first that for all finite a there is an x with Cm(a, x) and then considering a set containing finite sets of all
sizes.

We saw in §6 that over KF, stratifiable Π1 Collection proves stratifiable ∆P
0 Collection, but even over

MOST the converse is not clear. Hence a slightly different approach will be needed to obtain a failure of
stratifiable ∆P

0 Collection in ZC + H: here is one.
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9·3 EXAMPLE Define the relation � between sets by

A2 � B2 ⇐⇒df ∃X1∃Y2(Y2 = P(X1) & ∃f4∃g4(f4 : A2
1−1
−→ {{a0} | a0 ∈ X1} & g4 : Y2

1−1
−→ B2).

Thus A � B expresses the assertion that 2A 6 B, and, as the type indices show, does so in a stratifiable
way, since in the above context {{a0} | a0 ∈ X1} = Y2 ∩ {y1 | ∃a0 :∈X1 y1 = {a0}}. The relation � is ΣP

1 .

9·4 PROPOSITION (ZF) If ζ > 0 and Vζ |= stratifiable ∆̇P
0 Collection, then ζ = iζ .

Proof : ζ cannot be a successor: let c = Vη ∈ Vη+1; then in Vη+1 anything which is a member of anything is a
member of c; hence both ∀z∃x(x /∈ c) and ¬∀a∃b∀z :∈a ∃x :∈b (x /∈ c) are true in Vη+1, violating stratifiable
∆̇0 collection.

Suppose then that ζ is a limit ordinal with ζ < iζ . There is an (I,<I) in Vζ which is a well-ordering
of order type ζ. Let J = {X ⊆ I | X is an initial segment of I under <I}.

Denote by Cg(X, I, f) the assertion that f is a 1-1 function with domain X such that ∀ξ :∈X (f(ξ) is
infinite) and ∀ξ, η :∈X(ξ <I η =⇒ f(ξ)� f(η)). Cg is stratifiable and ΣP

1 .
Then

Vζ |=
∧
X : ε J

∨
f Ċg(X, f)[I ] ∧ q

∨
K

∧
X : ε J

∨
f : εKĊg(X, f)[I ]

since any such K would have to have cardinality at least iζ . So we have a failure of Σ̇P
1 Collection, which

by Proposition 6·14 will yield a failure of ∆̇P
0 Collection. Contradiction ! a (9·4)

9·5 COROLLARY If V = L and ℵω < ON , both stratifiable ∆̇P
0 Collection and stratifiable Π̇1 Collection fail

in Lωω
.

Proof : by Proposition 9·4 and Corollary 6·15.

9·6 METATHEOREM ZC + H, if consistent, does not prove the scheme of stratifiable ∆P
0 Collection.

Failure of ∆P
0 and Π1 Replacement in Z

We have seen three stratified instances of a scheme of Collection where Z can prove the hypothesis,
but the conclusion can be refuted in KLMZ, and hence the scheme is unprovable in Z, always assuming that
system is consistent.

Knowing from Coret that stratifiable Replacement is provable in Z, we consider an unstratified variant
of the formula C`.

9·7 DEFINITION By a type sequence we mean a sequence s such that

Dom (s) ∈ ω& s(0) = ω& ∀k :∈ω
(
k + 1 ∈ Dom (s) =⇒ s(k + 1) = P(s(k))

)
.

We write TS(n, s) for the formula asserting that s is a type sequence of length n + 1, and TS(n) for the
formula ∃s TS(n, s).

9·8 REMARK The formula TS(n, s) is Π1 and ∆P
0 ; the formula TS(n) is Σ2 and ΣP

1 . We shall see that these
formulæ are irredeemably unstratifiable.

9·9 METATHEOREM It is provable in Z that ∀n :∈ω ∃!s TS(n, s); that ∃c∀n :∈ω ∃s :∈c TS(n, s) is refutable
in KLMZ; hence the schemes of Π1 and ∆P

0 Replacement are refutable in KLMZ and in particular are provable
neither in Z nor in MOST.

In §7 we saw that MAC proves strong stratifiable Π1 Replacement and KF proves strong stratifiable ∆P
0

Replacement.
The following remark owes much to a discussion with Thomas Forster:

9·10 REMARK The two differences between C`(n, f) and TS(n, s) is that the former is stratifiable but the
latter not, whereas the s is unique given n whereas the f is not. Both of them assert the existence of
increasing sequences of infinite cardinals, one vaguely and the other giving a unique construction. Now
by Coret, stratifiable Replacement is provable in Z; but Z cannot build an infinite set of alephs. There
therefore cannot be a stratifiable version of TS(n, s): thus there is no homogeneous function which, provably
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in Z, raises cardinals, where we call an operation F homogeneous if there is a formula G(x, y) which has a
stratification assigning equal types to the variables x and y, such that G(x, y) holds if and only if x = F (y).

That tells us, for example, that there is no stratifiable way to develop the theory of L and its global
well-ordering <L. For suppose we have a stratifiable formula that, if V = L, means x is the <L-first thing
after y to fulfil some stratifiable condition such as being of larger cardinal. Run that formula in KLMZ, and
use it to build a stratifiable version of TS(n): for each (stratifiable integer) m the object at m + 1 is the
next one after the object at m. But then, using stratifiable Replacement, we could build an infinite set of
distinct infinite well-ordered cardinals, which we know to be impossible.

9·11 REMARK Compare the above remark with the observation of Forster that Boffa’s permutation argu-
ment, presented in §7, shows that there is no stratifiable total ordering of HF, the set of hereditarily finite
sets.

Failure of Induction and other schemata in MAC

Now we look at those instances from the perspective of MAC. First, a remark due essentially to Gödel.

9·12 METATHEOREM Any arithmetical statement provable in KLZ0 is provable in Z0.

Proof : in the process of shrinking to a model of Z
+
0 , extending to a model of Axiom H and shrinking again

to L, the integers are not affected. a (9·12)

Z0 + AC is the same system as ZBQC.

9·13 THEOREM Each of the formulæ ∃c∀n :∈ω ∃f :∈ c C`(n, f), ∃c∀n :∈ω ∃f :∈ c Cm(n, f), ∃c∀n :∈ω ∃f :∈
c Cg(n, f) and ∃c∀n :∈ω ∃f :∈c TS(n, f), if added to MAC, proves the consistency of Z.

Proof : In the theory MAC + ∃c∀n :∈ ω ∃f :∈ c C`(n, f), move to the H-model, (treating ω as a parameter
about which a stratified statement is being made); we may well-order such a c; the order-type is at least ωω,
which therefore exists; but now Lωω

is a model of ZC + H; hence we have proved Consis(Z), an arithmetical
fact that we can pull back to the ground model.

The next two cases are handled similarly. In the last case, if ∃c∀n :∈ω ∃f :∈ c TS(n, f), argue directly
that c will enjoy the same property in the H-model, as follows: let c be a member of the transitive set u, and
consider P(u). Then if TS(n, f) with n ∈ ω and f ∈ c, the property TS(n, f) is equivalent to

Dom (f) ∈ ω& f(0) = ω& ∀k :∈ω
(
k + 1 ∈ Dom (f) =⇒ ∀v :∈u (u ∈ f(k + 1)⇐⇒ u ⊆ f(k))

)
,

a ∆0 formula, and hence absolute. Complete the argument as before by well-ordering c in the H-model.
a (9·13)

We essentially saw in §8 the following:

9·14 THEOREM The theory M + ∀n :∈ω TS(n) proves the consistency of TSTI and therefore that of MAC.

Proof : a contradiction in TSTI will only involve variables of type less than or equal to n, for some n: but
that fragment of type theory is interpretable in a type sequence of length n + 1. Hence the consistency of
TSTI, which, as we have seen, implies, in second-order arithmetic and therefore in M, the consistency of MAC.

a (9·14)

Note that that proof would not work in the theory M + all statements TS(n) for each concrete n, since
our quantifier over all types (in the metatheory of TSTI) could not be constrained to be standard. That is
fortunate, as each statement TS(n) is provable in M .

Indeed we may summarise our remarks in the following pleasing form:

9·15 THEOREM There are instances of stratifiable Π1 collection and of stratifiable ∆P
0 collection of which

(i) MAC plus the hypothesis proves the consistency of MAC;

(ii) Z proves the hypothesis;

(iii) MAC plus the conclusion proves the consistency of Z.



79 A. R. D. MATHIAS

Proof : If we are in the theory MAC + ∀n :∈ω ∃fC`(n, f), again we may treat ω as a parameter about which
a stratified statement is being made, and move to the H-model in which MOST + ∀n :∈ ω ∃fC`(n, f) hold.
In that theory we may easily prove that each ωn exists; then we may move to L, where it will still be true
that ∀n∃ωn; but then we may prove that ∀n TS(n) holds in L; hence Consis(MAC) is true there, therefore in
our MOST model therefore in the original MAC model, proving Part (i). Parts (ii) and (iii) have already been
treated.

a (9·15)

a (Theorem 16)

We know from Theorem 9·14 and the Second Incompleteness Theorem that if MAC is consistent it cannot
prove ∀n :∈ω TS(n).

However, let us note various systems which do prove ∀n :∈ω TS(n) or ∀n :∈ω ∃fC`(nf).

9·16 DEFINITION By Induction we mean the following scheme:

(

Φ(0) & ∀n :∈ω
(
Φ(n) =⇒ Φ(n+ 1)

))

=⇒ ∀n :∈ω Φ(n) for every wff Φ

9·17 PROPOSITION It is provable in M + Induction that ∀n :∈ω TS(n).

Proof : There is a type sequence of length 1, namely {〈ω, 0〉}, so TS(0) holds; if s is a type sequence of
length n+ 1, s ∪ {〈P(s(n)), n+ 1〉} is a type sequence of length n+ 2, so ∀n :∈ω

(
TS(n) =⇒ TS(n+ 1)

)
;

hence by Induction, ∀n :∈ω TS(n). a (9·17)

9·18 METACOROLLARY (Lake) An instance of Induction is not provable in MAC.

9·19 HISTORICAL NOTE Metacorollary 9·18 is essentially Corollary 4 of Lake’s 1975 paper [G9], which also
contains the observations underlying Theorem 9·14 and Proposition 9·17.

Gandy in his 1973 obituary [G3] of Russell as a mathematician, remarks that a paper of Myhill then
in preparation would prove that there would be a failure of induction in any implementation of the theory
of types within set theory. I have been unable to trace any such paper in print, but perhaps the above
discussion is what Myhill had in mind.

9·20 PROPOSITION M plus stratifiable Π2 Foundation proves the consistency of MAC.

Proof : in that theory we may prove ∀n :∈ ω ∃fCm(n, f), since {n ∈ ω | ¬∃fCm(n, f)} is a Π2 class, and
therefore if non-empty has a least element, which is not 0 as M proves ∃fCm(0, f), and is therefore of the
form k + 1. So for that k, ∃fCm(k, f) holds, but M proves that ∃fCm(k, f) =⇒ ∃fCm(k + 1, f).

The consistency of TSTI follows, and therefore also the consistency of M and of MAC. a (9·20)

9·21 METACOROLLARY An instance of stratifiable Π2 Foundation is not provable in MAC.

By working with Cg instead, we find

9·22 PROPOSITION M plus stratifiable ΠP
1 Foundation proves the consistency of MAC.

9·23 METACOROLLARY An instance of stratifiable ΠP
1 Foundation is not provable in MAC.

9·24 Another natural but more extravagant way to try to prove ∀n :∈ ω ∃f Φ(n, f) by seeking the least n
for which there is no such f is to use a scheme of Separation, saying that the class of those n in ω that fail
is a set, and therefore if non-empty has a least element. Hence we get

9·25 PROPOSITION M plus either stratifiable Σ2 Separation or stratifiable ΣP
1 Separation proves the consis-

tency of MAC.

9·26 METACOROLLARY Neither stratifiable Σ2 Separation nor stratifiable ΣP
1 Separation is provable in MAC.

9·27 Forster and Kaye in unpublished work have proved a bounding lemma that in effect says that if the
hypothesis of an instance of ∆P

0 collection, or indeed of ΣP
1 collection is provable in a system such as KF or

MAC or any extension of them obtained by adding ΠP
1 formulæ as axioms, then the conclusion is provable in

the same system: a result that forms a fine contrast to Metatheorem 9·6.
Inspired by their proof, we give here a weak variant of their result:
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9·28 METATHEOREM Let Φ(n,w, y) be a ∆P
0 formula. Suppose that

`MAC ∀n :∈ω ∃yΦ(n, ω, y).

Then there is a concrete natural number k such that

`MAC ∀n :∈ω ∃y :∈Pk(ω) Φ(n, ω, y).

Proof : essentially a compactness argument, which we present model-theoretically, though with the assistance
of techniques from proof theory we could avoid the use of the axiom of infinity in the meta-theory. If the
conclusion is false for a given Φ, then for each k there is a possibly ill-founded model Mk of MAC + ∀y :∈
Pk[wk ] qΦ(y)[nk, wk ], where wk is the first limit ordinal of the model Mk and nk is some member of wk in
that model. Let M be an ultrapower of all those models by a free ultrafilter on ω. In M, let b be represented
by the function k 7→ Pk(wk), n by k 7→ nk and w by k 7→ wk. Then

M |= MAC + ∀y :∈b ¬Φ(y)[n,w].

Note that for each concrete natural number l, M |= P l(w) ⊆ b, since for l 6 k, `MAC P
l(ω) ⊆ Pk(ω).

Now, externally to the model M, form N, the union of all the P k(w)’s. By a fundamental result of
Forster and Kaye, that set together with the membership relation of M restricted to N is a ∆P

0 elementary
submodel of M; hence w is also the ω of N, which is a model of MAC of which M is an end extension
preserving P . Since each member of N is a member of b, N |= MAC + n ∈ ω + ∀y¬Φ(n, ω, y), contradicting
the hypothesis that `MAC ∀n :∈ω ∃yΦ(n, ω, y). a (9·28)

Consider now the formula

OS(n, ω, y) ⇐⇒df Fn(y) & Dom (y) = n+ 1 & y(0) = ω & ∀m :∈Dom (y)− 1 [y(m+ 1) = y(m) + 1].

That is a ∆M
0 formula; plainly there is no k for which MAC can prove ∀n :∈ω ∃y :∈P k(ω) OS(n, ω, y), since

the rank of Pk(ω) is ω + k and the rank of ω + n is ω + n. Hence

9·29 METATHEOREM The formula ∀n :∈ω ∃y OS(n, ω, y) is unprovable in MAC.

Since that formula is provable in MAC + Π1Foundation or in MAC + Σ1Separation, we have immediately

9·30 METACOROLLARY Instances of the schemes of Π1 Foundation and of Σ1 Separation are unprovable in
MAC.

We saw, of course, in §6 that Σ1 Separation is unprovable in MAC + KP, though by a more complicated
argument; Π1 Foundation is one of the axiom schemata of KP.

9·31 REMARK The formula OS(n, ω, y) would also furnish examples of failure of ∆0 Collection and ∆0

Separation in ZC + TCo.

An algebraic illustration

9·32 EXAMPLE Let P0 be the real vector space R[t] of all real polynomials. Let Pn+1 be the dual of Pn.
Then, using AC and setting βn to be the size of a basis of Pn, one may show that β0 = ℵ0 and βn+1 = 2βn

for every n. Thus the operation taking each space to its dual, or taking each space to its bidual, necessarily
raises the cardinality of the space at each step after the first. We may conclude that the operation of taking
the dual of a space is not homogeneous.

It follows that if we write DS(n) to mean that the sequence of spaces P0, . . . Pn−1 exists — in other
words a sequence of real vector spaces of length n starting from R[t] and taking the dual at each step, then
MAC cannot prove that ∀nDS(n); Z can prove that but cannot prove the existence of the infinite sequence
〈Pn | n ∈ ω〉, nor the existence of the direct limit of the P2n’s under the natural embedding of a space in its
bidual, nor of the dual of that space, the projective or inverse limit of the P2n+1’s, any of which existential
statements imply in MAC the consistency of Z.
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Peroration

We review our discussion of §§6, 7, 8 and 9.

9·33 METATHEOREM MAC proves the scheme of stratifiable Σ1 Separation, but none of these three strength-
enings of that scheme:

Σ1 Separation;

stratifiable Σ2 Separation;

stratifiable ΣP
1 Separation.

All those schemes are provable in Z, which proves the full separation scheme; KF proves stratifiable ∆P
0

Separation; M0 proves ∆P
0 Separation; MOST proves Σ1 Separation, but MAC +KP does not; both stratifiable

Σ2 Separation and stratifiable ΣP
1 Separation, when added to MAC, prove the consistency of MAC.

9·34 METATHEOREM MAC proves the schemes of stratifiable Π1 Foundation and stratifiable Σ1 Foundation,
but none of these three strengthenings:

Π1 Foundation;

stratifiable Π2 Foundation;

stratifiable ΠP
1 Foundation.

All those schemes are provable in Z + TCo, which proves the full Class Foundation scheme, though by
Boffa [C3] Z alone cannot prove Π1 Foundation; M1 proves ∆P

0 Foundation; MOST proves Σ1 Foundation;
and Π1 Foundation; stratifiable Π2 Foundation and stratifiable ΠP

1 Foundation, when added to MAC, prove
the consistency of MAC.

9·35 PROBLEM What does it take to prove Σ1 Foundation ?

9·36 METATHEOREM MAC proves the schemes of strong stratifiable Σ1 Replacement and strong stratifiable
Π1 Replacement, but neither of these stronger schemes:

strong stratifiable Σ2 Replacement

strong stratifiable ΠP
1 Replacement

Both those are provable in Z, which proves the full scheme of strong stratifiable Replacement; KF proves
the scheme of strong stratifiable ∆P

0 Replacement; over MAC, each of the schemes strong stratifiable Σ2

Replacement and strong stratifiable ΠP
1 Replacement proves the consistency of MAC.

9·37 PROBLEM Does MAC prove stratifiable Σ2 Replacement ?

9·38 PROBLEM Does MAC prove stratifiable ΠP
1 Replacement ?

9·39 METATHEOREM Not even ZC+TCo can prove ∆0 Replacement, although M+H proves Σ1 Replacement;
over MAC, each of the schemes Π1 Replacement and ∆P

0 Replacement proves the consistency of Z.

9·40 REMARK Although MOST can prove Σ1 Replacement, MAC + KP cannot; so the problem is not one of
consistency strength but of what we might call ordinal strength. ∆P

0 Replacement, refutable in KLMZ, of
which MOST is a subsystem, on the other hand, is a problem of consistency strength.

9·41 METATHEOREM MAC proves the scheme of strong stratifiable Σ1 Collection, but ZC + TCo can prove
neither the scheme of stratifiable Π1 Collection nor that of stratifiable ∆P

0 Collection, nor, of course, ∆0

Collection, though M+H proves the last named. Over MAC, each of stratifiable Π1 Collection and stratifiable
∆P

0 Collection proves the consistency of Z.

9·42 REMARK Again ∆0 collection poses a problem of ordinal strength, and both stratifiable Π1 Collection
and stratifiable ∆P

0 Collection problems of consistency strength.

9·43 REMARK From the above results, it follows that MAC proves “strong stratifiable KP”, in that it proves,
besides ∆0 Separation, stratifiable Π1 Foundation and strong stratifiable ∆0 Collection, though of course
the proofs have made used of TCo.
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9·44 PROBLEM Are those schemata provable say in KF + TCo + AC + ω ∈ V , or in even less ?

9·45 PROBLEM Is every stratifiable theorem of KP a theorem of stratifiable KP ?

9·46 PROBLEM There remains the problem of determining the status of Σk versions of all the above schemata
relative to systems such as Zl and KZl, which this author is content to leave to future generations.

10: Envoi

The author regards this paper as a semi-survey, in that though parts of the paper are original, much in it is
not. He would be grateful for information from his readers that would enable him to improve the accuracy
of his attributions.

This paper has concentrated on purely mathematical and logical aspects of Mac Lane set theory. It
is hoped, though, that it will shed some light on the relationship between, and the several merits of, set-
theoretic and category-theoretic foundations of mathematics. At the prompting of the referee, we add some
remarks concerning the philosophical motivation of the paper.

10·0 For some years there has been rivalry, not always friendly, between two camps, whom I shall call CAT
and SET, both of which are claimed, at least by the extreme members of each faction, to have the one true
view of pure mathematics.

This rivalry descends from the two reactions to the foundational crisis of the beginning of the twentieth
century: the type-theoretical approach — beginning with Russell, Whitehead, Ramsey, Chwistek, and Quine
— and the set-theoretical one, starting with Zermelo, Fraenkel, and Skolem (who despite his important
contributions to its development would not, however, have regarded set theory as a remedy) and many since.

10·1 I have written in [L5] about the foundational shortcomings of Bourbaki. A much deeper study is that
of Leo Corry [L4], [L7], from whose writings I have formed the view that Mac Lane and his school have done
successfully what the Bourbachistes were at times trying to do, namely to give a convenient organisation to
the type-theoretic side of mathematics. What I do not believe is that Mac Lane has found an organisation
for the whole of mathematics.

Indeed I would view with suspicion any claim by anybody to have an account of the whole of mathe-
matics, because I believe that mathematics flows from at least two distinct intuitions, and that the balance
between these intuitions will be different in different mathematicians. I desire the unity of mathematics—
meaning the communicability of mathematics—whilst believing that pressure from particular groups who
seek to enforce an unhealthy uniformity by stifling alternative approaches should be resisted.

10·2 The CAT camp may with justice claim that category theory brings out subtleties in geometry to which
set theory is blind. But that is a far cry from saying such things as “Mathematics has no need of set theory”,
or “set theory has been left behind by the tide of history”.

It is entirely reasonable for people to state that they find their kind of mathematics is best served by
adopting the category-theoretic style. But those who make that statement must allow an equal liberty to
those who find the category-theoretic style alien.

10·3 The SET camp may with equal justice claim that set-theoretic analysis brings out subtleties to which
the CAT camp is blind: for examples, see my expository paper “Strong statements of analysis” [F4], where
it is argued that the large cardinal assumptions studied by set theorists are inextricably involved in certain
concepts, problems, and theorems of analysis. That paper evolved from conversations with mathematicians
of various hues who had made rash pronouncements concerning an alleged irrelevance of logic to their work.
Its purpose was not to say that people should not do topos theory but to show that much insight would be
lost by a refusal to contemplate set theory.

Against the opinion of many, I hold set theory to be the study of well-foundedness and thus to be
concerned with recursive constructions in the widest abstract sense. The language is rich and therefore admits
translations into it of huge amounts of mathematics; though often by a formal interpretation which fails to
translate the underlying intuition. Set theory is at its best when discussing problems which involve (overtly
or covertly) well-founded relations of high rank; and the results of Harvey Friedman and his collaborators on
the necessary use of abstract set theory show how set-theoretic questions concerning large notions of infinity
may arise even in apparently innocent mathematical statements concerning only finite structures.
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10·4 It is no part of my purpose to criticise Mac Lane on the grounds that his system is weak. There is nothing
wrong with studying weak systems; there is plenty of hard mathematics going on in weak systems; much
information may be obtained when something has a proof in a weak system; but sometimes a system cannot
handle a problem and one wants to know when that is happening. Friedman’s proposal to calibrate theorems
through his programme of reverse mathematics promises a systematic critical apparatus: see Simpson’s new
book [F2] on that subject.

10·5 There are portions of mathematical reasoning for which the language of categories gives a very smooth
presentation (Example: treatment of the algebraic structures arising in geometry, which are essentially
confined to ω types over the space under consideration); there are portions for which it is clumsy (Example:
recursive constructions); there are portions which it cannot handle at all (Example: determinacy).

Hence I believe that mathematics would be enriched if members of the different foundational camps
learned something of each other’s language and fundamental perceptions.

10·6 A mathematician, or perhaps a group of mathematicians, wishes to work in a certain area of mathe-
matics; he certainly wishes to deepen knowledge of his chosen area; he may even wish to change the way
people think about that area. At a given moment, he will be wishing to attack certain problems with certain
tools. We may ask

“ What are the ideas he wishes to employ ? ”

“ What is their strength ? ” and

“ What is his chosen style for their presentation ? ”

I see those as different and almost independent questions. I regard the answer to the first as being
roughly the specification of a system of thought. If one had a core dump of the mathematician’s mind, one
could see what are the ideas playing an important rôle in his handling of his problem. Of course, I understand
that in research, things are in a state of flux; one does not know what one is doing; one is responding to
intuitions and trying to articulate them. The giving of a definition is an attempt to articulate them. It may
be the right definition; later work may turn things round and find a better one.

The second question, “ What is their strength ? ” I regard as a question about the comparative strengths
of various systems. For a given theorem in a given system, one can ask: did the proof use the whole strength
of the system ? could it be proved in a weaker system ? Perhaps it could but with a much longer proof. But
then let us ask, is there a stronger system which would furnish a shorter proof ?

The idea of one system being stronger than another has evolved among logicians during the twentieth
century. Broadly it is considered that if one system can proved the consistency of another, then the first is
stronger. Two systems are regarded as being of the same strength if there is a proof in some third system,
weaker than either, of their equiconsistency.

From the history of mathematics we know how hard it is to introduce new ideas; the square root of 2,
the square root of −1, the concept of an infinite set, non-Euclidean geometry, Hilbert’s “theological”, that
is, non-constructive inductions; all met with considerable resistance upon their introduction. So there is a
psychological if not professional cost to introducing stronger systems. People are suspicious of new-fangled
ideas. The purpose of logical investigations is to test the soundness of and necessity for new proposals.

The meaning of the third question, about style, is “ Which, among several equiconsistent, systems has
he chosen ? ” For example TST and M0 are equiconsistent systems, but there is a different feel to them.
They are equally strong, but some will feel more at home with one and some with the other. M and M + H

are equiconsistent, but the one is closer to type theory, the other to set theory. The equiconsistency of two
systems is no guarantee that they will be found psychologically to be equally satisfactory.

10·7 The purpose of my paper therefore is to study the relationship of Mac Lane’s system, which encap-
sulates in set-theoretic terms his mathematical world, to the Kripke-Platek system that gives a standard
formalisation of a certain kind of abstract recursion. I suggest that they capture two distinct modes of
thought, and somewhere between ZBQC and the system I have called MOST is the watershed between the
two. Finding a system that accommodates both without violating either is a task perhaps similar to resolv-
ing the Continuum Hypothesis: there the continuum, a concept from geometry, is being matched against a
concept from transfinite arithmetic, that of the first uncountable ordinal.
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MOST might have been called KZ1C. It is ZBQC with the addition of ∆0 Collection, Σ1 Separation, and
TCo. It might also be presented as the system MAC + KP+ Mostowski’s principle that “every well-founded
extensional relation is isomorphic to a transitive set”, whence its name. In it, one can prove Axiom H, and
one can develop the concept of constructibility.

10·8 ZBQC and MOST are equiconsistent, by the results of sections 2 and 3 of this paper; it is a natural
equiconsistency, for there is a natural interpretation of the apparently stronger system MOST in its subsystem
ZBQC using what I have called Axiom H spectacles.

In view of the many alternative presentations of MOST given in section 3, it must qualify as a natural
system, and it is much more intelligible to the set-theoretical mind than is MAC alone.

Thus my suggestion is that the transition from ZBQC to MOST is the natural bridge between CAT and
SET.

10·9 Before discussing who stands at each end of this bridge, let me pause to answer a query of the referee,
who asks why I have placed so much emphasis in the paper not on Mostowski’s principle mentioned above
but on the less intuitive Axiom H.

The answer is that when I began writing the paper, Σ1 Separation seemed to be the chief object of
attention. But then it became clear, given that M0 proves the existence of universal extensional well-founded
relations, that the natural construction in the context of M0 was to build a model for Axiom H, from which
one would derive, first (by the arguments of 3·0) Mostowski’s principle, and then, with the help of the axioms
of Choice, Infinity and Foundation, Σ1 Separation. I only noticed Proposition 3·2 when the paper was well
advanced, and I am reluctant to run the risk of error by recasting the paper round it, but I entirely agree
that Mostowski’s principle is the most natural of the many versions which in our context are, by Theorem
3·18, equivalent.

10·10 To return to my metaphor of the bridge between SET and CAT: it would indeed seem that Mostowski’s
principle is the point of divergence between those with leanings towards SET and those with leanings towards
CAT. The CAT camp is structuralist — witness Mac Lane’s remark in [L3] that every mathematical notion
is protean, and Bell’s illuminating essay that forms the Epilogue of his book [H5] — whereas the SET camp
is absolutist in something like the sense suggested by the last sentence of [A1], which reads “Hence the
consistency of [V = L] seems to be absolute in some sense, although it is not possible in the present state of
affairs to give a precise meaning to this phrase.” The difference between the two camps is perhaps summarised
by their attitudes to a particular case of Mostowski’s principle, namely the precept, to set theorists so natural
and to category theorists so suspect, that every well-ordering is isomorphic to precisely one von Neumann
ordinal, a concept that Mac Lane dismisses as a gimmick. If one wants to do geometry, why bother with von
Neumann ordinals ? What do they do that is not achieved by arbitrary well-orderings ? Perhaps nothing;
if all geometry is contained in stratifiable mathematics, then certainly nothing, in view of our result that
every stratifiable theorem of MOST is provable in MAC.

But if, sated with geometry, one wants to do transfinite recursion theory, why make life hard by avoiding
von Neumann ordinals ? Compare the mammoth struggle in section 4 to present the concept of constructibil-
ity without using Mostowski’s principle with the easy ride you get if you adopt it. And the two systems are
equiconsistent, so one is not demanding a stronger system; one is merely presenting Mac Lane’s sytem in a
style that is more efficient for transfinite recursion theory.

It may well be that the criterion of stratifiability does indeed mark the frontier separating Mac Lane’s
world from mine. We may point to one highly important topic in set theory from which those who would
confine themselves to stratifiable mathematics are excluded, namely the theory of constructibility, which was
developed by Gödel to prove the relative consistency of the Axiom of Choice. Rather technical, one might
think; but its study led to the discovery by Jensen of the set-theoretic principle ♦ which was applied by
Shelah to prove that if V = L all Abelian groups G with Ext(G,Z) = 0 are free Abelian: for details, and for
later developments in this line, see the the book [F5] of Eklof and Mekler.

Further reading

For contrasting views of the foundations of mathematics, the reader may like to read [L2] and [L3]. On
page 378 of [L1] Mac Lane makes the excellent remark that proofs are not only a means to certainty but
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also a means to understanding; but on page 395 he gives the impression that he thinks the phenomenon of
incompleteness will go away if mathematics were to shift from set-theoretic to category-theoretic foundations,
a belief as unrealistic as that the law of gravity will cease to operate if one travels to the Antipodes. Against
his suggestion that ZBQC is “appropriate for most Mathematics,” — if he would change “most” to “much”, I
would agree — I would mention the closing chapter of the book of Adamek and Rosicky [L6] which illustrates
the way in which large cardinal questions have infiltrated even category-theoretic concerns, and for more
recent evidence of that phenomenon, the papers [F1] and [F3]. The recent book of Corry [L7] treats the
history and philosophy of twentieth-century algebra. The paper of Marshall and Chuaqui [G10] gives a
characterization of the truths captured by type theory that sheds further light on the rôle of Mac Lane set
theory.

The author hopes to treat the philosophical, psychological and sociological aspects of the differences
between SET and CAT in greater detail in a forthcoming essay [L8] tentatively entitled Danish Lectures on
Bourbaki, Mac Lane and the Foundations of Mathematics.
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[A1] K. Gödel, The Consistency of the Axiom of Choice and of the Generalised Continuum-Hypothesis, Proc.
Nat. Acad. Sci., 24, 556–7 (1938).
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Monatshefte für Mathematik und Physik 40 (1933) 97–112.
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