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ON THE EXISTENCE OF LARGE p-IDEALS 

WINFRIED JUST, A. R. D. MATHIAS, KAREL PRIKRY AND PETR SIMON 

Abstract. We prove the existence of p-ideals that are nonmeagre subsets of #(<*>) under 
various set-theoretic assumptions. 

§0. Introduction. Throughout this paper by "ideal" we mean a proper ideal on co 
that contains Fin—the ideal of finite sets. An ideal / is called a p-ideal, if for every 
countable subfamily {Ay. j e co} c I there exists an A e / such that Af\A is finite for 
every j . An ideal / is meagre, if it is a subset of ^(co) of first Baire category, where 
^(to) is considered to be endowed with the topology of the Cantor set. It is easy to 
find examples of meagre p-ideals (e.g. Fin is one), but the following remains open. 

0.1. Question. Does there exist a nonmeagre p-ideal? 
The main purpose of this paper is to compile known partial answers. It is easy to 

observe that maximal p-ideals (also called p-points in jito\oi) are examples of 
nonmeagre p-ideals (see Corollaries 1.6 and 1.7 of this paper). The existence of p-
points is both relatively consistent with and independent of the axioms of ZFC. The 
former was shown by W. Rudin in [Ru], and the latter by S. Shelah (for a proof see 
[W] or [Sh]). Motivated by the, then still open, question of whether ZFC proves the 
existence of p-points, A. R. D. Mathias showed in [M1] that if 0# does not exist, or if 
2No<KM>+1, then there are nonmeagre p-ideals. Shortly afterwards, K. Prikry 
extracted a combinatorial principle from Mathias' proof that allows one to weaken 
the assumption "0* does not exist" considerably (see [P] and §4 of this paper). This 
result was never published and appears here for the first time in print. In 1985, 
J. Burzyk found a striking application of nonmeagre p-ideals to the theory of 
Banach spaces (see [B], and §2 of this paper). His result led to renewed interest in 
Question 0.1. R. Frankiewicz and P. Zbierski proved that if CH holds, then there 
exists a nonmeagre p-ideal that is not contained in any maximal p-ideal (see [FZ]). 
P. Simon proved that if t = b, or b < d, then there exists a nonmeagre p-ideal 
([Sm] and §3 of this paper), and W. Just rediscovered the result of Prikry and also 
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proved that t = b implies the existence of nonmeagre p-ideals. Also, W. Just 
observed that all those constructions yield ideals of character <d and showed that 
it is consistent relative to the existence of some large cardinals that there are no 
nonmeagre p-ideals of character <d ([J] and §5 of this paper). The compilation 
of all these results was done by W. Just, and he is the one to be blamed for all flaws 
of this paper. 

§1. Notation and basic facts. By 3n°° and Vn00 we abbreviate "there exist infinitely 
many n" and "for all but finitely many n", respectively. 

By coa we denote the set of all strictly increasing functions from co into co. For 
/ , p w " we write / < * g, iff Vn00 f(n) < g(n). A family J5" £ co" is called dominating, 
if Vf e coa3g e & f <* g. If #" £ toa, and g e coa is such that f <* g for all f e &, 
then we say that g dominates J^ and write J* <* g. A family J5 'c f f l '

1 , which is not 
dominated by any g e com is called an unbounded family. 

By b we denote the minimum cardinality of an unbounded family, by d the 
minimum cardinality of a dominating family. For A, B £ co we write A s* B iff 
A\Be Fin. A sequence {Af £ < K} £ 0>(co) is called a K-chain, if it consists of 
infinite sets and An £* Ai for all I, < n < K. It is called a K-tower, if moreover there is 
no infinite set A such that A s* A,* for all ^ < K. By t we denote the minimal cardinal 
K such that there exists a K-tower. 

1.1. PROPOSITION. K0 < cf(t) = t < cf(b) = b < cf(d) < d < 2Ko. 

PROOF. Easy. See also [vD]. • 
Adopting a terminology introduced in [M2], we call an ideal / feeble, iff there 

exists a sequence (a„)neu> of nonempty, pairwise disjoint finite subsets of co such that 
for all B e / the set {n: a„ c B} is finite. The following result of S. A. Jalali-Naini and 
M. Talagrand is crucial for most of our results. 

1.2. LEMMA. An ideal I is meagre iff it is feeble. 
PROOF. See [T]. • 

Let / be an ideal. A set & c / will be called a base of I,ifVAe I3B e & A £* B. By 
X(I) we denote the character of /, i.e. the minimum cardinality of a base of /. 

For si c 0>(co) we denote l{s4) = {B <= co: 3A e s/ B c* A}, Let si £ 0>(co). We 
say that B £ co is a cover of J / , if /I £* B for every X e J / . The family <E/ is called p-
closed, if for every countable subfamily sJx<=, si there is a cover B of J?^ in .s/. 

1.3. PROPOSITION. Let I be an ideal. Then I is a p-ideal iff I is p-closed iff every base 
of I is p-closed iff there exists a p-closed family $8 such that I = 1(88). • 

For infinite A c co we denote by fA the function enumerating A in increasing 
order. 

1.4. LEMMA. An ideal I is nonmeagre iff for every base 8b of I the family ?Fm = 
{fA: co\A e 88} is unbounded in coa. 

PROOF. Assume J ^ is unbounded and let (a„)neo} be a sequence of pairwise disjoint 
finite sets. Define g e cow by g(m) = max((J^=0a„). Clearly, if fA(m) > g(m), then 
|{«: a„ c g(m)\A}\ > m, hence if fA £*g, then co\A contains infinitely many a„'s. 

On the other hand, let g e coa, and define h e to" by h(0) = 1 and h(n + 1) = 
g(h(n) + 2). Let a„ = [h(n\ h(n + 1)). Clearly, if a„<=co\A, then fA(h(n) + 1) > 
h(n + 1) > g(h(n) + 1). • 

1.5. COROLLARY. / / / is a nonmeagre ideal, then %(I) > b. • 
The following proposition is due to Sierpihski (see [S]). 
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1.6. PROPOSITION. / / / is a maximal ideal, then I is nonmeagre. • 
1.7. COROLLARY. / / there exists a p-point in f}aj\co, then there exists a nonmeagre 

p-ideal. • 
1.8. COROLLARY. If d = 2No, then there exists a nonmeagre p-ideal. 
PROOF. J. Ketonen has shown in [K] that the equality d = 2*° implies the 

existence of p-points. • 

§2. An application to the theory of Banach spaces. 
2.1. DEFINITION. Let X be a normed linear space over R (C). We say that X has 

property (AT), if for every sequence (x„)„6(0 of elements of X, converging to zero, 
there exists a subsequence (x„k)kea, such that for every bounded sequence of reals 
(complex numbers) (ck)kea the series YX=ockxnk converges to an element of X. 

Normed linear spaces with property (A/') inherit many properties of Banach 
spaces; and as far as we know it remains an open problem to construct a linear 
metric space over R (C) which is not complete, but has property (N1). J. Burzyk 
obtained the following consistency result (see [B]). 

2.2. THEOREM. / / there exists a nonmeagre p-ideal, then every infinite-dimensional, 
separable, complete normed linear space over R (C) has a noncomplete dense subspace 
that has property (N'). 

In his proof, Burzyk uses the existence of an ideal / that has the following 
property: 

(B) If (An)neto is a sequence of elements of / such that lim sup , , ^ min A„ = GO, 
then there exists a subsequence (A„k)kem such that \Jkea A„k e I. 

2.3. PROPOSITION. An ideal I has property (B) iff it is a nonmeagre p-ideal. 
PROOF. This is an easy consequence of Lemma 1.2. See also [J] . • 
We do not know the answer to the following. 
2.4. Question. Does the existence of a noncomplete space with property (A/') 

imply the existence of a nonmeagre p-ideal? 
2.5. DEFINITION. Let X be a normed linear space over R (C). We say that X has 

property (K), if for every sequence (x„)n€<0 of elements of X, converging to zero, there 
exists a subsequence (xnk)ke(0 such that Y.t=o xnk

 e -X"-
Evidently, property (A/') implies property (K), but the two properties are not 

equivalent (see [Kl]) . 
A subfamily si c [co] Xo (also called "a set of reals") is said to be Ramsey, if there is 

some A e [to]*0 such that either [X]N o s si or [ 4 ] K o n si = 0. The axiom of 
choice implies the existence of a set of reals which is not Ramsey. It was shown in 
[M3] and published in [M4] that if the existence of an inaccessible cardinal is 
consistent with ZFC, then so is the theory ZF + DC + "Every set of reals is 
Ramsey" (there, the statement "Every set of reals is Ramsey" is abbreviated by 
a) -* (cu)'0). Therefore, the following theorem of Mathias shows that at least a 
strong form of the axiom of choice is required in all constructions of noncomplete 
(K)- and (AT)-spaces. 

2.6. THEOREM (ZF + "Every set of reals is Ramsey"). Every space with property 
(K) is complete. 

PROOF. Suppose X is a noncomplete space with property (K). Let (x„)ne<a be a 
Cauchy sequence that does not converge in X. Define inductively a sequence 
Mkza,- "o = 0, and given nk let nk+l = min{n > nk: Vm > n \\xm - x„\\ < 2~k~2}. 
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Note that the axiom of choice is not used in defining the sequence (nk)keo>. Now 
denote y0 = x0 and yk+1 - x„k + 1 — x„k. Then \\yk\\ < 2~* for almost all k, and 
EkWy/fc does n o t e x i s t - For a set A e [co]ra, denote by A(0), A(l),... its monotonic 
enumeration. Define E(A) = \Jne(0[A(2n),A(2n + 1)), and 0(A) = co\E(A). Note 
that if n e A, then E(A\{n}) differs from 0(A) by a finite set. Define 

y(A) = i° i f^M>^G*' 
[1 otherwise. 

For ne A,at least one of x(^) and x(A\{n}) is equal to 1, as E*£C<>}'* £ X. 
Since J T ' U ) i s Ramsey, there is B e [co]m such that % is constant on [B]M. By the 

previous paragraph, \/A e [J3]" ^(A) = 1. Now put 

B ( 2 i + 1 ) - 1 

*=B(2i) 

Clearly, Z;-»-0 (as \\yk\\ <2~k almost always), so by property (K) there is a 
subsequence (z^j^ with I j e r a z 0 e X Put ^ = (J;em{B(2rj), B(2ij + 1)}. Since 
A 6 [B]m, we have x(A) = 1, so I k e £ U ) y k £ X, but Z t e £ M ) y k = I ; 6 W z 0 , a con­
tradiction. • 

As shown in [M2], if every set of reals is Ramsey, then every ideal is feeble, and 
therefore, by Lemma 1.2, meagre. 

2.7. Question. Can one replace in Theorem 2.6 the assumption "every set of reals 
is Ramsey" by "every ideal is meagre"? 

§3. Nonmeagre p-ideals of character b. 
3.1. PROPOSITION. Suppose si = {A$. E, < K] is a K-chain, and let 08 = 

{oi\Af £ < K}. Then 1(08) is an ideal. Moreover, if cf(»c) > X0, then 1(3$) is a 
p-ideal. • 

The following is due to Rothberger (see [R]). 
3.2. PROPOSITION, (a) / / A £* B, then fB<*2-fA. 
(b) If si = {Af £, < K} is a K-chain such that the family {fA(: £, <K} is unbounded 

in (ow, then si is a K-tower. 
PROOF. Easy. • 
3.3. THEOREM. If t = b, then there exists a nonmeagre p-ideal. 
PROOF. Let !F = {ft: £, < b} be an unbounded subfamily of co'°. By induction, 

construct a t-chain s/ = {Af £ < t} such that fAf*> f$ for all i < b. Let 08 = 
{coXAf £ < t}. By Proposition 3.1,1(08) is a p-ideal, and it follows from Lemma 1.4 
that 1(08) is nonmeagre. • 

3.4. THEOREM. Assume there exists an unbounded family H = {h^. £, < K] a m" 
which is well-ordered by the relation <* (i.e. h^ <* hn for £ < n < K) and not 
dominating. Then there exists a nonmeagre p-ideal of character K. 

PROOF. Let H be as in the assumption, and let g e w'° be such that V^ < K 3n°° 
g(n) > h^(n). We put A( = {n: hf(n) < g(n)}. Clearly, s4 = {A^. £ < K} is a K-chain, 
and cf (K) > K0. 

3.5. Claim. F = {fAi: £ < K} is unbounded. 
Theorem 3.4 is an immediate consequence of the above claim, Proposition 3.1 and 

Lemma 1.4. 
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Proof of the Claim. Suppose towards a contradiction that / * > J*", and define 
gx 6 cuM by gt(n) = g(f(n + 2)). Let hA e H. If fA((n + 2) < f(n + 2), then by defini­
tion, there are at least n + 2 numbers i < f(n + 2) such that g(i) > hA(i). Hence 
we may pick i0 > n such that gx(ri) = g(f(n + 2)) > g(i0) > /i^(i0) > h^ri), so gt 

eventually dominates every function of H, contradicting our assumption that H 
was unbounded. • • 

3.6. COROLLARY. / / there are no nonmeagre p-ideals of character b, then t < b = 
d < 2Ko; and every <*-increasing sequence of elements of w'° which is unbounded in 
coa is also dominating. • 

§4. Nonmeagre p-ideals of character <d. Let K, X, v be cardinals. By [K]V we 
denote the family of subsets of K of size v. Let COVV(K, X) be the following statement: 

"There is a family T £ [K] V such that \T\ < X and for each X e [K]V there is a 
Y e T such that X £ y." 

4.1. THEOREM. Suppose COVNo(d, d) holds. 
(a) There exists a nonmeagre p-ideal of character < d. 
(b) Every ideal of character <d can be extended to a nonmeagre p-ideal of 

character <d. 
(c) Every nonmeagre p-ideal lx contains a nonmeagre p-ideal I of character < d. 
PROOF. The proof rests on two lemmas. 
4.2. LEMMA. Let I be an ideal of character less than d, and let si be a countable 

subset of I. Then there exists a B c u> such that A £* B for all A e s/, and I u {B} 
generates an ideal. 

PROOF. See [K, the proof of Proposition 1.3] or [Je, p. 258, Lemma 24.11]. • 
4.3. LEMMA. Suppose a = {a„)neo) is a sequence of pairwise disjoint, nonempty, 

finite subsets of a>. Then there exists a function g e 03w such that whenever / * > g, 
and heoj0' is defined by h(0) = f(0) and h(k + 1) = f(h(k) + 1), then Vfc00 3n an c 
[h(k),h(k+l)). 

PROOF. Let g be such that g(k) > k, and V/c 3n a„ c [/c, g(k)). If / and h are as in 
the assumptions, f(h(k)) > g(h(k)) for almost all k, and if a„ c [h(k), g{h(k))\ then 
clearly a„ c [h(k), h(k + 1)). • 

Now we are ready to prove Theorem 4.1. We pick a dominating family {f^. 
£, < d}, and define ht as in Lemma 4.3: h4(0) = ftO) and h4(k + 1) = f(h4(k) + 1). 
Also, we fix a family T a [d]No such that for all X e [d]No there exists Y e T such 
that X £ y. 

Now we construct inductively a base {Af % < d} for an ideal /. At stage £ of the 
construction we take alternatively care that: 

(i) a generator of the form (Jt€B[/i^(/c), h^(k + 1)) is added, or 
(ii) if Yi is the £th element of T, and the An for i j e l j have already been 

constructed, then A^ is a cover of the family {An: n e Y^}. 
Lemma 4.2 tells us that we can apply procedure (ii) at any stage of the 

construction. It is clear that we can always apply procedure (i), since either 
{Jkedhftk), h((2k + 1)) or (Jkem[/i^(2/c + 1), h4(2k + 2)) can be added as a new 
generator without causing improperness. By careful bookkeeping we ensure that the 
resulting family is a p-closed base of a nonmeagre ideal. This proves (a) and (b). For 
the proof of (c), we choose all the generators from Ix. Since /x was a nonmeagre p-
ideal, there will always be a suitable candidate around. • 
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Theorem 4.1(c) shows that if COVXo(d,d) holds, then all nonmeagre p-ideals are 
"essentially" of character < d. We shall see in the next section that this cannot be 
proved in ZFC alone. 

We conclude this section with an investigation of the consistency strength of 
COVKo(d,d). 

4.4. PROPOSITION. COV X O (2 X ° ,2 N O ) . • 

As a corollary, we get the result of Ketonen mentioned already in §1. 
4.5. COROLLARY. If d = 2No, then there is a nonmeagre p-ideal, and in fact a 

maximal p-ideal. • 
4.6. LEMMA. / / K = {J{Xf £ < cf(ic)}, where X^ < K are ordinals, C({K) > K0, and 

COVNo(| A4|, k) holds for every % < cf(zc), then COVXO(K, K) holds. 
PROOF. Notice that [K] X ° = (J{[l ?]N o: £ < cf(jc)}. D 
4.7. COROLLARY. C O V X O ( K , K + ) - » C O V J K + , K + ) . • 

4.8. COROLLARY. COV N O (K„ ,K„) holds for every n < w. • 
4.9. PROPOSITION. If K,X> K1; then CO\^(K,X) -> COVKO(K, X). 
PROOF. Suppose T c [K] K I witnesses COVX I(K,A). For every X e T choose a 

family Tx <=. [AT]*0 such that V7 e [X]*" 3ZeTxY<=Z. The family U{TX: X e T} 
witnesses COVXO(K, A). D 

4.10. LEMMA. / / t/ie covering lemma holds with respect to an inner model for GCH, 
then COVNO(K;, K) holds for all K of cofinality > K0. In particular, the covering lemma 
implies COVXo(d,d). 

PROOF. Let M be the inner model with respect to which the covering lemma holds. 
Fix a cardinal K. Since we know already that COVl<0(K1, Kt) holds in ZFC, we may 
without loss of generality assume that K > Kt. The covering lemma asserts that 
M n [K] N I witnesses COVX I(K, |M n [ K ] K , | ) . Notice that since M N GCH, the 
cardinality \M n [K]* 1 | < K+. We infer from Proposition 4.9 that COV N O (K,K + ) 

holds. This is true for all K, and now it follows from Lemma 4.6 that COVNo(/c, K) 
holds, provided cf(K) > K0. • 

4.11. COROLLARY. / / every p-ideal is meagre, then there exists a measurable 
cardinal in an inner model. 

PROOF. See [DJ]. • 

4.12. REMARK. Corollary 4.11 is far from being the strongest possible statement 
that can be made along these lines. Since the question of the precise consistency 
strength of the negation of the covering lemma is still not ultimately settled, the 
formulation of Lemma 4.10 seems the most "durable" way to state our result. 

§5. No nonmeagre p-ideals of character <d. In this section we prove the 
following. 

5.1. THEOREM. If it is consistent that the singular cardinal hypothesis fails, then it 
is consistent with ZFC that every p-ideal of character < d is meagre. 

5.2. LEMMA. Suppose X > K0 is a strong limit cardinal of countable cofinality such 
that 2X > A+. Then COVXo(A

+, A+) does not hold. 
PROOF. If X is as above, then AKo > X+. On the other hand, if T s [A]No, then 

\{X:3YeTXz Y}| = |T| • 2Ko. • 
5.3. LEMMA. Suppose V\=~\ COVXO(K, X), and that P is a c.c.c. forcing notion. 

T ^ M F P N - I C O V X O ( K , 1 ) . 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2274639
Downloaded from https:/www.cambridge.org/core. IP address: 91.229.222.72, on 27 Jun 2017 at 11:33:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2274639
https:/www.cambridge.org/core


ON THE EXISTENCE OF LARGE p-IDEALS 463 

PROOF. Suppose V N COV1<0(K:, X), and let t be a P-name for a witness. In 
particular, we have 

Ihp'T E M N o & | f | = A & VZ e ([JC]*0)" 37 e f X £ 7". 
Let F be a P-name for an enumeration of t, i.e. |(-p"F: X omo> T". For every £ < 1 
we find a P-name y{ such that |(-P"F(^) = y{". Since P satisfies the c.c.c, for every 
£ < X we find in V a set 7£ e [K]N O such that | | - P " ^ £ 17" Now {7J: £ < X) 
witnesses that V t= C O \ 0 ( K , X), contradicting our assumption. • 

We denote Q = {(s,f): s e <y<ro, / e <wro, s is increasing}, partially ordered by the 
relation: (s,f) <(t,g) iff s 3 l & Vn /(«) > gf(n) & (n > lh(r) -»s(n) > g{n)). By Qa 

we denote the finite support iteration of Q of length a. 
The following is well known. 
5.4. Claim. Qx satisfies the c.c.c. for every a. Moreover, if cf (a) > K0, then forcing 

with Qx adds an ot-scale, i.e. a dominating subfamily of <wra ordered by <* in order 
type a. • 

Now Theorem 5.1 is an immediate corollary of the following. 
5.5. THEOREM. Suppose that X is a strong limit cardinal of cofinality K0 such that 

2X > X+. Let P = QA+. Then Vp N "d = X+ & every nonmeagre p-ideal is of charac­
ter >d". 

PROOF. We call a sequence {Ai)i<K of subsets of a> eventually interfering, iff 
VA e [co]K° 3i < K Vn > £ \A n A„\ = K0. 

5.6. LEMMA. VP N "For euery nonmeagre p-ideal I there exists a sequence (Ax)x < A+ 

o/ elements of I such that every subsequence of length col is eventually interfering." 
Before we prove Lemma 5.6, we show how it implies Theorem 5.5. Assume / 

is a nonmeagre p-ideal in Vp. Let J1 be a base of /. By Corollary 1.5, | ^ | > b = d. 
Let A = (Ai)i<x* be the sequence that exists by Lemma 5.6. For B e J define 
YB = {£, < X*': Ai S* B). Notice that YB is countable for all B, as otherwise the 
sequence (Ai)ieYB would contain a subsequence of order type o^ that does not 
interfere with co\B. Since / is a p-ideal, the family T= {YB:Be3S} witnesses 
COVKo(/l+,|B|). On the other hand, it follows from 5.2 and 5.3 that COVNo(/l

+, X+) 
does not hold in Vv, and it follows that \3&\ > X+ = d. So our task reduces to the 

PROOF OF LEMMA 5.6. In Vp there exists a sequence {hx)x<x+ of functions from to" 
such that for every /? < X+ of uncountable cofinality, the sequence {hx)a<p is a scale in 
VQ'. Fix such a sequence, and fix a sequence (Ax)x<x+ of elements of / such that 
fw\A. £* K for every <x. This is possible by Lemma 1.4. By passing to a closed 
unbounded subset of X+ if necessary, we may without loss of generality assume that 
Ax e VQ-+' and (/i4)4<« e VQ* for every a < X+. 

5.7. Claim. If 3 < X+ is a limit ordinal of uncountable cofinality, then VQs N 
"(Ax)x<s is eventually interfering". 

Proof. Recall that (hx)x<s is a scale in VQs; hence for every infinite A e 
P(<w) n VQd, there is ^ < 5 such that if a > n, then 3fc°° /oU.(fc) > fA(2k). Notice 
that if n = /roU„(fc) > /a(2fc), then \(n + l)\Ax\ = k, and \(n + \)nA\> 2k, hence 
\(n + I) n A n Ax\> k. This proves the claim. • 

5.8. SUBLEMMA. / / (Ax)x<ye VQd for some d < X+, and VQdt= "(Ax)x<y is an 
eventually interfering sequence", then F p t= "(Ax)x<y is an eventually interfering 
sequence". 
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PROOF. Baumgartner and Dordal call a sequence (Ai)i<n eventually narrow, 
iff V/4 G [co]Xc 3£ <nVn > £ \A\An\ = K0. Clearly, the sequence (/1?^<, is even­
tually narrow iff the sequence (&»\/l4)4<;i) is eventually interfering. Now the sub-
lemma follows immediately from Theorem 3.3 of [BD]. D D 

In the remainder of this paper we show that nevertheless, in the model Vp 

constructed above, there exist nonmeagre p-ideals. 
5.9. DEFINITION. By SP ("scale property") we denote the following statement: 

"There exists a sequence of models ( M ^ < d and a sequence (fi)i < d of elements of a»M 

such that for all £, < n < d: 
(i) M? N a sufficiently large fragment of ZFC, 
(ii) M ? £ M , & / ^ e M?, 
(iii) g <* f„ for all g e M , n a>°>, 
(iv)U«<dM<n//(NI) = ff(Ki)" 
As usual, H(Nt) is the family of all hereditarily countable sets. 
5.10. Claim. Vp 1= SP. D 
5.11. THEOREM. If SP holds, then there exists a maximal p-ideal. 
PROOF. Suppose (M^)?<d and ( / ^ < d witness (i)-(iv). Inductively, we construct an 

increasing sequence of ideals (^)^<d such that 1$ has a base contained in Mi n ^(co). 
If £ is a limit ordinal, then let I( = y , < 4 / , . I f ^ = n + 1,choose/^ > /, generated by 
elements of M, n ^(co) such that for every X e 3?(oS) n M,, either X or a>\X is in 1^. 
Now let ^ be the family of all sequences C = (C„)„6eo such that C, c C „ + 1 6 / ^ for 
all n, and C e Mn. For C e #, we denote A^ = U{^n\./<("): n e ^K an(^ ' e t <̂ 
be the ideal generated by 1^ u {^g: C G ^ } . 

It follows from (iv) that if l-d constructed as above is proper, then it is a maxi­
mal p-ideal. We show that we do not cause improperness at any stage of the con­
struction. Suppose I-d were improper and let £ = n + 1 be the least S, such that 
a> e 1^. Then there exist sequences (Cj,)neaj, (Ck

n)neio e (€n and a C e / ^ such that 
C u IJ{(C^ u C\ u • • • u C*)\/4(n): n e co} = to. Since /<T has a base contained 
in Mn, we may assume C e M^. Moreover, since ln was assumed to be proper, 
I], can still be chosen to be proper, and we may define y(n) = min{i: i ^ C u 
C* u ••• u C*}. Then g e Mn r> ao10, but it is not hard to see that c/ j t* /^ con­
tradicting (iii). D 

5.12. REMARK. Both Theorem 5.11 and its proof generalize Ketonen's result. 

REFERENCES 

[B] J. BURZYK, An example of a noncompete normed N-space, Bulletin of the Polish Academy of 
Sciences. Mathematics, vol. 35 (1987), pp. 449-455. 

[BD] J. E. BAUMGARTNER and P. DORDAL, Adjoining dominating functions, this JOURNAL, vol. 50 
(1985), pp. 94-101. 

[DJ] A. J. DODD and R. B. JENSEN, The covering lemma for L [C] , Annals of Mathematical Logic, 
vol. 22(1982), pp. 127-135. 

[FZ] R. FRANKIEWICZ and P. ZBIERSKI, Strongly discrete subsets of m*, Fundamenta Mathematicae, 
vol. 129 (1988), pp. 173-180. 

[J] W. JUST, A class of ideals over w generalizing p-points, preprint, University of Warsaw, Warsaw, 
1986. 

[Je] T. JECH, Set theory, Academic Press, New York, 1978. 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2274639
Downloaded from https:/www.cambridge.org/core. IP address: 91.229.222.72, on 27 Jun 2017 at 11:33:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2274639
https:/www.cambridge.org/core


ON THE EXISTENCE OF LARGE p-IDEALS 465 

[K] J. KETONEN, On the existence of P-points in the Stone-Cech compactification of integers, 
Fundament a Mathematicae, vol. 92 (1976), pp. 91-94. 

[ K l ] Cz. KLIS, An example of noncomplete normed k-space, Bulletin de I'Academie Polonaise des 
Sciences, Sine des Sciences Mathematiques, Astronomiques et Physiques, vol. 26 (1978), pp. 415-420. 

[Ml ] A. R. D. MATHIAS, 0* and the p-point problem, Higher set theory (G. Miiller and D. Scott, 
editors), Lecture Notes in Mathematics, vol. 669, Springer-Verlag, Berlin, 1977, pp. 375-384. 

[M2] , A remark on rare filters, Infinite and finite sets, Colloquia Mathematica Societatis Janos 
Bolyai, vol. 10, North-Holland, Amsterdam, 1975, Part III, pp. 1095-1097. 

[M3] , On a generalization of Ramsey's theorem, Fellowship dissertation, Peterhouse, 
Cambridge, 1969. 

[M4] , Happy families, Annals of Mathematical Logic, vol. 11 (1977), pp. 59-111. 
[P] K. PRIKRY, On a theorem of Mathias, handwritten notes, 1978. 
[R] F. ROTHBERGER, On some problems of Hausdorff and Sierpinski, Fundamenta Mathematicae, 

vol. 35 (1948), pp. 29-46. 
[Ru] W. RUDIN, Homogeneity problems in the theory of Cech compactifications, Duke Mathematical 

Journal, vol. 23 (1956), pp. 409-419. 
[S] W. SIERPINSKI, Hypothese de continu, Monografje Matematyczne, vol. 4, Z. Subwencji Funduszu 

Kultury Narodowej, Warsaw and Lwow, 1934. 
[Sh] S. SHELAH, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 

1982. 
[Sm] P. SIMON, Private communication, January, 1986. 
[T] M. TALAGRAND, Compacts de fonctions mesurables et filtres non meswables, Studia Mathematica, 

vol. 67 (1980), pp. 113-143. 
[vD] E. K. VAN DOUWEN, The integers and topology, Handbook of set-theoretic topology (K. Kunen 

and J. E. Vaughan, editors), North-Holland, Amsterdam, 1984, pp. 111-167. 
[W] E. WIMMERS, The Shelah P-point independence theorem, Israel Journal of Mathematics, vol. 43 

(1982), pp. 28-48. 

UNIVERSITY OF WARSAW 

WARSAW, POLAND 

ERINDALE COLLEGE 

UNIVERSITY OF TORONTO 

TORONTO, CANADA 

PETERHOUSE 

CAMBRIDGE CB2 IRD, ENGLAND 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF MINNESOTA 

MINNEAPOLIS, MINNESOTA 55455 

DEPARTMENT OF MATHEMATICS 

CHARLES UNIVERSITY 

186 00 PRAGUE 8, CZECHOSLOVAKIA 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2274639
Downloaded from https:/www.cambridge.org/core. IP address: 91.229.222.72, on 27 Jun 2017 at 11:33:48, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2274639
https:/www.cambridge.org/core



