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To David Fremlin

Abstract. A point in Baire space is found for which the first derived ω-limit set is not Borel, whilst the
second is empty. A second point is found for which the sequence of derived ω-limit sets does not stabilise
until the first uncountable ordinal. The two points are recursive.

1. Introduction

This paper solves two problems left open in the author’s paper [4] which will be cited as Delays.
We begin by summarising the general background: further details and any unexplained notation will be

found in that paper. For a short and informal motivation of this type of problem from the point of view of
topological dynamics, the reader may wish to consult [1, introduction].

General notation

This paper, as did Delays, applies set-theoretic ideas to a problem of analysis, and therefore our notation
will draw on that of two mathematical traditions. Thus we usually denote the set {0, 1, 2, . . .} of natural
numbers by ω, though occasionally by N; this visual distinction allows us to write ωn for the ordinal power
and Nn for the set of n-tuples of natural numbers.

N+ is the set {1, 2, 3, . . .} of positive integers: in Definition 4·3 the difference between N and N+ is
important.

Let X be a Polish space, and f : X −→ X a continuous map. We write x yf y, or sometimes y xf x,
read x attacks y, if y is a cluster point of the set of successive images of x under f ; and we write ωf (x) for
{y | x yf y}, which is a closed set, being the intersection over all i of the closures of the sets {fn(x) | n > i}.

We define an operator Γf on subsets of X by

Γf (X) =
⋃
{ωf (x) | x ∈ X}.

Using this operator and starting from a given point a ∈ X , we define a transfinite sequence of sets:

A0(a, f) = ωf (a)
Aβ+1(a, f) = Γf (Aβ(a, f))

Aλ(a, f) =
⋂
ν<λ

Aν(a, f) for λ a limit ordinal.

Γf (X) is always yf -closed, and if A is yf -closed, then Γf (A) ⊆ A. Hence A0(a, f) ⊇ A1(a, f);
X ⊇ B ⊇ C =⇒ Γf (B) ⊇ Γf (C); thus

A0(a, f) ⊇ A1(a, f) ⊇ A2(a, f) · · · ;

as we take intersections at limit ordinals we shall have that for all ordinals α, β,

α < β =⇒ Aα(a, f) ⊇ Aβ(a, f).
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Definition 1·0. The escape set or boundary is the union over all ordinals β of the set of those points in
ωf (a) eliminated at stage β of the iteration:

E(a, f) =df

⋃
β

(
Aβ(a, f) r Aβ+1(a, f)

)
.

Here X r Y is the set-theoretic difference {x | x ∈ X and x /∈ Y }.
Definition 1·1. For x ∈ E(a, f), we write β(x, a, f) for the unique β with x ∈ Aβ(a, f) r Aβ+1(a, f).
In Delays it is shown that β(x, a, f) is always a countable ordinal, and therefore by the stage of the first

uncountable ordinal, ω1, any point that is to escape has done so. Thus if we make the following
Definition 1·2. θ(a, f) =df the least ordinal θ with Aθ(a, f) = Aθ+1(a, f),

we know that θ(a, f) is always well defined and at most ω1. Further for all δ > θ, Aδ(a, f) = Aθ(a, f).
Definition 1·3. We write A(a, f) for this final set Aθ(a,f)(a, f). We call A(a, f) the abode, and the ordinal

θ(a, f) the score of the point a under f .
Thus E(a, f) = ωf (a) r A(a, f). We say that points in A(a, f) abide, and points in E(a, f) escape.

The results of the paper

Question 8·3 of Delays asks for an example where A1 is not a Borel set: we give such an example in the
next section, working in Baire space with the shift function.

Question 8·0 of Delays asked whether θ(a, f) is always a countable ordinal. We give a counterexample in
Section 3, working in a space Y of infinite sequences of countably many specially designed symbols, again
with the shift function. Y is of course homeomorphic to Baire space, but the construction is easier to
understand if the running information is written into the symbols used.

Of the problems listed in section 8 of Delays, only 8 ·4 survives unchanged by these new results; the others
are now answered in their original formulation, though in some cases there are reformulations of interest.

2. An example with A1 strictly analytic and A2 empty

Let N be Baire space, the space of infinite sequences of natural numbers, often denoted NN: for each finite
such sequence r we have the basic open set Nr =df {α | α � `h(r) = r}, where `h(r) means the length of
r and α � `h(r) denotes the restriction of α to the set {0, 1, 2, . . . r − 1}. Here we are following customary
set-theoretic practice of treating finite or infinite sequences as functions defined on a (possibly improper)
initial segment of ω.

Definition 2·0. s : N −→ N is the (backward) shift function given by s(α)(n) = α(n + 1).
Definition 2·1. If r is a finite sequence and x a finite or infinite sequence, we write r v x to mean

∃m∀n < `h(r) r(n) = x(m + n), where `h(r) is the length of r; in words, that r is a segment of x.
Let p0 = 2, p1 = 3, p2 = 5, . . . enumerate the rational primes in increasing order. For both finite and

infinite sequences of natural numbers, we introduce two variants of the familiar course-of-values functions.
Definition 2·2. Suppose that v : m −→ ω. Then v̂ is by definition the sequence with domain m, satisfying

v̂(0) = p
v(0)+2
0 , v̂(1) = p

v(0)+2
0 · pv(1)+1

1 , and generally for 1 < k < m,

v̂(k) =df p
v(0)+2
0 ·

∏
16i6k

p
v(i)+1
i

The sequence v̌ is then defined by setting v̌(k) = 2 + v̂(k) for all k < m.

Similarly for α ∈ N we define α̂ in N by α(0) = p
α(0)+2
0 , α̂(1) = p

α(0)+2
0 · pα(1)+1

1 , and generally for k > 1,

α̂(k) =df p
α(0)+2
0 ·

∏
16i6k

p
α(i)+1
i

and then define α̌ by α̌(k) = 2 + α̂(k).
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Remark 2·3. For each α, α̂ and α̌ are strictly monotonic and take only values ≡ 0 (mod 4) and ≡ 2
(mod 4) respectively. Both α̂ and α̌ are recursive in α, and α is uniformly recursive in each sn(α̂) and each
sn(α̌).

Preparing a shift-closed strictly analytic set of strictly increasing functions

Definition 2·4. For P any analytic subset of N , set

Ś (P ) =df {β | ∃n∃α[α ∈ P & β = sn(α̂)]}

PROPOSITION 2·5. Ś (P ) is a shift-closed analytic set such that every β in Ś (P ) is strictly increasing
and takes only values ≡ 0 (mod 4).

Remark 2·6. Since each of P and Ś (P ) is recursively reducible to the other, they will be of the same
Wadge degree; and if P is complete, Ś (P ) will be too.

THEOREM 2·7. Let P be any analytic subset of N . Then there is a point aP ∈ N with Ś (P ) = A1(aP , s).

Remark 2·8. In such a case, A2(aP , s) will be empty, as Ś (P ) contains only strictly monotonic functions,
which can attack nothing.

A real a with A1(a, s) = Ś (P )

LEMMA 2·9. Given P , we may find a closed subset C ⊆ N ×N and a set R of pairs of finite sequences
of natural numbers, which, if P is light-face analytic, may be chosen to be recursive, such that:

(i) if (s, t) ∈ R then `h(s) = `h(t) and s is a strictly increasing sequence of natural numbers each congruent
to 0 (mod 4).

(ii) if (s, t) ∈ R and n < `h(s), then (s � n, t � n) ∈ R;
(iii) C = {(β, γ) | ∀n (β � n, γ � n) ∈ R};
(iv) Ś (P ) = {β | ∃γ (β, γ) ∈ C}.
Proof. By familiar representations of analytic sets, such as are discussed in the first two chapters of [5]

or in [3, chapter III].
To prove Theorem 2·7 is easy if P is empty; henceforth we suppose that it is not. For each pair (β, γ) ∈ C,

define the infinite sequence

ξβ,γ =
(
β(0), γ̌(0), β(0), β(1), γ̌(1), β(0), β(1), β(2), γ̌(2), . . .

)
.

LEMMA 2·10. If ξβ,γ ys η then for some n, η = sn(β); conversely each sn(β) with β ∈ Ś (P ) is attacked
by each ξβ,γ with (β, γ) ∈ C.

Proof. No value of γ̌ occurs more than once in ξβ,γ , so cannot occur in η. Hence for each k > 0 there is
n(k) such that η � k = (sn(k)(β)) � k; but n(k) must be some constant n, as β, being in Ś (P ), is strictly
increasing, and thus η = sn(β), as required.

The truth of the converse is plain.

(2·11) As P is assumed not to be empty, R is an infinite set of pairs of finite sequences: list it, recursively
if possible, as

(s0, v0), (s1, v1), (s2, v2), . . . .

For each i ∈ N, define the finite sequence wi thus:

wi =df

(
si(0), v̌i(0), si(0), si(1), v̌i(1), . . . , si(0), si(1), . . . si(`h(si)− 1), v̌i(`h(si)− 1)

)
.

Write mn for the sequence 〈2n + 1〉 of length 1. We call such sequences markers.
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We shall call numbers ≡ 2 (mod 4) witnesses, as they help to define some γ̌ where γ attests the mem-
bership of some β of Ś (P ).

Finally, define the infinite sequence

a =df w0
am0

aw1
am1

aw2
am2

a . . .

where a indicates the concatenation of sequences.

LEMMA 2·12. If (β, γ) ∈ C, a ys ξβ,γ .

LEMMA 2·13. If a ys δ ys ζ, then ζ ∈ Ś (P ).

Proof. No q ≡ 1 (mod 2) occurs more than once in a, so δ contains no markers; therefore to each k there
is an i(k) such that δ � k v wi(k).

Were δ to contain only finitely many witnesses then after some point it would be strictly increasing, (as
each si is) and therefore could not attack ζ or anything else.

Hence δ contains infinitely many witnesses. But now the spacing between witnesses is extremely informa-
tive: if δ(i) and δ(i + j + 1) are successive witnesses in δ, then the next witness will be δ(i + 2j + 2).

List all the witnesses occurring in δ in order as p0, p1, . . . , pk . . . Write uk+1 for the segment of δ strictly
between the two successive witnesses pk and pk+1.

Choose (sik+1 , tik+1) in R with uk+1 an initial segment of sik+1 and pk+1 = ťik+1(`h(uk+1)−1). Then uk+1

will be a proper initial segment of uk+2, since both are initial segments of sik+2 , so there is a well-defined
infinite sequence

⋃
k→∞ uk+1: call it β.

Further, however we have made the above choice of (sik+1 , tik+1), the preceding witness pk will equal
ťik+1(`h(uk+1) − 2). Hence the witnesses cohere to define a γ ∈ N such that for some lag `, the witness
pk = γ̌(` + k): the “missing” initial segment of γ, γ � `, can be recovered from any witness in δ.

By Lemma 2·9 (ii), each (β � n, γ � n) ∈ R and hence (β, γ) ∈ C.
We may now verify that δ = s`(ξβ,γ). Since δ ys ζ, Lemma 2·10 shows that ζ is a finite shift of β, and

hence is in Ś (P ) as Ś (P ) is shift-closed.

Remark 2·14. In fact one can show that if a ys δ and δ contains one witness it must contain infinitely
many: if δ(j) = v̂i(k), say, k will be computable as one less than the number of distinct prime factors of
δ(j), and hence δ(j + k + 3) will be another witness.

Remark 2·15. By the discussion of 7·0 of Delays, the set {α | ∃ρ α ys ρ ys ρ}, there called P , is a
complete analytic set, and therefore not Borel. In this case, Ś (P ) would also be complete analytic, and R,
its enumeration, and the point aP constructed above, may easily be arranged to be recursive.
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3. Preparations for a point of uncountable score

The plan of attack

(3·0) Let R, P, M be three pairwise disjoint infinite subsets of ω. In Delays we showed how to assign to
each node s of a countable tree T of finite sequences a point xT

s ∈ N , using R∪P as an alphabet. Using the
additional alphabet M, we defined xT which would attack each xT

s .
Here we shall do something similar, but for each tree simultaneously. To avoid interference between the

points placed at nodes in distinct trees, we shall, in a continuous fashion, assign different alphabets to distinct
trees, so that any two alphabets have but finite intersection.

Trees will be coded by members τ of a set T , to be defined, of infinite sequences of natural numbers;
the nodes of, or rather the finite paths through, a tree will correspond under this coding to certain finite
sequences of positive integers that we shall call τ -sequences. Then we shall define, in a certain space, a point
ξτ
s for each τ ∈ T and s a τ -sequence; but rather than define ξτ for each τ we shall then use M to define a

recursive point b that attacks every ξτ
s . b is the point that will prove to be of score ω1.

We must work not with the members τ of T but with their finite initial segments u. Thus for each such
u and each u-sequence s, we shall define a finite sequence zu

s , such that ξτ
s will be the limit of the sequences

zτ�k
s as k −→ ∞. The point b will then be defined by concatenating all the zu

s but using members of M to
separate them.

We begin therefore by discussing those finite approximations to trees and paths through them. The
intuition behind our definitions will become clearer when we turn to a discussion of infinite sequences.

Finite trees and paths

We write `h(u) for the length of a finite sequence u.

Definition 3·1. F =df {u | u a non-empty finite sequence
(
u(1), u(2), . . . , u(`h(u))

)
of natural numbers

u(i) with 0 6 u(i) < i for 1 6 i 6 `h(u)}.
Remark 3·2. Contrary to habitual practice among set theorists, the terms of u are indexed by 1, . . . , `h(u)

rather than 0, . . . , `h(u)− 1.
For 1 6 k 6 `h(u) we write u6k for the sequence

(
u(1), . . . , u(k)

)
; that will be an element of F .

Definition 3·3. If u =
(
u(1), u(2), . . . , u(`h(u))

)
∈ F , a positive u-sequence is a non-empty finite sequence

s = (p1, . . . , p`) with 1 6 p1 < p2 < · · · < p` 6 `h(u), so that ` = `h(s) and p` = max s; we further require
that u(p1) = 0, and for 1 6 i < `h(s), u(pi+1) = pi.

The u-sequences are the positive u-sequences and the empty sequence, which we write as }.
As above, we write s6k for the sequence (p1, . . . , pk), where 1 6 k 6 `h(s); that too will be a positive

u-sequence. Further, we interpret s60 as the empty sequence, }.

Example 3·4. If u is the sequence (0,0,2,1,0), the u-sequences are }, (1), (2), (5), (1,4), and (2,3).

(3·5) We shall build our point in a space of infinite sequences of symbols, of which there will be three
kinds, recorders, predictors and markers. Certain symbols will contain information that is either an element
u of F—such symbols will be called recorders, because they contain information about the recent past of the
infinite sequence of symbols under consideration—or else a pair of finite sequences s, u where u ∈ F and s
is a positive u-sequence—such symbols will be called predictors because they contain information about the
near future of that infinite sequence. Nothing is required of the third kind of symbol, the markers, save that
there be a countable infinity of them and that they be all distinct from each other and from all recorders
and predictors.

It is extremely important that, from the point of view of the shift function that we shall apply, each symbol
is a single object; and, to give visual emphasis to that point, we shall use square brackets [, ] to encase each
individual symbol, whereas we shall use pointed brackets

〈
,
〉
, to encase finite or infinite sequences of symbols.

We shall associate to each recorder and each predictor two natural numbers, its weight and its height.

Definition 3·6. A recorder is an object [u] where u is in F . Its weight is 0 and its height is the length `h(u)
of u as a member of F .
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Definition 3·7. A predictor is an object [s;u] where u ∈ F and s is a positive u-sequence. s will be called
the path of the predictor [s;u], and u its tree. The predictor’s weight is the length of its path, and its height
is the length of its tree.

Remark 3·8. Plainly the weight of [s;u] is not greater than its height.

Definition 3·9. We say that s is tight in u, or that u tightly contains s, if s is a u-sequence and max s =
`h(u). In the contrary case we shall use the words loose and loosely. We may indeed define the looseness of
u over s as `h(u)−max s.

(3·10) For each u ∈ F and each u-sequence s we shall define a finite sequence zu
s of symbols. Our definition

will proceed by a mode of induction that will also be used in proving our theorem, which we shall call double
induction. To spell the method out in greater detail: we first consider the case s = }. Then we suppose
that m > 1 and that we have already treated all pairs u, s with s a u-sequence of length < m. On that
supposition, we take an s of length m, and consider all u ∈ F for which s is a u-sequence, starting with
those u for which `h(u) = max s, and then progressively treating longer u; thus for given s we proceed by
induction on the looseness of u over s.

In using double induction the following convention will be useful.

Definition 3·11. We write s′ for the sequence s with its last element removed—so that if s is of length 1,
s′ = }—and we write u′ for u with its last element removed.

We proceed to our definition of zu
s by double induction, and first treat the case of s = }.

Definition 3·12. For u ∈ F ,

zu
} =df

〈
[u61], [u62], . . . , [u6`h(u)−1], [u]

〉
.

Remark 3·13. The length of zu
} equals that of u.

Example 3·14. z
(0,0,2,1,0)
} =

〈
[(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
Now for u ∈ F and s a positive u-sequence we shall define zu

s .

Definition 3·15.

zu
s =df


〈
[s;u]

〉
azu

s′ if max s = `h(u);

zu′

s
a

〈
[s;u]

〉
azu

s′ if max s < `h(u).

The first clause handles the case that u tightly contains s, and the second the cases when `h(u) is strictly
greater than max s.

Remark 3·16. Note that [s;u] occurs only once in zu
s ; we shall refer to it as the peak of zu

s . It is the only
symbol in zu

s with sum of weight and height equal to `h(s) + `h(u).

We give several examples to illustrate that definition.

Example 3·17. If s is of length 1, then zu
s =

〈
[s;u]

〉
azu

} if max s = `h(u) and zu
s = zu′

s
a

〈
[s;u]

〉
azu

}
otherwise.

Example 3·18. If u is the sequence (0,0,2,1,0), then zu
(5) is

〈
[(5); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
,

a sequence of six symbols, whereas zu
(2) is

〈
[(2);(0, 0)], [(0)], [(0, 0)], [(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],
[(2); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
,

which has eighteen, of which the heights, in order, are 2, 1, 2; 3, 1, 2, 3; 4, 1, 2, 3, 4; 5, 1, 2, 3, 4, 5.
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We compute zu
(1), zu

(1,4) and zu
(2,3) in greater detail:

z
(0)
(1) =

〈
[(1); (0)], [(0)]

〉
;

z
(0,0)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)]

〉
;

z
(0,0,2)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)], [(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)]

〉
;

z
(0,0,2,1)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)], [(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)]
〉
;

z
(0,0,2,1,0)
(1) =

〈
[(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)], [(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],
[(1); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
.

z
(0,0,2,1)
(1,4) =

〈
[(1, 4); (0, 0, 2, 1)]

〉
az

(0,0,2,1)
(1)

=
〈
[(1, 4); (0, 0, 2, 1)], [(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)], [(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)]
〉
;

z
(0,0,2,1,0)
(1,4) = z

(0,0,2,1)
(1,4)

a
〈
[(1, 4); (0, 0, 2, 1, 0)]

〉
az

(0,0,2,1,0)
(1)

=
〈
[(1, 4); (0, 0, 2, 1)], [(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)], [(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],
[(1, 4); (0, 0, 2, 1, 0)], [(1); (0)], [(0)], [(1); (0, 0)], [(0)], [(0, 0)],

[(1); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)], [(1); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],
[(1); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
.
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z
(0,0,2)
(2,3) =

〈
[(2, 3); (0, 0, 2)]

〉
az

(0,0,2)
(2) ;

z
(0,0,2,1)
(2,3) = z

(0,0,2)
(2,3)

a
〈
[(2, 3); (0, 0, 2, 1)]

〉
az

(0,0,2,1)
(2) ;

z
(0,0,2,1,0)
(2,3) = z

(0,0,2,1)
(2,3)

a
〈
[(2, 3); (0, 0, 2, 1, 0)]

〉
az

(0,0,2,1,0)
(2)

= z
(0,0,2)
(2,3)

a
〈
[(2, 3); (0, 0, 2, 1)]

〉
az

(0,0,2,1)
(2)

a
〈
[(2, 3); (0, 0, 2, 1, 0)]

〉
az

(0,0,2,1,0)
(2)

=
〈
[(2, 3); (0, 0, 2)],

[(2); (0, 0)], [(0)], [(0, 0)],
[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],

[(2, 3); (0, 0, 2, 1)],
[(2); (0, 0)], [(0)], [(0, 0)],
[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],
[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],

[(2, 3); (0, 0, 2, 1, 0)],
[(2); (0, 0)], [(0)], [(0, 0)],
[(2); (0, 0, 2)], [(0)], [(0, 0)], [(0, 0, 2)],
[(2); (0, 0, 2, 1)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)],
[(2); (0, 0, 2, 1, 0)], [(0)], [(0, 0)], [(0, 0, 2)], [(0, 0, 2, 1)], [(0, 0, 2, 1, 0)]

〉
.

Example 3·19. Suppose that 3 + max t = `h(v). Let vi = v6i+max t, so that v0 = v6max t and v3 = v.
Then zv

t is 〈
[t; v0]

〉
azv0

t′
a

〈
[t; v1]

〉
azv1

t′
a

〈
[t; v2]

〉
azv2

t′
a

〈
[t; v]

〉
azv

t′ ,

which has precisely the four predictors shown of weight equal to the length of t; all other predictors in zv
t

will be of lesser weight.
Here is a first example of proof by double induction:
PROPOSITION 3·20. If s is not }, then the first symbol of zu

s is the predictor [s;u6max s].
Proof. If u tightly contains s, zu

s =
〈
[s;u]

〉
azu

s′ of which the first symbol is [s;u], which equals [s;u6max s].
Otherwise zu

s = zu′

s
a

〈
[s;u]

〉
azu

s′ , of which the first symbol is that of zu′

s , which, by the induction hypothesis,
is the predictor [s;u′6max s]; but that in the context equals [s;u6max s].

Notation for finite sequences

We shall follow Delays in using the following notation for the extension relation between finite sequences
of arbitrary objects.

Definition 3·21. t 4 s ⇐⇒df t is an extension of s; t ≺ s ⇐⇒df t is an proper extension of s;
s < t ⇐⇒df s is an initial segment of t; s � t ⇐⇒df s is a proper initial segment of t.

Remark 3·22. Thus s < t ⇐⇒ t 4 s, and so on. } has no proper initial segments, but is itself a proper
initial segment of every finite sequence of positive length. Note that longer sequences are lower in this
ordering.

Definition 3·23. We shall say that two finite sequences s and t cohere if either s < t or t < s.

Properties of finite sequences

PROPOSITION 3·24. Let u and v be members of F , and let t be both an u-sequence and a v-sequence.
(i) `h(u) = `h(zu

});

(ii) for ` 6 `h(v), zv
} � ` = zv�`

} ;
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(iii) v ≺ u =⇒ zv
t ≺ zu

t ;
(iv) zv

t = zu
t =⇒ v = u;

(v) zv
t ≺ zu

t =⇒ v ≺ u.

Proof of 3·24 (iii). If t = }, use (ii): otherwise use an earlier instance to note that zv
t ≺ zv′

t 4 zu
t .

Proof of 3·24 (iv). Compare peaks.
Proof of 3·24 (v). The peak of zv

t cannot be in zu
t , for otherwise u = v; whence zu

t < zv′

t , giving,
inductively, v′ 4 u.

Definition 3·25. An m-predictor is a predictor of weight exactly m. An m-stretch is a finite sequence of
symbols all of weight at most m.

LEMMA 3·26. Let u ∈ F , s a u-sequence of weight > m. Let x v zu
s be an m-stretch.

(i) x v zu
s′ ;

(ii) in fact x v zu
s6m

.

Proof of 3·26 (i). Its weight forbids the peak of zu
s to lie in x.

Case 1: s is tight in u. Then zu
s =

〈
[s;u]

〉
azu

s′ , whence x v zu
s′ .

Case 2: otherwise. Then zu
s = zu′

s
a

〈
[s;u]

〉
azu

s′ , so either x v zu′

s or x v zu
s′ ; if the second alternative is

false, we may iterate the first, progressively shortening u till it does tightly contain s, and then apply Case
1.

Proof of 3·26 (ii). By iterating Lemma 3·26 (i), progressively shortening s.

Indeed we can sharpen that result:

PROPOSITION 3·27. Let x be an m-stretch with all symbols of height at most h. Suppose that x v zu
s .

Then x v z
u6h
s6m .

Proof. For fixed x by double induction on s and u. If the peak of zu
s occurs in x, then both the height

and weight of x equal those of zu
s , and then the proposition is trivially true. Otherwise x v zu′

s or x v zu
s′ ;

in the first case the height is less and in the second the weight. In either case we have a reduction to an
earlier instance of the induction.

LEMMA 3·28. The recorders in zu
s are those in zu

}: namely non-empty initial segments of u. Hence any
two recorders in zu

s cohere.

Proof. By applying Proposition 3·27 to 0-stretches of length 1.

LEMMA 3·29. If s < t and t is a u-sequence, then zu
s is a final segment of zu

t ; if s � t, that final segment
is immediately preceded by the predictor [s+;u], where s+ = t6`h(s)+1.

Proof. Write t0 = t, and progressively write tk+1 = t′k till we reach tn = s. If n = 0 the Lemma is trivial;
if n > 0, then we remark that for each k, zu

tk
ends in zu

tk+1
which is preceded by [tk;u]; finally note that

tn−1 = t6`h(s)+1.

LEMMA 3·30. if u < v and s is a u-sequence, then zu
s < zv

s ; if u � v, the term in zv
s after that occurrence

of zu
s is [s;u+]. where u+ = v6`h(u)+1.

Proof. The first part is Proposition 3·24 (iii) rephrased; the second part holds if v′ = u, and stays true
for longer v by an easy induction, as then u � v′ � v.

LEMMA 3·31. If [s;u] occurs in zv
t then s < t and u < v.

Proof. By a double induction on t and v. The lemma is true if [s;u] = [t; v]. Otherwise [s;u] occurs in zv
t′

or, provided t is loose in v, in zv′

t ; in either case we have a reduction to an earlier instance of the induction,
to which we then link either the fact that t′ � t or that v′ � v.

LEMMA 3·32. An occurrence of [s;u] in zv
t is followed by the whole of zu

s′ .

Proof. By a similarly structured induction on t and v.

LEMMA 3·33. In any zu
s the immediate successor of an m-predictor is a symbol of weight m− 1.

Proof. Immediate from the definition if m = 1; by Proposition 3·20 otherwise.
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LEMMA 3·34. If s is of length m+1,
〈
[s;u]

〉
ax is a final segment of zw

s and x is an m-stretch, then u = w
and x = zu

s′ .
Proof. [s;w] is the last symbol of weight m + 1 in zw

s .

PROPOSITION 3·35. If s is of length m + 1, x is an m-stretch, and y =df

〈
[s;u]

〉
axa

〈
[s; v]

〉
v zw

r , then
u = v′ and x = zu

s′ .
Proof by double induction. By Proposition 3·27, we can suppose r = s. If v 6= w, we have zw

s =
zw′

s
a

〈
[s;w]

〉
azw

s′ and therefore y v zw′

s ; thus we may reduce the length of w until w = v.
So our proposition is now reduced to the case that y v zv

s . We then have〈
[s;u]

〉
axa

〈
[s; v]

〉
v zv′

s
a

〈
[s; v]

〉
azv

s′ ;

since [s; v] occurs in neither zv′

s nor in zv
s′ , we may be sure that the last symbol of y occurs as the peak of

zv
s ; but then

〈
[s;u]

〉
ax forms a final segment of zv′

s , so we may apply Lemma 3·34 to infer that u = v′ and
x = zu

s′ .

COROLLARY 3·36. If y =
〈
[s;u1]

〉
ax1

a
〈
[s;u2]

〉
ax2

a
〈
[s;u3]

〉
v zw

r , where s is of length m + 1 and both
x1 and x2 are m-stretches, then x1 � x2, and `h(u2) = `h(u1) + 1.

Proof. In the circumstances, x1 = zu1
s′ , x2 = zu2

s′ , and u1 = (u2)′.

LEMMA 3·37. If s is of length m + 1, x is an m-stretch, and xa
〈
[s; v]

〉
v zw

t , then x is a final segment of
zv′

s .
Proof. The hypotheses imply, by Proposition 3·27, that xa

〈
[s; v]

〉
v zv

s , in which the only occurrence of
[s; v] is the peak; but then x must be a final segment of the preceding sequence, which is zv′

s .

LEMMA 3·38. If the recorder [e], of height at least 2, occurs in zu
s , its predecessor is [e6`h(e)−1]; if of height

1, its predecessor, if any, will be a predictor of weight 1.

PROPOSITION 3·39. If zu
s (i) and zu

s (i + 1) are both recorders then `h(zu
s (i + 1)) = 1 + `h(zu

s (i)).

Remark 3·40. The unique longest m-stretch in zu
s is at the end, namely zu

s6m
: for if s is of weight m, zu

s

is itself an m-stretch; and if s is of greater weight, the m-stretches in zu
s are those of zu

s′ and, provided s is
loose in u, of zu′

s . By induction, the unique longest of those are zu
s6m

and zu′

s6m
, of which two the first is in

any case strictly longer.

PROPOSITION 3·41. Suppose that x =df

〈
[s;u]

〉
azu

s′ v zw
r but is not a final segment thereof. Then the

first symbol after the segment x of zw
r is of the form [t; v] where v′ = u and t 4 s, and if t ≺ s there will be

a later occurrence in zw
r of a symbol of weight that of s.

Remark 3·42.
〈
[s;u]

〉
azu

s′ is a final segment of zu
s , properly so if and only if s is loose in u.

Towards the proof of Proposition 3·41, we first prove a Lemma to cover the case s = r.
LEMMA 3·43. x =df

〈
[s;u]

〉
azu

s′ is a final segment of zw
s if and only if u = w.

Proof. One way is covered by Remark 3·42. For the other, since zw
s = zw′

s
a

〈
[s;w]

〉
azw

s′ , the peak of zw
s is

its last symbol of weight `h(s) and therefore if x is a final segment of zw
s , the first symbol of x must be that

peak, whence zu
s′ = zw

s′ , whence u = w.
Proof of Proposition 3·41. We consider s and u to be fixed and do a double induction on r and w.
As always, we have

zw
r = zw′

r
a

〈
[r;w]

〉
azw

r′

The hypotheses imply that r 4 s and, by Lemma 3·43, that w ≺ u; hence the peak of zw
r cannot lie in x,

and therefore either x v zw
r′ or x v zw′

r .
If x v zw

r′ , then x will not be a final segment of zw
r′ , and so the induction will apply.

If x v zw′

r , either w′ ≺ u, whence by Lemma 3·43 x is not final in zw′

r , and the induction will again apply;
or w′ = u, x is final—again by Lemma 3·43—in zw′

r and the next symbol is [r;w], which is of the desired
form [t; v] with v′ = u and t 4 s.
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The final clause follows from Lemma 3·33.

PROPOSITION 3·44. In any zu
s , if the same symbol, of weight m, occurs twice, then between the two

occurrences there must be an occurrence of a symbol of weight m + 1.
Proof by double induction. The indicated symbol, that which repeats, cannot be the peak of zu

s , which
occurs only once there.

If s is tight in u, the two occurrences must both be in zu
s′ , and we have reduced to an earlier case.

Otherwise zu
s = zu′

s ∩
〈
[s;u]

〉
∩ zu

s′ , and there are three possibilities: both occurrences are before the peak,
when both lie in zu′

s ; both lie after, and therefore both lie in zu
s′—both times we have a reduction to an earlier

case—or one lies before the peak and the other after; but then the proposition is proved, for the peak is of
weight greater than m, and, if of weight > m + 1, will by Lemma 3·33 immediately be followed by symbols
of weights declining by 1 at each step, thus reaching a symbol of weight m + 1 before the second occurrence
of the indicated symbol.

4. Introducing infinite sequences

We have introduced two of our three kinds of symbol. For the third, the markers, we take infinitely many
objects [m0], [m1], . . . distinct from each other and from all recorders and predictors.

We define Y to be the space of all sequences of length ω of symbols. Here we return to normal set-theoretic
convention by considering the domain of such sequences to be ω = {0, 1, 2, . . .}.

On Y we may define the shift function, which we again denote by s: s(ζ)(n) = ζ(n + 1) for n > 0.
As in section 4 of Delays we write ζ . ξ, read ζ is near to ξ, if ζ = sn(ξ) for some n > 0.
Definition 4·0. The weight of a point ζ of Y is the supremum of the weight of its predictors: thus either

a natural number or ∞. The height of a point ζ ∈ Y is the supremum of the height of its recorders and
predictors: again either a natural number or ∞.

Introducing the real b

At last we are in a position to define our point b, which will lie in the space Y.
Definition 4·1. Enumerate all sequences zu

s where u ∈ F and s is a u-sequence, in some recursive fashion
as zi (i = 0, 1, . . .).

Define
b =df z0

a
〈
[m0]

〉
az1

a
〈
[m1]

〉
a . . .

We now work towards our principal result:
THEOREM 4·2. θ(b, s) = ω1.

To classify the points of Y attacked by b, we shall use the infinite trees to which the members of F are
codes of finite approximations.

Introducing infinite trees

Definition 4·3. T =df {τ : N+ −→ N | for all n > 1, 0 6 τ(n) < n}
Remark 4·4. With the product topology of discrete finite spaces, T is a compact space.
Remark 4·5. If one regards F as a tree, T is the set of all infinite paths through it.
Definition 4·6. For τ ∈ T , a (positive) τ -sequence is a (non-empty) finite sequence of positive integers

p1 < · · · < pk with τ(p1) = 0 and τ(pn+1) = pn for each 1 6 n < k. Thus } is a τ -sequence. A τ -path is an
infinite sequence π = (p1, p2, . . .) with τ(p1) = 0 and τ(pn+1) = pn for each n > 1. For such π we write π6k

for its initial segment (p1, p2, . . . , pk), where k > 1.
We speak of τ as well-founded if there are no τ -paths: ill-founded if there are.
Remark 4·7. We may regard each τ ∈ T as coding a tree, of which the top point is 0 and m <τ n if m is

not 0 and for some ` > 0, τ `(m) = n.
Remark 4·8. Every countably infinite tree T of finite sequences under end-extension is coded by some

τ ∈ T . To see that, partition ω into infinitely many infinite sets Xi. List the members of T as v0, v1, v2, . . .
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We define a first assignment λ of natural numbers to members of T by induction on the length of each
member as a finite sequence.

Assign 0 to the top point } of T . Once a natural number λ(vi) has been assigned to vi, assign distinct
members of Xir{m | m 6 λ(vi)} to the immediate extensions of vi. Let µ : =(λ) ∼= ω be the order-preserving
bijection of the set of all natural numbers used in the first assignment λ, so that µ ◦ λ is a bijection between
T and ω, which is the final assignment; let χ be its inverse.

Now set τ(n) to be the m such that χ(m) = χ(n)′. Then τ ∈ T , and (ω, <τ ) ∼= (T,≺).

Properties of infinite sequences attacked by b

LEMMA 4·9. If the recorder [e], of height at least 2, occurs in some ζ attacked by b, its predecessor in ζ is
[e6`h(e)−1]; if of height 1, its predecessor, if any, in ζ will be a predictor of weight 1.

Proof. By Lemma 3·38.

PROPOSITION 4·10. If ζ(i) is a recorder then ζ(i + 1), if a recorder, is of height one more than ζ(i).

LEMMA 4·11. If b ys ξ, ξ contains no markers: hence to each ` there are u and s with ξ � ` v zu
s .

Proof. No marker occurs twice in b.

LEMMA 4·12. Any two recorders, d and e, in ξ cohere.
Proof. Pick ` with both d and e occurring in ξ � `, and let ξ � ` v zv

t . Then by Lemma 3·28 both d and e
are initial segments of v.

LEMMA 4·13. If b y ζ and an m-predictor occurs in ζ, then m-predictors occur infinitely often in ζ.
Proof. By Lemma 3·32 and Proposition 3·41.
PROPOSITION 4·14. If b ys ζ then the height of ζ is ∞.
Proof by cases, according to the weight of ζ. If ζ is of weight 0, then we use Proposition 4·10.
If on the other hand ζ is of positive finite weight, m, we consider the sequence of m-predictors in ζ. By

Proposition 3·41, their height increases by one each time. Hence the zu
}’s that ζ contains are of unbounded

length.
Finally, if ζ is of infinite weight, then by Remark 3·8 it must also be of infinite height. Hence it contains

recorders of every height.

(4·15) Thus if b ys ζ, ζ has recorders of unbounded height; they cohere to define a tree, which we shall
call τζ , in T . This tree is uniquely determined by ζ; by the coherence property, Lemma 4·12, no u ∈ F other
than the initial segments of τζ may occur in ζ.

Points of finite weight attacked by b

We proceed to give an exact description of the points of finite weight attacked by b.
Definition 4·16. For τ ∈ T and s a τ -sequence, set

ξτ
s =df

⋃
k>max s

zτ�k
s

which will be a member of our symbol space Y.
Example 4·17. ξτ

} =
〈
[τ61], [τ62], [τ63], . . . , [τ6k−1], [τ6k], [τ6k+1], . . .

〉
, which has no predictors.

Example 4·18. Suppose that s is a positive τ -sequence with max s = 5. Then

ξτ
s =

〈
[s; τ65]

〉
az

τ65
s′

a
〈
[s; τ66]

〉
az

τ66
s′

a
〈
[s; τ67]

〉
az

τ67
s′

a . . . a
〈
[s; τ6k]

〉
az

τ6k

s′
a . . .

which has infinitely many predictors of weight 5 but none of weight 6 or more.
Remark 4·19. The tree defined by ξτ

s equals τ .

Points of weight nought attacked by b
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PROPOSITION 4·20. For each τ ∈ T , b ys ξτ
}; each ξτ

} is of weight nought; no γ near ξτ
} attacks itself.

Proof. The first part holds since each zu
} occurs infinitely often as a segment of b; the second is plain; and

the third holds because no recorder occurs twice in any ξτ
}.

PROPOSITION 4·21. If b ys ζ and ζ is of weight 0, then ζ . ξ
τζ

} .
Proof. By Proposition 4·10, if ζ(0) is of height k then ζ = sk−1(ξτζ

} ).

Points of positive finite weight attacked by b

PROPOSITION 4·22. For each positive τ -sequence s, b ys ξτ
s ; each ξτ

s is of finite weight equal to `h(s);
and no γ near ξτ

s attacks itself.
Proof of the last part. No predictor of weight `h(s) occurs twice in ξτ

s .

LEMMA 4·23. If the weight of ζ, attacked by b, is bounded, let m be the largest weight of a predictor
occurring in ζ. Then:

(i) ζ has infinitely many predictors of weight m;
(ii) there is a unique sequence sζ of length m such that every predictor of weight m occurring in ζ is of

the form [sζ ; v] for some v ∈ F with v an initial segment of τζ and sζ a v-sequence;
(iii) to each ` there are u � τζ and t < sζ with ζ � ` v zu

t and the two stretches ζ � ` and zu
t having the

same height and weight.
Proof. The first part is just Lemma 4·13. The second part is a consequence of the principle of coherence.

The third follows from Proposition 3·27.

PROPOSITION 4·24. If b ys ζ and ζ is of finite weight m > 0, then there is a unique τζ-sequence sζ , of
length m, such that ζ . ξ

τζ
sζ .

Proof. By comparing Lemma 4·23 with Example 4·18; in each case a segment
〈
[s;u]

〉
azu

s′ is promptly
followed by a segment

〈
[s; v]

〉
azv

s′ where v′ = u and s = sζ . The “missing” initial segment determines the
shift required.

LEMMA 4·25. If t and s are τ -sequences with s = t′, then ξτ
t ys ξτ

s .
Proof. By examination of Example 4·18.
PROPOSITION 4·26. If t and s are τ -sequences with t ≺ s, then ξτ

t ys ξτ
s .

Points at the end of a path

Before discussing the points of infinite weight attacked by b it will be helpful to review some material
from section 3 of Delays.

We showed there, in the general context of a continuous map f of a Polish space X into itself, that if
we have an infinite sequence of points bi, with b0 xf b1 xf b2 . . . xf b, then we can choose integers ni,
(increasing if we wish), such that putting yi = fni(bi), the yi form a Cauchy sequence converging to a point
y with b yf y yf y yf bi for each i, for in these circumstances fn(bj) y bi for j > i and arbitrary n.

That lends interest to the following definition:
Definition 4·27. Let b0 xf b1 xf b2 . . . be an infinite path descending in the relation yf . We say that a

point y lies at the end of the path if it satisfies two conditions:
(i) there are numbers ni such that y = limi→∞ fni(bi);
(ii) for each i, y yf bi.
PROPOSITION 4·28. If both y and z are at the end of the same path, then y yf z yf y; in particular all

points at the end of a given path are recurrent and attack each other.
Proof. True because z attacks each bi, hence attacks each fni(bi); hence attacks y; and the situation is

symmetric.

Remark 4·29. When, as here, X = Y and f = s, the first condition will follow if one proves that to each
` there is a large i and an ni with y � ` v sni(bi).
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Points of infinite weight attacked by b

Suppose that ζ, attacked by b, is of infinite weight. We know that if [s;u] and [t; v] occur in ζ then as they
both lie in some zw

r , u and v cohere, both being initial segments of w, and s and t cohere, both being initial
segments of r. The union of the trees of the predictors in ζ will be the tree τζ . The union of the paths of
the predictors in ζ will be a τζ-path that we shall call πζ . πζ is infinitely long because ζ is of infinite weight;
hence τζ is ill-founded.

Denote by sk the τζ-sequence (πζ)6k and by γk the point ξ
τζ
sk of Y.

Plainly γk+1 ys γk for each k. We wish to show that ζ lies at the end of the path γ0 xs γ1 xs . . . There
are two things to be verified: that ζ is the limit of well-chosen finite shifts of the γk’s, and that ζ attacks
each γk.

First, given ` ∈ ω, let m be the greatest weight of any symbol occurring in the initial segment ζ � `, so
that segment is an m-stretch. Then by Proposition 3·27 there are w and s such that ζ � ` v zw

s with w an
initial segment of τζ and s an initial segment of πζ , and therefore

ζ � ` v zw
s6m

v γm.

Thus ζ � ` will be an initial segment of an appropriate shift of γm.
Secondly, for given k and ` pick initial segments w and s of τζ and πζ so that γk � ` v zw

s . Let [r;u] be a
predictor occurring as late in ζ as desired and of weight strictly exceeding the height of w. Then u ≺ w and
r ≺ s. Therefore

γk � ` v zw
s v zu

r′ v ζ,

since zu
r′ occurs as a segment of ζ immediately after the given occurrence of [r;u].

Thus, remembering Proposition 4·28, we have proved:
PROPOSITION 4·30. If b ys ζ and ζ is of infinite weight, then there are unique τζ and πζ defined by ζ;

τζ is ill-founded, and ζ lies at the end of the τζ-path πζ and is therefore recurrent.
So we have shown that all points of infinite weight attacked by b are recurrent. We now prove the converse.
PROPOSITION 4·31. If b ys ρ ys ρ, then ρ contains recorders and also contains predictors of every

positive weight.
Proof. ρ has no markers; hence for each ` there are u and s such that ρ � ` v zu

s . The immediate successor
of a predictor of weight m > 1 will be a predictor of weight m − 1; the immediate successor of a predictor
of weight 1 will be a recorder. Hence ρ must contain recorders.

Since ρ is recurrent, any symbol in it recurs infinitely often. We complete the proof by remarking, following
Proposition 3·44, that between two occurrences of the same recorder, there must occur a predictor of weight
one; and between two occurrences of the same predictor of weight m there must occur a predictor of weight
m + 1.

Putting those two propositions together, we have this characterisation:
PROPOSITION 4·32. If b ys ρ, ρ is recurrent if and only if it is of infinite weight.

Example 4·33. We illustrate the way in which recurrent points arise. Suppose that τ ∈ T is ill-founded,
and that π is an infinite τ -path. We choose strictly increasing integers nk such that π6k is a τ6nk−1 path,
so that π(k) < nk and π6k is not tight in τ6nk

.
The most “efficient” choice might be to set nk = π(k) + 1, but other choices are of course possible.
Fix k, and suppose for the sake of example that nk+1 equals nk + 3. Write s for π6k, and t for π6k+1, so

that t′ = s. Write u for τ6nk
, u+ for τ6nk+1, u++ for τ6nk+2, and v for τ6nk+1 , so that v′ = u++.

Consider the following string of symbols:

zu′

s
a

〈
[s;u]

〉
azu

s′︸ ︷︷ ︸
zu

s

a
〈
[s;u+]

〉
azu+

s′

︸ ︷︷ ︸
zu+

s

a
〈
[s;u++]

〉
azu++

s′

︸ ︷︷ ︸
zu++

s

a
〈
[t; v]

〉
azv

t′

︸ ︷︷ ︸
s`(zv

t )
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To see that the entire string is expressible as a shift of zv
t , note that zu++

s = zv′

t′ , which is an end-segment
of zv′

t , so we must choose ` to be 1 if t is tight in v′, and to be 1 + `h(zv′′

t ) otherwise.
Remark 4·34. For further variety in the construction of recurrent points, reflect that if s is loose in u

and has successive extensions s+, s++, say, which are also u-sequences, the string
〈
[s;u]

〉
azu

s′ is an end-
segment of zu

s but also of zu
s+ and of zu

s++ , and hence can be followed by
〈
[s;u+]

〉
azu+

s′ ,
〈
[s+;u+]

〉
azu+

s or〈
[s++;u+]

〉
azu+

s+ , to yield, respectively, end-segments of zu+

s , zu+

s+ or zu+

s++ .

Proof of the main result

LEMMA 4·35. If b ys ξ, τξ 6= σ ∈ T , and s is a σ-sequence, then ξ 6ys ξσ
s .

Proof. Let e be an initial segment of σ that is not one of τξ. Then [e] occurs in ξσ
s but not in any ξ

τξ

πξ�k,
hence not in ξ.

LEMMA 4·36. If b ys ζ ys γ . ξσ
s and σ is well-founded, then ζ is of finite weight.

Proof. If ζ were of infinite weight, τζ would be ill-founded. But τζ = σ.

PROPOSITION 4·37. Let σ ∈ T be well-founded. If b ys ζ ys γ . ξσ
s then there is a t ≺ s such that ζ is

near ξσ
t .

Proof. Take t = sζ , as in Proposition 4·24. t 4 s since ζ ys γ; since γ 6ys γ, t ≺ s.

COROLLARY 4·38. For σ well-founded, β(ξσ
}, b, s) = %σ(0).

Here β is as in Definition 1·1, and %σ is the rank function defined on the nodes of σ, as in section 1 of
Delays. The number 0 is the top node in the tree relation <σ defined in Remark 4·7 above.

Proof. By lemmata 4·4 and 4·6 of Delays, taking T to be the tree coded by σ, xT to be b and, for s a
σ-sequence, xs to be ξσ

s . Proposition 4·37 above shows that b plays the rôle required of xT in lemma 4·6 of
Delays.

Proof of Theorem 4·2. Let η be any countable ordinal and let σ ∈ T be well-founded with %σ(0) = η: such
σ may be constructed following Remark 4·8 and Delays, proposition 4·1. Theorem 4·7 of Delays may now be
applied, to show that θ(b, s) > η. Since η was arbitrary, θ(b, s) > ω1; by Delays, corollary 2·5, θ(b, s) 6 ω1;
thus θ(b, s) = ω1.

(4·39) Thus we arrive at the following attractive picture: the recurrent points attacked by b are all at the
ends of paths through ill-founded trees, and they are all maximal recurrent in b in the sense of definition 3·21
of Delays; all other points attacked by b are near to some ξτ

s for uniquely determined τ and s; the points
that escape are those near to ξτ

s with τ well-founded below s.
Remark 4·40. The abode A(b, s) is a complete analytic set, since the assignment τ 7→ ξτ

} is continuous,
and τ is ill-founded if and only if ξτ

} ∈ A(b, s). Similarly E(b, s) is a complete co-analytic set.
Remark 4·41. Our methods confirm a conjecture of Martin Goldstern: let

G =df {α ∈ N | ωs(α) 6 ℵ0}.

G is co-analytic since
α ∈ G ⇐⇒ ∀β(α ys β =⇒ β is hyperarithmetic in α).

We shall show that G is complete by exhibiting a continuous reduction of the collection of well-founded trees
to it.

For τ ∈ T , define ξτ by modifying Definition 4·1: let (wτ
i )i list all zu

s where u � τ and s is a u-sequence—
plainly such a list may be found uniformly recursive in τ by deleting all zu

s with u 6� τ from the recursive
list (zi)i—and then set

ξτ =df wτ
0

a
〈
[m0]

〉
awτ

1
a

〈
[m1]

〉
awτ

2
a

〈
[m2]

〉
a · · ·

If τ is well-founded, ξτ will be in G, since it attacks only points near to ξτ
s for some τ -sequence s.
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If τ is ill-founded, then ξτ will attack some recurrent point at the end of a τ -path. The variety of
construction of recurrent points indicated in Example 4·33 and Remark 4·34 may readily be exploited to
prove that the set of recurrent points at the end of a given path is uncountable, and indeed contains a perfect
set.

Thus if τ is ill-founded, ξτ will not be in G.
Since the association τ 7→ ξτ is continuous, indeed recursive, we have reduced a known complete co-

analytic set to G, which must, therefore, itself be complete co-analytic.
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I was inspired to seek the construction of Section 2 by a counterexample of David Fremlin which showed
that A1 need not be a Gδ set, and thus answered in the negative problem 8·5 of Delays.

Here, with his permission, are his examples:

Definition 5·0. For a ∈ NN write
A1(a) = {x : a ys x},

A2(a) = {x : ∃ y ∈ A1(a), y ys x},
B1(a) = {x : x ys a},

B2(a) = {x : ∃ y ∈ B1(a), x ys y}.
Observe that because ys is a Gδ subset of NN×NN, A1(a) and B1(a) are Gδ (in fact, A1(a) is closed),
and A2(a), B2(a) are analytic.

Example 5·1 (Fremlin). Let W be the set of all finite sequences w ∈
⋃

n∈N Nn such that w(i) is even
for every i < `h(w) and if i + 1, j < `h(w) and w(i) < w(j) then w(i) 6 w(i + 1). (The idea is that w
can move down only from a maximal value, and the rest of the time is non-decreasing.) Observe that
if w ∈ W and m + n 6 `h(w), then 〈w(m + i)〉i<n ∈ W . Enumerate W as 〈wn〉n∈N. Let a ∈ NN be the
sequence

w0
a1aw1

a3aw2
a5aw4

a7a . . ..
Now each odd number appears only once in a. So if a ys x, x(n) must be even for every n, and
x � n ∈ W for every n; conversely, of course, any such sequence belongs to A1(a). Now a member of
A1(a) must be either bounded or monotonic. If x is an unbounded monotonic sequence, then x 6ys y
for any y; so A2(a) consists only of bounded sequences, and it is easy to check that A2(a) is precisely
the set of bounded sequences x such that x � n ∈ W for every n.

If we now look at the set M of bounded non-decreasing sequences taking even values only, then M
is a relatively closed countable subset of A2(a) with no isolated points. So A2(a) is not a Gδ set in NN.
(It is, of course, Fσ.)

Example 5·2 (Fremlin). Let a ∈ NN be the sequence (0, 1, 2, 3, . . .). This time, let M ⊆ NN be the
set of non-decreasing sequences. For x ∈ M , define x′ ∈ NN by setting

x′(n) = x(n) + s whenever m, n, r, s ∈ N, n = m + r2 + s, s 6 2r, x(m) = x(n) and either
m = 0 or x(m) > x(m− 1).

Next, for k ∈ N let uk ∈ Nk+1 be the finite sequence (0, 1, . . . , k), and for x ∈ M let zx ∈ NN be the
sequence

ux′(0)
aux′(1)

aux′(2)
aux′(3)

aux′(4)
a . . ..

Set M0 = {x : x ∈ M is eventually constant}, and F = {zx : x ∈ M0}. Observe that if x ∈ M0, so that
there is some k such that x(n) 6 k for every n, then zx ys w, where w is the sequence

(0, 1, . . . , k, 0, 1, . . . , k + 1, 0, 1, . . . , k + 2, . . .)
and w ys a, so zx ∈ B2(a).

If x ∈ M and x(n) > k for some n, then x′(n) > k for all n large enough, so there are only finitely
many m such that zx(m) = k and zx(m+1) is not k +1. This means that if x ∈ M \M0 then the only
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y such that zx ys y are of the form sm(a) for some m, and do not belong to B1; thus zx /∈ B2(a) for
any x ∈ M \M0.

The functions x 7→ x′, x 7→ zx are continuous, and if x, y ∈ M0 are eventually different then zx 6= zy;
so F has no isolated points. Of course F is countable. If 〈xn〉n∈N is a sequence in M0 such that
〈zxn

〉n∈N is convergent to z ∈ NN, then

either 〈xn〉n∈N has a subsequence convergent to some x ∈ M0, so that z = zx ∈ F ;

or 〈xn〉n∈N has a subsequence convergent to some x ∈ M \M0, so that z = zx /∈ B2(a);

or 〈xn〉n∈N has a subsequence 〈yn〉n∈N where, for some m, yn(i) = y0(i) for every n ∈ N, i < m
while yn(m) > n; in which case z(n) →∞ as n →∞ so z 6ys w for any w, and z /∈ B2(a).

Thus F is relatively closed in B2(a). Consequently B2(a) cannot be Gδ.

(5·4) Reading Fremlin’s paper caused me to discard the mindset in which I had proposed the problems of
section 8 of Delays, and to seek counterexamples. With the time gained by my refusal to attend yet another
meeting of a sadly familiar type, the discussion of research its only purpose and the disruption thereof its
only effect, I was led first to the construction of Section 2, and then, encouraged by that success, to seek
a point of uncountable score; but, ironically, the construction above of b makes no use of the insights from
Section 2 that enabled that construction to be found !

The reason is that our presentation incorporates several simplifications, due to Christian Delhommé, to
our original construction. In particular he suggested the direct use of trees, where I had followed the more
roundabout method given in Delays of starting from a linear ordering and then associating to that a tree of
finite sequences. The elegant definition of T is also his suggestion. Further, he noticed that it is unnecessary
to incorporate points ξτ , similar to the points xT of Delays, into the construction of b. Our original procedure
was to show that {ξτ | τ ∈ T } is a closed set, C0 say, and then to define a point c attacking each member
of C0 using the method of §2 of this paper. The point c, too, proves to have score ω1, but the verifications
were more delicate. The point b that we have constructed will not attack the points ξτ and hence b and c
are different.

Remark 5·5. Our examples have been given in spaces of infinite sequences of infinitely many symbols. The
referee asks whether they might be, in some suitable sense, universal. One might hope for a positive answer
since corresponding examples in the Cantor space of infinite sequences of just two symbols, again with the
shift function, may be found by applying to them Delhommé’s general transference theorem mentioned in
Delays—for details, see his forthcoming paper [2]— and as pointed out to me by Señor Victor Jiménez López
of Murcia, from the dynamics of the Cantor set to those of the real line is but a step.
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