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Abstract This paper, a contribution to “micro set theory”, is the study
promised by the first author in [M4], as improved and extended by work
of the second. We use the rudimentarily recursive (set theoretic) functions
and the slightly larger collection of gentle functions to initiate the study
of provident sets, which are transitive models of PROVI, a subsystem of
KP whose minimal model is Jensen’s Jω. PROVI supports familiar defini-
tions, such as rank, transitive closure and ordinal addition—though not
ordinal multiplication—and (shown in [M8]) Shoenfield’s unramified forc-
ing. Providence is preserved under directed unions. An arbitrary set has
a provident closure, and (shown in [M8]) the extension of a provident M
by a set-generic G is the provident closure of M ∪{G}. The improvidence
of many models of Z is shown. The final section uses similar but simpler
recursions to show, in the weak system MW, that the truth predicate for
∆̇0 formulæ is ∆1.

0: Introduction

The research reported in this paper has evolved in response to the following
question:

What is the minimal context in which set forcing works well?

It has long been known that the full power of ZF is not needed; but the
results of [M4] show that forcing can go pathologically wrong if done over
models of set theories which, even if strong in other ways, offer no support for
set-theoretic recursion.

So let us ask a more specific question:

How much set-theoretic recursion is needed to do set forcing ?

Again, an upper bound has long been known, as Kripke-Platek set theory,
KP, is certainly strong enough to allow recursive definitions of the right sort,
such as defining the interpretation of names; the validity of such definitions
follows easily from the Σ1 recursion theorem which proves that, in KP, if G is
a total Σ1 function then so is the function F given by the recursion

F (x) = G(F �x).

But what transpires is that even Σ1 recursion is much stronger than
needed for set forcing, and that a coherent and sufficiently strong recursion
theory emerges if as our starting point we restrict attention to the above recur-
sions when the defining function G is not merely Σ1 but actually rudimentary
in the sense of Jensen [J2]. In such cases we shall speak of F as given by a
rudimentary recursion, or, more briefly, that F is rud rec.

In the present paper we present a theory that in the sequel [M8] supplies
the answer to our initial question; and we give many counterexamples delim-
iting the scope of our current theory. But it is plain that, forcing aside, there
are many aspects and applications yet to be explored.

Now for some examples: for the present we assume a knowledge of rudi-
mentary functions, but shall develop their theory ab initio in §2.
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Some rudimentary recursions

0·0 EXAMPLE The definition of rank:

%(x) =
∪

{%(y) + 1 |y y ∈ x}

0·1 EXAMPLE The definition of transitive closure:

tcl(x) = x ∪
∪

{tcl(y) |y y ∈ x}

0·2 EXAMPLE Let S(x) be the set of finite subsets of x. Restricted to ordinals,
this has a rudimentarily recursive definition:

S(0) = {∅}; S(ζ + 1) = S(ζ) ∪ {x ∪ {ζ} |x x ∈ S(ζ)}; S(λ) =
∪
ν<λ

S(ν).

All those are recursions of type I, meaning that no parameter occurs; and
we may speak of such functions as pure rud rec.
0·3 EXAMPLE Ordinal addition is given by the recursion

A(α, 0) = α; A(α, β + 1) = A(α, β) + 1; A(α, λ) =
∪
ν<λ

A(α, ν)

which is a rudimentary recursion on the second variable, the first remaining
free; so the definition is of the form F (β) = G(p, F �β) with G rudimentary,
where of course we set the parameter p equal to α. Such definitions we call
recursions of type II, and we speak of such an F as p-rud rec.
0·4 Here is a good moment to remind the reader of some of our set-theoretic
conventions. An indecomposable ordinal is an infinite ordinal closed under
addition. The finite ordinals closed under addition are 0 and 1. We do not
count 0 as a limit ordinal. We write the product of two ordinals α and β as
αβ or, for greater clarity, α ·β. We should mention that, the power set axiom
not usually being assumed in these weak systems, we do not assume when we
write P(X) for the class {x |x x ⊆ X} of all subsets of X, that it is necessarily
a set. “A ⊆ P(X)” is simply a convenient way of saying that every member
of A is a subset of X.
0·5 EXAMPLE The relation x ∈? y, meaning x is in the transitive closure of
y, is given by a rud recursion on the second variable y, the first variable x
remaining free:

x ∈? y ⇐⇒ x ∈ y V ∃z∈y x ∈? z

0·6 EXAMPLE If M is an (intransitive) elementary submodel of a transitive
set or class, then the Mostowski collapsing isomorphism $M is given by the
recursion

$M (x) = {$M (y) |y y ∈ x ∩M}

so that, in some sense, $M is rudimentarily recursive in the predicate M .
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Rudimentary recursions in the theory of constructibility

0·7 EXAMPLE Let T be the unary rudimentary function introduced in [M3]
and to be re-examined in §3. Then this rudimentary recursion on ON , the
class of von Neumann ordinals,

T0 = ∅; Tν+1 = T(Tν); Tλ =
∪
ν<λ

Tν

generates the constructible universe L and the Jensen hierarchy (Jν)ν , in that
L =

∪
ν∈ON Tν , and Jν = Tων .

0·8 REMARK If challenged by a purist to define L by a recursion on V rather
than on ON , we would define T (x) =

∪
y∈x T(T (y)), and verify that T (x)

always equals T%(x).
0·9 HISTORICAL NOTE Gödel evolved the notion of constructibility in the
1930s, and his first hierarchy was that now notated 〈Lν | ν ∈ ON〉. He was
implicitly doing Σ1 recursion, a notion that became explicit in the 1960s.

His 1940 monograph aimed to present his relative consistency proof for
AC to non-logicians, and therefore sought an exposition avoiding |= and Def,
and relying on what are now (unfairly to Bernays) called the Gödel functions.
Here he comes much closer to a rudimentary recursion.
0·10 In the 1960s, Gandy and independently Jensen identified a more ex-
tensive and satisfactory collection of functions, called basic by Gandy and
rudimentary by Jensen, which became the basis of Jensen’s fine structure
theory of L. It might be said that Jensen was implicitly doing rudimentary
recursion, a notion that the present paper seeks to make explicit.
0·11 Indeed the definition given by Jensen of his auxiliary hierarchy is a rudi-
mentary recursion, using the single rudimentary function S that he gave in
[J2, p. 243], which lacks the property that its value for transitive argument
is transitive. At each limit stage, he obtains the rud-closed set Jν , and it is
clear by induction that Jensen’s Jν equals our Tων for every ν.
0·12 COMMENT The referee asks us to comment on the relationship of our
presentation to that of Schindler and Zeman in their article on fine structure
for the Handbook of Set Theory.

At successor stages, they use not Jensen’s S but another rudimentary
function S which has the advantage over S that its value for transitive ar-
gument is always transitive; but their function raises rank by more than 1,
which is a disadvantage not shared by T.

The reader should note that Schindler and Zeman use only limit ordinals
to index the Jensen hierarchy, so their Jων is exactly our Tων . It should also
be noted that Jensen defined rud(u) to be the rud closure of u∪ {u} whereas
Schindler and Zeman define it to be the rud closure of u. We follow Jensen.

Though the two papers both start from the theory of rudimentary func-
tions, their main concern is the study of acceptable structures, that is, certain
levels of Jensen-like hierarchies, which naturally come with a lot of “built-
in” rudimentary recursion; but acceptability involves the notion of an initial
ordinal, which is well beyond our present concern.
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Relativisations of constructibility

0·13 Two ways of relativising constructibility have long been known; notation
for them has varied, but we shall follow Jech’s treatise in writing L[A] for the
result of constructing from a set or class A as a predicate and L(a) for the
result of constructing from a set a as a set. L[A] will be the smallest inner
model M with x∩A ∈M for each x ∈M ; and L(a) will be the smallest inner
model M with a ∈M .
0·14 Construction from a predicate A presents little difficulty: simply replace
T by the function TA defined either by setting TA(u) = T(u) ∪ {u ∩ A} or
TA(u) = T(u) ∪ {x ∩ A | x ∈ T(u)}: the first is simpler but the second
gives a faster construction. If A is a ∆0 class, TA (in either version) is still
rudimentary, as what we shall call ∆0 separators are rudimentary, indeed
basic; and then the following will be a pure rudimentary recursion:

T0[A] = ∅; Tν+1[A] = TA(Tν [A]); Tλ[A] =
∪
ν<λ

Tν [A];

and we may set L[A] =
∪

ν∈ON Tν [A].
0·15 REMARK For A the class ON of ordinal numbers, Tν [A] ∩ ON = ν for
every ordinal ν.
0·16 For a a set let c be tcl({a}), the transitive closure of its singleton. Then
the following rudimentary recursion in the parameter c is close to the tradi-
tional definition of construction from a as a set:

T0(c) = c; Tν+1(c) = T(Tν(c)); Tλ(c) =
∪
ν<λ

Tν(c).

Then L(a) = L(c) =
∪

ν∈ON Tν(c).

0·17 But if F is rud rec and we wish to compute F (a), that start is too abrupt,
even though F (a) ∈ L(a), for we must first compute F (b) for b ∈ tcl(a).
We are therefore led to consider a different hierarchy, notated (P c

ν )ν , with
L(c) =

∪
ν∈ON P c

ν , which proves to be the central definition of this paper, as
it is the rud recursion to which all other rud recursions reduce, as we shall
show in §7. We outline the definition.

For a transitive set c, let cζ = c ∩ {x | %(x) < ζ}. Since c is transitive,
cζ+1 will be a set of subsets of cζ ; in fact cζ+1 = c ∩ {x | x ⊆ cζ}, which we
may use to give a direct recursive definition inspired by but not calling the
rank function %. If cζ+1 = cζ , then cζ = c and for all ξ > ζ, cξ = cζ ; so that
that first happens when ζ = %(c).

Our definition of P c
ν will have these properties:

P c
ω = Tω; P c

ζ+1 = {cζ} ∪ cζ+1 ∪ T(P c
ζ ); P c

λ =
∪
ν<λ

P c
ν ; and L(c) =

∪
ν∈ON

P c
ν .

The reader will notice that we have above used the definition of cν to define
P c

ν : so we appear to be using one rud rec function to define another; that
creates a risk that our second function might not be not rud rec, so in our
“official” definition we run the two definitions simultaneously.
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Some illustrative counter-examples and more adventurous recur-
sions

0·18 REMARK In Model 13 of [M3], all axioms of Z hold but the rank function
is not total, and therefore cannot be rudimentary.
0·19 EXAMPLE In §12 of [M3], a transitive model of ZC is given in which TCo,
the principle that every set is a member of a transitive set, fails. Thus tcl
though rud rec, cannot be rud. Note that the rank of tcl(x) always equals
that of x.
0·20 REMARK The function x 7→ S(x) of Example 0·2 is not given by a pure
rud rec function, as we shall see below by estimating the rate of growth of its
cardinality for x ∈ HF. But we could define it by a recursion with parameter
ω by remarking that for k a positive integer,

[a]k+1 =
{
x ∪ {y}

∣∣∣
x,y

x ∈ [a]k & y ∈
∪

[a]k
}

r [a]k.

0·21 REMARK The function β 7→ β + ω, simple though it be, is not given by
a pure rudimentary recursion, as we shall show in §6; still less are the other
functions of ordinal arithmetic; nor is Jensen’s map ν 7→ Jν . The reason is
that, as was known to Gandy and to Jensen, to any rud function G there is a
finite bound k, which we may call the rudimentary constant of G, such that
for all arguments ~x, %(G(~x)) 6 %(~x) + k. From that it will follow that for a
pure rud rec function F , for each argument x, %(F (x)) < %(x) + ω.
0·22 REMARK The functions x 7→ S(x) and β 7→ β + ω are examples of
recursions of type III, a term we shall define in §5.
0·23 EXAMPLE The function ζ 7→ 2 · ζ is given by a rudimentary recursion.
Nevertheless it is not rudimentary, for the rud closure of {ω} has ω as a
member but, by Gandy [G], not EVEN =df {2 · n |n n ∈ ω}.

0·24 EXAMPLE The characteristic function of EVEN is given by a rud recur-
sion on ω:

χ(0) = 1; χ(n+ 1) = 1 r χ(n).

Note that χ�ω /∈ rud cl
(
J1 ∪ {ω}

)
.

0·25 REMARK Corollary 14·5 of Weak Systems shows that J2 is not the rud
closure of J1 ∪ {ω}, J1 not being a member of that latter set; but J2 is the
rud rec closure of J1 ∪ {ω}; indeed of ω + 1.
0·26 REMARK The function g given by the recursion

g(0) = 1; g(ν + 1) = f(g(ν)); g(λ) = sup g“λ

where f(ξ) = 2·ξ is given by a rud-rec recursion, but not by a rud recursion, as
its rate of growth for finite arguments is too great. We shall explore iterated
recursions of that sort in §6.
0·27 REMARK We shall see in §6 that Gödel’s original definition of L is not
given by a rudimentary recursion, though every initial segment of it is.
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0·28 REMARK J2 has recently been the object of study by Nik Weaver in his
paper Analysis in J2 [W].

Rudimentary recursions in the theory of forcing

0·29 EXAMPLE Suppose we are making a forcing extension using a notion of
forcing P that is a set of the ground model, assumed transitive. In the theory
of forcing, a member y of the ground model is represented by the term ŷ of
the language of forcing, given by the recursion

ŷ =df {(1IP, x̂) |x x ∈ y}

That is a rudimentary recursion in a parameter, being of the form

F (a) = G(1IP, F �a)

where G is the rudimentary function (1IP, a) 7→ {1IP}×Im(a): though it would
be a simple matter to specify that 1IP is always to be some hereditarily finite
set, for example 1, when G could be rewritten as a pure rud function.
0·30 EXAMPLE If G is a generic filter on a notion of forcing P in a transitive
model M , and we follow Shoenfield in treating all members of M as P-names,
the function valG(·) defined for a ∈ M is given by a rudimentary recursion
with G as a parameter.

valG(b) =df {valG(a) |a ∃p∈G (p, a) ∈ b}

The generic extension M [G] is then defined as {valG(a) |a a ∈M}.
0·31 REMARK Note that the definition of the forcing relation ‖− has not
been invoked in making these definitions, but its properties would be needed
to show that M [G] has properties of interest.
0·32 REMARK The function valG(·) combines two functions, which we might
call transforming and collapsing. For example, if G is (M,P)-generic, one
might first define for x ∈M

π̃(x) = {(1IP, π̃(a)) |p,a (p, a) ∈ x & p ∈ G},

thus transforming P-names to P1-names, (P1 being the partial order whose
sole member is 1); and then one would collapse the class of pure P1-names,
to obtain the desired generic extension, by setting for x ∈ =(π̃),

$(x) = {$(y) |y (1IP, y) ∈ x},

which of course is the inverse of the function x 7→ x̂ when the latter is taken
to be defined on M [G].

Both recursions are rudimentary in appropriate parameters or classes.

We trust that these examples have given the reader a sense of the scope
and limits of rudimentary recursion. We turn to the other unexplained terms
in the title of the paper.
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Gentle functions

A gentle function is one of the form H ◦ F where H is rudimentary and
F is rud rec. The importance of the notion lies in the second author’s results,
presented in Section 4, that while the collection of rud rec functions is not
closed under composition, the slightly larger collection of gentle functions is.
0·33 EXAMPLE In their paper [SMcC], Scott and McCarty propose the fol-
lowing recursive definition of ordered pair:

〈x, y〉SM
2 = {〈0, t〉SM

2 |t t ∈ x} ∪ {〈1, u〉SM
2 |u u ∈ y}

They show that if at least one of x and y is of infinite rank, the rank of the
pair 〈x, y〉SM

2 equals the maximum of %(x) and %(y). We follow their alternative
approach to that definition, but with slight changes to their notation and
exposition.

Consider the four recursions, of which the first is taken from and the
others inspired by their paper:

τ(y) = {∅} ∪
{
τ(u)

∣∣
u
u ∈ y

}
; φ(y) = {φ(u) |u u ∈ y & ∅ ∈ u};

σ(x) =
{
σ(t) ∪ {∅}

∣∣
t
t ∈ x

}
; ψ(y) = {ψ(ur {∅}) |u u ∈ y}.

leftSM(a) =df ψ“
(
a ∩ {d |d ∅ /∈ d}

)
;DEFINITION

rightSM(a) =df φ“
(
a ∩ {c |c ∅ ∈ c}

)
.

DEFINITION (Scott, McCarty) 〈x, y〉SM
2 =df σ“x ∪ τ“y

REMARK τ , σ and φ are pure rud rec; results in §4 will show that ψ, leftSM

and rightSM are gentle; 〈·, ·〉SM
2 is a composite of gentle functions.

0·34 LEMMA ∅ is a member of every τ(y) and of no σ(x); and for all z,
σ(z) = τ(z) r {∅}; φ(τ(z)) = z; and ψ(σ(z)) = z.

0·35 LEMMA Let a = 〈x, y〉SM
2 : then leftSM(a) = x and rightSM(a) = y.

REMARK (Scott, McCarty) The two versions of the definition of 〈·, ·〉SM
2 are

equivalent as τ(v) = 〈1, v〉SM
2 and σ(v) = 〈0, v〉SM

2 .

Provident sets

A non-empty transitive set A is called p-provident if it is closed under
all functions rudimentary recursive in the parameter p, (B)-provident if it is
p-provident for all p ∈ B, and provident if it is (A)-provident.

For the more restrictive notions, it must be specified that A is closed
under unordered pairs.
0·36 REMARK Natural examples of provident sets abound: for example Jen-
sen’s J1 and Jω. In §6 we shall give a very general notion of hierarchy such
that the νth stage in any such hierarchy is provident whenever ν is an inde-
composable ordinal: in particular, that will hold for the L and J hierarchies.
0·37 REMARK The main results of [M8] are that provident sets support the
Shoenfield–Kunen approach to set forcing and that a set-generic extension of
a provident set is provident. Those results taken with the counter-examples
of [M4] are our grounds for asserting that the minimal context for set forcing
is that afforded by provident sets.
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The plan of the paper

Sections 1, 2 and 3 give back-ground material; much of the material
here is taken from two previous papers, The strength of Mac Lane set theory
[M2] and Weak Systems of Gandy, Jensen and Devlin [M3].

Section 1 prepares the reader for the study of rudimentary recursion by
reviewing with some care the syntax and fundamental definitions of set theory.

Section 2 uses the first author’s theory of companions to give a short proof
of the fundamental theorem 2·16 concerning the collection of rudimentary
functions. We give an example of a unary function with ∆0 graph and of
finite rank-bounded growth that is not rudimentary, thus answering negatively
a question of Sy Friedman.

Section 3 re-examines the function T introduced in [M3]; this function is
enormously helpful in the sequel. The subsections entitled “The intransitive
case” and “Gandy reproved” are peripheral, but included for completeness:
we use the function T to improve some arguments of Gandy.

Sections 4, 5 and 6 contain the hard work of the paper

Section 4 introduces rudimentary recursion without parameters, and the
second author’s analysis of the composition of rud rec functions. We enlarge
our enquiry to include recursions from an additional predicate and show that
a function that is gentle in a gentle predicate is gentle, which theorem is the
key to simplifying the main proof of the sequel [M8].
Section 5 advances the discussion to include recursions from parameters and
finds a single rudimentary recursion, with parameter, to instances of which
all others reduce.
Section 6 introduces provident sets which are non-empty, transitive and
closed under all rudimentarily recursive functions, allowing parameters from
within the set in question. We obtain various characterizations of provident
sets, and build many examples as the union of a sequence of transitive sets,
the sequence being of a kind we call a progress. It turns out that to be provi-
dent it is enough for a transitive set to be closed under rather few rudimentary
recursions; the main one being the one generating what we call the canoni-
cal progress (P c

ν )ν , which we have already mentioned, and which is discussed
more fully on page 39.
0·38 We show in Theorem 6·12 that to every rudimentary function R there
corresponds an integer cR, which we call the rudimentary constant of R, such
that for every progress P0, . . . , PcR

, and all arguments ~x ∈ P0, the value R(~x)
will lie in PcR . Armed with that result, forms of which were certainly known
to Gandy and Jensen and other early workers in fine structure, we compute
in Proposition 6·32 an equally uniform bound on the rate of evolution of a
rudimentary recursion; that leads rapidly to the central result, Theorem 6·34,
which implies for example that for every transitive set c and indecomposable
ordinal θ, P c

θ is provident.
0·39 We examine two related notions: ∅-providence involves closure only
under pure, rather than parametrised, rudimentary recursive functions. Limit
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providence involves closure under functions produced by iterated recursion,
such as that in Remark 0·20. We show in Proposition 6·39 that provident
sets are closed under recursions of type III. We then make a first study of
functions obtained by iterated recursions; this subsection is looking to future
investigations of a hierarchy that is slowly emerging.
0·40 Our study of progresses enables us to show rapidly that the Gödel and
Jensen segments Lων and Jν are provident if and only if ων is indecompos-
able. We show that the recursion underlying Gödel’s original definition of the
constructible hierarchy is not rudimentary. We show that each infinite level of
the Gödel hierarchy is closed under the Scott–McCarty pairing and unpairing
functions; and apply this observation to represent arbitrarily long segments
of that hierarchy as rudimentary recursions in some parameter.

The going now becomes easier: Sections 7, 8 and 9 apply the ideas
developed in the preceding sections and in [M3].
Section 7 explains a simple construction that gives, for any set x, the minimal
provident set Prov(x) including x. We call Prov(x) the provident closure
of x. Provident closures allow the following transparent formulation of the
relationship between providence and forcing, which will be proved in [M8]:

M [G] = Prov(M ∪ {G}) when M is provident.

Here M and G are as in Example 0·30.
REMARK In [M4, §3], an even simpler definition was given of Prov(M) for
non-empty M that are transitive and model AxPair and TCo. By Theorem 7·0
and [M4, Proposition 3·2], for such M the two definitions are equivalent.

We show that it is enough to require closure under a particular finite
basis of rudimentary recursive functions, which leads to a finite axiomatisation
of the notion of providence. The phenomena of finite axiomatisability and
regular presence in natural hierarchies also hold for the collections of sets
mentioned in 0·39.
Section 8 gives models of Zermelo set theory that fail in various ways to
support rudimentary recursion; in one, the failure is of Scott’s celebrated trick
for defining cardinal number; in another, the addition of a Cohen generic real
goes awry. Other models show the inability of Zermelo set theory to pass in
either direction from the set of Zermelo naturals to that of von Neumann.

Other examples of the weakness for recursive definitions of the unim-
proved set theories of Zermelo and Mac Lane are given in [M1] and [M2]. In
[M4] it is shown how passage to the provident closure of transitive models of
those theories preserves the theories but adds the capacity for rudimentary
recursion and therefore for doing set forcing. In [M2] it was shown that pas-
sage to what in [M4] is called the lune of such models again preserves the
theory (Zermelo or Mac Lane as the case may be) but adds the capacity for
Σ1 recursion.
Section 9 shows, as promised in [M3], that the weak system MW supports a
truth definition for ∆̇0 formulæ.
In the endmatter, we record the origins of the paper and its sequel, and
close with acknowledgments and references.
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1: A rapid development of weak set theory

1·0 We regard set theory as formalised in a syntax with a class-forming oper-
ator and both restricted and unrestricted quantifiers. We have two two-place
relation symbols ∈ and =, propositional connectives ¬, &, V , =⇒ , ⇐⇒,
unrestricted quantifiers ∀, ∃, restricted quantifiers ∀r, ∃r, a class forming op-
erator

K

and a supply of variables.
1·1 Our collection of well-formed formulæ is defined thus: atomic wffs are

x ∈ y, x = y

and if Φ and Ψ are well-formed, so are &ΦΨ, V ΦΨ, ¬Φ, ∀xΦ, ∃xΦ, y ∈

K

xΦ,
∀rxyΦ, and ∃rxyΦ, where in the last two, x and y are distinct variables, so
that restricted quantifiers Qrxy bind x but not y, in harmony with the axioms,
given below, that express their intended meaning. The expressions ∀rxxΦ and
∃rxxΦ are ill-formed.

We write ∀x∈y Φ for ∀rxyΦ, ∃x∈y Φ for ∃rxy and {y |Φ} for

K

yΦ. Of-
ficially we use Polish notation and write &ΦΨ; unofficially we use brackets,
writing (Φ & Ψ). Similarly we shall often adopt conventional ways of indicat-
ing negation, such as /∈ and 6=.
1·2 A string

K

xΦ, where Φ is a wff, is a class. Here are five examples:

V =df {x | x = x}
∅ =df {x | x /= x}

{x, y} =df {z | z = x V z = y}
x \ y =df {z | z ∈ x & z /∈ y}∪

x =df {z | ∃y∈x z ∈ y}
Since ∅ is the smallest von Neumann ordinal, we shall also set 0 =df

∅ =df ∅, and will tend to use the notation 0 when we are thinking of
this set in its ordinal capacity, ∅ when thinking of it as the empty set, and
∅ when thinking of it as the sequence of length 0. In the review of set-
theoretic notation which we now give, we are liable to omit definitions of
familiar extensions such as writing {x} for {x, x}.
1·3 We denote by [Φ y

x ] the result of substituting the variable x for the free
occurrences of the variable y in the formula Φ, bound occurrences of x in Φ
being first changed to an as yet unused variable. Less formally, we permit
ourselves informally to indicate the result of substituting one variable for
another by such usages as A(x) and A(y).

We progressively extend our notation to permit more liberal use of classes.
Thus if Φ is a wff, t a variable or a class, and B a class, then

∃z∈B Φ ⇐⇒df ∃z (z ∈ B & Φ)
∀z∈B Φ ⇐⇒df ∀z (z ∈ B =⇒ Φ)
t = B ⇐⇒df ∀x (x ∈ t⇐⇒ x ∈ B)
B = t ⇐⇒df ∀x (x ∈ B ⇐⇒ x ∈ t)
B ∈ t ⇐⇒df ∃y∈t y = B



12 A. R. D. Mathias and N. J. Bowler – ndjfl2

The first two would normally be used only when z is a variable not
occurring in B, otherwise nonsense might result. In the last three x and y are
presumed to be new variables occurring in neither B nor t.

1·4 DEFINITION Let x be a variable, B a class and Φ a wff. Then [Φ x
B ] is

the result of
i) changing all bound occurrences of variables in Φ to occurrences of vari-

ables not occurring in B or free in Φ;
ii) replacing all free occurrences of x in the new formula by B;
iii) expanding occurrences of the strings “B ∈ t”, “B = t”, “t = B”, “∀y∈B ”

and “∃y∈B ” according to the definitions above.
Similarly one may define [A x

B ] for A a class. Expressions such as [ΦA
B ]

are not defined.

Axioms of logic

All our systems of set theory will have among their axioms those of clas-
sical propositional and predicate logic, these two schemes of axioms relating
restricted quantifiers to unrestricted ones,

∀x∈y Φ ⇐⇒ ∀x(x ∈ y =⇒ Φ)
∃x∈y Φ ⇐⇒ ∃x(x ∈ y & Φ)

and the Church conversion scheme

x ∈ {y |Φ} ⇐⇒ [Φ y
x ]

by which all occurrences of the class-forming operator are in principle elim-
inable.

The system S0

S0 Extensionality: (∀w∈x w ∈ y&∀w∈y w ∈ x) =⇒ x = y S0

Empty Set: ∅ ∈ V

Pair: {x, y} ∈ V

Difference: x \ y ∈ V

Union:
∪
x ∈ V

1·5 DEFINITION We define a ∆0 formula or a ∆0 class to be one containing
no unrestricted quantifiers; a Π1 formula is one of the form ∀xA where A is
∆0; a Σ1 formula is one of the form ∃xA where A is ∆0; a Σ2 formula is one
of the form ∃yB where B is Π1; and so on.
1·6 DEFINITION Foundation, the axiom of (set) foundation, is x 6= ∅ =⇒
∃y∈xx ∩ y = ∅.
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S′0 S0 + Foundation S′0

1·7 DEFINITION If S is any system of set theory containing S0 we say that a
class A or a wff Φ is ∆S

0 iff there is a ∆0 class B or a ∆0 wff Ψ such that
`S A = B or `S Φ ⇐⇒ Ψ respectively.

1·8 DEFINITION A class A is S-suitable if `S A ∈ V and for each ∆0 wff Ψ
and variable w not occurring freely in A, ∀w∈A Ψ is ∆S

0 .

1·9 REMARK If S is a subsystem of T, then all S-suitable classes are T-
suitable.

This notion is important in building a calculus of ∆0 wffs, which we now
do.

1·10 PROPOSITION If Φ and Ψ are ∆S
0 , so are ∃w∈z Φ, ∀w∈z Φ, where w and

z are distinct variables, (Φ& Ψ), ¬Φ and x ∈ {y | Φ}.

1·11 PROPOSITION Let A be S-suitable.
(i) if Φ is ∆S

0 , so is ∃w∈A Φ, provided w is not free in A;
(ii) w ∈ A, w = A, A ∈ w are ∆S

0 , even if w occurs in A;
(iii) if Φ is ∆0, [Φ x

A ] is ∆S
0 ;

(iv) if Φ is ∆S
0 , so is [Φ x

A ].

It is necessary to prove (iii) before (iv), since a subformula of a ∆S
0 formula

need not be ∆S
0 .

1·12 PROPOSITION If A and B are S-suitable, so is [B x
A ].

1·13 PROPOSITION The classes ∅, {x, y}, {x}, x \ y and
∪
x are S0-suitable.

Note that if we define

x ∪ y =df

∪
{x, y}

x ∩ y =df x \ (x \ y),

we have `S0
x∪y ∈ V &x∩y ∈ V ; indeed both x∪y and x∩y are S0-suitable.

We would wish to define ∩
x =df {z | ∀y∈x z ∈ y};

but as `S0

∩
∅ = V , and (by Russell) 6`S0

V ∈ V ,
∩
x cannot be S0-suitable.

We therefore make an additional definition:

1·14 DEFINITION
∩′
x =df

∪
x ∩

∩
x,

which will prove to be suitable in our next system ReS0. For now, we can
prove that

∩
x is nearly suitable:

1·15 PROPOSITION If `S A 6= ∅ and A is S-suitable, then so is
∩
A.

Descriptions are defined so that should the defining clause not have ex-
actly one witness, the description is taken to mean the empty set:

1·16 DEFINITION ιxΦ =df

∪
{x | {x} = {x |Φ}}
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The next proposition echoes the recursion-theoretic concept of a bounded
search.
1·17 PROPOSITION Let A be S-suitable, Φ ∆S

0 and x a variable not free in A.
If `S Φ =⇒ x ∈ A, then ιxΦ is S-suitable.

Ordered pairs

Following Kuratowski, we introduce a pairing function, in the definition
of which we exploit our new freedom to compose suitable classes:
1·18 DEFINITION (x, y)2 =df {{x}, {x, y}}
1·19 PROPOSITION (x, y)2 is S0-suitable.

1·20 LEMMA “w is a singleton”, “w is an un-ordered pair”, and “w is an
ordered pair” are all ∆S0

0

Now we define the un-pairing functions:
1·21 DEFINITION (x)` =df ιy(x is an ordered pair and

∪∩
x = y)

1·22 PROPOSITION (x)` is S0-suitable.

1·23 DEFINITION (x)r =df ιy(x an ordered pair and
either

∪
x =

∩
x& y =

∪∩
x or

∪
x /=

∩
x& y =

∪
(
∪
x \

∩
x))

1·24 PROPOSITION (x)r is S0-suitable.

Foundation, ordinals and the axiom of infinity

With Foundation added, the formulation of “ordinal” becomes ∆0 and
much of the elementary theory of ordinals can then be developed in S′0. In
this paper we shall usually be assuming the scheme of Foundation for Π1

classes, which of course implies Foundation.
Although in one model that we shall mention, we must use a different

formulation, we shall usually take the axiom of infinity in the form ω ∈ V , ω
being defined as the class of all von Neumann ordinals such that they and all
their predecessors are either 0 or successor ordinals.

PZ S0 plus the ∆0 separation scheme: x ∩A ∈ V for A a ∆0 class. PZ

ReS ReS0 plus the scheme of Π1 foundation: A 6= ∅ =⇒ ∃x∈Ax ∩A = ∅ ReS

for A a Π1 class.

ReSI ReS + ω ∈ V . ReSI

Digression: models with failures of ∆0 separation.

We digress to construct, in some conveniently strong system, a transitive
model of the system S0 in which an instance of ∆0 separation fails. Recall
that a set u is transitive if

∪
u ⊆ u.

Let θ be a limit ordinal, for example ω2. A θ-interval is a set {α ∈
ON |β ≤ α < γ} with β, γ < θ. Let Kθ

0 be the set of all finite unions of
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θ-intervals. Note that Kθ
0 is already a transitive model of all the axioms of

S0 except pairing, and that it is closed under finite unions. To get something
which in addition models the pairing axiom, we define a sequence of sets Kθ

n,
where Kθ

n+1 is the set of all sets of the form k ∪ l with k ∈ Kθ
n and l a finite

subset of Kθ
n, and we define Kθ =

∪
n∈ω K

θ
n.

1·25 PROPOSITION i) Each Kθ
n is a transitive set.

ii) Kθ is transitive and Kθ ∩ON = θ
iii) The axioms of extensionality, infinity, pairing, union and difference

are all true in Kθ.

1·26 PROPOSITION If θ is a limit ordinal at least ω2 then the set of limit
ordinals less than θ is not a member of Kθ, and accordingly ∆0 separation
fails there.

Proof : It is sufficient to note that every element of Kθ is a union of an
element of Kθ

0 with a finite set. a (1·26)

The definition of cartesian product

We introduce, successively, ordered k-tuples:

(y1, y2, y3)3 =df (y1, (y2, y3)2)2
(y1, y2, y3, y4)4 =df (y1, (y2, y3, y4)3)2

(y1, y2, y3, y4, y5)5 =df (y1, (y2, y3, y4, y5)4)2

and so on, and we may verify that all those are S0-suitable.
1·27 REMARK Thus all Kuratowski k-tuples are generated from the single
binary function {x, y}.

1·28 DEFINITION x× y =df {z | ∃a∈x∃b∈y z = (a, b)2}
It would be more convenient to formulate such a definition in this way:

x× y =df {(a, b)2 | a ∈ x & b ∈ y}

That is, though, ambiguous: where the context demands, we may remove
the ambiguity by listing the variables to be quantified beside the | sign. Thus

{(a, b)2 |b a ∈ x & b ∈ y}

would mean {a}× y if a is in x, and the empty set otherwise. Hence we make
the following
1·29 DEFINITION Let A be a class; then

{A |x1...xn Φ} =df {y | ∃x1 . . .∃xn y = A & Φ}.

1·30 REMARK Define inductively
∪

k+1x =df

∪
(
∪

kx). Then each
∪

lx is
S0-suitable. S0 easily proves that if x = (y, z)2, then y ∈

∪
2x and z ∈

∪
2x;

hence, using these S0-suitable restrictions, one verifies easily that if A is ∆0

then the class
{
(y1, y2, . . . , yk)k

∣∣
y1,y2,...,yk

A
}

of k-tuples is equal, provably in
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S0, to a ∆0 class. But in general, if A is S-suitable and Φ is ∆0, {A |x,y Φ(x, y)}
might not be a ∆S

0 class.
1·31 REMARK In both Models 1 and 2 of [M3, §4], ReSI holds but ω × ω is
not a set.

Relations and functions

We may now develop the usual theory of relations, k-ary functions and
so on: we treat functions as a subclass of their image × their domain. In
discussing relations we shall often write Rxy to mean (x, y)2 ∈ R, though this
notation is perhaps too perilous to adopt in a general definition.
1·32 DEFINITION Let R be a variable or class: write

Rel(R) ⇐⇒df R = {(x, y)2 | Rxy}.

We distinguish two relations by special, if inelegant, names:
1·33 DEFINITION

id =df {(x, x)2 | x ∈ V }
eps =df {(x, y)2 | x ∈ y}

Let F be a set or class.
1·34 DEFINITION Fn(F ) ⇐⇒df Rel(F ) & ∀x∀y∀z(Fxz & Fyz =⇒ x = y)

Note that we are following a convention in which (x, y)2 ∈ F corresponds
to the statment x = F (y), rather than y = F (x).
1·35 DEFINITION

F (t1, . . . tn) =df ιx (xt1 . . . tn)n+1 ∈ F

〈t |x1,...xn Φ〉 =df {(t, x1, . . . xn)n+1 | Φ}

1·36 PROPOSITION f(x) is ReS0-suitable.

1·37 DEFINITION For R and t sets or classes, set

R“t =df {y | ∃x (Ryx & x ∈ t)}
R� t =df {(x, y)2 | Rxy & y ∈ t}
R−1 =df {(x, y)2 | Ryx}

Dom(R) =df R
−1“V

=(R) =df R“V
Field (R) =df Dom(R) ∪ =(R)

1·38 REMARK Note that by our system of definitions, f(x) is always defined,
with default value ∅; hence ∃y y = f(x) is not equivalent to x ∈ Dom(f).
We shall occasionally write f(x) ↓ for the latter.

Our definition of well-founded relation includes the concept of being “set-
like”:
1·39 DEFINITION Wf(R) ⇐⇒df Rel(R) & ∀x∃y(x ∈ y & R“y ⊆ y) &

∀x(x = 0 V ∃y∈xx ∩R“{y} = 0)
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Relativisation of a formula to a class

1·40 DEFINITION Let M be a class. For each formula Φ of the language of
set theory, we define (Φ)M , the relativisation of Φ to M by recursion on the
length of Φ.

1·41 DEFINITION (x ∈ y)M is x ∈ y; (x = y)M is x = y; (¬Φ)M is ¬(Φ)M ;
(Φ& Ψ)M is ((Φ)M & (Ψ)M ); (Φ =⇒ Ψ)M is ((Φ)M =⇒ (Ψ)M ); and
similarly for the other propositional connectives;

(∀xΦ)M is ∀x∈M (Φ)M ; (∀x∈y Φ)M is ∀x∈y∩M (Φ)M ;

(∃xΦ)M is ∃x∈M (Φ)M ; (∃x∈y Φ)M is ∃x∈y∩M (Φ)M ;
(x ∈ {y | Φ})M is x ∈ {y | y ∈M &(Φ)M}.

We also define the relativisation of a class by:

1·41 DEFINITION ({y | Φ})M is {y | y ∈M &(Φ)M}.

The systems DB, BS and MW

The next system, which we call DB for “Devlin Basic”, adds the existence
of cartesian product to PZ, but as it thereby becomes finitely axiomatisable,
we give it officially as that finite axiomatisation.

DB0 The system of which the set-theoretic axioms are Extensionality and the DB0

following nine set-existence axioms:
∅ ∈ V

{x, y} ∈ V

xr y ∈ V

∪
x ∈ V

Dom(x) ∈ V

x× y ∈ V

a ∩ {(x, y)2 |x,y x ∈ y} ∈ V

{(y, x, z)3 |x,y,z (x, y, z)3 ∈ b} ∈ V

{(y, z, x)3 |x,y,z (x, y, z)3 ∈ c} ∈ V

1·42 REMARK All those nine are theorems of PZ + cartesian product.

1·43 THEOREM (Bernays) All instances of ∆0 separation are provable in the
system DB0

1·44 DEFINITION We shall call a function of the form x 7→ x∩A, where A is
a class, a separator, or a ∆0-separator if A is a ∆0 class.

DB DB0 plus Π1 foundation. DB

DB0I DB0 plus ω ∈ V . DB0I

DBI DB + ω ∈ V . DBI

1·45 PROPOSITION (DB0I) [ω]1 and [ω]2 exist.

Proof : ω ∈ V is an axiom of DB0I. By the definition of ordered pair, [ω]1 ∪
[ω]2 ⊆

∪
(ω × ω), and the result follows by ∆0 separation. a (1·45)
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If we add the axiom of infinity plus the scheme of foundation for all
classes to DB we obtain the system BS as formulated on page 36 of Devlin’s
book Constructibility :

BS ReS0 + Cartesian product + full foundation + ω ∈ V . BS

The system BS is used extensively by Devlin in his study [De] of con-
structibility: for each limit ordinal ζ the set Lζ in Gödel’s constructible hi-
erarchy models BS. But counterexamples of Solovay show that it is not quite
strong enough for its intended tasks, one of which was to give a definition of
the truth predicate |=u ϕ where u is a set and ϕ is a sentence of an appro-
priate object language. To decide whether an existential statement

∨
xϑ(x)

is true in a model M (here the symbol
∨

is the existential quantifier of the
object language), one considers the set Sϑ =df {ϑ[a] | a ∈ M} of substitution
instances of ϑ, where a is the constant of the relevant language interpreted by
the element a.
1·46 DEFINITION For each k > 0, we write [ω]k for the class of subsets of ω
of size k.

Now Model 6 of [M3, §5], where the defects of BS are discussed in detail,
shows that although BS can prove the existence of [ω]1 and [ω]2 it cannot
prove the existence of [ω]3, or indeed any [ω]k for k > 2. Thus BS is unable
to form the set Sϑ and hence cannot define |=. The following strengthening
suffices:

MW DBI + ∀a∀k∈ω [a]k ∈ V MW

That the truth relation |=u ϕ is, provably in MW, ∆1-definable was shown
in [M3, §10]. §9 of this paper will give a new proof of that, and also of the
corresponding result for |=0 , which has this interesting consequence:
1·47 THEOREM MW is finitely axiomatisable, modulo one subtlety.

Proof : We already know that DB0 is; to that we have added an axiom of
infinity, the axiom just given, and the scheme of Π1 foundation. The subtlety
is this: we use the truth definition for ∆̇0 wffs: what are they ? Here we are
quantifying in the language of discourse, not in the metalanguage, so we are
getting slightly more than the scheme, but only in non-standard models will
we be able to tell the difference. We invite the reader to complete the proof
by using |=0 to formulate Π̇1 foundation. a (1·47)

1·48 REMARK In the transitive Model 7 of [M3, §5] MW is true but for some
element a, {

∪
x |x x ∈ a} is absent.

The system GJ

1·49 We now reach a system of the greatest importance in the study of con-
structibility, which was discovered independently by Gandy [G] and by Jensen
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[J2]. The transitive models of this system are precisely the transitive sets
closed under a certain collection R of functions, which we have yet to define.
The members of this collection were called basic by Gandy and rudimentary
by Jensen; the second adjective has been generally adopted in the literature,
and is customarily shortened to rud. We follow that usage, and shall define a
subcollection B of R, calling the members of B basic functions. The transitive
sets closed under the members of B are the transitive models of DB.

GJ0 DB0 + {x“{w} | w ∈ y} ∈ V GJ0

GJ GJ0 + the scheme of Π1 foundation. GJ

GJI GJ + ω ∈ V . GJI

1·50 PROPOSITION The class {x“{w} | w ∈ y} is GJ0-suitable.

In the next section we shall prove the important eyebrow principle that
if F is a rudimentary function so is F“. For its proof we shall introduce
companions and establish the Gandy–Jensen Lemma.

1·51 REMARK An application of that principle is that a ∈ V =⇒ {
∪
x |x

x ∈ a} ∈ V is provable in GJ0.

Again using the eyebrow principle, we may prove the following scheme of
theorems:
1·52 PROPOSITION (GJ0) For each set a, [a]k exists.

Proof : [a]0 = {∅} ∈ V . [a]1 = A0“a ∈ V . [a]k+1 =
{
s ∪ {x}

∣∣ (s, x)2 ∈
([a]k × a) ∩ {(s, x)2 | x /∈ s}

}
, which is in V , being of the form h“b for some

set b and rudimentary function h. a (1·52)
That scheme becomes a single theorem once the right instances of Π1

foundation are available:
1·53 THEOREM (GJ) ∀a∀k∈ω [a]k ∈ V .

Proof : Once we know Theorem 2·93 of [M3], which runs:
THEOREM (GJ) ∀a∀m∈ω

ma ∈ V .

where ma is the set of functions from m to a, and which is proved by using
Π1 foundation to find for given a the least counterexample m, we may again
invoke the eyebrow principle to obtain the desired result, since

[a]k = {=(f) |f f ∈ ka & f is injective}. a (1·53)

1·54 COROLLARY MW is a subsystem of GJI.

1·55 REMARK §6 of [M3] recalls the result of Gandy [G] that GJI does not
prove the existence of S(ω). Thus by Theorem 1·53 the function (a, k)2 7→ [a]k

is not rudimentary.
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2: Review of the elementary theory of rudimentary functions

We introduce the rudimentary functions R0, . . . R8 and certain auxiliary
functions A0 . . . A14 generated by them under composition: this is not the
shortest possible list, but one that conveniently extends the list, given in the
axioms of DB0, that generates the ∆0 separators.

R0(x, y) = {x, y}
A0(x) = {x} [= R0(x, x)]
A1(x, y) = (x, y)2 [= R0(A0(x), R0(x, y))]
A2(x, y, z) = {x, (y, z)2}
A3(x, y, z) = (x, y, z)3 [= A1(x,A1(y, z))]

R1(x, y) = x \ y
A4(x, y) = x ∩ y [= x \ (x \ y)]
A5(x) = ∅ [= x \ x]
A6(x) = x [= x \ ∅]

R2(x) =
∪
x

R3(x) = Dom (x)
R4(x, y) = x× y
R5(x) = x ∩ {(a, b)2 |a,b a ∈ b}

A7(x) = eps�x [= R5(
∪
x× x)]

R6(x) = {(b, a, c)3 |a,b,c (a, b, c)3 ∈ x}
R7(x) = {(b, c, a)3 |a,b,c (a, b, c)3 ∈ x}

A8(x) = {(a, c, b)3 |a,b,c (a, b, c)3 ∈ x} [= R6(R7(R7(x)))]
A9(x) = x−1 [= Dom ({(a, c, b)3 |a,b,c (a, b, c)3 ∈ {∅} × x})

= R3(A8(R4(A0(A5(x)), x)))]
A10(x) = =(x) [= Dom (x−1)]
A11(x, y) = eps ∩ (x× y) [= R5(x× y)]
A12(x, y) = {w |w x ∈ w ∈ y} [= Dom (A11({x} × y))]
A13(x, y) = id ∩ (x× y)
A14(x, y) = x“{y} [= Dom ((x ∩ ([

∪∪
x] × {y}))−1)]

R8(x, y) = {x“{w} |w w ∈ y}

2·0 PROPOSITION Each of R0 . . . R7 and A0, . . . A14 is DB0-suitable;

Separators, basic functions and ∆0 branching

2·1 DEFINITION Let R, the collection of rudimentary functions, be the clo-
sure of R0 . . . R8 under composition. Let B, the collection of basic functions,
be the closure of R0 . . . R7 under composition.
2·2 PROPOSITION (i) For each ∆0 class A the map x 7→ x ∩A is in B.

(ii) It is a theorem of MW that for each ∆̇0 wff ϕ the map a 7→ a ∩ {x |
|=0 ϕ[x]} is in B.

The Proposition is well expressed by the slogan “∆0 separators are basic”.
The difference between the two results lies in the quantification, which in

part (i) is in the metalanguage and in part (ii) in the language of discourse. So
really we have cheated in not specifying in which language B is being defined.
A similar ambiguity is inherent in our definition of R.
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Proposition 2.1 implies that branching over ∆0 choices can be coded by
rudimentary functions.

2·3 PROPOSITION For each ∆0 class A the map x, y, z 7→
{
x if z ∈ A
y otherwise.

is rudimentary.

Proof : The map can be expressed as

x, y, z 7→ Dom(x× ({z} ∩A) ∪ Dom(y × ({z} ∩ (V \A)) a (2·3)

Resolution of a question of Sy Friedman

We may now answer a question of Sy Friedman, whether a unary function
F with a ∆0 graph and such that for some k ∈ ω and all x, %(F (x)) 6 %(x)+k
is necessarily rudimentary.

Write HF for the class of hereditarily finite sets, defined as the union of
all finite transitive sets.
2·4 LEMMA Let k ∈ ω; then for any x, x ⊆ Vk+1 ⇐⇒

∪
x ⊆ Vk; hence

x ⊆ Vk+1 ⇐⇒
∪

k+1x ⊆ V0 = ∅.

2·5 LEMMA The predicate a = HF is ∆0.

Proof : To say a = HF, say that ∅ ∈ a, that a is transitive and closed under∪
and (unordered) pairing, that no member of a is a limit ordinal, and if

b ∈ a then there is an f ∈ a with domain a successor ordinal `+ 1 such that
f(0) = b, for every k < `, f(k + 1) =

∪
f(k) and f(`) = ∅. a

2·6 PROPOSITION HF is not a member of the rud closure of {ω}.
Proof : otherwise S(ω) would be, contradicting the result of Gandy mentioned
in Remark 1·55. a (2·6)
Now let F be {(x, y)2 |x,y (y = ω & x = HF) V (y 6= ω & x = ∅)}. Then
F is a function, its graph is ∆0 and for any y, %(F (y)) 6 %(y). But F is not
rudimentary, for F (ω) = HF.

Companions for rudimentary functions

The collection of functions in R is closed under formation of images: by
which is meant that if F is in R so is x 7→ F“x. To prove that, we introduce the
notion of a companion—we will actually have two such notions—and establish
the Gandy–Jensen Lemma.

Let S be some system of set theory extending DB0, and let G and F be
∆0 classes such that S proves that both G and F are total functions.
2·7 DEFINITION G is a 1-companion of F in S if G is S-suitable and

`S ~x ∈ ~u =⇒ F (~x) ↓∈ G(~u)

2·8 DEFINITION H is a 2-companion of F in S if H is S-suitable and

`S ~x ∈ ~u =⇒ F (~x) ↓⊆ H(~u)
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where ~x ∈ ~u abbreviates x1 ∈ u1 & . . . xn ∈ un for an appropriate n.
2·9 PROPOSITION If G1 is a 1-companion of G in S and H1 is a 1-companion
of H in S, then G1 ◦H1 is a 1-companion of G ◦H in S.

The function F“, if available in S, is the best 1-companion of F in S, and
in favourable cases separators may be used to reduce a given 1-companion F 1

of F to that one, since

`S F“a = F 1(a) ∩ {y | ∃x∈a y = F (x)}

so that if F is given by an S-suitable term,

`S y = F (x) ⇐⇒ ∀w∈yw ∈ F (x) & ∀w∈F (x)w ∈ y

2·10 PROPOSITION Each one of the nine functions R0, . . . , R7 and A14 has a
2-companion in DB.

Proof :
R0: a ∈ x& b ∈ y =⇒ {a, b} ⊆ x ∪ y =

∪
{x, y}.

R1: a ∈ x& b ∈ y =⇒ a \ b ⊆ a ⊆
∪
x.

R2: a ∈ x =⇒
∪
a ⊆

∪∪
x.

R3: a ∈ x =⇒ Dom (a) ⊆
∪∪

x.
R4: a ∈ x& b ∈ y =⇒ a× b ⊆

∪
x×

∪
y.

R5: t ∈ x =⇒ t ∩ {(a, b)2 | a ∈ b} ⊆ t ⊆
∪
x.

R6: If t ∈ x, {(b, a, c)3 | (a, b, c)3 ∈ t} is, by reasoning similar to that given
below for R7, a subset of =(Dom (

∪
x)) × (=(

∪
x) × Dom(Dom (

∪
x))).

R7: Let t ∈ x. It is enough to show that {(b, c, a)3 | (a, b, c)3 ∈ t} is a subset
of =(Dom (

∪
x)) × (Dom (Dom (

∪
x)) × =(

∪
x)). To see that, note that

{(b, c, a)3 | (a, b, c)3 ∈ t} ⊆ =(Dom (t)) × (Dom (Dom (t)) × =(t)), and
apply these principles: t ∈ x =⇒ t ⊆

∪
x; t ⊆ s =⇒ Dom(t) ⊆

Dom(s); t ⊆ s =⇒ =(t) ⊆ =(s); and t ⊆ s& v ⊆ u =⇒ t× v ⊆ s× u.
A14: a ∈ x & b ∈ y =⇒ a“{b} ⊆ =(

∪
x). a (2·10)

2·11 REMARK The above 2-companions are generated by the four functions
=, Dom ,

∪
and ×. We can get that down to two,

∪
and ×, by using the

above principles. For u transitive, a single generator, namely the function
u 7→ u? =df u ∪ [u]62 ∪ (u× u), is enough.
2·12 PROPOSITION If F has a 1-companion F 1 then

∪
F 1 is a 2-companion

of F .

2·13 PROPOSITION If G has a 2-companion G2 and H has a 1-companion
H1, then G2 ◦H1 is a 2-companion of G ◦H.

The Gandy–Jensen Lemma

The Gandy–Jensen Lemma is the core of the proof that R is closed under
formation of images. Versions of it are to be found in the papers of Gandy
[G] and Jensen [J2]. We discuss it only for 1-ary functions. The extension to
n-ary functions poses no problems.
2·14 THE GANDY–JENSEN LEMMA Let S be a system extending DB0. Sup-
pose that H is a 2-companion of F in S, and that ‘a ∈ F (b)’ is ∆S

0 . Then F is
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generated by composition from H and members of B, and so is S-suitable; if in
addition S extends GJ, then `S F“x ∈ V and F“ (as a function) is generated
by H and members of R and (as a term) is S-suitable and is a 1-companion
of F in S.

Proof : We have
`S x ∈ u =⇒ F (x) ⊆ H(u).

Working in S, form

h(u) =df

(
H(u) × u

)
∩ {(a, b)2 |a,b b ∈ u & a ∈ F (b)}.

Since “a ∈ F (b)” is ∆S
0 and for each ∆0 A, the function x 7→ x ∩ A is in

B and is DB-suitable, we have that h is S-suitable, and is generated by H and
functions in B.

Now note that for b ∈ u, F (b) = h(u)“{b} = A14(h(u), b), so F is built
from H and functions in B; if R8 is available in the system S, we may argue
further that F“u = R8(h(u), u) so F“ is built from H and rudimentary func-
tions, and is thus S-suitable; hence `S F“u ∈ V , and the function F“ now
forms a 1-companion of F in S. a (2·14)

2·15 PROPOSITION R8 has a 2-companion in GJ.

Proof : By the Gandy–Jensen lemma, A14“ is GJ-suitable, and so for a in x
and b in y,

R8(a, b) = {A14(a,w) | w ∈ b} = A14“({a} × b) ⊆ A14“(x×
∪
y). a (2·15)

2·16 COROLLARY R8 has a 1-companion in GJ.

Proof : by the Gandy–Jensen Lemma. a (2·16)

2·17 THEOREM R is closed under formation of images and of unions of im-
ages.

Proof : We have seen that each of R0, . . . R8 has a 1-companion in GJ; the
collection of functions possessing a 1-companion is closed under composition,
and hence each function in R has a 1-companion in GJ; but if G is a 1-
companion of F then u 7→

∪
(G(u)) is a 2-companion of F . Hence each

function F in R has a 2-companion in GJ; each such function is GJ-suitable,
Proposition 1·11 proving the survival of suitability under composition, and so
by the Gandy–Jensen lemma, F“ is in R; composition with

∪
yields the last

clause. a (2·17)

2·18 REMARK Gandy shows in [G] that these three are equivalent: (i) F is
rudimentary; (ii) “a ∈ F (b)” is ∆0 and F has a 1-companion in GJ; (iii)
“a ∈ F (b)” is ∆0 and F has a 2-companion in GJ.

2·19 REMARK Gandy in [G] and Jensen in [J2] supply other characterisations
of R and other axiomatisations of GJ.
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3: A single generating function for rud(u)

In developing further properties of the collection of rudimentary functions we
shall use the function T introduced in Definition 2·73 of Weak Systems.

The function T

3·0 DEFINITION T(u) =df u ∪ {u}
∪ [u]1 ∪ [u]2

∪ {xr y |x,y x, y ∈ u}
∪

{∪
x

∣∣
x
x ∈ u

}
∪

{
Dom(x)

∣∣
x
x ∈ u

}
∪ {u ∩ (x× y) |x,y x, y ∈ u}
∪

{
x ∩ {(a, b)2 |a,b a ∈ b}

∣∣
x
x ∈ u

}
∪

{
u ∩ {(b, a, c)3 |a,b,c (a, b, c)3 ∈ x}

∣∣
x
x ∈ u}

∪
{
u ∩ {(b, c, a)3 |a,b,c (a, b, c)3 ∈ x}

∣∣
x
x ∈ u}

∪
{
x“{w}

∣∣
x,w

x ∈ u,w ∈ u
}

∪
{
u ∩

{
x“{w}

∣∣
w
w ∈ y

} ∣∣∣
x,y

x, y ∈ u
}
.

3·1 REMARK The successive lines of the definition of T, after the first, may
be written more prosaically as R0“(u × u), R1“(u × u), R2“u, R3“u, {u ∩
R4(x, y) |x,y x, y ∈ u}, R5“u, {u ∩ R6(x) |x x ∈ u}, {u ∩ R7(x) |x x ∈
u}, A14“(u × u) and {u ∩ R8(x, y) |x,y x, y ∈ u}. It will be notationally
convenient to treat all these functions as having three variables, so let us
define Si(u;x, y) := Ri(x, y) for i = 0, 1; Si(u;x, y) := Ri(x) for i = 2, 3, 5;
Si(u;x, y) := u ∩ Ri(x, y) for i = 4, 8; Si(u;x, y) := u ∩ Ri(x) for i = 6, 7;
and S9(u;x, y) := A14(x, y). Then each of those lines now takes the form
Si“({u} × (u× u)) for some i.

We have proved the first clause of the following, and the others are easy.
3·2 PROPOSITION T is rudimentary, u ⊆ T(u) and u ∈ T(u). Further, if u is
transitive, then T(u) is a set of subsets of u, and hence T(u) is transitive.

3·3 REMARK It will not in general be true that u ⊆ v =⇒ T(u) ⊆ T(v),
the problem being that u ∈ T(u), but if v is countably infinite, so is T(v)
which therefore cannot contain all the subsets of v. Fortunately, u ⊆ T(u) ⊆
T2(u) . . .
3·4 LEMMA If x and y are in u, then R0(x, y), R1(x, y), R2(x), R3(x), and
R5(x) are all in T(u).

In the next five results, it is supposed that u is transitive.

3·5 LEMMA For x, y in u, R4(x, y) = x× y ⊆ u× u ⊆ T2(u).

3·6 COROLLARY For x, y in u, R4(x, y) ∈ T3(u).

3·7 LEMMA For a, b, c in u, (a, c)2 ∈ T2(u) and (b, a, c)3 ∈ T4(u).

3·8 COROLLARY For x ∈ u, R6(x) and R7(x) are in T5(u).
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3·9 LEMMA For x, y ∈ u, R8(x, y) ∈ T2(u).
Proof : For x, w in u, x“w ∈ T(u), so R8(x, y) = T(u) ∩ {x“w |w w ∈ y};
x, y ∈ T(u), so R8(x, y) ∈ T2(u). a (3·9)

Those remarks, which were proved in Weak Systems, though regrettably
without the requirement that u be transitive being clearly stated, and of which
more general forms will be proved below, immediately yield:
3·10 PROPOSITION If F (~x) is a rudimentary function of several variables,
there is an ` ∈ ω such that for all transitive u, if each argument in ~x is in u,
then F (~x) ∈ T`(u).
Proof : The stated property holds of the nine generating functions and is
preserved under composition. a (3·10)

3·11 REMARK Strictly, we should give this as two different results, like Propo-
sition 2·1, in one of which we quantify in the metalanguage (and so get a fact
about each externally definable rudimentary function) and in the other of
which we quantify internally, and so get a single fact about the internal set of
all (codes for) rudimentary functions.
3·12 COROLLARY (Gandy; Jensen) If F is rudimentary, then there is a finite
` such that the rank of the value is at most the maximum of the ranks of the
arguments, plus `.

Proof : the function T increases rank by exactly 1. a (3·12)

3·13 COROLLARY For any transitive u,
∪

n∈ωTn(u) is the rudimentary clo-
sure of u ∪ {u} and models TCo.

Functions rudimentary in a predicate

Let B be a unary predicate. The collection of functions rudimentary in
B is that obtained by adding to the generators of R the function x 7→ x ∩B.

To extend Proposition 3·10 to the collection of functions rudimentary in
B, we introduce a function TB , rudimentary in B, given by

TB(u) = T(u) ∪ {x ∩B | x ∈ T(u)} .

3·14 PROPOSITION If F (~x) is a rudimentary function in B of several vari-
ables, then there is an ` ∈ ω such that for all transitive u, if each argument
in ~x is in u, then F (~x) ∈ (TB)`(u).

EXAMPLE TON , used in 6·86, is itself rudimentary, by Proposition 2·1(i).

The intransitive case

The function T works very happily for transitive argument, but for in-
transitive argument it starts to create non-trivial problems. The aim, in the
two cases, is not quite the same. The purpose of T is to proceed by rud steps
from any transitive set u to rud(u), which will be of strictly greater rank; with
an intransitive argument of limit rank, our first concern would be to fatten
it to a transitive rud closed set, without raising rank. Here are two ways of
doing so, using the new functions trud and krud.
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3·15 DEFINITION trud(u) =df

∪
{F (~x) | F rud & ~x ∈ u}.

That is a legitimate definition because we are quantifying over programs
for rud functions; the axiom of infinity is at work here. Here ~x denotes a finite
sequence of arguments of F , and we follow Devlin’s convention that ~x ∈ u
means that each argument is in u; if we wanted to say that the sequence is in
u we would write 〈~x〉 ∈ u.

3·16 PROPOSITION For any set u, trud(u) is transitive, rud closed and in-
cludes u; and if A is transitive, rud closed and includes u, then trud(u) ⊆ A.
The rank of trud(u) will be the least limit ordinal greater than or equal to
the rank of u.

Proof : If a ∈ b ∈ F (~x), then a ∈
∪
F (~x) ⊆ trud(u),

∪
◦F being rud; and so

trud(u) is transitive.
If G(·, ·) is rud, b1 ∈ F1(~x), b2 ∈ F2(~y), then G(b1, b2) ∈ G“H(~x, ~y) for

some rud H; G“◦H is rud, and so G(b1, b2) ∈ trud(u). Similarly for functions
of a different number of variables.

If a ∈ u then a ∈ {a} ⊆ trud(u).
If ~x ∈ u then ~x ∈ A as A includes u; then F (~x) ∈ A, A being rud closed;

so F (~x) ⊆ A, as A is transitive. Thus trud(u) ⊆ A. a (3·16)

The definition of trud can be given recursively.

3·17 DEFINITION K(u) = u∪
∪
u∪{Ri(x, y, z) | 0 6 i 6 8 & x, y, z ∈ u∪

∪
u}.

That definition is intended for use even when u is intransitive. Note that
K is rudimentary, and that it has the agreeable property that u ⊆ v =⇒
K(u) ⊆ K(v).

3·18 DEFINITION K0(u) = u; Kn+1(u) = K(Kn(u)); krud(u) =
∪

n∈ω Kn(u).

3·19 PROPOSITION For any u, krud(u) = trud(u).

Proof : plainly krud(u) includes u, is transitive and is rud closed; so trud(u) ⊆
krud(u).

If u ⊆ A where A is transitive, rud closed and includes u then one verifies
by an easy induction that each Kn(u) ⊆ A. Hence krud(u) ⊆ trud(u).

a (3·19)

3·20 REMARK K has the property that for any rud function R there is a d
such that Kd is a 1-companion of R.

Gandy reproved

The proofs of a couple of the very interesting results of Gandy’s paper Set
theoretic functions are unfortunately flawed, which may have resulted from
Gandy encountering similar difficulties to those created by “the intransitive
case”. We shall give a brief review of the problems, and shall explain how to
obtain proofs of those results which are right but not supported by Gandy’s
arguments as they stand. See especially Propositions 3·25 and 3·27 below.

The first problem is in his Lemma 1.5.3. on page 111. We will begin
our discussion from his definition 1.5.2: he uses a bold-face x to denote the
(meta) finite sequence x1, . . . xm: cf the bottom of page 105. This usage is a
little ambiguous; the letter m here may be a variable of the meta-language.
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Let us for simplicity take the case m = 1, and write x for x1. Then the
first part of his Definition 1.5.2 runs

Cc0{x} = {x};
Ccq+1{x} = Ccq{x} ∪ {Ccq{x}} ∪ {Fiuv : 1 6 i 6 9 & u, v ∈ Ccq{x}}.

For the purposes of this discussion, we shall take the letter q here to be
a variable of the language of discourse.
3·21 PROPOSITION For any q ∈ ω and any x, Ccq{x} is a finite set.

Proof : by induction on q. Indeed, for a given x, let nq be the number of
elements in Ccq{x}. Then n0 = 1; nq+1 6 nq + 1 + 9 · nq

2. a (3·21)

3·22 Thus the second statement of part (ii) of Lemma 1.5.3 is false: if x is
actually an infinite set, it cannot be a subset of any Ccq{x}.

Similarly, Cc{x} is defined as
∪

q∈ω Ccq{x}; which will be a countable
infinite set; so if x is uncountable, it cannot be a subset of Cc{x}, even if it
is transitive.

Lemma 1.5.4 is also incorrect—the difficulty is with step (C) of the proof.
The ‘only if’ direction of Theorem 1.5.5, which relies on Lemma 1.5.4, is also
wrong. Theorem 1.5.6 is false: Bc{x} is always transitive but Cc{x} need not
be.

We now turn to the ways in which some of the correct results may be
recovered.
3·23 LEMMA If u is a finite transitive set with u = `, then T(u) 6 1

2 (2+13`+
9`2).
Proof : by inspection. a (3·23)

3·24 DEFINITION (Gandy) η(x) =df the cardinal of the transitive closure
of x.
3·25 PROPOSITION (Gandy) If F is rud, then there is a k such that η(F (~x))
is less than (η({~x}) + 1)k.

Here {~x} for many variables means the set of them.
Proof : we know that there is an ` such that for u transitive and the arguments
of F in u, F (~x) ∈ T`(u). For u transitive, T(u) is transitive, and iterating
the previous estimate, we find that there is a polynomial Q(X) of degree 2`,
(for example 132`−1X2`

) such that x ∈ u implies that η(F (~x)) is at most
Q(u+ 1). a (3·25)

3·26 REMARK We may now justify our earlier remark that there is no pure
rud recursion for S(x) for x an arbitrary set. If we look at S(x) for x ∈ HF,
we see that S(Vn) = Vn+1; if S(x) were pure rud rec, given by G, we would
have

G(S �Vn) = Vn+1.

But if Vn = N , Vn+1 = 2N , whereas

tcl(S �Vn) ⊆ {(S(x), x) | x ∈ Vn} ∪ {{S(x)} | x ∈ Vn}
∪{{S(x), x} | x ∈ Vn} ∪ {S(x) | x ∈ Vn} ∪ Vn
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which has cardinality at most 5N ; but for each k, (5N)k will, for large N , be
much less than 2N . a (3·26)

Gandy remarks on page 114 that there is a primitive recursive function
which returns the value ω given any argument of infinite rank. Indeed the
example he gives is rud rec: define

F (x) = ω ∩
∪{

F (y) ∪ {F (y)}
∣∣
y
y ∈ x

}
,

which is rud rec as intersection with ω is given by a ∆0 separator; and show
first that if x ∈ HF, then F (x) = %(x). His Theorem 2.1.3 then states:
3·27 PROPOSITION (Gandy) There is a set c of infinite rank such that for
no rud function G is G(c) = ω.

Indeed there will be many such sets in any transitive model of Z containing
sets of infinite rank but not ω, as such models are automatically rud closed
and absolute for rud functions. Proposition 8·12 and [M7, §2] give examples.

4: The collections of pure rud rec and gentle functions

4·0 DEFINITION (Mathias): By type I or pure rudimentary recursions we
mean those given by a recursion equation of the form

F (x) = G(F �x)

where G is a pure rud function with no hidden parameters. We call functions
which may be defined in this way rudimentary recursive, or rud rec. For
example, as was shown in the introduction, the rank function % is rud rec. We
will now explore the closure properties of rud rec functions.
4·1 PROPOSITION Every (unary) rud function is rud rec.

Proof : If F (·) is unary and rud, let G(f) =df F (Dom (f)); then G is rud
and ∀x F (x) = G(F � x). Other rud functions can be transformed to unary
functions by using the pairing and un-pairing functions, which are rudimen-
tary. a (4·1)

4·2 PROPOSITION If F1 and F2 are rud rec, so is x 7→ (F1(x), F2(x))2.
Proof : Let K(x) =

(
F1(x), F2(x)

)
2
. Then K(x) =

(
G1(F1 �x), G2(F2 �x)

)
2
,

and K �x = {
(
(F1(a), F2(a))2, a

)
2
|a a ∈ x}. There are rud G3 and G4 such

that G3(K �x) = F1 �x and G4(K �x) = F2 �x. So

K(x) =
(
G1(G3(K �x)), G2(G4(K �x))

)
2

= G5(K �x)

where G5(z) =df

(
G1(G3(z)), G2(G4(z))

)
2
. G5 is rudimentary. a (4·2)

4·3 PROPOSITION Let G1 and G2 be rudimentary, and suppose that F1 and
F2 are defined by the simultaneous recursion

F1(x) = G1(F1 �x, F2 �x); F2(x) = G2(F1 �x, F2 �x).

Then the function x 7→ (F1(x), F2(x))2 is rud rec.
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Proof : Let K(x) =
(
F1(x), F2(x)

)
2
. Then K(x) = (G1(F1 �x, F2 �x), G2(F1 �

x, F2 � x))2, and K � x = {
(
(F1(a), F2(a))2, a

)
2
|a a ∈ x}. There are rud G3

and G4 such that G3(K �x) = F1 �x and G4(K �x) = F2 �x. So

K(x) =
(
G1(G3(K �x), G4(K �x)), G2(G3(K �x), G4(K �x))

)
2

= G6(K �x)

where G6(z) =df

(
G1(G3(z), G4(z)), G2(G3(z), G4(z))

)
2
. G6 is rudimentary.

a (4·3)

4·4 COROLLARY Let F be a rud rec function and H a rud function. Then
H ◦ F is a projection of a rud rec function.

Proof : Suppose that F is given by F (x) = G(F �x). Then F and H ◦ F are
definable by the simultaneous recursion given by that equation andH◦F (x) =
H(G(F �x)), and hence Proposition 4·3 applies. a (4·4)

Significantly, H ◦ F need not be rud rec:

4·5 PROPOSITION (Bowler) The function H : x 7→
{
ω if %(x) = ω
0 otherwise.

is a

composite of a rud function with a rud rec fuction, but is not rud rec.

Proof : H is the composite δω ◦%, where the function δω : x 7→
{
ω if x = ω
0 otherwise

is rudimentary by Proposition 2·2. For any unary rud G and ` as in Proposi-
tion 3·10, (in fact ` = cG as in Definition 6·13) and any transitive x,∪ `+1G(x) ⊆

∪ `+1G′′(x ∪ {x}) ⊆
∪ `+1T`(x ∪ {x}) =

∪
(x ∪ {x}) = x.

Suppose that H were rud rec, given by G0 say. Let ` = cG where G is the
rud function G : y 7→ G0({0} × y). Let Z be the transitive set, of rank ω, of
Zermelo integers: Z = {sn(∅) | n ∈ ω}, where s : x 7→ {x}. Then

ω =
∪ `+1ω =

∪ `+1H(Z) =
∪ `+1(G0(H �Z)) =

∪ `+1(G0({0} × Z))
=

∪ `+1(G(Z)) ⊆ Z—a falsehood ! a (4·5)

We therefore turn our attention to a collection of functions with better
closure properties: those of the form G ◦ F with G rud and F rud rec. We
call such functions gentle. Our first concern will be to show that, unlike the
collection of rud rec functions, the collection of gentle functions is closed under
composition.
4·6 LEMMA Let F be rud rec, given by F (x) = G(F � x) where G is rud.
Then there is a rud function HG obtainable uniformly from G such that for
every u, not necessarily transitive, and every v ⊆ Pu, F �v = HG(v, F �u).
Proof : For x ∈ v, F �x = (F �u) �x. Let φ(f, x) = (G(f �x), x)2. Then φ is
rud, and

F �v = {φ(F �u, x) |x x ∈ v} = HG(v, F �u)
where HG is rud. a (4·6)

4·7 COROLLARY Let F be rud rec, given by F (x) = G(F �x) where G is rud.
Then there is a rud function HT

G obtainable uniformly from G such that for
every transitive u, F �T(u) = HT

G(F �u).
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Proof : We take HT
G(f) = HG(T(Dom (f)), f). a (4·7)

4·8 PROPOSITION (Bowler) If F1 and F2 are rud rec, then F1 ◦F2 is gentle.

Proof : Let F1 be given by F1(x) = G1(F1 �x) and F2 by F2(x) = G2(F2 �x).
We say that a set is sufficient for x if it is the restriction of F1 to a

transitive set u containing (F2(x), x)2. We proceed by showing that there
is a function F , definable by mutual rudimentary recursion with F2 as in
Proposition 4·3, with the property that for any x F (x) is sufficient for x. For
that, we must find a rudimentary function E in two variables such that, for
any function f with domain x and sending each y in x to a set sufficient for
y, E(F2 �x, f) is sufficient for x.

Suppose we have such an f , with f(y) = F1 �u(y) for each y ∈ x (where
we write u(y) for the domain of f(y)). Then

∪
=(f) = F1 � ū, where ū =df∪

y∈x u(y) is a transitive set of which F2 �x is a subset. Thus HG1(ū ∪ {F2 �
x}, F1 � ū) = F1 � (ū ∪ {F2 � x}) is a restriction of F1 to a transitive set
containing F2 �x. The rudimentary function K : f 7→ (G2(f),Dom(f))2 has
the property that for any x we have K(F2 �x) = (F2(x), x)2. So if we choose
` as in Proposition 3·10 for this K, then (HT

G1
)`(F1 � (ū ∪ {F2 � x})) = F1 �

T`(ū ∪ {F2 �x}) is sufficient for x. So the rudimentary function

E : g, f 7→ (HT
G1

)`(HG1(Dom (
∪

=(f)) ∪ {g},
∪

=(f)))

has the property stated above: the function F defined by F (x) = E(F2 �x, F �
x) sends each x to something sufficient for x.

By Proposition 4·3, x 7→ (F2(x), F (x))2 is rud rec. Thus F1 ◦ F2 is
gentle, as it can be obtained by precomposing this rud rec function with the
rudimentary function q 7→ right(q)(left(q)). a (4·8)

4·9 THEOREM (Bowler) Any composite of gentle functions is gentle.

Proof : Suppose that H1 and H2 are gentle, with Hi given by Hi = Gi ◦ Fi

with Gi rud and Fi rud rec. Then by Propositions 4·1 and 4·8 F2 ◦ G1 is
gentle—say it is given by G ◦ F with G rud and F rud rec. By Proposition
4·8 again, F ◦ F1 is gentle—say it is given by G′ ◦ F ′ with G rud and F rud
rec. Thus H2 ◦H1 = G2 ◦ F2 ◦G1 ◦ F1 = G2 ◦G ◦ F ◦ F1 = (G2 ◦G ◦G′) ◦ F ′

is gentle. a (4·9)

The collection of gentle functions is closed in other good ways: for exam-
ple, by Proposition 4·2 ifH1 andH2 are gentle then so is x 7→ (H1(x), H2(x))2.

4·10 PROPOSITION If F is rud rec, so is x 7→ F �x.
Proof : Let F be given by G, and let H(x) = F �x. Then

H(x) = F �x
= {(F (a), a)2 |a a ∈ x}
= {

(
G(F �a), a

)
2
|a a ∈ x}

= {
(
G(H(a)), a

)
2
|a a ∈ x}

= G2(H �x)
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where, setting G1 to be the rud function x 7→
(
G(left(x)), right(x)

)
2
, we take

G2(x) =df G1“x. a (4·10)

4·11 COROLLARY If H is gentle, then H“, being equal to Im ◦ (H �), is also
gentle.

Thus any gentle function has a gentle 1-companion. It is also clear that
any gentle function has a gentle 2-companion, obtained by precomposing this
1-companion with

∪
.

Gentle predicates

4·12 PROPOSITION Let B be a predicate. The following are equivalent:

(i) The characteristic function of B is gentle.

(ii) The separator x 7→ x ∩B is gentle.

Proof : (i) ⇒ (ii) is immediate from Proposition 4·10, and (ii) ⇒ (i) follows
from Theorem 4·9 and the fact that x ∈ B iff {x} ∩B 6= ∅. a (4·12)

We call predicates with those properties gentle, and may view the Propo-
sition as saying that gentle predicates give gentle separators. There is a variant
of Corollary 4·7 for TB with B gentle.

4·13 LEMMA If B is a gentle predicate, with the function x 7→ x ∩ B given
by H ◦ F with H rudimentary and F rud rec, then there is a rudimentary

function GTB

such that, for any transitive set u, GTB

(F �u) = F �TB(u).

Proof : Let F be given by F (x) = G(F � x). We take the function f 7→
HG(T(Dom (f)) ∪ =(H ◦ f), f). a (4·13)

4·14 LEMMA If B is a gentle predicate, with the function x 7→ x∩B given by
H ◦F , H rud and F rud rec, and G is a unary function which is rudimentary
in B, then there is a binary rudimentary function Ĝ such that Ĝ(x, y) = G(x)
whenever y is a restriction of F to a transitive set containing x.

Proof : Using Proposition 3·10, we can find some ` such that, for any transitive
set u containing x and any subterm G′ of some fixed term representing G as a
function rudimentary in B, G′(x) ∈ (TB)`(u). Thus for y as in the statement,
f = (GTB

)`(y) is a restriction of F to a transitive set containing all of the
G′(x). Thus G(x) can be obtained by using H ◦ f in place of z 7→ z ∩ B in
the term defining G. a (4·14)

Variants

There are some natural variations on the definition of rudimentary re-
cursion, which we now show do not give more general collections of functions.
For example, we could vary the relation used in the recursion.

4·15 PROPOSITION Let F be defined by F (x) = G(x, F � tcl(x)), where G
is rudimentary. Define H by H(x) = F � tcl({x}). Then H is rud rec and
therefore F is gentle.
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Proof : F �tcl(x) =
∪

y∈xH(y), so

H(x) = {(F (x), x)2} ∪
∪
y∈x

H(y)

= {
(
G(x,

∪
y∈x

H(y)), x
)
2
} ∪

∪
y∈x

H(y)

= G1(H �x)

where G1(h) = {
(
G(Dom (h),

∪
=(h)),Dom (h)

)
2
} ∪

∪
=(h), so that G1 is

rudimentary and H is rud rec. Then F (x) = [H(x)](x), the evaluation of
H(x) at argument x, and is thus a trivial rud function of x and H(x).

a (4·15)

4·16 COROLLARY Recursions of the form F (x) = G(x, F �
∪∪

x), where
again G is rudimentary, thus yield gentle functions.

4·17 REMARK Recursions of that kind occur in the definition of forcing.
We could also restrict the domain of the recursion, for example to the

ordinals.
4·18 REMARK For G a rudimentary function, define G′(f) = G(f) ∩ {z |
Dom f ∈ On}. Then G′ is rudimentary, by Proposition 2·1; and if we recur-
sively define F (x) = G′(F �x), then F is rudimentarily recursive and

F (x) =
{
G(F �x) if x ∈ On
∅ otherwise.

We could also consider gentle functions of more than one variable—for
example, any gentle function H can be considered as giving the function
x, y 7→ H((x, y)2) of two variables. Gentle functions in multiple variables
are still closed under composition. We could also consider functions defined
by mutual recursions—but as Proposition 4.3 shows, that does not take us
outside the collection of gentle functions.

The final variant we shall consider is rudimentary recursion in a predicate.
We call a function rud rec in B if it is of the form

F (x) = G(F �x)

where G is rud in B. We say K is gentle in B iff it is of the form H ◦ F with
H rud in B and F rud rec in B. It is clear that rudimentary recursion in ar-
bitrary predicates is more general than pure rudimentary recursion. However,
rudimentary recursion in gentle predicates is not.
4·19 THEOREM (Bowler) Let F2 be a gentle function in a gentle predicate
B. Then F2 is gentle.

Proof : Suppose that x 7→ x ∩ B is given by H1 ◦ F1, with F1 given by
F1(x) = G1(F1 �x), where G1 and H1 are rud. Since any gentle function in B
is a composite of rud rec functions in B and any composite of gentle functions
is gentle, we may suppose without loss of generality that F2 is rud rec in B,
given by F2(x) = G2(F2 �x), where G2 is rud in B.
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We say that a set is sufficient for x if it is the restriction of F1 to a tran-
sitive set u containing (F2(x), x)2. We proceed, as in the proof of Proposition
4·8, by showing that there is a function F , definable by mutual rudimentary
recursion with F2 as in Proposition 4·3, with the property that for any x F (x)
is sufficient for x. As in that proof (but using Lemma 4·13 in place of Corol-
lary 4·7), we can find a rudimentary function E in two variables such that, for
any function f with domain x and sending each y in x to a set sufficient for y,
E(F2 �x, f) is sufficient for x. It also follows from this construction that F2 �x
is in the domain of E(F2 �x, f). Thus F2(x) = Ĝ2(F2 �x,E(F2 �x, f)), where
Ĝ2 is as given by Lemma 4·14. Therefore there is an F which is definable
together with F2 by the simultaneous rudimentary recursion

F (x) = E(F2 �x, F �x); F2(x) = Ĝ2(F2 �x,E(F2 �x, F �x)).

and so by Proposition 4·3 F2 is gentle. a (4·19)

An illusory recursion

Just to warn the reader:
4·20 PROPOSITION There are rud functions G and H such that for any func-
tion F , F (x) = G(F �H(x)).

5: Rudimentary recursion from parameters

5·0 We have defined functions of type I, or pure rud rec functions to be those
given by a recursion equation of the form

F (x) = G(F �x)

where G is a pure rud function with no hidden parameters.
5·1 DEFINITION (Mathias) For recursions involving parameters, the following
definition seems the most satisfactory, which we call type II.

F (x) = G(p, F �x)
Here G is a pure rud function of two variables and p is some set. We shall

call such an F p-rud rec or a function of type II. Similarly, we call F p-gentle
if it is a composite of a rudimentary function with a p-rud rec function.
5·2 It might be asked whether a simpler kind of recursion, which we might
call type II’, will suffice. Let us say that F is rud rec from p, where p is some
set, if there are G0 and G, pure rud functions of one variable, such that

F (x) =
{
G0(p) if x = ∅;
G(F �x) if x 6= ∅.

For such an F and for any rudimentary function H we shall say H ◦F is
gentle from p.

Thus in type II recursion the parameter p may be re-used throughout
the recursion, whereas in type II’, use of the parameter p occurs only at the
beginning.
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5·3 EXAMPLE To form L(d), the constructible closure of d, a transitive set,
requires a rud recursion in the parameter d: define

D(x) = d ∪
∪
y∈x

T(D(y)).

Then D(x) = D%(x) where D0 = d; Dν+1 = T(Dν); Dλ =
∪

ν<λDν , which is
the usual ordinal recursion for this purpose. L(d) =

∪
xD(x) =

∪
ν Dν .

5·4 A delicate distinction has to be made here. The two collections of func-
tions given by recursions of type II and of type II’ from a given param-
eter are not the same: for example, for p of infinite rank, the function
F : x 7→ p × x is p-rud rec but not rud rec from p, since there is no rud
G with p × {∅} = F ({∅}) = G(F �{∅}) = G({(∅,∅)2}). The closure prop-
erty given in Proposition 4·10 holds for the collection of p-rud rec functions,
by essentially the same proof, but fails for the collection of functions rud rec
from p, since if K is the constant function with value ω, K is rud rec from ω,
but x 7→ K �x = {ω} × x is not. It is for such reasons that we have preferred
type II to type II’.

But when we pass to the associated gentle collections, we may breathe
again, as that distinction no longer applies:
5·5 PROPOSITION (Bowler) A function F is p-gentle iff it is gentle from p.

Proof : The ‘if’ direction is clear from the definitions and from Proposition
2·2. For the ‘only if’ direction, note that without loss of generality F is p-
rud rec, given by F (x) = G(p, F � x). Let K : x 7→ (p, F (x))2. There is a
rudimentary function G1 such that for any x we have G1(K �x) = F �x, and
so

K(x) =
{

(p,G(p,∅))2 if x = ∅;
(
∪
=(=(K �x)), G (

∪
=(=(K �x)), G1(K �x)))2 if x 6= ∅.

Thus K is rud rec from p and so F is gentle from p. a (5·5)

5·6 Essentially the same arguments as in the last section show that the p-
gentle functions have good closure properties. For example, if F is p-gentle
then so is x 7→ F �x. However, it is not true that any composite of p-gentle
functions is p-gentle: for example, the function x 7→ ω + x is ω-gentle, but
its composite with itself is not. This composite is, however, ω + ω-gentle and
there is a similar phenomenon in general.
5·7 PROPOSITION (Bowler) Let F1 be p1-rud rec and F2 be p2-rud rec. Then
F1 ◦ F2 is (p1, F1 �tcl{p2})2-gentle.

5·8 PROPOSITION (Bowler) Let B be a p1-gentle predicate, with x 7→ x∩B
represented as H1 ◦ F1, and let F2 be p2-gentle in B. Then F2 is (p1, F1 �
tcl{p2})2-gentle.

The proofs are like those in the last section. Apart from these two cases,
the results of the last section transfer directly to p-gentle functions, and we
may refer to them in future as if they were stated in those terms. Specifically,
in Propositions 4·1, 4·2, 4·3, 4·12 and 4·15, Corollary 4·16 and Remark 4·18,
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we may replace rud, rud rec and gentle respectively by p-rud (that is, of the
form x 7→ G(p, x) with G rud), p-rud rec and p-gentle.

The parametrized forms of Lemma 4·6 and its corollary are now given:
note the uniformity. H depends only on G and not on the specific parameter
p.
5·9 THE PROPAGATION LEMMA Let G be a binary rudimentary function.
Then there is a ternary rudimentary function HG, obtainable uniformly from
G, such that for any set p, if F be the p-rud rec function given by the recursion
F (x) = G(p, F �x), and if P+ and P be transitive sets with P+ ⊆ P(P ), then

F �P+ = HG(p, F �P, P+).

Proof : If x ∈ P+, then x ⊆ P , so F �x = (F �P )�x so F (x) = G(p, (F �P )�
x). Hence

F �P+ = {(G(p, (F �P )�x), x)2 |x x ∈ P+}.
We take HG(p, f, q) ≡ {(G(p, f �x), x)2 |x x ∈ q}. a (5·9)

5·10 COROLLARY Let G be rud. Then there is a binary rud function HT
G

obtainable uniformly from G such that for every set p F rud rec, given by
F (x) = G(p, F �x), and every transitive u, F �T(u) = HT

G(p, F �u).
Proof : We take HT

G(p, f) = HG(p,T(Dom (f)), f). a (5·10)

5·11 REMARK Type II recursions will underlie the discussion of rudimentary
forcing in [M8], with the poset P of conditions as an ever-present parameter.
5·12 REMARK The first Jensen fragment after J1 that is closed under func-
tions of type II is Jω, as given Jk we could set f(0) = Jk; f(n + 1) =
T(f(n)); f(λ) =

∪
f“λ, and then f(ω) = Jk+1.

Recursions of Type III

5·13 Finally, we ask what happens to type II if we turn the parameter back
into a variable and consider recursion equations of the following form

F (v, x) = G(v, F �({v} × x))

which we shall call type III.
5·14 REMARK The recursion here is on the second variable, in harmony with
the form of the definition of ordinal addition as given in Example 0·3.
5·15 PROPOSITION For each fixed v the map x 7→ F (v, x) is rud recursive of
type II, in the parameter v.

Proof : Let E(x) = F (v, x). Then E �x = {(F (v, b), b)2 |b b ∈ x} whereas

F �({v} × x) = {
(
F (v, b), (v, b)2

)
2
|b b ∈ x}

= {
(
E(b), (v, b)2

)
2
|b b ∈ x}

= H(v,E �x)
for a certain rud function H; so E(x) = G(v,H(v,E �x)) = G1(v,E �x), for
some rud function G1. a (5·15)

5·16 REMARK Since x is recoverable by a rud function from F �({v}× x), as
the domain of its domain, no new functions result from equations of the form

F (v, x) = H(v, x, F �({v} × x)).
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6: Provident sets

6·0 DEFINITION (Mathias) A set A is p-provident, where p is a set, if it is non-
empty, transitive, closed under pairing and for all p-rud rec F (or equivalently
all p-gentle F ) and all x in A, F (x) ∈ A.

6·1 REMARK If A is p-provident, p ∈ A.

6·2 EXAMPLE We shall see that the Jensen fragment Jν is ∅-provident for
all ν > 1.

6·3 THEOREM Any directed union of ∅-provident sets is ∅-provident. Ex-
plicitly, if A is a nonempty set of ∅-provident sets such that for any A,B ∈ A
there is C ∈ A with A ∪B ⊆ C, then

∪
A is ∅-provident.

Proof :
∪
A is nonempty since A and all A ∈ A are nonempty. It is transitive

since each A ∈ A is. For any x, y ∈
∪

A, we can find A,B ∈ A with x ∈ A
and y ∈ B, and we can find C ∈ A with A ∪ B ⊆ C. Since C is provident,
{x, y} ∈ C ⊆

∪
A. Finally,

∪
A is closed under ∅-rud rec functions since each

such function is unary. a (6·3)

6·4 DEFINITION (Mathias) A is provident if it is p-provident for every p ∈ A.

6·5 REMARK The only provident set not containing an infinite set is HF.

6·6 REMARK For provident sets, it is unnecessary to demand that they be
closed under pairing, for if x ∈ A, the function y 7→ {x, y} is x-rud rec, being
given by the recursion F (y) = {x,DomF �y}. But the union of two sets each
closed under ∅-rud rec functions might not be closed under pairing, though
as rud rec functions are unary, that union would be closed under ∅-rud rec
functions: for example, let a and b be mutually Cohen-generic subsets of ω
and consider the model J2(a) ∪ J2(b).

6·7 THEOREM Any directed union of provident sets is provident.

Ranks of provident sets

If A is an ∅-provident set, then for ν < %(A) we have ν = %(x) for some
x ∈ A and so ν ∈ A. Thus %(A) = On ∩ A. Since the function ν 7→ ν + 1
is rudimentary, we can deduce that %(A) is a limit ordinal. If A is provident,
then since the function ν 7→ µ+ ν is µ-rud rec, %(A) is closed under addition.

6·8 REMARK The discussion above shows that the rank of any provident set
is an indecomposable ordinal, as defined in 0·4.

6·9 LEMMA An ordinal θ is indecomposable iff it is of the form ωα for some
α > 0.

Proof : If α = β+1 then for µ, ν < ωα we can choose m,n < ω with µ ≤ ωβ ·m
and ν ≤ ωβ · n, so that µ + ν ≤ ωβ(m + n) < ωα. If α is a limit, then for
µ, ν < ωα we can choose κ < α with µ, ν < ωκ and so µ+ ν < ωκ < ωα.

Conversely, suppose that θ is indecomposable. Let β be minimal such
that ωβ > θ. Since exponentiation by ω is continuous, β must be a successor:
say β = α+ 1. Now choose n < ω maximal so that ωα.n ≤ θ. If n 6= 1, then
the identity ωα · (n− 1) + ωα = ωα · n contradicts indecomposability of θ, so
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we must have n = 1. Let θ = ωα + γ. Since n = 1, γ < ωα and so since θ is
indecomposable we must have γ = 0. Thus θ = ωα, as required. a (6·9)

A familiar provident set is Jων (c) provided ων is greater than the rank
of the transitive set c. But we shall replace the traditional definition of L(a)
recalled in 0·16 by the one outlined in 0·17.

Bounding rudimentary functions in a finite progress

6·10 DEFINITION Let ξ be an ordinal or ON . A ξ-progress is a sequence
〈Pν | ν < ξ〉 of transitive sets such that for each ν with ν+1 < ξ, T(Pν) ⊆ Pν+1

and for each limit ordinal λ < ξ,
∪

ν<λ Pν ⊆ Pλ; the progress is strict if for
each ν with ν + 1 < ξ, Pν+1 ⊆ P(Pν); continuous if for each limit λ < ξ,
Pλ =

∪
ν<λ Pν ; and solid if it is strict and continuous and P0 = ∅.

6·11 PROPOSITION If the progress is strict and continuous then for each ν <
ξ, %(Pν) = %(P0) + ν.

Proof : by induction on ν. a (6·11)

6·12 THEOREM Let R be a rudimentary function of n variables. There is a
cR ∈ ω such that for every (cR + 1)-progress P0, P1, . . . , PcR

, R“Pn
0 ⊆ PcR

.

6·13 DEFINITION We call cR the rudimentary constant of R. For R : a 7→
a∩{x | |=0 ϕ(x, b)} with ϕ a ∆̇0 formula, we also call cR the separational delay.
6·14 REMARK More precisely, there is a recursive function sending a program
for R to a bound; but the function sending a program for R to the minimal
bound is not recursive.

We prove the theorem in a series of lemmata.
6·15 LEMMA If x and y are in Pν then {x, y} ∈ Pν+1, x r y ∈ Pν+1,

∪
x ∈

Pν+1 and Dom(x) ∈ Pν+1.

Proof : Immediate from lines 2, 3, 4 and 5 of the definition of T. a (6·15)

6·16 LEMMA x, y ∈ Pζ =⇒ x× y ∈ Pζ+3.

Proof : If x and y are in Pν then both {x} and {x, y} are in Pν+1; so
{{x}, {x, y}} are in Pν+2; Pν being transitive, we may infer that if a ∈ x
and b ∈ x, then (a, b)2 is in Pν+2; thus x×y ⊆ Pν+2, which, since Pν ⊆ Pν+2,
implies that x× y ∈ Pν+3. a (6·16)

6·17 LEMMA x, y ∈ Pζ =⇒ R5(x, y) ∈ Pζ+1.

6·18 LEMMA a, b, c ∈ Pζ =⇒ [(a, c)2 ∈ Pζ+2 & (b, a, c)3 ∈ Pζ+4].

6·19 LEMMA x ∈ Pζ =⇒ R6(x) ∈ Pζ+5.

6·20 LEMMA x ∈ Pζ =⇒ R7(x) ∈ Pζ+5.

6·21 LEMMA x,w ∈ Pζ =⇒ x“{w} ∈ Pζ+1.

6·22 LEMMA x, y ∈ Pζ =⇒ R8(x, y) ∈ Pζ+2.

Proof of Theorem 6·12: The lemmata show that for i = 0, . . . 8, we may
take cRi to be 1, 1, 1, 1, 3, 1, 5, 5, 2 respectively. The theorem now fol-
lows by remarking that if S and Ti are rudimentary and for all x, Q(~x) =
S(T0(~x), . . . , Tk(~x)), we may take cQ = cS + maxi cTi . a (6·12)
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6·23 COROLLARY If 〈Pν | ν < ξ〉 is a ξ-progress, then at each limit ordinal
λ 6 ξ,

∪
ν<λPν is rud closed.

The canonical progress towards a given transitive set

6·24 Let c be a transitive set. Let cζ = c∩{x | %(x) < ζ}. Since c is transitive,
cζ+1 will be a set of subsets of cζ ; in fact cζ+1 = c ∩ {x | x ⊆ cζ}, which we
shall use below as a direct recursive definition.

If cζ+1 = cζ , then cζ = c and for all ξ > ζ, cξ = cζ ; so that that first
happens when ζ = %(c).

Using c as a parameter we define a sequence of pairs ((cν , P c
ν ))ν by a rud

recursion on ν. Each P c
ν will be of rank ν; we shall use the function T, but

we shall also “feed” stages of c into the process.
The sequence (P c

ν )ν forms a solid progress, which we shall call the canon-
ical progress towards, to, or through c, the choice of preposition depending on
the length of the sequence as compared to the rank of c.
6·25 DEFINITION

c0 = ∅ cν+1 = c ∩ {x | x ⊆ cν} cλ =
∪

ν<λcν

P c
0 = ∅ P c

ν+1 = T(P c
ν ) ∪ {cν} ∪ cν+1 P c

λ =
∪

ν<λP
c
ν

6·26 LEMMA Each P c
ν is transitive. P c

ν ⊆ P c
ν+1. P

c
ν ∈ P c

ν+1; and so for ν < ζ,
P c

ν ⊆ P c
ζ and P c

ν ∈ P c
ζ .

6·27 REMARK cν = c ∩ P c
ν ; %(P c

ν ) = ν.
6·28 REMARK P c

ν may be defined by a single rud recursion on ordinals:

P c
0 = ∅; P c

ν+1 = T(P c
ν ) ∪ {c ∩ P c

ν} ∪ (c ∩ {x | x ⊆ P c
ν}); P c

λ =
∪
ν<λ

P c
ν .

With that definition, one should then verify by induction that for each
ν, c ∩ P c

ν = c ∩ {x | %(x) < ν}, and thence that the two definitions agree.
6·29 REMARK Each P c

λ is rud closed, for λ a limit ordinal, by Theorem 6·12.
6·30 REMARK P c

ω = Vω: for each P c
n ⊆ Vn and so P c

ω ⊆ Vω; equality will
follow from the fact that P c

ω is a non-empty rud closed set, by the previous
remark.

Bounding rudimentarily recursive functions in a progress

To see why and how quickly progresses tend to become closed under p-rud
rec functions, we recall the notion of an F -attempt.
6·31 DEFINITION Let F be the p-rudimentarily recursive function defined by
F (x) = G(p, F �x). A set f is an F -attempt iff it satisfies

Fn(f) &
∪

Dom(f) ⊆ Dom(f) & ∀x∈Dom (f) f(x) = G(p, f �x).

Note that that is ∆0 in f and p; we will denote the separational delay of
that predicate by sF .
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We say that an F -attempt f attains x iff x ∈ Dom(f).
6·32 PROPOSITION Let F be a p-rud rec function. Then there is a natural
number cF such that for any set x and any (cF + 1)-progress P0, P1, . . . , PcF

such that P0 contains p and x and contains, for each y ∈ x, an F -attempt
attaining y, the set PcF contains an F -attempt attaining x.

Proof : Under those hypotheses, f0 =df

∪
{f ∈ P0 | f is an F -attempt} is an

F -attempt attaining every y ∈ x. Further, f0 ∈ PsF +2, as P0 ∈ P1, so the set
P0 ∩ {f | f is an F -attempt} is in P1+sF

, and its union will be in P1+sF +1 by
the definition of T.

Now F � x = f0 � x, and so f0 ∪ {(G(p, f0 � x), x)2} is an F -attempt
attaining x. It is therefore enough to take cF = sF + cR + 2, where R is the
rudimentary function (x, p, f) 7→ f ∪ {(G(p, f �x), x)2}. a (6·32)

6·33 THEOREM Let F be a p-rud rec function, x a set, and 〈Pν | ν < ξ)〉
a ξ-progress with ξ > cF · (%(x) + 1), and p and x in P0. Then PcF ·(%(x)+1)

contains an F -attempt attaining x.

Proof : By induction on %(x). For each y0 ∈ x, we have %(y0) + 1 6 %(x) and
so the induction hypothesis will imply that PcF .%(x) contains an F -attempt
attaining y0. By Proposition 6·32, PcF .%(x)+cF

contains an F -attempt attain-
ing x, which is the desired result, as cF .%(x) + cF = cF .(%(x) + 1). a (6·33)

6·34 THEOREM Let 〈Pν | ν 6 θ〉 be a solid (θ + 1)-progress. Then Pθ is
provident iff θ is an indecomposable ordinal.

Proof : The ‘only if’ direction is immediate from Remark 6·8. For the ‘if’
direction, let x, p ∈ Pθ; choose ν < θ with x, p ∈ Pν . Let F be p-rud rec.
Then %(x) < ν and so F (x) ∈ Pν+cF ·ν ⊆ Pθ. a (6·34)

6·35 PROPOSITION Let c be a transitive set and θ an indecomposable ordinal.
Then P c

θ is provident, and

P c
θ = P cθ

θ =
∪
λ<θ

P cλ

θ .

Proof : That P c
θ is provident is an immediate corollary of Theorem 6·34.

If x ∈ P c
θ , then for some λ < θ, x ∈ P c

λ = P cλ

λ ⊆ P cλ

θ .
Conversely, if λ < θ, cλ is in P c

θ , which we now know to be provident,
and the map ν 7→ P cλ

ν is given by a cλ-rudimentary recursion, and so each
P cλ

ν , for ν < θ, is in P c
θ ; thus P cλ

θ ⊆ P c
θ . a (6·35)

In fact, the inductive argument of Theorem 6·33 gives the following
slightly sharper version:
6·36 THEOREM Let F be a p-rud rec function and 〈Pµ | µ < ξ〉 a solid ξ-
progress, and let p ∈ Pκ and x ∈ Pν , where κ + cF · ν < ξ. Then there is an
F -attempt attaining x in Pκ+cF ·ν .

6·37 COROLLARY Let 〈Pν | ν ≤ θ〉 be a solid (θ + 1)-progress. Then Pθ is
∅-provident iff θ is a limit ordinal.

Indeed something a little more general is true.
6·38 THEOREM Let 〈Pi | i < ω〉 a strict ω-progress with P0 p-provident.
Then

∪
i<ω Pi is also p-provident.
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Proof : Let F be p-rud rec. As in Proposition 4·15, x 7→ F �tcl{x} is p-gentle
and so for any x ∈ P0 there is an F -attempt attaining x in P0. Then by
induction on i, with i < ω, using Proposition 6·32, we obtain that for any
x ∈ Pi there is an F -attempt attaining x in PcF ·i, and in particular that
F (x) ∈ PcF ·i. a (6·38)

A criterion for providence in terms of Type III

6·39 PROPOSITION A transitive set A is provident iff it contains the graph
of the restriction of F to X ×X for any X ∈ A and any F which is recursive
of type III.

Proof : It is clear that if A contains all these graphs then it is provident.
Conversely, suppose A is provident of rank θ and X ∈ A. If A = HF, the

result is clear, so we assume θ > ω. Let F be defined by F (v, x) = G(v, F �
({v} × x)). Then for each v ∈ X we have by Theorem 6·36 that there is
an F (v,−)-attempt attaining X in PX

%(X).2+ω. The graph in question is then
given by

[PX
%(x).2+ω × (X ×X)] ∩

∪{
(y, (v, x)2)2

∣∣∣ ∃f∈P X
%(x).2+ω

f is an F (v,−)-attempt attaining x & f(x) = y
}
. a (6·39)

Iterated recursion and limit provident sets

We can obtain similar bounds on the growth of functions obtained by
recursing rud rec functions, or by recursing functions obtained in that way,
and so on. More precisely:
6·40 DEFINITION A unary class function F : V → V is p-rud [rec]0 iff it is
rud. F is p-rud [rec]n+1 iff there is a p-rud [rec]n function G such that for all
x we have F (x) = G((p, F � x)2). F is p-rud [rec]<ω iff it is p-rud [rec]n for
some n < ω.

Thus F is p-rud [rec]1 iff it is p-rud rec.
6·41 REMARK That is more powerful than rudimentary recursion, but it is
still fairly weak. For example, as we shall see in Corollary 6·52, for no p
is ν 7→ ν + ω p-rud [rec]<ω, in contrast to the fact that ν 7→ α + ν is α-
rud rec for each α. Similarly these recursions are too weak to define ordinal
multiplication.
6·42 REMARK Provident sets need not be closed under p-rud [rec]n functions
for n > 1. For example, the ordinal function x 7→ ω + x is ω-rud rec, and
so the ordinal function F : x 7→ ω2 ∩ (ω · x) obtained from it by recursion is
ω-rud [rec]2. But P∅

ω2 is not closed under F , since F (ω) = ω2.
However, we shall find that to check whether a provident set is closed

under such recursions it is enough to know the rank of that provident set. To
prove that, we shall consider bounds on the growth of such functions; and for
that we must first consider a notion of limitation for ordinal functions.
6·43 DEFINITION For λ an ordinal, we say that an ordinal function l : On→
On is λ-restrained iff for all ordinals ν we have l(ν) < λ+ ν + ω.
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6·44 LEMMA If l is λ-restrained, then it is λ′-restrained for any λ′ ≥ λ.

6·45 LEMMA If l1 and l2 are λ-restrained, then so is ν 7→ l1(ν) ∪ l2(ν).

6·46 LEMMA If l1 is λ1-restrained and l2 is λ2-restrained then l1◦l2 is λ1+λ2-
restrained.

Proof : For any ν, we can pick m ∈ ω with l2(ν) ≤ λ2 + ν + m and so
l1(l2(ν)) < λ1 + l2(ν)+ω ≤ λ1 +λ2 + ν+m+ω = λ1 +λ2 + ν+ω. a (6·46)

6·47 LEMMA If l is λ-restrained and increasing then the function l′ defined

by l′(ν) = l
(∪

µ<ν l
′(µ)

)
is λ · ω-restrained and increasing.

Proof : l′ is clearly increasing. l′(0) = l(0) < λ + ω ≤ ω · λ + 0 + ω. For ν a
successor, say ν = µ+1, we can pick m < ω such that l′(µ) ≤ λ ·ω+µ+m, so
that l′(ν) = l(l′(µ)) ≤ l(λ ·ω+µ+m) < λ+λ ·ω+µ+m+ω = λ ·ω+ ν+ω.
Finally, for ν a limit, for every µ < ν we have l′(µ) < λ·ω+µ+ω ≤ λ·ω+ν and
so

∪
µ<ν l

′(µ) ≤ λ·ω+ν, and so l′(ν) ≤ l(λ+ν) < λ+λ·ω+ν+ω = λ·ω+ν+ω.
a (6·47)

6·48 DEFINITION For ordinals κ and λ and a set p, a unary class function F
is (p, κ, λ)-restrained if there are an increasing λ-restrained ordinal function l
and a rudimentary function H such that for any solid progress P with p ∈ Pκ

and x ∈ Pν and any α ≥ l(ν) we have H(p, Pα, x) = F (x).
That notion is designed to make the following true:

6·49 LEMMA Any p-rud rec function is (p, κ, κ)-restrained for every κ.

Proof : Let H : p, P, x 7→ [
∪
{f ∈ P | f is an F -attempt}](x). Let l : ν 7→

κ + cF · ν. By Proposition 6·11 and Theorem 6·36, if P , ν and x are as in
Definition 6·48, and α ≥ l(ν), then Pα contains an F -attempt attaining x,
and so H(p, Pα, x) = F (x). a (6·49)

We now mimic the argument used to obtain Theorem 6·36, to show that
functions obtained by recursion from restrained functions are still restrained.

6·50 THEOREM (Bowler) Suppose that F is defined by F (x) = G((p, F �
x)2), where G is (p, κ, λ)-restrained. Then F is (p, κ, (λ+ κ) · ω)-restrained.

Proof : Let H and l witness the fact that G is (p, κ, λ)-restrained, as in
Definition 6·48. We say that f is an F -attempt using P if

Fn(f) &
∪

Dom(f) ⊆ Dom(f) & ∀y∈Dom (f) f(y) = H(p, P, (p, f �y)2).

We shall refer to this ∆0 formula again, so we denote it by A(p, P, f). Let
K : p, P, x 7→ [

∪
{f ∈ P | A(p, P, f)}](x). We say that x is attained by P

iff there is some f ∈ P such that A(p, P, f) and x ∈ Dom(f), and for every
y ∈ tcl{x} we have H(p, P, (p, f � y)2) = G((p, f � y)2). Thus if x is attained
by P then K(p, P, x) = F (x).

Next we define a sequence of variously restrained ordinal functions which
will help us restrain the growth of F . Let l1 : ν 7→ κ + ν + cR1 + 1, where
R1 is the rudimentary function P, p 7→

∪
{f ∈ P | A(p, P, f)}. Let l2 : ν 7→

l1(ν) + cR2 , where R2 is the rudimentary function p, f, x 7→ (p, f � x)2. Let
l3 = l ◦ l2. Let l4 : ν 7→ l3(ν) + cR5 , where R4 is the rudimentary function
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p, P, f, x 7→ H(p, P, (p, f �x)2). Let l5 : ν 7→ (l4(ν)∪ ctcl · ν)+ cR5 , where R5 is
the rudimentary function f, t, v, x 7→ f � t∪{(v, x)2}. Finally, let l6 be defined
by l6(ν) = l5(

∪
µ<ν l6(µ)). Each of the li is increasing. Evidently l1 and l2

are κ-restrained. Thus by Lemma 6·46, l3 is λ+κ-restrained and therefore so
are l4 and l5. Therefore by Lemma 6·47, l6 is (λ+ κ) · ω-restrained.

Now suppose that we have a solid progress P with p ∈ Pκ. We shall show
by induction on ν that for x ∈ Pν and α ≥ l6(ν) x is attained by Pα. For
given ν, write l7(ν) =

∪
µ<ν l6(µ). Let

f0 =
∪

{f ∈ Pl7(ν) | A(p, Pl7(ν), f)},

which is in Pl1(l7(ν)). By our induction hypothesis, for any y ∈ x we have
f0(y) = K(p, Pl7(ν), y) = F (y). Thus (p, F � x)2 = (p, f0 � x)2 ∈ Pl2(l7(ν)).
Therefore for α ≥ l3 (l7(ν)), F (x) = G((p, F � x)2) = H(p, Pα, (p, f0 � x)2),
and in particular F (x) ∈ Pl4(l7(ν)). Thus f1 = f0 � tcl(x) ∪ {(F (x), x)2} ∈
Pl5(l7(ν)) = Pl6(ν) and A(p, P, f1), so x is attained by any α ≥ l6(ν).

Thus K and l6 witness that F is (p, κ, (λ+ κ) · ω)-restrained. a (6·50)

6·51 THEOREM Any p-rud [rec]n function is (p, κ, κ·(ωn−1+n−1))-restrained
for every κ.

Proof : By induction on n. The base case follows from Lemma 6·49, and for
the induction step let F be p-rud [rec]n+1, given by F (x) = G((p, F � x)2)
for some p-rud [rec]n function G. Then by the induction hypothesis G is
(p, κ, κ · (ωn−1 + n − 1))-restrained, and so by Theorem 6·50 F is (p, κ, (κ ·
(ωn−1 +n− 1)+κ) ·ω))-restrained, which is the desired result as (κ · (ωn−1 +
n− 1) + κ) · ω = κ · (ωn−1 + n) · ω ≤ κ · (ωn + n). a (6·51)

6·52 COROLLARY For no p is F : ν 7→ ν + ω is p-rud [rec]<ω.

Proof : Suppose for a contradiction that F is p-rud [rec]n for some p and
n. Let c = tcl{p}, κ = %(p) + 1 and λ = κ · (ωn−1 + n − 1). Then F
is (p, κ, λ)-restrained: let l and H witness that. As p ∈ P c

κ, we must have
λ · ω + ω = F (λ · ω) ∈ P c

l(λ·ω)+cH
, which is the desired contradiction as

%(P c
l(λ·ω)+cH

) = l(λ · ω) + cH < λ+ λ · ω + ω = λ · ω + ω.

6·53 THEOREM (Bowler) Let A be a provident set other than HF. The
following are equivalent:

i. %(A) is of the form ωα for some ordinal α which is a limit.
ii. A is closed under p-rud [rec]2 functions for p ∈ A.
iii. A is closed under p-rud [rec]<ω functions for p ∈ A.

Proof : It is clear that (iii) ⇒ (ii). To see that (ii) ⇒ (i), we know by Remark
6·8 and Lemma 6·9 that there is some α > 0 with %(A) = ωα. Suppose for a
contradiction that α is a successor ordinal, say α = β + 1. Then ν 7→ ωβ + ν
is ωβ-rud rec and so F : ν 7→ ωα ∩ ωβ · ν is ωβ-rud [rec]2, which contradicts
(ii), as ω ∈ A and ωβ ∈ A but F (ω) = ωα 6∈ A.

For (i) ⇒ (iii), let p, x ∈ A and let F be p-rud [rec]n. Let κ = %({p, x}).
By Theorem 6·51, F is (p, κ, κ ·(ωn−1 +n−1))-restrained: let H and l witness
this. We have x, p ∈ P

{p,x}
κ , and so F (x) ∈ P

{p,x}
l(κ)+cH+1. Since κ < ωα, we

can pick some β < α with κ ≤ ωβ , and so l(κ) + cH + 1 ≤ κ · (ωn−1 + n −
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1) + κ+ω+ cH + 1 ≤ ωβ(ωn−1.ω) = ωβ+n < ωα and so, since A is provident,
P

{p,x}
l(κ)+cH+1 ∈ A and so F (x) ∈ A as required. a (6·53)

6·54 DEFINITION We call such sets limit provident sets.

6·55 THEOREM Any directed union of limit provident sets is limit provident.

Proof : The rank of such a directed union is a union of ordinals of the form
ωα with α limit, and so is of the same form. a (6·55)

6·56 THEOREM Let 〈Pν | ν 6 θ〉 be a solid (θ+ 1)-progress. Then Pθ is limit
provident iff θ is of the form ωα with α a limit ordinal.

Proof : Immediate from the definition, Theorem 6·34 and Proposition 6·11.
a (6·56)

Provident levels of the Gödel, Jensen and related hierarchies

Let us start with parameter-free versions of results already proved.

6·57 LEMMA Let F be pure rud recursive, given by G. Then “f is an F -
attempt” is a ∆0 predicate of f .

Proof : Here the formula required is

Fn(f) &
∪

Dom(f) ⊆ Dom(f) & ∀x∈Dom(f) f(x) = G(f �x). a (6·57)

6·58 PROPOSITION If u is transitive and ∅-provident then so is rud(u).

Proof : We take Pn = Tn(u), and Pω =
∪

nPn. 〈Pν | ν 6 ω〉 is then a strict
continuous ω-progress, so we may apply Theorem 6·38 with p = ∅. a (6·58)

6·59 COROLLARY Each non-empty Jν is ∅-provident,

Proof : J1 = HF; Jν+1 = rud(Jν); the induction at limit stages is trivial.
a (6·59)

6·60 REMARK More generally, although for a given p in L we must go to the
first indecomposable ordinal above the moment of construction of p to find a
Jν which is p-provident, every subsequent Jξ will also be p-provident.

The following is a corollary of Theorem 6·34.

6·61 THEOREM Jν is provident iff ων is indecomposable.

6·62 EXAMPLE Jω is provident. The next one will be Jω2 .

To summarise: Jν is ∅-provident iff ν > 0, provident iff ν is positive and
closed under addition, and limit provident iff ν is of the form ωα with α a
limit ordinal.

The Tν [A]’s

They were defined in 0·14 and form a solid progress, so similar remarks
will apply.
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The Tν(c)’s and Jν(c)’s

Let c be a transitive set; in 0·16 we defined

T0(c) = c; Tν+1(c) = T(Tν(c)); Tλ(c) =
∪
ν<λ

Tν(c); L(c) =
∪
ν

Tν(c).

That sequence is not solid, but since %(Tν(c)) = %(c)+ν, we have by The-
orem 6·34 that Tν(c) is provident iff ν is an indecomposable ordinal greater
than %(c), and is limit provident iff ν is greater than %(c) and is of the form
ωα with α a limit. An induction argument using Theorem 6·38 then shows
that Tν(c) is ∅-provident for ν a limit ordinal at least as big as the least inde-
composable ordinal greater than %(c). The condition that ν exceed the rank
of c is inescapable, as ∅-provident sets contain the ranks of their members.
For that reason we have in 6·24 preferred the solid progress P c

ν .

With the Tν(c)’s in hand, we turn to the Jensen hierarchy: by an in-
duction argument, for any ordinal ν we have Jν(c) = Tω·ν(c). Thus Jν(c) is
provident iff ν is nonzero and closed under addition with ω · ν > %(c). It is
limit provident iff ν is bigger than %(c) and of the form ωα with α a limit
ordinal. Finally, Jν(c) is ∅-provident if ν > 0 and ω · ν is at least as big as
the least indecomposable ordinal greater than %(c); as before, that condition
is necessary for ∅-providence.

Provident levels of the L hierarchy

6·63 Gödel in his original paper used the function Def, where for transitive u,
Def(u) is the set of subsets of u definable over u in the language of set theory
allowing constants for members of u. Thus his recursion reads

L0 = ∅; Lν+1 = Def(Lν); Lλ =
∪
ν<λ

Lν . Then we set L =
∪

ν∈ON

Lν .

6·64 PROPOSITION The sequence 〈Lν | ν ∈ ON〉 is a solid progress.

Proof : Two of the requirements are clear from the definition; we must show
that for any ν, T(Lν) ⊆ Lν+1. But it is immediate from the definition of T
that each member of T(Lν) is a definable subset of Lν . a (6·64)

6·65 COROLLARY Lν is ∅-provident iff ν is a limit, provident iff ν is inde-
composable, and limit provident iff ν is of the form ωα with α a limit ordinal.

Proof : immediate from Theorems 6·37, 6·34 and 6·56.

6·66 COROLLARY For each limit λ, Lλ ⊇ Tλ.

6·67 Let us remark next that Gödel’s recursion is not rudimentary. Note that
for finite n, Ln = Vn and thus by Remark 3·26 the rate of growth is too large
to be that of a pure rudimentary recursion. But that particular argument
collapses if we admit parameters, for PVω

n = Vn for every n. Suppose, towards
a contradiction, that there is a rud function G and parameter p ∈ L with
Lν+1 = G(p, Lν) for every ν. Choose θ indecomposable with θ = ωθ and
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p ∈ Jθ = Lθ = Tθ. Then for every limit ordinal λ > θ, Lλ and Tλ are both
p-provident, so we should have Lλ = Tλ. But that is false for λ = θ + ω:

6·68 PROPOSITION If Lθ = Tθ then Tθ+ω & Lθ+ω.

Proof in outline: for transitive u, every element in T(u) is of the form G(~y)
with G one of the rudimentary functions used in defining T and the arguments
~y in u. Iterating that observation shows us that there is a definable subset
Cn of Tθ which codes Tθ+n in a sufficiently simple way to permit a diagonal
argument to show that Cn /∈ Tθ+n ; but Cn ∈ Lθ+1. Hence Lθ+1 is not a
member of Tλ, but it is a member of Lλ. a (6·68)

The proof of [M3, Theorem 9·7] includes details, which readily generalise,
of this argument for the case θ = ω.

6·69 The Lν [A] behave well: since they too form a solid progress, the same
remarks apply to them as to the Lν .

REMARK Fairly brutal methods will show that for each κ the initial segment
〈Lν |ν ν < κ〉 can be represented as a progress rudimentary in a well-chosen
set parameter.

6·70 Construction from a set a: the sequence (Lν(a))ν∈ON as traditionally
defined is a strict and continuous progress, but it is not solid. Thus, since
%(Lν(a)) = %(a) + 1 + ν, we have by Theorem 6·34 that Lν(a) is provident
iff ν is an indecomposable ordinal greater than %(a), and is limit provident
iff ν is greater than %(a) and of the form ωα with α a limit. An induction
argument using Theorem 6·38 then shows that Lν(a) is ∅-provident for ν a
limit ordinal at least as big as the least indecomposable ordinal greater than
%(a); the need for that condition will be illustrated in Example 8·10.

Two other progresses

6·71 We mention briefly that it is possible to combine construction from a
set and from a predicate. For example, we might wish to define a progress(
P c;B

ν

)
ν

where c is a transitive set and B a class. The simplest method would
be to replace T by the simpler form of TB , and to do nothing else; thus we
should have this definition:

6·72 DEFINITION

c0 = ∅ cν+1 = c ∩ {x | x ⊆ cν} cλ =
∪

ν<λcν

P c;B
0 = ∅ P c;B

ν+1 = T(P c;B
ν ) ∪ {P c;B

ν ∩B} ∪ {cν} ∪ cν+1 P c;B
λ =

∪
ν<λP

c;B
ν

6·73 In [M8] we shall have a use for a progress P c;D where the relation D is
itself being defined as the progress advances.

Suppose that A is provident and that D ⊆ A is a relation, defined by a
p-rud recursion, using the rud function GD; and that HD is the rud function
given by the Propagation Lemma. Let c be a transitive set of which p is a
member. We may define by a simultaneous p-rudimentary recursion sequences
(cν)ν , (Pν)ν , (Dν)ν thus:
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6·74 DEFINITION

c0 = ∅ cν+1 = c ∩ {x | x ⊆ cν} cλ =
∪

ν<λcν

P0 = ∅ Pν+1 = T(Pν) ∪ {cν} ∪ cν+1 ∪ {Pν ∩Dν} Pλ =
∪

ν<λν

D0 = ∅ Dν+1 = HD(p,Dν , Pν+1) Dλ =
∪

ν<λDν

In fact in [M8] we shall use Theorem 4·19 and its parametrized form
above to simplify the further discussion.

Closure of Gödel levels under Scott–McCarty pairing

In Example 0·33 we considered these recursions:

τ(y) = {∅} ∪
{
τ(u)

∣∣
u
u ∈ y

}
; φ(y) = {φ(u) |u u ∈ y & ∅ ∈ u};

σ(x) =
{
σ(t) ∪ {∅}

∣∣
t
t ∈ x

}
; ψ(y) = {ψ(ur {∅}) |u u ∈ y}.

and stated this lemma, which may be proved by an induction on %(z):
LEMMA ∅ is a member of every τ(y) and of no σ(x); and for all z, σ(z) =
τ(z) r {∅}; φ(τ(z)) = z; and ψ(σ(z)) = z.

6·75 LEMMA i) For k ∈ ω, τ(k) = k + 1 and σ(k) = k + 1 r {∅};
ii) for ζ > ω, τ(ζ) = ζ and σ(ζ) = ζ r {∅};
iii) restricted to ordinals, σ and τ are rudimentary.

6·76 DEFINITION We introduce four pure rudimentary functions:

A(x) =df x ∪ {∅}; B(y) =df y ∩ {x | ∅ ∈ x};
C(x) =df xr {∅}; D(y) =df y ∩ {x | ∅ /∈ x}.

In terms of those functions, the Lemma states, in part, that σ(x) =
C(τ(x)); and the definitions of σ, τ , φ and ψ simplify to:

σ(x) = A“σ“x; τ(y) = A(τ“y); φ(y) = φ“B(y); ψ(y) = ψ“C“y.

6·77 DEFINITION If u is transitive and f is a unary function, we shall say
that u is definably closed under f if x ∈ u =⇒ f(x) ∈ u and for x, y in
u, the relation y = f(x) is definable over u (by a formula Φ̇f (y, x) of a set-
theoretic object language, possibly with constants for members of u occurring
as parameters); and for binary f the corresponding definition would require
the relation z = f(x, y) to be definable over u.
6·78 PROPOSITION Let χ be one of the functions σ, τ , φ, or ψ. Then each
infinite Lν is definably closed under χ and under χ“.

6·79 LEMMA Suppose that u is transitive and definably closed under a unary
function f ; specifically by the formula Φ̇f . Then Def(u) is definably closed
under f“.

Proof : If x =
{
a ∈ u

∣∣|=u ϑ[a, p]
}
, f“x =

{
b ∈ u

∣∣∣|=u

∨
a
[
ϑ(a, p]∧ Φ̇f [b, a)

]}
.

Further, for y and x in Def(u),
y = f“x⇐⇒|=Def(u)

∧
aεy

∨
cεx

(
Φ̇f (a, c)

)u∧
∧

cεx

∨
aεy

(
Φ̇f (a, c)

)u
. a (6·79)
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REMARK The convention followed in the notation of the first line of that proof
is this: when ϑ is a formula of an object language, we use Fraktur lower case
letters for formal variables and indicate their occurrence by writing ϑ(a, y);
when those formal variables are interpreted, say by (names for) elements a and
y of the model in question, we write ϑ[a, y]; and usages such as ϑ(a, p] indicate
that the second but not the first of the variables is being interpreted. The
cumbersome use of an explicit substitution function Subst is thus avoided.
6·80 LEMMA Each (infinite) Lν is closed under A, B, D, C, A“ and C“; all
those six are rudimentary.

Proof : If F (x) ⊆ x and is rud, then every Lν will be closed under it: at limits
by rud closure; at successor stages by adding a condition to the definition of x
as a subset of the stage before. That argument does B, C and D; and closure
under A happens as each Lν is closed under union of two members, and, if
non-empty, contains ∅. Lemma 6·75 now does A“ and C“. a (6·80)
Proof of Proposition 6·78: χ is pure rud rec; so the relation x = χ(y) is
definable over every Lλ (λ a limit ordinal) as also is χ“, as it is (pure) rud rec
or gentle and we know from Corollary 6·65 that Lλ is ∅-provident; further
the definition is independent of λ. Fix λ and write Mk for Lλ+k.

Suppose that we have reached a k where Mk is definably closed under χ
and χ“. By Lemma 6·79, Mk+1 is definably closed under χ“. We then use
the recursion equation for χ, as simplified in 6·76, to deduce that Mk+1 is
definably closed under χ. Depending on which of the four functions χ is, we
may have to invoke Lemma 6·80 for A“, A, B, or C“. a (6·78)

We recall and reformulate definitions given in §0:
6·81 DEFINITION (Scott, McCarty) 〈x, y〉SM

2 =df σ“x ∪ τ“y
6·82 DEFINITION leftSM(a) =df ψ“

(
D(a)

)
; rightSM(a) =df φ“

(
B(a)

)
.

6·83 THEOREM For each ν > ω, Lν is definably closed under Scott-McCarty
pairing and unpairing functions.

Proof : Immediate from the above. a (6·83)

6·84 REMARK In fact, for a an SM pair, rightSM(a) = φ(a); and if d = D(a)
then ψ(d) = ψ“(d), so that leftSM(a) = ψ(D(a)): but those simplifications are
misleading, as in the proof of closure in Proposition 6·78, χ“ precedes χ !
6·85 REMARK The above proof generalises easily to show that for a predicate
A and each infinite ν the levels Lν [A] are closed under Scott–McCarty pairing
and unpairing: but if c is a transitive set of infinite rank which is not SM-
closed, the levels Lν(c) are liable not to be SM-closed for small ν. For ν at
least the first indecomposable ordinal exceeding the rank of c, all will be well,
as the limit levels thereafter will be c-provident, and the successor levels will
be covered by the arguments of Lemma 6·79.
6·86 REMARK Tω+1 = Tω∪{Tω} and is thus not closed under Scott-McCarty
pairing. If we used TON instead of T then, whichever of the two definitions
suggested in 0·14 we adopt, we would get at level ω + 1 the set Tω∪{Tω}∪{ω}
and do no better.
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7: Provident closures and the Finite Basis Theorem

Provident closures

7·0 THEOREM Suppose that M is a non-empty set. Let θ be the least inde-
composable ordinal not less than %(M). Set

Prov(M) =df

∪{
P

tcl(s)
θ

∣∣ s ∈ S(M)
}
.

Then Prov(M) is provident and includes M , and if P is any other such,
Prov(M) ⊆ P .

Here the notation S(M) is as introduced in Example 0·2.

Proof : Prov(M) is provident by Theorems 6.7 and 6.35. Suppose that P is
provident and M ⊆ P . Then S(M) ⊆ P ; θ 6 On ∩ P ; for each s ∈ S(M),
tcl(s) ∈ P , and for ν < θ, P tcl(s)

ν ∈ P , and so Prov(M) ⊆ P . a (7·0)

7·1 DEFINITION We call Prov(M) the provident closure of M .

7·2 THEOREM Suppose that M is a non-empty set. Let θ be the least ordinal
not less than %(M) and of the form ωα with α a limit ordinal. Set

LProv(M) =df

∪{
P

tcl(s)
θ

∣∣ s ∈ S(M)
}
.

Then LProv(M) is limit provident and includes M , and if P is any other
such, LProv(M) ⊆ P .

7·3 DEFINITION We call LProv(M) the limit provident closure of M .

The theories PROV, PROVI and LPROV

Theorem 7·0 implies that there is a finitely axiomatisable set theory
(which we call PROV) of which the transitive models are the provident sets.

Let PROV be the following axioms
(7·3·0) extensionality;
(7·3·1) the ten axioms of GJ0, as given in Section 1:

∅ ∈ V

{x, y} ∈ V

xr y ∈ V

∪
x ∈ V

Dom(x) ∈ V

x× y ∈ V

{x“{w} | w ∈ y} ∈ V

a ∩ {(x, y)2 | x ∈ y} ∈ V

{(y, x, z)3 | (x, y, z)3 ∈ b} ∈ V

{(y, z, x)3 | (x, y, z)3 ∈ c} ∈ V

(7·3·2) each set is in the domain of an attempt at the rank

function;
(which implies both TCo and set foundation)

(7·3·3) any two ordinals are in the domain of an attempt at

ordinal addition;
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(7·3·4) for each transitive c each ordinal is in the domain

of an attempt at the sequence 〈Pc
ν | ν ε ON〉.

We write PROVI for PROV + ω ∈ V .
Theorem 7·0 will suffice to prove that the transitive models of PROV are

the provident sets; the reasoning in this paper has been mainly semantic, but
experience of the weak systems in [M3] suggest that if one wished to use PROV

for syntactical reasoning, it would be desirable to enhance it by adding the
axiom of infinity and the scheme of Π1 foundation. The result will be finitely
axiomatisable in the subtle sense of 1·47.

We write LPROV for the theory obtained from PROVI by adding the axiom
(7·3·5) for each ordinal α, ω is in the domain of an attempt

at the recursion F (ν) = α+
∪

µ<ν F (ν).
Note that a formal statement of this axiom should include the postulation

of a sufficiently long attempt at the function ν 7→ α+ ν.
Then the transitive models of LPROV are the limit provident sets.

The theory ∅-PROV

Next, we will obtain a finite theory whose transitive models are the ∅-
provident sets. For this, we will present a finite collection of rud rec functions
which capture all rud rec functions, in the same sense that the canonical
progresses (P c

ν ) capture all parametrized rud rec functions.
7·4 DEFINITION Let Y1 : x 7→ {Y1(y) | y ∈ x} ∪ {x}, Y2 : x 7→ {{Y2(y)} | y ∈
x} ∪ x and Y3 : x 7→

∪
y∈x T(Y3(y)) ∪ x.

Each of these is rud rec, and Y3(x) is transitive for any x.
7·5 LEMMA For any n < ω and any x we have x ∈ Y n

2 (Y1(x)).
Proof : By induction on n. The case n = 0 is immediate from the defini-
tion of Y1, and for the induction step, for any x we have x ∈ Y n

2 (Y1(x)) ⊆
Y2(Y n

2 (Y1(x))). a (7·5)

7·6 DEFINITION We define the relations ∈n for each n < ω by x ∈0 y iff
x = y, and x ∈n+1 y iff there is z with x ∈n z ∈ y. Thus y ∈n x iff there is a
sequence y = y0 ∈ y1 ∈ y2 ∈ ... ∈ yn = x.
7·7 LEMMA For any n < ω and any y ∈ x we have Y n

2 (y) ∈2n Y n
2 (x).

Proof : By induction on n. The case n = 0 holds by definition. For the induc-
tion step, we have Y2(y) ∈ {Y2(y)} ∈ Y2(x) and so by the induction hypothesis
Y n

2 (Y2(y)) ∈2n Y n
2 ({Y2(y)}) ∈2n Y n

2 (Y2(x)), so that Y n+1
2 (y) ∈2n+1 Y n+1

2 (x).
a (7·7)

7·8 THEOREM (Bowler) Let F be rud rec, and let n < ω with 2n ≥ cF . Then
for any x, and any y ∈ x, Y3(Y n

2 (Y1(x))) contains an F -attempt attaining y.

Proof : By induction on %(x). Let y ∈ x. Then Y1(y) ∈ Y1(x) and so
by Lemma 7·7 Y n

2 (Y1(y)) ∈2n Y n
2 (Y1(x)) and so we can find a sequence

Y n
2 (Y1(y)) = y0 ∈ y1 ∈ . . . ∈ y2n = Y n

2 (Y1(x)). Define a 2n + 1-progress
P by Pi = Y3(yi). By the induction hypothesis P0 contains, for each z ∈ y,
an F -attempt attaining z, and by Lemma 7·5 and the definition of Y3 we have
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y ∈ P0. So by Proposition 6·32 we know that PcF
contains an F -attempt

attaining y, which F -attempt must then be contained in each Pj with j ≥ cF ,
and in particular in P2n = Y3(Y n

2 (Y1(x))). a (7·8)
Thus if we let ∅-PROV be the following axioms then the transitive models

of ∅-PROV are the ∅-provident sets:
(7·8·0) extensionality
(7·8·1) the ten axioms of GJ0, as given in Section 1.
(7·8·6) each set is in the domain of an attempt at each of

Y1, Y2 and Y3.

In fact, we need only add a very simple kind of parametrized recursion
to obtain a theory equivalent to PROV. The recursive definition of ordinal
addition makes sense even if the first input is not an ordinal: for any set
x define x + β by recursion on the ordinal β, as x + 0 = x and x + β =∪

γ<β((x+ γ) ∪ {x+ γ}) for β > 0. (This definition is intermediate between
the ordinary α+β of ordinal addition and the definition of A+B for arbitrary
sets A and B given in [SMcC]). We get a theory whose transitive models are
provident sets by adding the following axiom to ∅-PROV:

(7·8·3) for any set x, each ordinal is in an attempt at the
function β 7→ x+ β.

This works because for any set x, the sequence (Y3(x+β))β is a progress,
so we can get any value of any parametrized rud rec function using Theorem
6·33.

8: Models of stunted growth

We have mentioned “Model M13,λ” studied in Weak Systems [M3], which is
supertransitive and a proper class but which contains only the ordinals < λ;
so in that model rank is stunted.
8·0 ASIDE Consider that model in the special case λ = ω; ω is not a member
of M13,ω, which is otherwise a model of Z, save for the axiom of infinity in
its customary form. But that axiom is not used in defining the finite basis of
rudimentary functions; so M13,ω is rud closed; and therefore ω is not of the
form F (x) for any rud function F and x ∈ M13,ω.

That is the promised sketch of the argument for Gandy’s Theorem 2.1.3.
It also demonstrates the claim in Remark 0·18 that the rank function is not
rudimentary. Note that in Model M13,λ, TCo holds; by supertransitivity, the
actual transitive closure of each member of the model is a member of the
model.
8·1 HISTORICAL NOTE Priority for the underlying idea of the definition of the
model M13,ω, in a different context, must go to Jonathan Stavi. In Example
3 on page 610 of his paper [Stav], he considers a countable admissible set M
and the set T of those x ∈ M with ω not a subset of tcl(x), and shows that
T is not closed under rank and is not a union of admissible sets.

The first author records his gratitude to Zachary McKenzie for drawing
his attention to Stavi’s paper.
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We may generalise the idea behind model M13 thus:
8·2 DEFINITION Suppose that F : On −→ V is a function such that for µ < ν
we have F (µ) ∈ F (ν). For limit λ, set

AF,λ =df

{
u

∣∣ ∪
u ⊆ u & sup{ν ∈ On | F (ν) ∈ u} < λ

}
; MF,λ =

∪
AF,λ.

8·3 PROPOSITION If there is ν < λ with F (ν) 6∈ ω then MF,λ is a supertran-
sitive model of Z for which F (ξ) ∈ MF,λ ⇐⇒ ξ < λ. For any F and λ, the
model MF,λ will be a proper class.

Proof : as in Section 7 of [M3]. The union of two members of AF,λ is in AF,λ,
and if u ∈ AF,λ, so is P(u); so that MF,λ will be a supertransitive model of
Z. If F �λ only takes ordinals as values, the argument in [M3, p. 182] shows
that MF,λ will contain sets of all ranks. Otherwise, there is some η < λ such
that F (ξ) is not an ordinal for ξ > η, and in that case MF,λ will contain all
ordinals. a (8·3)

8·4 DEFINITION For limit λ, set A17,λ =df

{
u

∣∣ ∪
u ⊆ u & sup{ν | P∅

ν ∈
u} < λ

}
; M17,λ =df

∪
A17,λ.

8·5 PROPOSITION M17,λ is a supertransitive proper class, containing all or-
dinals but the T hierarchy only up to λ but no further. In this model the
rud recursion defining rank is total but that defining the growth of the Jensen
auxiliary hierarchy stops prematurely.

8·6 PROPOSITION There is a supertransitive class model M18,λ of Z which
contains a Cohen generic real c, and all constructible sets, but such that
neither Lω+ω(c) nor P c

ω+ω is in M18,λ.

Proof : This time take λ = ω + ω and F (ζ) = P c
ζ and M18,λ = MF,λ. c ∈ P c

ζ

whenever ζ > ω + 1, so that each Lη ∈ AF,λ and L ⊆MF,λ. a (8·6)
In the above model the Jensen hierarchy exists for all ordinals, but the

same hierarchy relativised to c is defined before but not at level ω + ω.
8·7 REMARK We have seen that in the model K, which should have been
called M16, of section 12 of [M3], the definition of tcl is stunted, and therefore
also the definition of rank, for if every set is a member of the domain of some
attempt at %, that domain will be a transitive set; so TCo holds, and hence
tcl may be recovered using the full strength of the axioms of Z.

M13 is a model of ZC in which rank is stunted but tcl not; M17 is a model
of ZC in which the Jensen hierarchy is stunted but tcl and rank not; M18 is
a model of ZC in which the relative Gödel and Jensen hierarchies Lν(c) and
Jν(c) are stunted but the hierarchies Lν and Jν and tcl and rank are not. So
there is a certain ordering to some rudimentary recursions; but we have seen
in Section 7 that there is, in a sense, a finite basis to the collection of rud
recursions.

Failure of Scott’s trick in a model of Zermelo

We record here another variant of the above construction.
8·8 DEFINITION Let A = 6R be a well-ordering, viewed as a binary relation
6R on the set {x | (x, x)2 ∈ A}. For such A, define I(A) to be the class of
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well-orderings isomorphic to A, and, in imitation of Scott’s celebrated trick
for reducing equivalence classes to equivalence sets, let ST (A) be the class
{B ∈ I(A) | ∀C∈I(A) %(C) > %(B)}, the class of wellorderings of minimal
rank isomorphic to A.

The following shows that Z is too weak a set theory for Scott’s trick to
work.
8·9 THEOREM Let κ = iκ be a beth fixed point. Let Aκ be the epsilon rela-
tion restricted to κ; thus a well-ordering of length κ. There is a supertransitive,
proper class, model M19 of Z containing all ordinals and the well-ordering Aκ,
in which every set has a rank, but in which (ST (Aκ))M19 , though a definable
class of the model, is not a set.

Proof : Take F (ν) = Vν and M19 = MF,κ. Vν ∈ M19 ⇐⇒ ν < κ. As κ is a
beth fixed point, Vκ = Hκ, so that all well-orderings of length κ in the universe
must be of rank at least κ. Thus Aκ ∈ I(Aκ). Let Bξ be the well-ordering
{(bν , bζ)2 |ν,ζ ν 6 ζ < κ} where for ζ 6 ξ, bζ = Vζ , and for ξ < ζ < κ, bζ = ζ.

Then each Bξ ∈ M19, being obtained from Vξ+1 and Aκ by rudimen-
tary operations. Further each Bξ is of rank κ, and thus is in ST (Aκ),
even as defined in M19. Thus the class ST (Aκ) cannot be a set in M19,
as

∪4
ST (Aκ) = Vκ. a (8·9)

Remarks on Zermelo and von Neumann natural numbers

DEFINITION The Zermelo natural numbers are those in the set D =df

{∅, {∅}, {{∅}}, ...}. The von Neumann natural numbers are of course the
members of ω.

With the help of the set D we may illustrate a point arising in §6.
8·10 EXAMPLE By induction on ν, Lν(D)∩ON ⊆ 2+ν, whereas %(Lν(D)) =
ω + 1 + ν. Thus Lν(D) cannot be closed under the rank function for ν < ω2,
and in particular Lν(D) is ∅-provident only at limit ordinals at least as big
as ω2. A similar argument shows that Jν(D) is ∅-provident only for ν > ω.
8·11 PROPOSITION There is a supertransitive model of Z of which ω but not
D is a member.

Proof : Proposition 14·7 of Weak systems reads
PROPOSITION Suppose that (xn)n and (un)n are two sequences of sets such
that for each n < ω:

(14·7·0) xn ∈ un;
(14·7·1) un ⊆ un+1;
(14·7·2) un is transitive;
(14·7·3) xn ∈ tcl(xn+1);
(14·7·4) xn+1 /∈ un.

Then ū =df

∪
nun is transitive and if w is a transitive set with x0 /∈ w,

the set x̄ =df {xn | n ∈ ω} is not a member of the rud closure of ū∪w∪{w}.
If in addition ω ⊆ w, then there is a supertransitive model of Zermelo set
theory of which ū ∪ w ∪ {w} is a subset but x̄ and ū are not members.

Take xn = Zermelo’s n+ 2, so x0 = {{∅}} which is not a member of ω,
and take un = Vn+3. Then conditions (14·7·0) – (14·7·4) are satisfied.
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Take w = ω and let K be the supertransitive model of Z supplied by the
last sentence of the Proposition. Then ω ∈ K and x̄ /∈ K. As x̄ = Dr {0, 1}
and K is rud closed, D /∈ K. a (8·11)

8·12 PROPOSITION There is a supertransitive model of Z of which D but not
ω is a member.

Proof : Such a model is model M13,ω; for D ∪ {D} is transitive and contains
only the ordinals 0 and 1, and is thus a subset of M13,ω. a (8·12)

9: The truth predicate for ∆̇0 sentences

In [M3, section 10, culminating in page 211] it is shown that the truth predi-
cate |=u ϕ is, provably in MW, ∆1-definable. The comment on Devlin’s Lemma
VI.1.14 in [M3, page 210, lines 6 and 7] inadvertently omitted the words “de-
fer to” between “but” and “Rudimentary Recursion”. We now exceed our
intended promise by proving the following sharpening.

9·0 THEOREM (Mathias) Truth for ∆̇0 sentences is uniformly ∆1 for tran-
sitive models of MW.

Our method derives from those of [M3]: the notion of “attempt at integer
addition”, used below, is that of the discussion of [M3, paragraph 2·56, page
165], and “sufficiently long” is to be understood in the sense explained in [M3,
paragraph 10·3, page 200].

Proof : We must begin by introducing some notation for ∆̇0 formulae, in order
to maintain the distinction between formulae in the object language and those
in the language of discourse. Thus we denote conjunction, disjunction, and
negation in the object language by ∧, ∨ and q rather than & , V and ¬.
We denote unversal and existential quantification by

∧
and

∨
, and we denote

the equality and membership relations by = and ε. We shall typically denote
variables in the object language by lowercase letters in the Fraktur font, such
as x or y, and formulae in the object language with variant forms of lowercase
Greek letters, such as ϑ or ϕ. The notation for restricted quantifiers in the
object language is also new: for example, instead of ∀x∈y , we write

∧
xεy .

For any set a, the object language contains a name å for a.
Let M be a transitive model of MW, and ϕ a ∆̇0 sentence of LM . It

suffices to find a Σ1 definition of |=M ϕ, for if a truth predicate for a class
of sentences that is closed under negation is Σ1 it will automatically be Π1,
since |= ϕ⇐⇒ ¬ |= qϕ.

We have a sentence ϕ; let k be its length; let Nϕ be the finite set com-
prising those members of M of which the names occur in ϕ; let qϕ be the
number of occurrences of quantifiers in ϕ.

Step 1: we rewrite ϕ by de-nesting restricted quantifiers: for example,
replace

∧
xε̊a

∨
yεxϑ by

∧
xε̊a

∨
yε̊c [y ε x ∧ ϑ], where c =

∪
a.

We thus reach within qϕ steps a formula ϕ′ in which all quantifiers are
restricted by free terms, each of the form <name of>

∪ m
a, where a ∈ Nϕ

and m < qϕ. As the Axiom of Union is among those of MW, each such
∪ m

a
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will be in M . Let Fϕ be the finite set comprising those members of M of
which the names occur in ϕ′.

A similar process is described in some detail in section 8 of [M3], though
there, but not here, the formalism admits limited quantifiers as well as re-
stricted ones.

Step 2: using the usual procedures of predicate logic, we rewrite ϕ′ in prenex form,
thus reaching a sentence ϕ∗ in which a string of quantifiers, all restricted by
free terms, precedes a quantifier-free formula ϑ.

These two steps may be achieved by primitive recursive processes applied
to the formulæ in question.

We must now show that M contains a set which contains all the constants
that will occur in substitution instances of subformulæ of ϕ∗: but such a set
will be Pϕ =df Fϕ ∪

∪
Fϕ

Let Sϕ be the class of quantifier-free sentences, of length no longer than k,
in which the only names occurring are those of members of Pϕ, That, provably
in MW, will be a set.

Step 3: we show that truth for members of Sϕ is uniformly Σ1 for transitive models
of MW.

Specifically, we show that there is an evaluation gϕ : Sϕ −→ 2, that is,
a function which obeys the rules for evaluation of Boolean combinations of
atomic statements. These rules are:

g(x̊ = ẙ) =
{

1 if x = y
0 if x 6= y

g(x̊ ε ẙ) =
{

1 if x ∈ y
0 if x /∈ y

g(qϑ) = 1 − g(ϑ)
g(ϑ1 ∧ ϑ2) = inf{g(ϑ1), g(ϑ2)}
g(ϑ1 ∨ ϑ2) = sup{g(ϑ1), g(ϑ2)}

and similarly for other propositional connectives if they have also been taken
as primitive.

We saw in [M3] that a statement of the form ϑ = ϑ1 ∧ ϑ2 is not ∆0 but
will be ∆0 in any sufficiently long attempt at addition. As the sentences to
be considered are all of length not exceeding that of ϕ, a single sufficiently
long attempt, α, will exist, and we shall be able to express the above rules for
g as a statement that is ∆0(α, g, Sϕ). Thus the desired Σ1 truth predicate for
sentences ϑ in Sϕ will be of the form

∃α, a sufficiently long attempt at addition, and
∃g : Sϕ −→ 2, g an evaluation, with g(ϑ) = 1.
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Step 4: we show how to reduce the computation of truth of ϕ∗ to that of numerous
substitution instances in Sϕ.

9·1 REMARK This step would be possible even if we had not done Steps One
and Two, but would be more complicated to express.

Suppose that ϕ∗ has n+ 1 quantifiers, so that there are a0, . . . , an in M
such that ϕ∅ is

Q0x0ε̊a0
Q1x1 ε̊a1

. . .Qnxnε̊an
ϑ

where ϑ ∈ Sϕ but may contain other names besides those shown. n is not
greater than k.

We consider the tree T of all finite sequences 〈c0, . . . c`〉 of members of
Pϕ where ` 6 n and for each i, ci ∈ ai. Provably in MW, T is a set. We write
∅ for the empty sequence.

We define for each t ∈ T a sentence ϕt by recursion on the length of t.
Let ϕ∅ = ϕ∗.
Once we have defined ϕt then for c ∈ a`h(t) we define ϕt a〈c〉 to be

Subst(ϕt, x`h(t), c̊).
Let Tϕ = {ϕt | t ∈ T}, a tree of sentences.
Let gϕ be the evaluation defined on Sϕ in Step 3. Extend it to Tϕ by a

reverse induction: if `h(t) = n+ 1, ϕt will be a member of Sϕ, and so gϕ(ϕt)
has been defined in Step 3. If gϕ(ϕu) has been defined for all u ∈ T of length
`h(t) + 1, then define

gϕ(ϕt) =
{

sup{g(ϕt a〈c〉) | c ∈ a`h(t)} if Q`h(t) is
∨

inf{g(ϕt a〈c〉) | c ∈ a`h(t)} if Q`h(t) is
∧

So |=0 ϕ⇐⇒ gϕ(ϕ∅) = 1.
We have finally to observe that asM models MW, then for ϕ a ∆̇0 sentence

of LM , all the above sets and functions, in particular Pϕ, Sϕ, Tϕ and gϕ are in
M ; so the desired Σ1 formula simply says that there exist sets and functions
which obey the rules imposed on them and which lead to the evaluation of
ϕ. a (9·1)

The same argument with very few changes will give a less laborious proof
of the result proved in section 10 of [M3]:
9·2 THEOREM The truth predicate |=u ϕ, for u a transitive set and ϕ an
arbitrary sentence of Lu, is ∆MW

1 .

Proof : Immediate from Theorem 9·0, since the process of replacing each
unbounded quantifier

∧
x or

∨
x by the corresponding bounded quantifier

∧
xε̊u

or
∨

xε̊u is primitive recursive. a (9·2)

9·3 REMARK A similar argument shows that the predicate |=A ϕ is ∆MW
1 ,

where ϕ is a sentence of some language (not necessarily the language of sets)
and A is a small internal structure for that language, where the functions and
relations of the language are all coded in the usual way by sets.
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Notes and acknowledgments

The first author’s interest in the problems addressed in this paper and its
sequel was fired in 1987 by Stanley’s call, in his review [Stan] of Devlin’s
treatise [De], for a development of constructibility that would meet Devlin’s
unachieved aims. Subsequently, in Barcelona in the mid 90s, the author be-
came greatly interested in the problem of finding the weakest system of set
theory that will support a recognisable theory of forcing. Over the follow-
ing decade he accumulated assorted observations about weak systems, which
during the set theory year, 2003-4, at the CRM at Barcelona, grew into a
coherent apparatus [M3] for addressing the problems with Devlin’s book, and
which sowed the seeds of the theory of rudimentary recursion and the sense
that the search for the correct minimal theory for a development of forcing
was getting warm.

He began a series of draft papers, called rudrec or fifo, with a draft
number; rudrec4, dated October 2004, gives the definition of rudimentarily
recursive and the beginning of a discussion of forcing in that context, and
asks for an example of a function that, in today’s terminology, is gentle but
not rud rec.

In February 2006, the author was encouraged by a correspondence [S]
with Dana Scott who had found the Gandy–Jensen theory of rudimentary
functions useful in the study of certain problems in formal geometry, and who
was relieved to find that [M3] had, as he put it, “rescued” Devlin’s book.

Gradually the theory of rudimentary recursion matured; by November
2007 the idea of what is now called a provident set was there, and a scenario for
a proof that a generic extension of a provident set would be provident. That
scenario ran into difficulties but the proof was saved by the idea of construction
from a “dynamic” predicate: one defined by simultaneous recursion with a
particular strict continuous progress, as in [M5, Definition 8·5]. Without this
notion, the proof as it stood would have needed the ground model to be limit
provident, not just provident.

Progressively more mature versions of this material were presented in
the ERMIT seminar in Réunion, where they benefitted from the comments
of Dr Olivier Esser; in talks in January 2008 at University College, London
and at Oberwolfach, following which the term “provident” was adopted; in
a talk in May 2008 at Leeds; and in October 2008 at Lisbon, in talks based
on rudrec36 and fifo27. At the Zermelo centenary meeting at Brussels in
late October 2008, the complementary theme of the inadequacy of Zermelo’s
sytem for forcing was discussed, as was the compensatory use of the passage
to the provident closure or to the lune [M4].

In March 2009 copies of rudrec39 and fifo29 were sent to an Editor of
Fundamenta Mathematicæ, who declined the first as being on a topic unsuited
to his pages but asked for formal submission of the second, on forcing over
provident sets, to be made: accordingly on May 5, 2009, fifo31 [M6] was
submitted, with rudrec41 [M5] attached for the assistance of the referee.

In July 2009 the material was presented in condensed form in talks at
Oxford and at Bedlewo, and an extended abstract prepared for the website of
the latter meeting.
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The first author received the referee’s conditionally favourable report
from Fundamenta on July 5th 2010, a week or so after receiving the kind invi-
tation of Professor Martin Hyland to give a course of twenty four lectures to a
graduate and post-doctoral audience at Cambridge (U.K.) in the Michaelmas
Term, 2010. He accepted with pleasure this invaluable opportunity of test-
ing in detail his approach to constructibility and forcing via weak systems,
rudimentary recursion and provident sets.

In the Cambridge audience was the second author, who promptly found
the counterexample given in Proposition 4·5 to the question whether the com-
position of two rud rec functions is rud rec, and who went on to prove Proposi-
tion 4·8 and Theorem 4·9. The elegance and strength of his notion of a gentle
function have subsequently been confirmed in his Theorem 4·19; and compar-
ison with [M5] will show how his ideas have interacted with those of the first
author, in some cases, such as those of “dynamic predicate” and “function
of uniform affine growth”, supplanting them, and in others, clarifying and
developing them and where necessary giving them appropriate concrete form
and generality.

Besides those mentioned above, the first author thanks Carlos Montene-
gro in Bogotà, and in Barcelona James Harris and the seminar of Joan Bagaria,
for their patience in listening to immature versions of these ideas; and for their
steadfast encouragement in his study of weak systems, Kai Hauser, Ronald
Jensen and Colin McLarty.
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