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ABSTRACT. It is shown that provided w » (0)®, a well-known Boolean
extension adds no new sets of ordinals. Under an additional assumption,
the same extension preserves all strong partition cardinals. This fact
elucidates the role of the hypothesis V = LILR] in the Kechris-Woodin

characterization of the axiom of determinacy.

§0. INTRODUCTION,
Let B = Power(w)/Fin be the quotient of the Boolean algebra
of all subsets of w by the ideal Fin of finite sets, and P = [w3I%/Fin
the set of non-zero elements of B, with the induced partial ordering.

We shall study the Boolean extension that results from using P as a
notion of forcing: with a famous theorem [5] about the existence under
AC of (ml,wl*) gaps in P in ' mind, we shall call this the Hausdorff
extension.

Our underlying set theory is Zermelo-Fraenkel. We shall be working in
contexts where the full axiom of choice is false; at times, we shall
use DC, the axiom of dependent choices, or DCR, its weaker form, which
states that if Q 1is a relation on Power(w) such that ¥p3 q Q(p,q),
then there is a map f:w»Power(w) such that ¥n Q(f(n),f(n+l)). Our
notation of Boolean extensions and forcing follows that described in
Mathias (151, 3.7 and 3.8. We write [kl" for the set of subset

of « of order type A, and follow Supercontinuity [8] in our notation
of partition relations.

It has long been known that under DCR the Hausdorff extension adds no
new sets of integers: what it does add is a Ramsey ultrafilter on w.
(Cf [151, Theorem 4.2). For a recent discussion under AC of P,
see Dordal [33.

Since without AC there are difficulties in the simultaneous choice of
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Tepresentatives of equivalence classes , it will be convenient to take
as our forcing conditions infinite subsets P,q of w, with the under-
standing that if p and q have finite symmetric difference, written
P=q, they force the same statements, and that P is a stronger condi-
tion than q 1if p\g 1is finite.

In section 1 we prove in the theory ZF + w + (w)® that the Hausdorff
extension is barren in the sense that every map in the extension from

an ordinal into the ground model lies in the ground model: in particular,
no new sets of orxdinals are added. We characterize this latter proper-~
Ty in terms of the Galvin-Prikry notion [61 of completely Ramsey
families.

In section 2, we consider three set-theoretic principles, called Lu,
LSU and EP. LU and LSU are the weazk and strong uniformisation princi-
ples discussed in Mathias [161, where it is shown that LSU is equi-
valent in ZF + DCR to w + (w)¥ + LU, and that LSU is true if AD
holds and V = LIR] or if ADR holds, or if V is Solovay's model for
"all sets of reals are Lebesgue measurable". EP, which we derive in
this section from LSU in the theory ZF + DCR, is, to use the topo-
logical terminology of Ellenmtuck [41 , the assertiom that the inter-

section of any well-ordered collection of co-meagre sets is co-meagre.

In section 3, we prove in the theory ZF + LU + EP that the Hausdorff
extension preserves every partition property of the form x - (K)Au,

where k > w, 2<p <k, and 0 < A = whr<k.

Finally, in section 4, we comment on the implications of the results
of section 3 for the recent characterization [121 of AD in LIRI
by Kechris and Woodin, and discuss some problems related to our work:
reference to this discussion is made in the text by the string
[PROBI.

Assumptions are given in full in the statements of theorems, but may
be omitted in Lemmata and Propositions when the flow of the narrative
demans it. The end of a proof is signalled by -.

§1. THE BARRENNESS OF THE HAUSDORFF EXTENSION.

THEOREM 1.0. Let M be a transitive model of 2ZF + - (w)w and
N 1its Hausdorff extension. Then M and N have the same sets of

ordinals; moreover every sequence in N of elements of M lies in M.

PROOF. It will be sufficient to prove in the theory %F + -+ ()" that
if Py [ f£:z » V, then for some 99 S Pgs Y94 i feV.

Fix then such Pg. £, z and suppose that no such qg exists. Then for
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each »p s[pojw there will be at least one ordinal £ < ¢ for which no

Eal

XeV exists with p |+ £(£) = x: define ¢(p) to be the least such £.

For p c w, define P, S @, Pp s by writing q for the monotonic
enumeration of q c w and setting ﬁg(n) = 3(2n), ﬁr(n) = p(2n+l) .

Now define a partition ﬁ:[polw + 3 by setting #(p) =0, 1 or 2 accord-
ing as ¢(p2) is less than, equal to, or greater than ¢(pr), and let
Pelpyl” be homogeneous for r. Notice that =(P) = 1: for putting

k =min P and Q = P\{k}, we have Q = P,, Q = P \{k}; P, and
Pz\{k} force the same statements, and so have the same value under ¢;
thus if a(P) = 0, w(Q) =2; 4if 2, 0; but =(P) = n(Q) by homogenei-
ty, so w(P) can only equal 1.

Put now v = ¢(P). By definition of ¢ there are q,Y e [P1* and X,veV
with x #vy, g IF f(G) = ; and r |- f(;) z ;. Define se¢{PI® by
choosing the first three elements of s from q, the fourth from r,
then three from ¢, then one from r, and so on, so that 8, £ 4,
(Sr)z < q, (Sr)r cr.

Since 8, 1s compatible with both q and r, and extends P, ¢(sr) =v,
Since 5, < 4, ¢(sz) > ¢(q); but ¢(q) >v, since g <P and ¢
forces the value x for f(v). So ¢(Sg) >¢(sr) and thus,

m(s) =2 # 1= 2(P) = w(s), an evident absurdity. <

As in Happy Families [15]1, for s e[m}<w,
sup{ntl|nes}, and for pewl® with Is| < ap, we write [s,p] for
{xelwl”|s < % < sup}. Thus [0,p] = [pI¥.

we write |s| for

DEFINITION 1.1. A subset A of []® will be called invariant
if (peA and p=zp') always implies p' cA; similarly a function
F defined on (an invariant subset of) [w]® will be called invariant if
(p ¢ domain(F) and pxp') always implies (p' ¢ domain(F) and F(p)=F(p')).

DEFINITION 1.2. Following Galvin and Prikry [6] we call a subset
P of [w]” completely Ramsey, or CR, if for all «s,p> there is a
qe[pl® with eitheg (s, g1 ¢ P or [s,qlnP = 0.

TR R .
The CR sets are éh@&ﬁ@ in EH in the notation of [153, 1.3. The sta-
tement o - (w)* is equivalent to the assertion that all subsets of
{w]® are completely Ramsey.

DEFINITION 1.3. We shall call a subset P of [w]® CRT if for
P, and CR if for all
0.

all <s,p> there is a qe[pfnwith [s,q]

nn

<s,p> there is a qe{pl¥ with [s,qlnP

The CR sets are those in EH in [15], 1.4, and are the meagre sets

in the topology defined by Ellentuck in [47.
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1.4 In a manner familiar to readers of [153, we shall want rela-
tivized versions of these concepts: we shall for example say that P
is CR+ on [s,pl 1if for all «<t,gq> with § ¢t and (t\s)uq < p,
there is an r in [qJ* with [t,r] < P.

We are now in a position to reformulate a weaker form of the conclusion
of 1.0 as

PROPOSITION 1.5 (ZF) The following are equivalent:

(1.6) The Hausdorff extension adds no new sets of ordinals.

(1L.7) Let z be an ordinal and <Cvl
CR subsets of [w]”. Then there is a pelwl” such that for each

v <z, C\) is, relative to [p1®, either crT or CR .

v <L> a sequence of invariant

PROOF. (1.6) » (1.7) : Fix <Cvlv <z> and let G be the generic
filter in Power(w) added by the Hausdorff extension. In VI[G] put

PSSy

3
-3
L

i

B = {v < | pE:G(CV, relative to [p1¥, is CR%)}

~

By (1.6), there is an A < ¢, and a q such that g |-B = A. We

shall show that for all v in A, C\) is CR+ relative to [q]w, and
that for all vnot in A, Cv is CR™ relative to [q1”, by proving the
contrapositives of these statements.

Let v < g. If Cv is not CR+ relative to {q]w, then since Cv is
CR there is [s,r] < [0,q]1 with [s,r] in empty, so by thf invariance
of Cv’ [r]“fncv is empty, and so r |v ¢ B; hence q _ veB, so

g ,ﬂf vedA, and thus v ¢ A.

If Cv is not CR™ relative to [q]w, there is [s,r]ec (0,97 with

[s,r] ¢ Cv’ so0 by invariance [r]ms Cv, and s0 T [ VeB; hence

q ,Hisé B, so q /H{u.g’ A, and so v <A.

(1.7) > (1.6): Suppose [~ B < z. Set c,={al q |F veB}.

Then each Cv is invariant. Notice that Cv is CRT relative to [p3®
iff p |+veB, and C, is CR relative to [p1® iff p |Fvd B: so
a p satisfying the conclusion of (1.7) will force B V.

REMARK 1.8. (1.7) 1is false without the hypothesis of invariance:

for new, let C,=1p | n<inf p}.

1.9 The conclusion of Theorem 1.0 may be derived from certain
square-bracket partition relations: write w = [m]“x, where 2<icxzuw,
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to mean that for any ¢:[w]” + ) there is an x ¢ [w]® such that for
some Vv < x and all ye[x1Y, v(y) # v. Kleinberg has observed that
from a sequence < | 2 <n <w> of partitions of [wi® , where for each
n, m, 1is a counterexample to w -~ [w]wn, a counterexample to w -+ [w]1%
may be constructed: thus assuming DC, or at least AC for countable
families, w +[m3ww implies that for some n <uw, w +Twl®n+2. It is

not known whether w -+ (w)¥ can be derived from any w -+ [wl®n for

n >3 [PROB] but the conclusion of theorem 1.0 may be derived as follows.
Suppose w =+ [w]1®n. Let 8 be a prime number very much larger than n,

and for p's[w]m, 0<i<g, let (p)i be {ﬁ(m8+i)]nlem}. Thus if

a9 =P, (D = Py, @Dy g = PINRO].

Let Py - £, £, ¢ be as in the proof of Theorem 1.0. Set

b(p) = {iji<g and qu'j<8¢((p)j) so((P)}.
By (repeated) application of w + [w1%n, a pe {pOJm may be found for
which [[p1®] is of cardinality less than n. But then ¢ ((p)g) =
o)) = ... = 9((P)y_1) for any pe(pl¥, since if $C(P)5) < 9((P)})

for some 1i,j less than 8 , by the primality of 8 and the invariance
of ¢, the 8 values

vy, PP Ip(OY ), B\ {p(0) ,p(L)D), . ,
w(p\{p(0),p(1),...,p(8-1)}) will be distinect.

Now put v = ¢(p). As before, there are q, relpl”, x, yeV, with
q lF-f(G) = g, r |- f(;) z ;, and x # y. Find s c qur so that
(s)onq is infinite, (S)Onr is infinite, (s)l < q. Then

$((s)y) = v while 9((s)1) 2z ¢(q) > v, contradicting the property of

D established in the previous paragraph. -

REMARK 1.10. It is a theorem of prénka and Balcar [21] that if

two transitive models, of which at least one is known to satisfy the

axiom of choice, have the same sets of ordinals, they coincide. That
they might differ if neither satisfies AC is due to Jech [9]: for
an extension of that result, see Monro [171].
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2. THE LARGENESS OF THE INTERSECTION OF CR+ FAMILIES .

DEFINITION 2.0. A function F:[wl” - Power(w) is called strongly
continuous on [s,p] if there is a tree <tutu.e[p]<w> of finite sub-
sets of w such that for all qepl® and all k €q,

F(@in(k+l) = tqQ(k+1)'

DEFINITION 2.1. A relation R < [w]® x Power(w) is (strongly) uni-
formised on [s,p] if there is some (strongly continuous) function F
such that for all qe [s,p], R(g,F(q}).

DEFINITION 2.2, LU (LSU) is the assertion that for any relation

R as above, such that ¥p3 y R(p,y), {x|R is (strongly) uniformised
on [0,x]} is CR%.

THEOREM 2.3. (ZF + DCR + LSU) Let & be any ordimal and‘<Cv}v < 8>

a sequence of crR™ families. Then n G is CR+.
v<g

PROOF. For 6 countable, this is a theorem of ZF + DCR, and is due
to Galvin and Prikry [6]. A proof may be given by the methods of Happy

Families ([15]; see in particular Proposition 1.10).

Let us therefore suppose the theorem true for all sequences of
length less than ¢ , and that it fails at s for the sequence
<CV|v < 8>. By the minimality of 9 and the first sentence of this proof,
8 must be of uncountable cofinality.

Now put D = df {pefwl”|[p1¥ ¢ 0 C} Then by Proposition 2.8 of

p<v oy
Happy Families (for the case A = [yp]w, B = [ij\<p2v CH))’ Dv is cr'
for each v < ¢ , Du 2D, for p<v<e, qc pe;Dv implies qe;Dv,

and, by relativizing to some [s,S]1 if necessary, we may further assume
a is e y.
that v<8Dv § empty

Thus we may define x{p), for pe[w1®, to be the least v <8 with p# B,.
The function x:[w]” +8 will have these properties:

qcp-=>x(®P < x@,
Yu<8 ¥ <8,q> 3pels,ql (x(p) >v).

Define now 4(p) = uix(q)|q=p} and $(p) =n{x(q)|a=p}. We assert
that

V qefwl¥ip e [93°%W(Q) < o(p)).

To see that, put v = y(q), construct sequences Ny <Dy <Dy < ... and

@ =Py 2Py 2P 2 .- such that for each i,ni = min Pi> and for each
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s ¢ n,+l, [s,p;471 = D, and set p = {n; |1 < wk.

If p's p, there is an ng such that p'\n. = p\n,, so p' cIp'n(n,+l),
Prs1ds so p'eD , and x(p') >v; consequently ¢(p) >v.

By LSU, there is a pe[wl® and a strongly continuous function
F:[p1 Y+ 1p1® such that

Vp < [PI'(F (p) ¢ p and o(F(p)) >u(p)).

Define the relation R om [pI¥ by setting R(p,q) iff 3q'zq 3p'=p(F(p")
= q'):R will be well-founded since if R(p,q),

x(@) 24(q) = 9(q") >¢(F(p"¥) >vip") = v(p) 2x(p).

Since F 1is continuous, R is Borel, and so by the Kunen-Martin theorem
(Moschovakis [18], page 99, Theorem 2G.2; see alsc page 114, footnote
12), if we define pr(@) = viog (P)+1]p e [p1¥ and F(p) = q}, then for
some n less than wy and all qe rp1®, ﬁR(q) <n.

D, there is a qefs,p] with
pR(q)>’QR(SUp). To see that, take gq = su(F(p)\lsi): then supzp and
qzF(p), so R(sup, q), and so QRCq):>QR(sUp)_

Notice that for any <s,p> with sup

| o

1l

Thus if for 7 < n we set Ec = {p s[fjw]pR(p) =z}, each EC will be

CR™ relative to [0,p]. But then since n is countable EgnEC is CR’,

relative to [0,p3; but that is absurd, as [0,pl1 = v E;"%
z<n
DEFINITION 2.4. EP 1is the statement of Theorem 2.3, that the in-
tersection of any well-ordered collection of cRT  sets if crt.

PROPOSITION 2.5 (ZF) EP implies (1.7).

PROOF. 1If <Cvlu < > 1is as in (1.7), let D, = {x]¥s cnx ([s,x] < C,

or [s,xInC, = 0}. Then each D, is crt. by EP D is not empty.

N
VPSSV

Let P be a member: then P satisfies the conclusion of (1.7). -

§3. THE PERSISTENCE OF PARTITION PROPERTIES.

PROPOSITION 3.0 (ZF + EP) Let x be an ordinal and o:[wl® + [kI€
an invariant function. Then & is constant on some [pi®.

PROOF. For v <k, put C, = {pjvee(p)}. Then each C, is invariant,
so by 1.7, which by 2.5 follows from EP, there is a p ¢ [w]® such that,
relative to [pl®, each C, is either cRY or CR : put
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D, = {qe [p1¥]tq1® c C,} in the first case and = {ge [p]w[[q]mn(}\} = 0}

in the second. Then each D\) is CR+ on 1Zp]m

Let p be in the intersection, non-empty by EP, of {D\)Ev <k}. Then
for each qelpl® and v<x, ve 3(q) iff  ved(p), since

v e o(p) +peCV+D\)SC\)+qan+\;e¢(q), and
v € o(p) -+p¢’C\}+D\)ﬂCv=O—»qg’Cv—:»\)é@(q)._.i

REMARK 3.1. The above Proposition may fail if ¢ is not required to be

invariant : for example, if ¢ is an injection.

PROPOSITION 3.2 (ZF + LU) Suppose that 0<X = wrsk, 2<y
<K, K> (K)Au, that there is a surjection y:[wl” + [k]° and that

<1rp}p e [wl®> 1is a collection of partitions WP:[K]A -+ u. Then there
is a p¥el[wl” and an invariant function $:[p*1* > [k1° such that

for each pe[p*1®, o(p) is homogeneous for

o
PROOF. For each p, define pp:[Kj}\ + u by
pp(x} = wpimx ),
where, as in Supercontinuity [873 , R ={ngw ;«:(wg-m)](; < X}: note
that as w) = A, ,x 1is in [K:})\ whenever x 1is. Set
Hp = {q e [w]w{g{;(q) is homogeneous for pp}.

By LU there is a p* and an F:rp*1® + rwi1® such that for all
qe {p*]m, v(F(q)) 1s homogeneous for pp. Write B(q) = y(F(q)).

For each q e [p*1Y, define C(qQ) ¢ [x]° thus: let C(q) (0) be the least
ordinal greater than all B(gq'){8) for q' z q; let C{g){v) be the
least ordinal ¢ such that setting n = u{C(q) (v'){v' <v}, the interval
[n,E) contains at least one element of each B(q') for g’ * q.

The regularity of « ensures the soundness of this definition. Note that
this definition does not rely on an enumeration of any {q'|q’ = q}, and

H

therefore that C(q) = C{q') whenever q z q' : so that C is invariant.

Now put &(q) = ,C(q). Then ¢ is invariant; any =xe [qﬁ(q)]A is of the
form |y for some y« [B(q)jk, and hence nq(x) = Trq(my) = pq(y), which,
by the homogeneity of B(q), is independent of y and therefore of x.

Hence 9(g) 1is homogeneous for T, as required. +

S
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THECREM 3.3 (ZF + EP + LU) Suppose 0 <X = wi <k, 2£1<K,K ~+ (K)RU,
and that there is a surjection ¢:[wl® ++ [k . Then in the Hausdorff
extension, « - (K)RU.

PROOF, Note first that by 2.5 no new subsets of « are added; conse-
quently [k1* is the same whether interpreted in the ground model or in

the extension, and thus may be written without ambiguity.

Note secondly that « = (K)ku+l,

Suppose py IF £:[xk1" » u. We shall find a pye [pg1® and an Aex1°
such that p, [ £ is constant on [A]".

]U}

For each pe [po , define a partition wp:[x]l - u+l by

M~

np(A) =z 1f p I £f(A) = ¢
WP(A) = ¢ otherwise,

By 3.2, there is a Py s(pOIw and an invariant function @:Epl]m > [x1°
such that for each p e [py1¥, o(p) is homogeneous for w_ . By 3.1

p
there is some Py e{pljm with ¢ constant on [pzjw. Set A = @(pQ). We

assert that Py I A 1is homogeneous for f£.

If not, there will be D,Ee:[A]k, q_eipzjm, E < < u with
g i {(f(D) =z £ and f£(E) =z ¢): so wq(D) =z, ﬂq(E) = ¢, and thus

A is inhomogeneous for = . But A = o (pgy)

q ${q) which is homogeneous

for ﬂq. -

§4. PARTITION CARDINALS WITHOUT DETERMINACY.

An important cordinal in the study of AD is ¢, the least
ordinal > 0 onto which Power(w) cannot be mapped.

LEMMA 4.0. If the Hausdorff extension is barren, then ¢ is the

same whether calculated in the ground model or in the extension.

AN N
PROOF. Suppose p |+ £:[wl® >+ 6. For each pair (q,r) with q\p finite,
put y(q,r) = ¢ if q | £(xr) = £, and y(q,r) = 0 otherwise. Then

¢ 1is a surjection of [uwl”® x [w1® onto 8, a contradiction. -

PROPOSITION 4.1 (AD + V = L{RI) If 0 < wi= X<k

K > (K)Au, then « » (K)Au in the Hausdorff extension.

2<y < x and

g

PROCF. By a theorem of Kleinberg [14], « is measurable, so by argu-

ments to be found in [13], « < 8 ; hence, by a theorem of Moschovakis
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([181, 7D.19, page 442), there is a surjection y:[wl® + ~[kI<.

DC is provable in ZF + AD + V = L[R], by Kechris [101; so is LSy,

by Theorem 2.2 of [16]; by Theorem 2.3 above, EP then holds.

Thus all the hypothesis of 3.3 hold, so the conclusion follows. -
THEQREM 4.2 If AD is consistent, so is DC +

¥A<6 3 «(A <k < 8 and « is a strong partition cardinal) + "there is
a Ramsey ultrafilter on o".

PROOF. If AD holds, it stays true in LIRI, as strategies are reals.
Again, by (101, DC holds, so DC holds in the Hausdorff extension.

As w + (0)¥, (cf Theorem 2.2 of [161), the extension is barren. By

the results of Kechris, Kleinberg, Moschovakis and Woodin [11], there
are arbitrarily large strong partition cardinals below 8§ in the ground

model, so by 4.0 and 4.1, the same holds in the extension. A remark
in the introduction completes the proof.

REMARK 4.3. The significance of 4.2 1is that as the existence of an
ultrafilter on w implies the failure of AD, the hypothesis V = LLR]

is an essential ingredient in the Kechris-Woodin [121 derivation of AD
from the existence of arbitrary large strong partition cardinals below 8.

REMARK 4.4, The arguments of section 1 generalize with little change

to obtain a new proof of Henle's result [7] that Spector forcing [20]
at a strong partition cardinal « is barren.

REMARK 4 .5. If AD holds and V = L[R1, then wqy and wy are

measurable, and o =+ {(0)}®, so in the Hausdorff extension, there is a

Ramsey ultrafilter on w, and wy and w, are still measurable: we
may say that there are in this model two and a half contiguous measurables.

A model for that statement may also be found assuming something presuma-
bly much weaker than Con(AD): by an unpublished result of Woodin, a
model of ZFC in which x is Ai-supercompact and ) > x is measurable
admits a Boolean extension in which « = w1, A T w9, K and ) are still
measurable, and o -» (w)®; in the Hausdorff extension of that model,
there will be a Ramsey ultrafilter on u, while the measures on « and

A WwWill remain measures as no new subsets of either will be added.
Several open problems are related to [16] and the present work:

PROBLEM 4.6. Can w =+ (w)® be deduced from o - [wl®n for any
n=3?

PROBLEM 4.7. Does AD imply that wy 1is huge? Is there a huge




205

Wy

measure on Emzl 7

N
PROBLEM 4.8. Is it a theorem of ZF + DC+ Ny £ 27°° or of zF +
DC + w » (w)® that there are no MAD families coded on w?

PROBLEM 4.9. 1Is there a kew such that it is a theorem of ZF + DC
that there cannot exist k contiguous measurables?

By a result of Kechris, if AD is consistent, k must be greater
than three. k might be quite small, though: for limitations on conti-
guous large cardinals, see Apter [1] and Bull [2].

PROBLEM 4.10. Is EP a theorem of ZF + DC + o » ()}¥ ?

The least 9 for which 2.3 fails must be measurable.

PROBLEM 4.11. 1If k and X are strong partition cardinals with « < },

will « remain strong in the Spector extension for A, or vice versa?

The similarities between strong partition cardinals and w, when
w > (w)®, which are studied in [83 , and the result mentioned in 4.4
above, suggest that Spector forcing should preserve something more than
plain measurability. But there are limits: the analogue of 2.3, when w
is replaced by a strong partition cardinal «, fails for 6 = «'.

PROBLEM 4.12. Does ADR imply that every set of reals is Souslin?

A theorem of Woodin states that ADR is provable in ZF + AD + "every
set of reals in Souslin".

PROBLEM 4.13. How strong is the theory ZF + DC + V = L[R] +
"6 is a regular limit cardinal™? Does it prove the existence of a# for
every real o?

The challenge in this question is to get 8 a limit cardinal: it is a
result of the Cabal that ZF + DC + V = L[R] proves that ¢ is regular.
In [13], Kechris and Woodin show that if AD + V = LLR] holds, then
0 cannot be weakly compact.

PROBLEM 4.14. It follows from the results of [101, that Con(ml
is a strong partition cardinal) follows from, e.g., Con(there are

arbitrarily large strong partitiom cardinals), but the proof goes via
determinacy. Is there a direct proof?
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