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Unsound ordinals
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Peterhouse, Cambridge

(Received 26 April 1984; revised 18 June 1984)

Abstract. An ordinal is termed unsound if it has subsets An (new) such that un-
countably many ordinals are realised as order types of sets of the form U {^.Jwea}
where a £ w. It is shown that if wx is regular and J^ = 2N» then the least unsound
ordinal is exactly w"+a but that if w1 is regular and fc^ 4 2X», the least unsound ordinal,
assuming one exists, is at least (of+<o+1. Arguments due to Kechris and Woodin are
presented showing that under the axiom of determinacy there is an unsound ordinal
less than w2. The relation between unsound ordinals and ideals on w is explored. The
paper closes with a list of open problems.

0. Introduction

Definition 00. Let B = (Bn\ne CJ} be a sequence of sets of ordinals, and for a £ w
write B[a] for {Bn \ n e a) and rB(a) for the order type of U {Bn \ n e a}. The set {TB(O) | a £ &>}
will be called the spektron ofB, and denoted by O"TT(B). A sequence of subsets of a set X
will be called an (X)-sequence. An ordinal v is sound if every (?/)-sequence has countable
spektron; in the contrary case, i] is termed unsound.

The present paper is addressed to a question raised by Woodin in September 1982,
which in this terminology runs: Is there an unsound ordinal?

Definition 0-1 .The ordinal « i + 1 will play a pivotal role in our investigations: we shall
denote this ordinal throughout the paper by 6.

Definition 0-2. The letter £ will denote the term 'the least unsound ordinal'.
As we have been unable to prove in ZF alone that there is an unsound ordinal,

' £ ^ tj' should be read as ' every ordinal less than t\ is sound' while ' £ < n' and '£ = ?/'
are interpreted to imply that an unsound ordinal exists.

In Section 1 we assume that wx is regular, and show that £ ^ u>i+2.
In Section 2 we show that if there is an uncountable well-ordered set of reals, then

£ = u)i+2. However, in Section 3 we show that if wx is regular but every well-orderable
set of reals is countable, then £ ^ Wi+W+1.

In Section 4, by their authors' permission, a lemma of Kechris and arguments of
Woodin are presented showing that assuming the axiom of determinacy — the context
in which Woodin was interested - £ < w2. Section 5 relates unsound ordinals to ideals
on (o, and Section 6 lists some open problems.

Our set-theoretic notation is largely standard. We denote the empty set by 0.
We write otp(<4), where A is a set of ordinals, for its order type, which will be an
ordinal. Thus rs(a) = otp (U B[a]). An aleph is an infinite initial ordinal. For X, T sets
of ordinals, we say T is unbounded or cofinal in X if T n X is. cf (TJ) is the cofinality of 7).
[K, A) is the half-open interval {V\K ^ v < A} of ordinals. The notation A = S {^l^ < £}
is used to mean that A = (J{-^,.|i' < £}, and moreover that whenever v < v' < £,
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and E,' eAv. we have £ < £', so that the Av'a are pairwise disjoint convex subsets
of A. If/: Z ^ Y, Xx <= Z and 7X £ 7, we wri te / [ZJ for {/(a;)|a;eZ1} and/-1[Y1] for
{^/(aOeyj}. If 7X = {y}, we wri te / -%} instead oif-\{y)\. The notation B[a] used in
0-0 is thus a special case of this notation. Power (Z) is the power set of Z , {7| Y c Z}.

Definition 0-3. An ordinal £ is indecomposable if (£ < £ and ?/ < £) implies E, + n < £.
We shall use the result (cf. Bachmann[l], pp. 84, 68) that the indecomposable

ordinals are precisely those of the form o)a for some a.

Definition 0-4. Let n: X ^ 7 be an order-isomorphism between two sets, Z and Y,
of ordinals. If A is an (Z)-sequence, the (resequence B obtained by setting

B{n) = n[A(n)] for neco

will be called the copy of A by 7r. The name B of the new sequence will often be intro-
duced by a phrase such as 'copy A to B by n' or 'copy Z to Y and each An to £„' .

Our underlying set theory is Zermelo-Fraenkel, without the axiom of choice. All
assumptions are given in the statements of Theorems, but standing assumptions may
be omitted from the statements of Lemmata and Propositions. The end of a proof is
signalled by | .

In many sections of this paper we shall assume the well-known consequence of the
axiom of choice that col is regular. It will be convenient to present in this section two
theorems of ZF alone.

LEMMA 0-0. The closure of a countable set A of ordinals is countable.

Proof. Let n: g ~ A enumerate A in increasing order: so £ < wv Define

p: £+ l->cl(.4) by p(n) = n(n)

for n < o), p(\) = U {wMl" < A} for a) < A < £. Then p is onto cl (^1): for we A implies
rj = 7T(V) say, which implies v = p(v +1) if v > <o, or v = p(v) ifv^.<o: and if

Vec\(A)\A, then v = p(U{v\n(v) < y}). |

LEMMA 0-1. (ox is regular if and only if the union of every countable family of countable
sets of ordinals is countable.

Proof. Suppose that G^ is regular and let each An (n e w) be a countable set of ordinals:
let £„ be the order type of An. Each £n < o)1, so denning inductively £0 = £0, £n+1 =
Cn + £n> each £w < wx, and £ = df U {Cn\

n e w} *s le s s than a)v But clearly there is a sur-
jection of £ onto U {An\new}, which is therefore countable.

The converse is trivial. |
1. The soundness of 6

Throughout this section we assume that m1 is regular.

Definition 1-0. An ordinal n is solid if whenever v = \J {Bn\ne «}, one of the sets Bn

has order type v. v is hollow otherwise.

Examples 11 . 0 and 1 are solid; every other countable ordinal is hollow; w1; being
regular, is solid.

LEMMA 1-2. If K is solid then K.w1is solid.

Proof. Let K . a>1 = S {Av\v < w^, where each Av is of order type K. Suppose

K.W1= U {Bn\ne(o}.
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For each v, Av = (J {A, fi Bn\neo)}, so, since K is solid, there is an n with

abp{A,(\Bn) = K.

By the regularity of <av there is a p such that for uncountably many different i>'s,
otp (Av n £p) = K. Then otp (Bp) = K.av \

Since o)x is solid, iteration of Lemma 1-2 immediately establishes

LEMMA 1-3. Each a)* for ke[l, w) is solid. \

LEMMA 1-4. / / K is solid and, for each i < o>, B{is a set of ordinals with otp (B^ < K,

then otp (U {Bt\i < w} < K.

Proof. If not, let A be the supremum of the first K elements of U {Bt\i < &>}. Set
Ct = Bt n A, and copy U<C* to K and each Ct to Dt. Then by the solidity of K, some Z>4

has order type K. \

LEMMA 1-5. w" *s hollow.

Proof. Set Bo = cox and for n > l,Bn = [a%, (o?+1). |

LEMMA 1-6. Every countable ordinal is sound.

Proof. For B a (K)-sequence, o~n(B) £ K +1, and is countable if K is. |

LEMMA 1-7. w1 is sound.

Proof. Let (Bn)n be an (w1)-sequence, and let a £ «. If otp (i?n) = wx for some nea,
Ts(a) = Wi-Otherwise a £ a0 =dr{w|otp(5n) < wj, and rB(a) ^ TB(a0), but rB(a0) < wx

by the regularity of w^ \

LEMMA 1-8. If A < K and K is sound then A is sound. \

LEMMA 1-9. If E, and v are sound, so is £, + r/.

Proof.Let(Bn)nbean(g + 1/)-sequence.PutCn = E,(\Bn,a,ndDn = {v < ij\E, + veBn}.
Then an(B) = {rc{a) + TD(a)\a £ w}, which is countable since o~n(C) and o~n(D) are. |

LEMMA 1-10. / / cf (p) = o) and every y < pis sound, so is p.
Proof. Let (pk)k be an increasing sequence with supremum p, and suppose that

(Bn)n is a (p)-sequence with uncountable spektron. Let A be the supremum of the first
CJ1 elements of the spektron of B, and set T = o-n(B) n A. Note that cf (A) = o)x and
supT = A.

Now put Ck = (Bn n pk)n and Tk = A n <m{Ck).
Each Tk is countable, as pkis sound, and so by Lemma 0-6 (J {Tk\k e«} is countable.

Its supremum, £, say, is therefore less than A, which has cofinality u)v But each yeT
is a supremum of members of \J{Tk\keoj}, and so is less than or equal to £, a
contradiction. |

Suppose now that there is an unsound ordinal less than w2. Then £, the least such,
is not a successor, by Lemma 1-9, and so by Lemma 1-10, cf (£) = o)v

LEMMA 1-11. For some /? ^ 1, £ = wf.

Proof. £ ^ w1# By Lemma 1-9, £ is indecomposable, and so of the form of- for some
a. S* wx. Let a = wx/? + y, where /? ̂  1 and y < wx. Thus £ = wWl/J.wr = wf .wr. If
y > 0, to? would be a countable limit ordinal, and thus, cf (£) = w, contradicting
Lemma 1-10. Thus y = 0, and the Lemma follows. |
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LEMMA 1-12. £is hollow.

Proof. Let (An)n be a (£)-sequence with uncountable spektron. Discard those An

with otp(^4J = £: that is, define Bn = An if otp.4^ < £, Bn = 0, the empty set,
otherwise. Then <TTT{B) is still uncountable, and so, by the minimality of £, TB(<O) = £.
Copy U B[G)] to £ and each i?ft to Ck. Then £ = (J {Ck\k e «} and each Ck is of type less
than £. |

LEMMA 1-13. £^8.

Proof. By 1-11, 1-3, and 1-10. |
The following discussion takes place in ZF alone.
Let K be a regular aleph, v be an ordinal of cofinality K, and G a cofinal subset of r/.

Write £ = otp (G), so that cf (£) = /c, and, %y a method going back to Cantor and
expounded in Sierpinski[9], chapter xiv, section 19, theorem 3, express £ as a sum of
powers of K:

£ = K^

where each Afe[l,/c) and £0 > £x > £2 > ... > £m. Note that Am cannot be a limit
ordinal and t,m cannot equal 0, as otherwise cf (£) would not equal K. Put Am = A + 1:
then for some p < £, £ = p + K&™, so K = cf (£) = cf (*£"»), so £m is a successor ordinal or
a limit ordinal of cofinality K. In particular, if rj = /c"+1, £m = o) + lor some fc e [1, w).
These remarks lead to the following

LEMMA 1-14. Let K be a regular aleph and let G c KU+1. Then exactly one of the following
holds:

(i) G is of order type Ka+1;

(ii) thereisaE, < Ka+1 and a ke[l,(o) suchthat G\£, is oforder type Kk;

(iii) there is a £ < KU+1 such that G \£ is empty.

Proof. Part (iii) covers the case when G is bounded below tca+1. When G is unbounded
in KW+1, the foregoing discussion shows that (i) or (ii) holds. |

Assume again that (o± is regular. With Lemma 1-14 for K = ^ and KU>+1 = 6 in mind,
we make

Definition 1-15. For G c 8 with otp (6?) < 6, set £(6?) = the least £ < 0 such that
1 • 14 (ii) or 1 • 14 (iii) holds, and call G \£((?) the tail of £. Set fe((?) = k if the tail has order
type o>i (case (ii)) and = 0 if the tail of G is empty (case (iii)).

THEOREM 1-16. Ifw1 is regular, (Oi+1 is sound.

Proof. Let (An)n be a (0)-sequence with uncountable spektron. As in 1-12, we may
suppose that each An is of order type less than 6, since those An of order type 8 make
no contribution to the uncountability of o~n(A). Let £ = sup{£(^4n)|new}. £ < 6 as
cf (#) = Wj. Put J5TC = ^4n\£ and k(n) = &(̂ 4m). Then each Bn is either empty or of
order type Wj(n). The spektron of the sequence (An n £)„ is countable, as every ordinal
less than 8 is sound, so an((Bn)n) is uncountable, by arguments similar to those of 1-9.

Now let a £ w. Two cases arise: if swp{k(n)\nea} = 0), then by Lemma 1-14,
otp (U B[a]) = 6, but if suj){k(n)\neaj\ = m < w, then by Lemma 1-4,

otp(U5[a]) = of.
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So <TTT(B) e= {o)i\ke(o} U {6}, and is thus countable after all. |

2. The unsoundness o/w})+2, provided Xi < 28»

We shall utilize the paradox of Milner and Rado [9], theorem 5, that for each aleph K,
every ordinal £ less than K+ is expressible as the disjoint union of sets Ak (ke[l,(o))
with otp (Ak) ^ Kk. With an eye to applications in § 5, we prove sharpened versions of
their results: the central ideas in the proof of Proposition 2-10 are theirs.

Definition 2-0. A decomposition of y is a sequence of disjoint sets An with U A[co] = r\.
In the following, let K be an aleph. The prefix ' K- , included in the definitions for

greater precision, will be omitted whenever the context permits.

Definition 2-1. A Milner-Rado K-decomposition of ye[K,K+) is a decomposition
{An)n of y with Ao = 0 and otp (An) ^ Kn for ne[l,w).

Definition 2-2. A strong K-decomposition ofve [K, K+) is a Milner-Rado decomposition
(An)n of 7] such that for all ae [«]<", otp (U A\a\) = y.

Note that for a trivial reason a successor ordinal cannot have a strong
decomposition.

Definition 2-3. A K-superdecomposition of TJ e [K, K+) is a decomposition (An)n such
that Ao = 0, otp^4n = K71 for all ne[l,co), and for all {Bn)n with each Bn £ An and
otp5m = otyAn and all ae[w]u, otp ((JB[a]) = y.

Thus every superdecomposition is strong.
We first determine, for regular K, those y e [K, K+) which admit superdecompositions.

PROPOSITION 2-4. Let K be an aleph. Then
(i) /c" has a superdecomposition.

(ii) Kal+1 has a strong decomposition which if K is regular is a superdecomposition.
(iii) / / K is regular, the only ordinals in [K, K+) with a superdecomposition are K" and

Proof, (i) Set Jo = 0, Jx = K, Jn = [Kn~l, Kn) for n ^ 2. This is plainly a super-
decomposition of K", and will be called the canonical one.

(ii) Write /c™+1 = £„<*/„ where each /„ is of order type KU. Let (Jn)n be the canonical
superdecomposition of /c", and write each /„ as Sm Jv>n by copying /c** to /„ and thereby
«/n to Jv#n. Set ^ 0 = 0 and An = \Jv<KJVin_i for n > 0.

Then 4̂X = 0 and otp^4n = Kn for n > 1, and the An's are disjoint. If oe[u]", each
/„ n U A[a] has order type Kf, by (i), so otp (U A[a]) = /c"-*-1. Thus (.4n)n is a strong
decomposition, which we shall also call canonical.

Now suppose that K is regular, oe[w]", J5n £ ^4n and o t p 5 n = otp-4n. Then for
each n, Bn is cofinal in An and An is cofinal in AC"+1, SO sup U S[a] = /c""1"1. Since a is
infinite, otp (U B[a] \g) ^ /c41 for each g < K"+1; by Lemma 1-14, otp (U B[a]) = AC"+1.

In the proof of (iii) we shall need the following

LEMMA 2-5. Let K be a regular aleph, ke[l,(o), and H = St,</s.7J/, where each Iv is of
order type less than Kk. Then otp (H) ^ Kk.

Proof. For k = 1, this follows from the regularity of K. For k = m+ 1, pick for each
v < K £„ minimal so that otp/,, < K™.£„. Then each £;„ < /c, so (by the case k = 1)
£„<*£.< < ^ a n d o t P ( ^ ) < Km-^v < 'cm+1' a s required. |
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Proof of 2-4 (iii). Suppose K regular, let (An)n be a superdecomposition of rj e [K, K+),
and for £ < tj set oj = {w|sup-4n < £}. t\ must be a limit ordinal, and for all £ < v, ag
is finite, as otp (U ^4[a^]) < £.

If av is infinite, otp ((J-4[a,]) = ij, so cf (v) = w. We may now pick increasing
sequences kneav vn < tj, with supn?/n = 7/ and vn = sup^l^. If we now put

Bkn = Akn \rin_! and 6 = {&„ |« e «},

we find otp (U B[V\) = /c", so v = /c*\
If a, is finite, then for w^a,, cf (v) = cf ( 4 J = K. Write ?/ = £„<„/„ in any fashion

with each /„ non-empty. Suppose n$ar Then otp (An\£) = /c™ for each £ < 7/ so by
Lemma 2-5, {v|otp (An n /„) ^ /c71"1} is cofinal in /c. Armed with this fact and exploit-
ing the regularity of K, we may define/: K-^h>\av such that for all n$av,

{v < K\ otp (An 0 Iv) > Kn~x and/(v) = n}

is cofinal in K. NOW set for n$ar Bn = (J {An n Iv\f{y) = n}. Then otp (£„) = Kn — otp
(J n ) , so 7/ = otp(U-B[w\a,]); but by Lemma 1-14, otp(U-B[w\a,]) = /c*"1"1. |

We shall now show that for any aleph K, every limit ordinal A e [K, K+) has a strong
decomposition. For each A that will be proved by an induction from A: to A.

LEMMA 2-6. Let £ < AC+. Then there is a function f which assigns to each limit ordinal
A ^ E,a closed cofinal subset f'(A) of A with otp (/(A)) ^ AC.

Proof. With .4(7 the lemma is obvious. If AC fails, let Q £ /c x K code £, so that in
L[Q\, £ < K+- As .4C is true in L[Q] and the form of the conclusion is absolute, the
lemma now follows. |

LEMMA 2-7. Suppose 0 = Y*tl<llIv, where /i < K and each otp (/„)e[K,K+). Suppose that
foreachv < /i, (Avn)nis a strong K-decompositionof Iv. Set Bo = 0,J5n+1 = U i ^ ^ n k </*}•
Then (Bn)n is a strong K-decomposition of G.

Proof. Ao = Ax — 0. otp An+1 < Kn.u < Acn+1. The ^4n's are disjoint.
Let a e [w]a. Then (U B[a]) n /„ = U {Ap>n \n e a}, which is of order type equal to that

of/„, as (Avn)n is a strong decomposition. Hence

otp (U A[a\) = S otp (/„) = otp 0. |

LEMMA 2-8. Let £e[l,/c+). There is a function that assigns to each ne[l,E,) a strong
K-decomposition of KV.

Proof. Fix £ < K+, and let / be a function, as in 2-6, which assigns to each limit
ordinal A < £ a closed cofinal subset/(A) of A with otp (/(A)) ^ K.

We first define by induction on v ^ £ a strong decomposition A1! = (Av
n)n of KV.

For 7] e [1, w) take .4# = 0 for n < i) and A^^ = {A + k\X a limit ordinal less than KI]
for k > 0.

Take 4̂W to be the canonical superdecomposition of /C.
For 7} = fi+ 1, write *' = £,,<,./„ where each /„ is of order type /cA, and strongly

decompose each /„ by copying ic? to /„ and (A%)n to {Avn)n. Set Av
0 = 0,

In particular, Au+1 will be the canonical strong decomposition of 2-4 (ii).
For T] a limit ordinal greater than to, let tjy (v < p ^ K) be the closed sequence cofinal
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in t] yielded by/ , let A^ be the strong decomposition of the interval [KIV, K"»+I) copied
from ^"+1 when that interval is copied from /c"+i, and set

Al+1=\J{AW\v<p} and 4j( = 0:

then, as before, each otp (̂ 4&+i) < Kn+1.
Let a e [w]a. That for rj e [1, £], otp (U ̂ '[a]) = /C is trivial for 9/ < « and follows from

Lemma 2-7 for y ^ « + 1. |

LEMMA 2-9. There is a function assigning to each limit ordinal A less than K a decompo-
sition of it into 0) pieces each of order type A.

Proof. Let A0 be a decomposition of (o into w infinite pieces. For any limit A less than
K, write A = w.tj, copy 1̂° to each [w.v, w. (v + 1)) as AM and take

An = \Jv<nA(yln. I

Note that the above is in a trivial sense a strong /c-decomposition of A.

PROPOSITION 2-10. Let £, < /c+. There is a function assigning to each limit ordinal in
[K, £) a strong decomposition thereof.

Proof. Lemma 2-8 yields a strong decomposition of each /c' (?/e[l,£)). Any limit
ordinal A e [K, K^) is of the form

where vo> TJ1 > ... > rjk and each ni < K, and so a strong decomposition of it can be
built up using Lemma 2-8 and, if vk = 0, Lemma 2-9. |

Remark 2-11. Proposition 2-10 is a theorem of ZF. The assertion that there is a
function defined on K+ assigning to each £e[/c, K+) a Milner—Rado decomposition
thereof is equivalent in ZF to the statement that there is a function defined on K+ and
assigning to each limit ordinal less than /c+ a cofinal subset of order type at most K;
implies, in ZF, that K+ < 2"; and may therefore be unprovable in ZF, since its false-
hood is (semantically) equiconsistent with AC plus the existence of a strong in-
accessible greater than K: cf. the discussion of Church's alternatives in Jech[7],
chapter 11, section 4, problems 23 and 24.

2-10 immediately yields the original Milner-Rado theorem that every ordinal in
[K, K+) has a Milner-Rado /c-decomposition. Of the foregoing discussion, that corollary
is all we need for the next theorem; the rest will be applied in Section 5.

THEOREM 2-12. / / X i ^ 2K», w"+2 is unsound.

Proof. There is a perfect set of pairwise almost disjoint infinite subsets of w, for
example the set of paths through the tree

l 2

A A
3 4 5 6

So if Xi < 2̂ o) there is a sequence (av\v < w1) of pairwise almost disjoint infinite
subsets of (i). For each v < (ov let av: co<->av enumerate av in increasing order.
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For v<(o1, put /*+" = [6>.2",0.2"+1), and 7° = 6. Then otp (/") = 6.2", and
,,,<»+2 _ V 7V

(O1 — ^ 4 v < a i l •

Let A" = (Ak)k be a Milner-Rado decomposition of/".
Now set Bn = 0 for w^a,,; and for we a,,, set .B£ = A%, where n = â (fc).
Finally, put

Bn = {J{B*n\v<wl} and C" = U {Bn\nea,}.
C" 2 /", so otp (C) ^ (9.2". For v #= /*,

as «„ n aA is finite, otp (C" n i>) < w". Hence for each ve [2, wj,

(9.2" ^ otp(C") < W?.J; + 0 . 2 " + G/J'.W1 < 6(1 + 2"+1) < 6.2"+1 ^ otp(C"+1).

Thus {rB(av)\v < w^ is uncountable, and «i+ 2 is unsound. |

Remark 2-13. If K < 2S», then /s*'"1"2 is /c-unsound in the sense that there is a (/c"+2)-
sequence with spektron of order type at least K.

3. The soundness of (i>1+a, provided Kx ^ 2S»

Our goal in this section is the following

THEOREM 3-0. Suppose that co1 is regular and that every well-orderable set of reals is
countable. Then the least unsound ordinal is at least 0}"+a+1.

We assume throughout the section that wx is regular and that J$x ^ 2K». As before,
we write 6 for w^+l and, supposingthat there is an unsound ordinal, £for the least such.
From work in previous sections, we know that £ is at least 6. o>x, and that the theorem
will be established if we can prove that for each ke[l, co), 6 .o)\ is sound.

We begin by making various reductions which will illustrate the use made of our
hypothesis that j$x s£ 2X». We shall then in an apparent digression prove a proposition
about w-colourings of wf: this proposition will enable us to establish the soundness of
6 .(J{ by direct calculation of spektra.

LEMMA 3-1. Let £ be an unsound ordinal. Then there is a (^-sequence B with un-
countable spektron and Bn n Bm empty for n < m < u>.

Proof. Let A be a (£)-sequence with uncountable spektron. For v < £,, let

Then {av\v < £} is a well-orderable set of reals and hence countable: enumerate it as
{b^i < o)} and put Bt = {v\av = &J. Then for i =)= j , Bi n J53- is empty. For fixed n and i,
and arbitrary /i, v e Bit

veAn<->neav = bt = a
n<

so that Bt £ An or Bt n An = 0. Thus each An is a union of some Bi's, so crn(B) contains
o~n(A) and is hence uncountable. |

Remark 3-2. In previous sections we have not assumed that the sequences considered
are of pairwise disjoint sets. Lemma 31 shows that there is no loss of generality in
doing so. Though the proof given here assumes that J<1 sf 2S», the lemma is also true if
J^ < 2K°, provided 0)1 is regular, since then we know that £ = «i+ 2 and our construction
in the last section is of such a disjoint sequence. That sequence also possesses the
properties described in the next lemma.
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Definition 3-3. A solid set of ordinals is one of order type w™ for some m e [1, w). If the

exact value of m is to be specified the set will be called m-solid.

LEMMA 3-4. If^is the least unsound ordinal, there is a (Q-sequence, of solid and pair-
wise disjoint sets, with uncountable spektron.

Proof. Let B be as in Lemma 3 1 . Using 2-10, we may assign to each Bn a Milner-
Rado decomposition (Bn m)m thereof with otp(2?wm) ^ «™. Enumerating the double
sequence (Bnm)nm as a single sequence (D^ we obtain a (£)-sequence D of pairwise
disjoint sets, each of order type less than w". We may now apply the discussion of 1-14
to find for each i an ordinal £f < £ such that Dt \ ^ is either empty or cofinal in £ and
of order type u>\ for some k = kte [1, w). Then £ = d, Uj £i is also less than £ and there-
fore sound, so anKDi n £,)t) is countable, and therefore by arguments in the Proof of
1-9, otp(£\g) = £ and an ((Z^\g)f) is uncountable. By copying (-D4\£)< f r o m £\£ t o £>
we obtain a (£)-sequence as desired. |

An important ingredient in making further reductions is Toulmin's notion of a
shuffle.

Definition 3-5. An ordinal rj is called a shuffle of ordinals p and cr if v is the union of
two disjoint sets of order type p and cr respectively.

PROPOSITION 3-6 (Toulmin[13], p. 184). (i) No indecomposable ordinal is a shuffle
of two smaller ordinals.

(ii) Only finitely many ordinals are shuffles of a prescribed pair of ordinals.
The significance of Toulmin's theorem for our enquiry is the following

PROPOSITION 3-7. A shuffle of two sound ordinals is sound.

Proof. Let i] be the disjoint union of two sets R, of order type p, and S, of order
type cr, and let A be an (y)-sequence. Define an (i?)-sequence, B, and an (#)-sequence,
C, by Bn = R n An, Cn = 8 n An. By the soundness of p and cr, the spektra of both B
and C are countable. But every ordinal in an(A) is a shuffle of an ordinal in an(B) and
an ordinal in o~n(C): by 3-6 and 0-1 o-n(A) is countable. |

That yields a second (and better) proof of 1-9.
The contrapositive of Proposition 3-7 yields the following extremely useful

LEMMA 3-8. Suppose that the (Q-sequence A has uncountable spektron and that £, the
least unsound ordinal, is the disjoint union of two sets, H and T, with otp (H) < £,. Then
o~n((An n T)n) is uncountable. \

We turn to a discussion of subsets and partitions of «i for k e [1, w).

Definition 3-9. Let X be an m-solid set. For any ke [1, TO], X can be written uniquely
as £„<„/*, where K = oj^'k and each /{? is i-solid. The sets /? will be called the k-blocks
of X. For rjeX and k e [1, m], the unique fc-block of X containing 7] will be denoted by
X(k, v). For k = m, of course, the fc-block of t] is X.

LEMMA 3-10. Let 1 ^ k < I < m, and let X be m-solid.
(i) For Y an l-block ofX, and Z a k-block ofX, either Z £ Y, when Z will be a k-block

ofY,orZ(\Y = 0.
(ii) For a given k-block Z of X, there is exactly one l-block Y with Z <=,Y.

(iii) The k-blocks of an l-block of X are precisely the k-blocks of X included in the
given l-block.
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Proof. Special case: Let X be a convex w-solid set of ordinals, and enumerate it
monotonically as {E,v\v < w™}. Define equivalence relations xk(ke[l,m]) on X by

vxk/i iff {v<=\ji,[i + (J{) or /ie[v,v + Wi)).

Then the ^-blocks of X are precisely the « ^-equivalence classes, the first elements of
the a^-classes being the £„ for v a multiple of (Jy. The lemma now follows from elemen-
tary facts about nested equivalence relations.

The General case, for X not convex, follows from the special case by copying. |

Definition 3-11. Let T be a set of ordinals and X an m-solid set. We define the
relation 'T is pervasive in X' or 'T pervades X' by induction on m. For m = 1, 7 is
pervasive in X if for some ^ e l , r n l = l \ ? . For m = ?i+ 1, write X = 2{7,,|v < wj,
where each Yv is an »-solid interval, so that the Yv's are the ^-blocks of X. Then T is
pervasive in X if there is a £ < wx such that for v < £, 7, n T = 0 and for £ ̂  i> < 6^,
T pervades Yv.

LEMMA 3-12. Let T pervade the m-solid set X. Then

(i) if Y is a k-block of X for some ke[l,m], T is either disjoint from or pervasive in Y;
(ii) X \T is of order type less than wf;
(iii) T n X is m-solid;
(iv) ifveX()T,X(l,v)\vcT;
(v) if X is an interval and v e X n T, [v, v + wx) £ T;

(vi) for each v in X (\T,T pervades X \v.

Proof, (i) For fixed k by induction on m > k. For m = k, the result is trivial; for
m > k, let Y be a i-block of X, and let Z be the (m - l)-block of X with Y s Z. By
definition, either Z n T = 0 or T is pervasive in 2; but then, since by 3-9, Y is a
&-block of Z, the induction implies that T is either disjoint from or pervasive in Y.

(ii) By induction on m: true for m = 1, as X\T is then countable. For m = n+ 1,
let 1̂ , (Ĵ  < wx) be the n-blocks of X. For some £ < a)v T is pervasive in each Yv, and

By induction each otp(r,,\y) is less than w™, so by 2-5, otp(£{F,,\T|£^ i> <&>!})
Hence otp (X \7) ^ w". (£ + 1) < wf, as required.

(iii) Immediate from (ii).
(iv) Put Y = X(l, v). The ve Y n 71 so by (i) T is pervasive in 7, a 1-solid set; for

some £e 7, T n 7 = 7\£, so £ < i; and Y\v £ F\g £ Z1.
(v) By (iv), since when Xis an m-solid interval and veX, X(l, v)\v = [J>, v + «!).
(vi) For m = 1, (vi) follows from (iv). Now suppose m = n+ 1, and that we have

proved (vi) for m = n. Let ZA (/i < lOj) be the w-blocks of X, so X = ^{Z^/i < Wj},
and let v e Zp. As T pervades X, there is a £ < w1 such that for all ji < £, ^ n T = 0
(so £ ^ p), and for all /i e [£, wx], 2

1 is pervasive in Z^.
The ^-blocks of X \v are Zp \v, which T pervades by (vi) for the case m = n, and the

Z^/i > p), which T pervades as £ < p. Hence T pervades X \v. \

LEMMA 3-13. If X is m-solid, le[l,m], veX, then X(l,v)\v comprises the next o)[
elements of X after and including v.

Proof. By the characterization in the proof of 3-10 of blocks in terms of the equiv-
alence relations xk. \
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LEMMA 3-14. Let T sX,veT, le[l,m], and let Tpervade X. Then

(i) T{l,v)\v = (X(l,v)nT)\v.
(ii) T(l,v) = TnX(l,v).

(iii) T(l, v) pervades X(l, v).
(iv) T(I, v)\v pervades X(I, v)\v.
(v) For I = 1, 7(1, v) \v = X(l, v) \v.

Proof, (i) T is pervasive in X(l, v), so T n X(/, v) is J-solid, as is T(l, v). The result now
follows from 3-13 and the fact that T £ X.

(ii) In view of (i) we need only prove that T(l, v) n v = T n X(l, v) n v. But for
eTnv, these statements are equivalent: i)eT(l,v); veT(l,v); ve(T(l,v)\ij) (as

V < v); ve(X(l,v) n T) (by (i)); 7,sX{l,v).
(iii) From (ii) and 3-12(i).
(iv) From (ii) and 3-12(vi).
(v) From (i) and 3-12 (iv). |

Definition 3.15. Suppose that X is an m-solid set, and that ^0 is a function whose
domain includes X and whose values lie in a countable set Bo. We define for k e [1, in]
countable sets Rx,k

 a n d functions <j>x,k'- X->Rx,k by induction on k as follows:
Set <j>x,i(v) =d f K e ^ o l ^ o ^ o } i s unbounded in X(l, v)}.
{'Px, i(v) Iv e X} ig a well-orderable set of subsets of the countable set Eo: it is there-

fore countable. Call it Bx v Note that <j>x x is constant on each 1-block of X.
Set <}>x,i{v) = At{rieRx,i\$x]i{ri} i s unbounded in X(2, v)}.
The range of $x 2 is again a countable set; call it RXyi. Note that <j>x 2 is constant on

each 2-bIock of X.
Repeat for all k < m. Thus set ^ *;+i(i;) = at{rke&x i|fc!/i{rt} ^s unbounded in

LEMMA 3-16. Let veT, k > 1, and rsRXk, and put P = 4>x1,k{r}- Then P is
unbounded in X(k + 1, v) iff P is unbounded in T(k +l,v).

Proof, 'if': because T(k+l,v) ^
'only if': note that 4>x,k is constant on each &-block in X(k+ 1, v), and that T, and

hence T(k + 1, y), meets all except countably many of those. |

LEMMA 3-17. Let T be a pervasive subset of the m-solid set X, and let <j>0 be a function
defined on X with values in a countable set Ro. Then for all veT and all k < m,

Proof. k= l:LetveT.By3-U{v),X(l,v)\v = T(l,v)\v, so

roe^>x,Av) ^ &01 is unbounded in X(l,v)
iff fa1 is unbounded in T(l,v)

iff roe<f>Tl(y).
Thus <j)XrSy) = <t>TJv).

The case k+1 follows by applying 3-16 to the inductive hypothesis that for all

Where no ambiguity will result, we write <j>k instead of <j>x>k.
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PROPOSITION 3-18. Let ke[l,oj), Xa k-solid set, and <fi0 a map from X to a countable
set Bo. Then, effectively from X and ^0, a subset T of X can be found that is pervasive in
X and such that for veT,

Proof. By induction on k. For k = 1, let £ be the least element of X such that for all
veX\£,, (po(v) e <j>i{v): such a E, exists since w1 is regular and Ro is countable. Set T = X \£
in this case.

Suppose k = m+1, and write X = S {Yp\p < o^}, where each Yp is m-solid. By the
effectivity of this construction we may find simultaneously for all p < (ox sets Tp £ Yp

which are pervasive in Yp and such that for all p < (i)x and veTp,

<j>m will be constant on each Tp, with value i/r(p) say. The set of values {)Jr(p) \p < cjj}
will be countable, and hence we can pick a < ^ minimal such that for each p e [<r, wx),
U {/>' < Wil̂ Oo') = ft(p)} = o)-i- Then {ijr(p)\cr < p < wx} is actually <f>k(v) for any veX,
so if we set T — U {^l0" < P < wj , 21 will pervade X and we shall have

4>o{v) e ^i(") e. . . 6 ̂ m(i»)

for all i' e T, as required. |
We are now ready to prove Theorem 3-0. Fix k > 1 such that for I < k, 6. co[ is sound.

We shall show that 6. w* is sound.
By Lemma 3-4 we may suppose that £ = 6. wf and that A is a (6. o)\)-sequence, with

uncountable spektron, of pairwise disjoint sets each solid and cofinal in £, and aim for
a contradiction.

Write £ = 21-^1^ < &>i} where each /„ is of order type 6. For each v let £„£/„ be
minimal such that for each n, An n IV\E,V is either empty or solid and cofinal in /„. Then
U {Iv r\£v\v < (Jl) is of order type less than £, and hence, by Lemma 3-8 an((An n S)n)
is uncountable, where S = U {/„ \£,v\ v < o)\}. Copy 8 to £, /„ \E,V to /„ and each An n S to
£ra. Our problem is thus reduced to proving the following:

(3-19) Leti?: w->- Power (̂ ) be a decomposition of £ into pairwise disjoint sets, each
solid and cofinal in £, and, writing £ = 2{/,,|i> < wf}, each 2?m n /„ either empty or
solid and cofinal in /„. Then an{B) is countable.

For such a sequence B, define functions/,: w->-o> for i» < wf thus:

(3-20) /„(») = 0 if B n n /, is empty,

= ^ if Bn(\Iv is ^-solid.

Put B̂Q = {fv\v < (Oi}. JR0, being a well-orderable set of 'reals', is countable. Define
0o(v) = /„ for v < (Jl, and define <f>t for 1 < I ^ k as above. By Proposition 3-18 we may
find T pervasive in w\ such that for ve T, <j>0{v) e ^(v) e. . . e <j>k{v).

Set X = \j{Iv\v$T} and 7 = U { / > 6 T } . Since otp(wf\T) <wf,otp(Z) < C, and
so we need only show that an((Bn n Y)n) is countable.

Copy Y to £, 71 to wf, and J5ra n Y to CTC. Then C has all the properties ascribed to B
in the hypothesis of (3-19); moreover if we set gv(n) = 0 if Cn n /„ is empty and gv(n) = p
if Cn n /„ is ^-solid, Qo ~ {ffv\

v < wi}> a countable set, ijro(v) = gv for v < wj and define
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countable sets Qt and functions i/rt with image Qlt for 1 < I < k, by the process set out
in 315, then by Lemma 3-17, we shall have for all v,

(3-21) fo(v)ef1{v)exlf2{v)e...sfk{v).

(3-22) For a c o», define ho(v,a) = su-p{gv(n)\nea}, and for 1 ̂  I < &, define
A,(v,a) = sup{A0(/9, a)|v «S p < v + OJ'1).

Furthermore, write r(a) for Tc(a) = otp U C[a], and Ty(a) for otp (/„ n U C[a]). Note
that A, is constant on each Z-block, by (3-21).

Each A,(i>, a) ^ w. We shall show that r(a) may be computed from the functions h{

and will be one of the countably many possibilities 0, o)k+1, wk+2, o)k+2,..., w"+1,
6>i+2,..., &»i+1+fc, which contradiction will complete the proof of Theorem 3-0.

LEMMA 3-23. Let me[ l , w) and let X = ^{Xv\v < «f}, where each Xv is of order type
< 6. Suppose further that otp {v|otp {Xv) = 6} = wf. Then otp X = d. «5". |

LEMMA 3-24. Suppose that X = J^X^v < wj, where each Xv is of order type < (o\,
butforallv < w^andallp < w, there is a p in [VyCOj) with otp (Xp) ^ cof. Then ot~p(X) = 6.

Proof. Evidently otpX < a)".^ = 6. Lemma 1-14 implies that otpX > 6. |
If for some v < d)\, ho(v,a) = w, rv{a) = 6 by 3-24; by 3-21 {p\gp = gv} is fc-solid, and

so r(a) = 6.w\.
If for some I in [1,4], there is a v < wf with ht(v, a) = o), but A,_1(v, a) < co for all

v < 0)\, then r(a) = d .u)\~l: in particular, if Z = &, r(a) = ^.
To see that, fix I with AJ(J>, a) = QJ for some y, but with each A,_1(/t) < w. For E £ &>f,

write J^for \J{I,\veE}.
Now for ^ any (I- l)-block (or, if I = 1, E any {£} £ wf), otp ((U C[a]) n «/E) < w",

since Aj_x is everywhere finite; so for each J-block F, otp (JF n (U C[«])) < &• For an
Z-block F on which A, = w, (U G[a]) n Jp has order type 6, by 3-24. (3-21) tells us that
the set of such Z-blocks is of order type (Jl~l. By 3-23, r(a) = d.a)*~l.

Suppose that hk(0,a) = pe[l,cj). Then for some v < <J[ and nea, gv{n) = p, so
otpCB = wf+k (by 3-21), and for all other q e a, otpGq < wf+k; so by solidity, r(a) = wf+ft.

Finally if hk(0, a) = 0, then r{a) = 0. |

Remark 3-25. The cases r(a) = o>\ for 0 ^ r ^ i do not occur because of the pruning
carried out before the final argument.

4. Determinacy and unsoundness

The question of the existence of unsound ordinals was raised by Woodin in connec-
tion with a then unsolved problem in the study of the axiom of determinacy. Sub-
sequently this problem was solved by Kechris as Theorem 4-2 below, and led, by a
further reflection argument due to Woodin, to the following

THEOREM 4-0. The axiom of determinacy implies that there is an unsound ordinal less
than o)2.

By kind permission of the authors, the proof of 4 0 is now presented. For definitions
of unexplained terms and for background material Guaspari[5], Moschovakis[10],
and the three Cabal volumes [2], [3], and [4] are suggested.

LEMMA 4-1 (Kechris, using ideas of Martin and Steel). Assume (S,\ u Hl)-determinacy.
14 PSP 96
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Then there is a III norm i/r: B^-&1 on a complete III se^ B an^ an ordinal £0 < h\ such
that for any Z3 set S £ B there is a ZJ set S* £ B with

Proof. Let A be a SJ set such that putting

A' = {at;~u>\3n(a)neA}, A" = {(x,a)\x(a)eA'}

(where here x is viewed as a strategy for David, the second player, in the game where
Goliath, the first player, plays a, David plays /?, and David wins iff fie A'), and
B = {a;|Va(z, a)eA"}, B is a complete IT3 set.

Let I I: A -> w1 be a E£ norm on A. Define p: A"-^(o1by p(x, a) = minn6W |(x(a))n\:
then p is a ££ norm on A".

Finally let \jr be the II3 norm on B obtained from p as in the usual proof, using
Aa determinacy, of PW0(Hl): so iovyeB,

xeB and x ^ ^y iff 3T^a(x,a) ^p(y,[a]*r)

and iff V<r3P(x,o*[/3])ZPto,fi).

Now let S £ B be Zj: suppose S(z)+-*3aP(z, a), where P is H\. By Wadge's Lemma
([2], page 152), for which in this instance X\ u H| determinacy suffices, either there is
an x* such that Vz, a(P(z, a) <-»not A(x*(z, a)) or there is a y* such that

but the second alternative is impossible since A, being S^ complete, cannot be H|.
Fix such an x* and define a; so that (x(z, a, y))0 = x*(z, a) and

(x(z,a,y))n+1 = (z(y))n.

Then if (z,a)$P, x*(z,a)eA; while if (2,a)eP, zeSsB, so3n(z{y))neA. So for all
z, a,y there is an n with (x(z, a,y))neA; and so xeB.

Now for each 2,a define xza(y) = x(2,a,?/), and put S* = \xz a\z, aeU). Evidently
S* is ZJ and is a subset of B.

If (z,<x)eP, x*(z,a)$A, so (^0,a(2/))o is irrelevant to the computation of f(a;8jJ,
but as (xea(y))n+1 = (z(y))n for all n, we easily obtain f(xZ3<t) = f{z).

If (z, a) ^ P, then x* (2, a) e ̂ 4: but then fr(xza) ^ ^(<) for any t such that

V»Vy(«(y))n = *•(«, a),
since for any y,

minn|(%))™| = |**(z.a)| > rmn\{x{z,a,y))n\.

So if we put X = {t\38eAVyVn{t(y))n = 8), notice that Z £ 5 , X e Z j and so

U {̂ (<) 11 e X} < £0 for some g0 < 8J

(since otherwise £ could be expressed in ZJ form as {z\3xeXz ^^x}) and remark that
since the definition of X is independent of S, so is £0, we shall complete the proof that
B and rjr are as required. |

THEOREM 4-2 (Kechris). ^4sswme the axiom of determinacy. Then for any map <f> of a
set W of reals onto 83, there is a compact subset J of W with {<p(x)\xe J} uncountable.

Proof. Let <j>: W-&&1 and let r}r: B-^h\ be as in 4-1. The method of proof of the
Coding Lemma (Moschovakis[10], page 426) yields an SeEl such that

xeB-+[8x=¥0 and Vwe8x(weW and f(x) = <j>{w))].
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Put D = {(x,w}\xeB and weSx}. D<£SJ, since Vx{xeB iff 3w<z,M;>eZ>) and
so by Wadge's Lemma, there is a continuous function F such that for all a, aeB
iSF(a)eD.

For £ < h\ set Bs = {ze.B|^(a;) < £} and Z>f = {(x,w)\xEBg and JCEIS,}. As ^ is a
n j norm, each Bce&l and each Z^eS3. Now note two facts:

(4-3) V£ < 6J3i/ < 5J { o l ^

(4-4) VS

(4-3) holds because {a\F(a)eDg} is a S3 subset of B and hence bounded in the norm
i/r as B<£Til; (4-4) holds because {F(a)\aeB^ is a S3 subset of D, and were it not
contained in some Dv the following would be a S3 definition of B:

zeB iff

Let £0 be the ordinal < 83 obtained in 4 1 . From (4-3) and (4-4) the set

Di} = B i a n d g>Q

is closed unbounded in 83: let TJP(V < Wj) enumerate the first Wj elements of that set, and
put 7} = sup{7?,,|v < wx}.

By 4-1, let C be a Sj subset of Bv with sup{fr(x)\xeC} = i). Now consider the game
where Goliath plays xe"«, David plays we"2 (this restriction is the source of the
promised compactness) and David wins iff (xe C-> (we WO and i/r(x) < tilwl)),
where WO is the set of codes of well-orderings. Since WO is not SJ, David cannot win,
so let a be a winning strategy for Goliath, and put K = <r[a2]. Then X is compact
and {iJr(x)\xeK} is cofinal in T\.

Put J = {w|3z<z,M>>e.F[ir|}. Then J is compact: i g C c B ? = f - i ^ ] , so
^[if] s Z>7, so by choice of S and definition of Dv J s [w\<j>(w) < rj). But {^(M?)|M>6 J}
must be unbounded in rj, since otherwise there would be an r/v < rj with

so <p takes uncountably many values on the compact set J. \

COROLLARY 4-5 (Woodin). Under AD, £ < h\.

Proof. Write K = \£a, and let X be a complete SJ set and T s <a(w x K) a tree on /c,
closed under shortening, such that for all reals a,

aeX iff 3feaKVn{a\n,f\n)eT.

Thus a £ X iff T(a) is well-founded, where T(a) = {5 e <u/c| (a f lh(s), s) e T).
Let W be the complement of X, and define ^(a) for a e TF to be the order type of

T(a) under the Kleene-Brouwer ordering <KB. For each ij < 83, {a|^(a) < ?/} is in
A3, by Sierpinski's equations (Moschovakis[10], page 94, theorem 2F-1), and so the
image of 0 is cofinal in 83. The composition of <j> with a suitable collapsing function is
thus onto 83, and so by 4-2 there is a perfect set S £ «•>&> such that {0(a)|ae[#]} is
uncountable. (Here [S] = ct{a\Vna{ne8}.) Now put

U = {{s,t)\se<ww, te<w/c, lh(s) = lh{t), (s,t)eT and se8).

Under <KB, U is well-ordered, since [S] dp[T] = 0: so let n: U s £ be the iso-
morphism with an ordinal, £,. £ < Xw+i = S3 since card (U) < J$w.

14-2
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For seS, put As = {n((s,t))\lh(s) = lh(t) and (s,t)eU}. For oce[S],

$(*) = o%^{{t\{a\lh{t),t)eT), <KB) = otp(\J{Aar

since the map t\-y(a[lh(t),t) is <^g-preserving. Hence an({As\se8}) contains
0[[$]] a n d is therefore uncountable; thus £ is unsound. |

The following reflection argument, due to Woodin, improves the bound on £ from
83 to cj2, assuming AD, and thus completes the proof of Theorem 4-0.

PROPOSITION 4-6. (AD + DC) (Woodin) £ < «2.

Proof. By the last proposition we know that there is an unsound ordinal, y say.
Let S = (Sn)n be an (^J-sequence with uncountable spektron. Pick an increasing
sequence (Ay\v < 6>x) of ordinals such that for each v < w1( there is a set a £ w with
otp(U #!>]) = A,.

Consider the following integer game. Goliath plays x, David plays y, and David
wins iff x does not code a countable ordinal or if x codes y then y codes a sequence
(av\ v < 8) of subsets of w, where 8 > y and otp (U <$[«„]) = K for each v < 8.

Standard arguments reveal that, granting the determinacy of the game, David
must have a winning strategy, r say.

Consider the model L[r, S]. Suppose g is a code of v < (ox that is generic over L[T, 8].
Then by the nature of T, in the generic extension L[T, S] [g] there is a set a £ w such
that otp (U S[a]) = A,.

Let K be a cardinal in L\j, S] with K > rj. Choose an elementary submodel M of
LK[T, S] with TeM,oj1cM,SeM, and M of cardinality less than w2. Let n: M ~ N
be the map collapsing i f to a transitive set N. Put An = n(Sn), fiv = TT{XV), and let £
be the height of N. Note that An £ £, that (ji>v\v < wx> is an increasing sequence, and
that £ < w2.

We assert that A = (An)n witnesses the unsoundness of £,. To see that, note first
that by AD, w1 is strongly inaccessible in L[T, S]. Hence N and L[T, S] have the same
bounded subsets of w1. Suppose g codes an ordinal v less than w1 and that g is generic
over N. Then g is generic over L[T, 8] so that in fact N[g] is an elementary submodel of
LK[T, S] [g]. Hence in N[g] there is a set a c a) with otp (U A[a]) = fiv.

Finally, since co1 is strongly inaccessible in N, for every v < w-^ there is a code of v
generic over N.

Thus A has uncountable spektron, and £ ^ £ < w2. |

5. Unsound ideals

5-0. Suppose that v is indecomposable and that the (?/)-sequence A partitions r\
into non-empty disjoint sets An each of order type less than ?]. Define

IA = {x £ o)\TJx) < rj).

Then by the indecomposability of y, IA is an ideal on w containing all finite sets.
5 1 . A partition A as above is evidently interdefinable with a surjection a: y-»(o

where the pre-image of each {n}, i.e. An, is a set of order type less than TJ. If xjr: w-> co
is a surjection, then the composition f o a : ?/->« will be a surjection, giving rise to
an (7/)-sequence B, where Bk = U {An\^r{n) = k). We write B = i/r*A, and call B the
projection of A by ijr.

5-2. If / is an ideal on w containing all finite sets and tjr: 0) -> w is a surjection with
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^~\n} e / for each n, then \jr* I = d{ {a s w\i[r~x[a\ e /} is also an ideal on w containing
all finite sets.

LEMMA 5-3. Let y be indecomposable, A an {resequence of non-empty disjoint sets,
each of order type less than y, and i/r: o>-s-a> a surjection with each i/r~1{n}eIA. Then

Proof. x e 1^ A iff otp U {U {A (n) \ f(n) = k} \ k e x} < y

iff otpU {A{n)|ifr(n)ex) < 7)

iff f~\x-\eIA

iff xef^IA. |

5-4. If A and y are as above, and an(A) is uncountable, so that y is unsound, then
{x £ (o\o~7r((An)nex) is countable} is an ideal on co containing all finite sets: call it JA.
Note that if y is the least unsound ordinal, IA c JA. If ^r: <y-s>-«is a surjection, then
I/T^JA £ J\!T*A'> whether the reverse inclusion holds depends, as we shall see, on
circumstances.

5-5. In [8] the author defined the notion of a feeble filter on w; we may call an ideal
feeble if its dual filter is, and the definition then runs: an ideal / on u> containing all
finite subsets thereof is feeble if there is a surjection ijr: w-^w with each pre-image
rjr-^n) finite (call such ^ surfinjections) and such that ^^ / is the ideal Fin of all finite
subsets of o). The author proved that if «-> (co)"', every ideal is feeble; Talagrand and
independently Jalali-Naini([6], chapter I, 5-2-4 and 5-2-6) showed that an ideal is
feeble if and only if, viewed as a subset of Cantor space W2 it has the property of Baire,
so in models constructed by Solovay, using an inaccessible, and Shelah, without,
every ideal is feeble.

5-6. Suppose therefore that IA is feeble and that i/r: «-»• w is a surfinjection with
^n.lA = Fin. Put B = fr*A:then as IB = I^,A = ^*IA — Fin, B has countable
spektron, since for any infinite x, TB(X) = y (as x$IB). Note that in this case (oeJB,
which is therefore improper and not equal to ifr% JA. We have thus proved the following

PROPOSITION 5-7. Suppose that all sets of reals have the property of Baire or that
&»->(w)m. Let y be any indecomposable ordinal and A a decomposition of y into sets of
order type less than y. Then there is a partition of w into finite sets sk such that, setting
Bk = U .^[Sj.], the sequence (Bk)k has countable spektron.

The above shows that when A C fails in certain familiar ways, though there still may
be unsound ordinals (which there will be, for example, in Shelah's[ll] model of 'all
sets of reals have the property of Baire' in which {u)x)L = ojj), every sequence with
uncountable spektron projects by a finite-to-one function to one with countable
spektron.

A related illustration of the instability of unsoundness is the following

PROPOSITION 5-8. Suppose that ^ 1 ^ 2N», o^ is regular, kea>, and that A is a de-
composition ofa)i+k with each An of order type less than o)i+k. Then

u Vz e [xf otp \JA[z] = (ot+k.

Proof. For k = 0, pick nt increasing with otp (An.) > <o\, and set x =
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For k > 1, let {Jn)n be the superdecomposition of &>i+1 constructed in 2-4 (ii): so
otp (Jn) = w™ for n ^ 1 and whenever Kn s Jn, otp (Kn) = otp (Jn) and a e [(of,

Now for k = 1, suppose &»i+1 = U«^n
 a s above: by the solidity of the JTO's we may

define a function/: u)-xo by setting/(n) = the least I such that otp (Jn n ̂ 4;) = otp (Jn).
Then if the image of/ is finite, there will be pew and oe[w]s such that for all nea,
f{n) = p: but then otp (Ap) > otp (Ap n U</[»]) = otp (U {Ap n Jn|raea}) ^ wy+1, con-
tradicting our hypothesis on the otp(^TC)'s. So the image of/is infinite: call it x.

Now for ze[x]», put 6 =/~1[z]. Then lM[z] = U {4/W|rce6} 2 U {^/(n) n Jn |»e6}:
but each A^n) n </n has order type that of Jn, so by the property of (Jn)n,

For 1c > 1, write «i+fc = 'Lv<xlll where A = wf"1 and each /„ is of order type
Decompose Iv as \Jn<wJn by copying (/n)n. Define fv{n) = the least I with

and using the hypothesis that ^ sf 2X« and the solidity of A find/: w-̂ -w such that
N = At{v\fv — / } ^ a s order type A.

As before, / cannot have finite image: if it did, then for some pea) and ae[w]w,
Vw e a(f{n) = p). But then the above reasoning can be repeated to show that for all
veN, otp (Ap n /„) = u>i+1 and so o t p ^ ) = u)l+k, contrary to hypothesis.

So put x = image of / : thus x e [w]w. For z e [x]a, put b = / -1[z] and note that for
each veN, (U A[z]) n /" contains U {-4/w n ̂ n |w e^} a n ( i so is of order type Wi+1; and
hence otp (U A[z]) = (Oi+k, as required. |

The last two propositions suggest that when AC fails in specified ways, each ordinal
is 'nearly sound'. The next theorem, the last of this section, shows that by assuming
the continuum hypothesis we may improve previous work to arrange for Wi+2 to be
resoundingly unsound.

THEOREM 5-9. Assume that 2S« = J^. Then there is an ((Oi+2)-sequence with

for each n such that for every ijr: w-»-w with each otpdJ-df^—1^}]) < &»i+a, i/r*A also
has uncountable spektron: moreover I^ = JA and is a prime ideal.

Proof. Let U be a non-principal ultrafilter generated by a sequence (bv\v < wx)
where for v < p < o)v bp\f)v is finite and bv\f>p is infinite. U will always be ap-point,
and might in addition be a Ramsey ultrafilter.

For a and b e [<o]a, we shall say that a hits b if a n b is infinite, and we shall say that
a £ b (mod Fin) if a \b is finite.

Set cv = bv\bv+1. Then no cve U, and for v =}= p, cv n cp is finite.
If xe U, then for some /J, < w1; b^ £ x (modern), so for all u e f ^ w j , x 2 bv 2 cv

(modFin): i.e., x hits all but countably many c/s.
If x ^ U, then for some fi, bM £ w \x (mod i^in), so for all v e [/i, Wj), x n cM is finite, so

x hits only countably many c/s.
Thus U = {a;|a; hits uncountably many cv's}.
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Now write GJ?+2 as Z{Iv\v < wj , where Iv = [d.2v, d.2v+l), so J, has order type 0.2".
Modify a strong decomposition of /„ to obtain a sequence Gv = (GVy n)n with

0,.o = 0-.1 = °» otp ((?„_„) < < " ! for n > 2 , (?,,„ = 0 for nfc,,

and for each xe [c,]", otp (U #„[*]) = ot

Evidently otp(.4B) < «". Let a;e[w]w, and write X = \JA[x]. Let y < wx: then
X n /„ = U {^,n(ree^ n cv}, so if a; hits <;„, otp (X n /„) = otp (/„), while if x n cy is finite,
otp (X n /„) < wj"1 < (of, where k = max (x n cy).

Thus if £ hits uncountably many cv's, otp (X) = £, whereas if p =atswp{v\x hits c j
is less than w1,

(9.2p < otpX < 0.(2^ + 1) < 6.2P+1.

Hence U = {«|r^(a;) = £} = Power((o)\IA, and

C/ = {#|T4[[X]*'] is uncountable} = Power(w) \JA>

so that IA = Jj,-
Suppose now that ^r: 6>-»-w is a surjection with each otp (LMt^"1!/*}]) < £. so

that each ^r~x{n) is in /^. Write B = ijr^A. Then / B = ir*IA, which is a non-principal
prime ideal. We shall show that B has uncountable spektron, which will imply that
JB is proper: as IB £ JB and IB is prime, it will follow that IB = JB, so that in this case

Pick vn (neo>) with b,n n ijf-^ri) finite, and set /t = supneu vn; /i < o)v and ^ f 6̂ , is
finite-to-one.

We shall show that for all v ^ /i there is an a e rjr+ 1A (= IB) such that ijr~l[d] hits c,,:
from this it follows that

and therefore as v was arbitrary in [/£, o>x) and cf(£) = oix, anr(B) is uncountable, as
required.

So let velfi,^), and put a0 = ir[cv]. a0 will be an infinite subset of to as cv c fe^
(mod-Pm) and ^\bll is finite-to-one. Divide a0 into two infinite pieces a2 and o2:
V^~a[ai] a n d ^"z[a2] a r e disjoint and therefore not both in U. Choose a e {au a2} with
^r~1[a]^ U. i/r-^a] hits cv by construction, and ae^jr^IA. \

6. Open problems

Several problems concerning unsound ordinals remain unsolved, which we list in
this final section.

The one that comes immediately to mind is

Problem 6-0. Is it consistent with (say) ZF + DC + J^ ^ 2"» that every ordinal is
sound ?

A natural candidate for a model of ' all ordinals are sound' is Solovay's model for
'all sets of reals are Lebesgue measurable'. Since the reflection argument at the end of
Section 4 relies heavily on AD, it is natural to ask

Problem 6-1. Is it provable in (say) ZF + DC that if there is an unsound ordinal
then there is one less than &»2 ?

If it is provable outright that there is an unsound ordinal less than CJ2, how large is
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the least one ? The work in Section 3 on raising the sound barrier may be susceptible
of improvement: an exploration of the obstacles to further progress suggests the next
two questions.

Problem 6-2. If Kx ^ 2X<>, is a%+*>+1 sound?
For any (£)-sequence A the map TA: Power((o)->£+ 1 which assigns to each a ^ CJ

the order type of (J -4 [a] induces a prewellordering < A of Power (w). The discussion of
Section 3 establishes the following

PROPOSITION 6-3. / /J$i 4 2N° and v < «i+<"+1, then for any (v)-sequence A, v can be
partitioned as H\JT so that otp (H) < £ and, writing A' for (An n T)n, < A> is Borel. \

This suggests a way to answer 6-2 affirmatively. If that succeeds, it is likely to
establish the soundness of every ordinal less than off}, at which new difficulties appear:

Problem 6-4. If Ni ^ 2Ko, is oS? sound?
If Problem 6-4 has an affirmative answer, then one begins to speculate how far one

can go before either an unsound ordinal is reached or the axiom of determinacy is
refuted.

On a more mundane level, one can generalize the result of Section 2 to show that if
J$2 ^ 2S», there is an («3)-sequence with spektron of cardinality J$2, so that there
exists what may be termed an &>2-unsound ordinal.

Problem 6-5 (Woodin). How strong is the theory ZF + DC + all sets of reals are
Lebesgue measurable + there is an w2-unsound ordinal ?

We have generally assumed that &>j is regular. For completeness we ask a general
and a particular question:

Problem 6-6. If a)x is singular, is it unsound?

Problem 6-7. Is &>x unsound in Levy's model in which cf (wj = w?
Two questions arising from the discussion of Section 4 should be listed:

Problem 6-8 (Solovay). Consider the map <j) that assigns to each real of the form
a* the ordinal that is the cardinal successor in L[a] of the true a)v Is there a perfect set
of sharps on which the image of ^ is uncountable ?

Problem 6-9 (Kechris). Does 4-2 remain true when 83 is replaced by J$u or (better
still) K2?

Finally, a problem relevant to Section 5:

Problem 6-10. Does &»-> (w)w hold in Shelah's modelfll] for 'all sets of reals have the
property of Baire' ?
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