Mathematical Proceedings of the Cambridge Philosophical Society
 http://journals.cambridge.org/PSP

Additional services for Mathematical Proceedings of the Cambridge Philosophical Society:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

MATHEMATICAL PROCEEDINGS

Unsound ordinals

A. R. D. Mathias

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 96 / Issue 03 / November 1984, pp 391-411
DOI: 10.1017/S0305004100062319, Published online: 24 October 2008
Link to this article: http://journals.cambridge.org/abstract S0305004100062319

How to cite this article:

A. R. D. Mathias (1984). Unsound ordinals. Mathematical Proceedings of the Cambridge Philosophical Society, 96, pp 391-411 doi:10.1017/S0305004100062319

Request Permissions: $\underline{\text { Click here }}$

Unsound ordinals

By A. R. D. MATHIAS
Peterhouse, Cambridge

(Received 26 April 1984; revised 18 June 1984)
Abstract. An ordinal is termed unsound if it has subsets $A_{n}(n \in \omega)$ such that uncountably many ordinals are realised as order types of sets of the form $\cup\left\{A_{n} \mid n \in a\right\}$ where $a \subseteq \omega$. It is shown that if ω_{1} is regular and $\boldsymbol{\aleph}_{1}=2^{\aleph_{0}}$ then the least unsound ordinal is exactly $\omega_{1}^{\omega+2}$ but that if ω_{1} is regular and $\boldsymbol{\aleph}_{1} \$ 2^{\aleph_{0}}$, the least unsound ordinal, assuming one exists, is at least $\omega_{1}^{\omega+\omega+1}$. Arguments due to Kechris and Woodin are presented showing that under the axiom of determinacy there is an unsound ordinal less than ω_{2}. The relation between unsound ordinals and ideals on ω is explored. The paper closes with a list of open problems.

0. Introduction

Definition $0 \cdot 0$. Let $B=\left\langle B_{n} \mid n \in \omega\right\rangle$ be a sequence of sets of ordinals, and for $a \subseteq \omega$ write $B[a]$ for $\left\{B_{n} \mid n \in a\right\}$ and $\tau_{B}(a)$ for the order type of $\cup\left\{B_{n} \mid n \in a\right\}$. The set $\left\{\tau_{B}(a) \mid a \subseteq \omega\right\}$ will be called the spektron of B, and denoted by $\sigma \pi(B)$. A sequence of subsets of a set X will be called an (X)-sequence. An ordinal η is sound if every (η)-sequence has countable spektron; in the contrary case, η is termed unsound.

The present paper is addressed to a question raised by Woodin in September 1982, which in this terminology runs: Is there an unsound ordinal?

Definition $0 \cdot 1$.The ordinal $\omega_{1}^{\omega+1}$ will play a pivotal rôle in our investigations: we shall denote this ordinal throughout the paper by θ.

Definition 0.2. The letter ζ will denote the term 'the least unsound ordinal'.
As we have been unable to prove in $Z F$ alone that there is an unsound ordinal, ' $\zeta \geqslant \eta$ ' should be read as 'every ordinal less than η is sound' while ' $\zeta<\eta$ ' and ' $\zeta=\eta$ ' are interpreted to imply that an unsound ordinal exists.

In Section 1 we assume that ω_{1} is regular, and show that $\zeta \geqslant \omega_{1}^{\omega+2}$.
In Section 2 we show that if there is an uncountable well-ordered set of reals, then $\zeta=\omega_{1}^{\omega+2}$. However, in Section 3 we show that if ω_{1} is regular but every well-orderable set of reals is countable, then $\zeta \geqslant \omega_{1}^{\omega+\omega+1}$.

In Section 4, by their authors' permission, a lemma of Kechris and arguments of Woodin are presented showing that assuming the axiom of determinacy - the context in which Woodin was interested $-\zeta<\omega_{2}$. Section 5 relates unsound ordinals to ideals on ω, and Section 6 lists some open problems.

Our set-theoretic notation is largely standard. We denote the empty set by 0 . We write $\operatorname{otp}(A)$, where A is a set of ordinals, for its order type, which will be an ordinal. Thus $\tau_{B}(a)=\operatorname{otp}(\cup B[a])$. An aleph is an infinite initial ordinal. For X, T sets of ordinals, we say T is unbounded or cofinal in X if $T \cap X$ is. $\mathrm{cf}(\eta)$ is the cofinality of η. $[\kappa, \lambda)$ is the half-open interval $\{\nu \mid \kappa \leqslant \nu<\lambda\}$ of ordinals. The notation $\lambda=\Sigma\left\{A_{\nu} \mid \nu<\zeta\right\}$ is used to mean that $\lambda=\bigcup\left\{A_{\nu} \mid \nu<\zeta\right\}$, and moreover that whenever $\nu<\nu^{\prime}<\zeta$,
$\xi \in A_{\nu}$ and $\xi^{\prime} \in A_{\nu}$, we have $\xi<\xi^{\prime}$, so that the A_{ν} 's are pairwise disjoint convex subsets of λ. If $f: X \rightarrow Y, X_{1} \subseteq X$ and $Y_{1} \subseteq Y$, we write $f\left[X_{1}\right]$ for $\left\{f(x) \mid x \in X_{1}\right\}$ and $f^{-1}\left[Y_{1}\right]$ for $\left\{x \mid f(x) \in Y_{1}\right\}$. If $Y_{1}=\{y\}$, we write $f^{-1}\{y\}$ instead of $f^{-1}[\{y\}]$. The notation $B[a]$ used in 0.0 is thus a special case of this notation. Power (X) is the power set of $X,\{Y \mid Y \subseteq X\}$.

Definition $0 \cdot 3$. An ordinal ζ is indecomposable if $(\xi<\zeta$ and $\eta<\zeta$) implies $\xi+\eta<\zeta$.
We shall use the result (cf. Bachmann[1], pp. 84, 68) that the indecomposable ordinals are precisely those of the form ω^{α} for some α.

Definition 0.4. Let $\pi: X \cong Y$ be an order-isomorphism between two sets, X and Y, of ordinals. If A is an (X)-sequence, the (Y)-sequence B obtained by setting

$$
B(n)=\pi[A(n)] \text { for } n \in \omega
$$

will be called the copy of A by π. The name B of the new sequence will often be introduced by a phrase such as 'copy A to B by π ' or 'copy X to Y and each A_{n} to B_{n} '.
Our underlying set theory is Zermelo-Fraenkel, without the axiom of choice. All assumptions are given in the statements of Theorems, but standing assumptions may be omitted from the statements of Lemmata and Propositions. The end of a proof is signalled by \mid.
In many sections of this paper we shall assume the well-known consequence of the axiom of choice that ω_{1} is regular. It will be convenient to present in this section two theorems of $Z F$ alone.

Lemma $0 \cdot 0$. The closure of a countable set A of ordinals is countable.
Proof. Let $\pi: \xi \cong A$ enumerate A in increasing order: so $\xi<\omega_{1}$. Define

$$
\rho: \xi+1 \rightarrow \operatorname{cl}(A) \quad \text { by } \quad \rho(n)=\pi(n)
$$

for $n<\omega, \rho(\lambda)=\bigcup\{\pi(\nu) \mid \nu<\lambda\}$ for $\omega \leqslant \lambda \leqslant \xi$. Then ρ is onto $\mathrm{cl}(A)$: for $\eta \in A$ implies $\eta=\pi(\nu)$ say, which implies $\eta=\rho(\nu+1)$ if $\nu \geqslant \omega$, or $\eta=\rho(\nu)$ if $\nu \leqslant \omega$: and if

$$
\eta \in \operatorname{cl}(A) \backslash A, \quad \text { then } \quad \eta=\rho(\cup\{\nu \mid \pi(\nu)<\eta\}) . \quad \mid
$$

Lemma $0 \cdot 1 . \omega_{1}$ is regular if and only if the union of every countable family of countable sets of ordinals is countable.

Proof. Suppose that ω_{1} is regular and let each $A_{n}(n \in \omega)$ be a countable set of ordinals: let ξ_{n} be the order type of A_{n}. Each $\xi_{n}<\omega_{1}$, so defining inductively $\zeta_{0}=\xi_{0}, \zeta_{n+1}=$ $\zeta_{n}+\xi_{n}$, each $\zeta_{n}<\omega_{1}$, and $\zeta={ }_{\text {di }} \cup\left\{\zeta_{n} \mid n \in \omega\right\}$ is less than ω_{1}. But clearly there is a surjection of ζ onto $\cup\left\{A_{n} \mid n \in \omega\right\}$, which is therefore countable.

The converse is trivial.

1. The soundness of θ

Throughout this section we assume that ω_{1} is regular.
Definition $1 \cdot 0$. An ordinal η is solid if whenever $\eta=\bigcup\left\{B_{n} \mid n \in \omega\right\}$, one of the sets B_{n} has order type $\eta . \eta$ is hollow otherwise.

Examples $1 \cdot 1.0$ and 1 are solid; every other countable ordinal is hollow; ω_{1}, being regular, is solid.

Lemma 1-2. If κ is solid then $\kappa . \omega_{1}$ is solid.
Proof. Let $\kappa . \omega_{1}=\Sigma\left\{A_{\nu} \mid \nu<\omega_{1}\right\}$, where each A_{ν} is of order type κ. Suppose

$$
\kappa \cdot \omega_{1}=\bigcup\left\{B_{n} \mid n \in \omega\right\} .
$$

For each $\nu, A_{\nu}=\bigcup\left\{A_{\nu} \cap B_{n} \mid n \in \omega\right\}$, so, since κ is solid, there is an n with

$$
\operatorname{otp}\left(A_{\nu} \cap B_{n}\right)=\kappa
$$

By the regularity of ω_{1}, there is a p such that for uncountably many different ν 's, $\operatorname{otp}\left(A_{\nu} \cap B_{p}\right)=\kappa$. Then $\operatorname{otp}\left(B_{p}\right)=\kappa . \omega_{1} . \quad$ |

Since ω_{1} is solid, iteration of Lemma $1 \cdot 2$ immediately establishes
Lemma 1-3. Each ω_{1}^{k} for $k \in[1, \omega)$ is solid. I
Lemma 1-4. If κ is solid and, for each $i<\omega, B_{i}$ is a set of ordinals with $\operatorname{otp}\left(B_{i}\right)<\kappa$, then $\operatorname{otp}\left(\cup\left\{B_{i} \mid i<\omega\right\}<\kappa\right.$.

Proof. If not, let λ be the supremum of the first κ elements of $\cup\left\{B_{i} \mid i<\omega\right\}$. Set $C_{i}=B_{i} \cap \lambda$, and copy $\cup_{i} C_{i}$ to κ and each C_{i} to D_{i}. Then by the solidity of κ, some D_{i} has order type κ.

Lemma 1-5. ω_{1}^{ω} is hollow.
Proof. Set $B_{0}=\omega_{1}$ and for $n \geqslant 1, B_{n}=\left[\omega_{1}^{n}, \omega_{1}^{n+1}\right)$. |
Lemma 1-6. Every countable ordinal is sound.
Proof. For B a (κ)-sequence, $\sigma \pi(B) \subseteq \kappa+1$, and is countable if κ is. I
Lemma 1-7. ω_{1} is sound.
Proof. Let $\left(B_{n}\right)_{n}$ be an (ω_{1})-sequence, and let $a \subseteq \omega$. If otp $\left(B_{n}\right)=\omega_{1}$ for some $n \in a$, $\tau_{B}(a)=\omega_{1}$. Otherwise $a \subseteq a_{0}={ }_{\mathrm{df}}\left\{n \mid \operatorname{otp}\left(B_{n}\right)<\omega_{1}\right\}$, and $\tau_{B}(a) \leqslant \tau_{B}\left(a_{0}\right)$, but $\tau_{B}\left(a_{0}\right)<\omega_{1}$ by the regularity of ω_{1}. |

Lemma 1-8. If $\lambda<\kappa$ and κ is sound then λ is sound. I
Lemma 1-9. If ξ and η are sound, so is $\xi+\eta$.
Proof. Let $\left(B_{n}\right)_{n}$ be an $(\xi+\eta)$-sequence. Put $C_{n}=\xi \cap B_{n}$, and $D_{n}=\left\{\nu<\eta \mid \xi+\nu \in B_{n}\right\}$. Then $\sigma \pi(B)=\left\{\tau_{C}(a)+\tau_{D}(a) \mid a \subseteq \omega\right\}$, which is countable since $\sigma \pi(C)$ and $\sigma \pi(D)$ are.

Lemma 1-10. If $\mathrm{cf}(\rho)=\omega$ and every $\eta<\rho$ is sound, so is ρ.
Proof. Let $\left(\rho_{k}\right)_{k}$ be an increasing sequence with supremum ρ, and suppose that $\left(B_{n}\right)_{n}$ is a (ρ)-sequence with uncountable spektron. Let λ be the supremum of the first ω_{1} elements of the spektron of B, and set $T=\sigma \pi(B) \cap \lambda$. Note that $\operatorname{cf}(\lambda)=\omega_{1}$ and $\sup T=\lambda$.

Now put $C^{k}=\left(B_{n} \cap \rho_{k}\right)_{n}$ and $T^{k}=\lambda \cap \sigma \pi\left(C^{k}\right)$.
Each T^{k} is countable, as ρ_{k} is sound, and so by Lemma $0.6 \cup\left\{T^{k} \mid k \in \omega\right\}$ is countable. Its supremum, ξ, say, is therefore less than λ, which has cofinality ω_{1}. But each $\eta \in T$ is a supremum of members of $\bigcup\left\{T^{k} \mid k \in \omega\right\}$, and so is less than or equal to ξ, a contradiction. |

Suppose now that there is an unsound ordinal less than ω_{2}. Then ζ, the least such, is not a successor, by Lemma $1 \cdot 9$, and so by Lemma $1 \cdot 10, \operatorname{cf}(\zeta)=\omega_{1}$.

Lemma 1-11. For some $\beta \geqslant 1, \zeta=\omega_{1}^{\beta}$.
Proof. $\zeta \geqslant \omega_{1}$. By Lemma $1 \cdot 9, \zeta$ is indecomposable, and so of the form ω^{α} for some $\alpha \geqslant \omega_{1}$. Let $\alpha=\omega_{1} \beta+\gamma$, where $\beta \geqslant 1$ and $\gamma<\omega_{1}$. Thus $\zeta=\omega^{\omega_{1} \beta} \cdot \omega^{\gamma}=\omega_{1}^{\beta} \cdot \omega^{\gamma}$. If $\gamma>0, \omega^{\gamma}$ would be a countable limit ordinal, and thus, ef $(\zeta)=\omega$, contradicting Lemma $1 \cdot 10$. Thus $\gamma=0$, and the Lemma follows.

Lemma 1-12. ζ is hollow.
Proof. Let $\left(A_{n}\right)_{n}$ be a (ζ)-sequence with uncountable spektron. Discard those A_{n} with $\operatorname{otp}\left(A_{n}\right)=\zeta$: that is, define $B_{n}=A_{n}$ if $\operatorname{otp} A_{n}<\zeta, B_{n}=0$, the empty set, otherwise. Then $\sigma \pi(B)$ is still uncountable, and so, by the minimality of $\zeta, \tau_{B}(\omega)=\zeta$. Copy $\cup B[\omega]$ to ζ and each B_{k} to C_{k}. Then $\zeta=\bigcup\left\{C_{k} \mid k \in \omega\right\}$ and each C_{k} is of type less than ζ. |

Lemma 1-13. $\zeta \geqslant \theta$.
Proof. By $1 \cdot 11,1 \cdot 3$, and $1 \cdot 10$. |
The following discussion takes place in $Z F$ alone.
Let κ be a regular aleph, η be an ordinal of cofinality κ, and G a cofinal subset of η. Write $\xi=\operatorname{otp}(G)$, so that $\operatorname{cf}(\xi)=\kappa$, and, By a method going back to Cantor and expounded in Sierpinski[9], chapter xiv, section 19, theorem 3, express ξ as a sum of powers of κ :

$$
\xi=\kappa^{\zeta_{0}} \lambda_{0}+\kappa^{\zeta_{1}} \lambda_{1}+\ldots+\kappa^{\zeta_{m}} \lambda_{m}
$$

where each $\lambda_{i} \in[1, \kappa)$ and $\zeta_{0}>\zeta_{1}>\zeta_{2}>\ldots>\zeta_{m}$. Note that λ_{m} cannot be a limit ordinal and ζ_{m} cannot equal 0 , as otherwise $\mathrm{cf}(\xi)$ would not equal κ. Put $\lambda_{m}=\lambda+1$: then for some $\rho<\xi, \xi=\rho+\kappa^{\zeta_{m}}$, so $\kappa=\operatorname{cf}(\xi)=\operatorname{cf}\left(\kappa^{\zeta m}\right)$, so ζ_{m} is a successor ordinal or a limit ordinal of cofinality κ. In particular, if $\eta=\kappa^{\omega+1}, \zeta_{m}=\omega+1$ or some $k \in[1, \omega)$. These remarks lead to the following

Lemma 1-14. Let κ be a regular aleph and let $G \subseteq \kappa^{\omega+1}$. Then exactly one of the following holds:
(i) G is of order type $\kappa^{\omega+1}$;
(ii) there is a $\xi<\kappa^{\omega+1}$ and $a k \in[1, \omega)$ such that $G \backslash \xi$ is of order type κ^{k};
(iii) there is a $\xi<\kappa^{\omega+1}$ such that $G \backslash \xi$ is empty.

Proof. Part (iii) covers the case when G is bounded below $\kappa^{\omega+1}$. When G is unbounded in $\kappa^{\omega+1}$, the foregoing discussion shows that (i) or (ii) holds. I

Assume again that ω_{1} is regular. With Lemma $1 \cdot 14$ for $\kappa=\omega_{1}$ and $\kappa^{\omega+1}=\theta$ in mind, we make

Definition $1 \cdot 15$. For $G \subseteq \theta$ with $\operatorname{otp}(G)<\theta$, set $\xi(G)=$ the least $\xi<\theta$ such that $1 \cdot 14$ (ii) or $1 \cdot 14$ (iii) holds, and call $G \backslash \xi(G)$ the tail of G. Set $k(G)=k$ if the tail has order type ω_{1}^{k} (case (ii)) and $=0$ if the tail of G is empty (case (iii)).

Theorem 1-16. If ω_{1} is regular, $\omega_{1}^{\omega+1}$ is sound.
Proof. Let $\left(A_{n}\right)_{n}$ be a (θ)-sequence with uncountable spektron. As in $1 \cdot 12$, we may suppose that each A_{n} is of order type less than θ, since those A_{n} of order type θ make no contribution to the uncountability of $\sigma \pi(A)$. Let $\xi=\sup \left\{\xi\left(A_{n}\right) \mid n \in \omega\right\} . \xi<\theta$ as $\operatorname{cf}(\theta)=\omega_{1}$. Put $B_{n}=A_{n} \backslash \xi$ and $k(n)=k\left(A_{n}\right)$. Then each B_{n} is either empty or of order type $\omega_{1}^{k(n)}$. The spektron of the sequence $\left(A_{n} \cap \xi\right)_{n}$ is countable, as every ordinal less than θ is sound, so $\sigma \pi\left(\left(B_{n}\right)_{n}\right)$ is uncountable, by arguments similar to those of 1.9 .

Now let $a \subseteq \omega$. Two cases arise: if $\sup \{k(n) \mid n \in a\}=\omega$, then by Lemma $1 \cdot 14$, $\operatorname{otp}(\cup B[a])=\theta$, but if $\sup \{k(n) \mid n \in \omega\}=m<\omega$, then by Lemma $1 \cdot 4$,

$$
\operatorname{otp}(\cup B[a])=\omega_{1}^{m}
$$

So $\sigma \pi(B) \subseteq\left\{\omega_{1}^{k} \mid k \in \omega\right\} \cup\{\theta\}$, and is thus countable after all. I

2. The unsoundness of $\omega_{1}^{\omega+2}$, provided $\boldsymbol{\aleph}_{1} \leqslant 2^{\aleph_{0}}$

We shall utilize the paradox of Milner and Rado [9], theorem 5, that for each aleph κ, every ordinal ξ less than κ^{+}is expressible as the disjoint union of sets $A_{k}(k \in[1, \omega))$ with $\operatorname{otp}\left(A_{k}\right) \leqslant \kappa^{k}$. With an eye to applications in $\S 5$, we prove sharpened versions of their results: the central ideas in the proof of Proposition 2.10 are theirs.

Definition 2.0. A decomposition of η is a sequence of disjoint sets A_{n} with $\cup A[\omega]=\eta$.
In the following, let κ be an aleph. The prefix ' κ-', included in the definitions for greater precision, will be omitted whenever the context permits.

Definition 2.1. A Milner-Rado κ-decomposition of $\eta \in\left[\kappa, \kappa^{+}\right)$is a decomposition $\left(A_{n}\right)_{n}$ of η with $A_{0}=0$ and $\operatorname{otp}\left(A_{n}\right) \leqslant \kappa^{n}$ for $n \in[1, \omega)$.
Definition 2.2. A strong κ-decomposition of $\eta \in\left[\kappa, \kappa^{+}\right)$is a Milner-Rado decomposition $\left(A_{n}\right)_{n}$ of η such that for all $a \in[\omega]^{\omega}$, otp $(\cup A[a])=\eta$.
Note that for a trivial reason a successor ordinal cannot have a strong decomposition.

Definition 2.3. A κ-superdecomposition of $\eta \in\left[\kappa, \kappa^{+}\right)$is a decomposition $\left(A_{n}\right)_{n}$ such that $A_{0}=0, \operatorname{otp} A_{n}=\kappa^{n}$ for all $n \in[1, \omega)$, and for all $\left(B_{n}\right)_{n}$ with each $B_{n} \subseteq A_{n}$ and $\operatorname{otp} B_{n}=\operatorname{otp} A_{n}$ and all $a \in[\omega]^{\omega}, \operatorname{otp}(\cup B[a])=\eta$.
Thus every superdecomposition is strong.
We first determine, for regular κ, those $\eta \in\left[\kappa, \kappa^{+}\right)$which admit superdecompositions.
Proposition 2.4. Let κ be an aleph. Then
(i) κ^{ω} has a superdecomposition.
(ii) $\kappa^{\omega+1}$ has a strong decomposition which if κ is regular is a superdecomposition.
(iii) If κ is regular, the only ordinals in $\left[\kappa, \kappa^{+}\right)$with a superdecomposition are κ^{ω} and $\kappa^{\omega+1}$.
Proof. (i) Set $J_{0}=0, J_{1}=\kappa, J_{n}=\left[\kappa^{n-1}, \kappa^{n}\right)$ for $n \geqslant 2$. This is plainly a superdecomposition of κ^{ω}, and will be called the canonical one.
(ii) Write $\kappa^{\omega+1}=\Sigma_{\nu<\kappa}{ }_{k} I_{\nu}$ where each I_{ν} is of order type κ^{ω}. Let $\left(J_{n}\right)_{n}$ be the canonical superdecomposition of κ^{ω}, and write each I_{ν} as $\Sigma_{n} J_{\nu, n}$ by copying κ^{ω} to I_{ν} and thereby J_{n} to $J_{\nu, n}$. Set $A_{0}=0$ and $A_{n}=\bigcup_{\nu<\kappa} J_{\nu, n-1}$ for $n>0$.

Then $A_{1}=0$ and $\operatorname{otp} A_{n}=\kappa^{n}$ for $n>1$, and the A_{n} 's are disjoint. If $a \in[\omega]^{\omega}$, each $I_{\nu} \cap \cup A[a]$ has order type κ^{ω}, by (i), so otp $(\cup A[a])=\kappa^{\omega+1}$. Thus $\left(A_{n}\right)_{n}$ is a strong decomposition, which we shall also call canonical.
Now suppose that κ is regular, $a \in[\omega]^{\omega}, B_{n} \subseteq A_{n}$ and $\operatorname{otp} B_{n}=\operatorname{otp} A_{n}$. Then for each n, B_{n} is cofinal in A_{n} and A_{n} is cofinal in $\kappa^{\omega+1}$, so $\sup \cup B[a]=\kappa^{\omega+1}$. Since a is infinite, $\operatorname{otp}(\cup B[a] \backslash \xi) \geqslant \kappa^{\omega}$ for each $\xi<\kappa^{\omega+1} ;$ by Lemma $1 \cdot 14$, otp $(\cup B[a])=\kappa^{\omega+1}$.
In the proof of (iii) we shall need the following
Lemma 2.5. Let κ be a regular aleph, $k \in[1, \omega)$, and $H=\Sigma_{\nu<\kappa} I_{\nu}$, where each I_{ν} is of order type less than κ^{k}. Then $\operatorname{otp}(H) \leqslant \kappa^{k}$.
Proof. For $k=1$, this follows from the regularity of κ. For $k=m+1$, pick for each $\nu<\kappa \xi_{\nu}$ minimal so that otp $I_{\nu}<\kappa^{m} . \xi_{\nu}$. Then each $\xi_{\nu}<\kappa$, so (by the case $k=1$) $\Sigma_{\nu<\kappa} \xi_{v} \leqslant \kappa$ and $\operatorname{otp}(H) \leqslant \kappa^{m} \cdot \Sigma \xi_{v} \leqslant \kappa^{m+1}$, as required.

Proof of $2 \cdot 4$ (iii). Suppose κ regular, let $\left(A_{n}\right)_{n}$ be a superdecomposition of $\eta \in\left[\kappa, \kappa^{+}\right)$, and for $\xi \leqslant \eta$ set $a_{\xi}=\left\{n \mid \sup A_{n}<\xi\right\}$. η must be a limit ordinal, and for all $\xi<\eta, a_{\xi}$ is finite, as otp $\left(\cup A\left[a_{\xi}\right]\right) \leqslant \xi$.

If a_{η} is infinite, $\operatorname{otp}\left(\cup A\left[a_{\eta}\right]\right)=\eta$, so $\operatorname{cf}(\eta)=\omega$. We may now pick increasing sequences $k_{n} \in a_{\eta}, \eta_{n}<\eta$, with $\sup _{n} \eta_{n}=\eta$ and $\eta_{n}=\sup A_{k_{n}}$. If we now put

$$
B_{k_{n}}=A_{k_{n}} \mid \eta_{n-1} \quad \text { and } \quad b=\left\{k_{n} \mid n \in \omega\right\},
$$

we find otp $(\cup B[b])=\kappa^{\omega}$, so $\eta=\kappa^{\omega}$.
If a_{η} is finite, then for $n \notin a_{\eta}, \operatorname{cf}(\eta)=\operatorname{cf}\left(A_{n}\right)=\kappa$. Write $\eta=\Sigma_{\nu<\kappa} I_{\nu}$ in any fashion with each I_{ν} non-empty. Suppose $n \notin a_{\eta}$. Then otp $\left(A_{n} \backslash \xi\right)=\kappa^{n}$ for each $\xi<\eta$ so by Lemma 2.5, $\left\{\nu \mid \operatorname{otp}\left(A_{n} \cap I_{\nu}\right) \geqslant \kappa^{n-1}\right\}$ is cofinal in κ. Armed with this fact and exploiting the regularity of κ, we may define $f: \kappa \rightarrow \omega \backslash a_{\eta}$ such that for all $n \notin a_{\eta}$,

$$
\left\{\nu<\kappa \mid \operatorname{otp}\left(A_{n} \cap I_{v}\right) \geqslant \kappa^{n-1} \text { and } f(\nu)=n\right\}
$$

is cofinal in κ. Now set for $n \notin a_{\eta}, B_{n}=\bigcup\left\{A_{n} \cap I_{\nu} \mid f(\nu)=n\right\}$. Then $\operatorname{otp}\left(B_{n}\right)=\kappa^{n}=\operatorname{otp}$ $\left(A_{n}\right)$, so $\eta=\operatorname{otp}\left(\cup B\left[\omega \backslash a_{\eta}\right]\right)$; but by Lemma $1 \cdot 14$, otp $\left(\cup B\left[\omega \backslash a_{\eta}\right]\right)=\kappa^{\omega+1} . \quad$ |
We shall now show that for any aleph κ, every limit ordinal $\lambda \in\left[\kappa, \kappa^{+}\right)$has a strong decomposition. For each λ that will be proved by an induction from κ to λ.

Lemma 2.6. Let $\xi<\kappa^{+}$. Then there is a function f which assigns to each limit ordinal $\lambda \leqslant \xi$ a closed cofinal subset $f(\lambda)$ of λ with $\operatorname{otp}(f(\lambda)) \leqslant \kappa$.

Proof. With $A C$ the lemma is obvious. If $A C$ fails, let $Q \subseteq \kappa \times \kappa$ code ξ, so that in $L[Q], \xi<\kappa^{+}$. As $A C$ is true in $L[Q]$ and the form of the conclusion is absolute, the lemma now follows.

Lemma 2-7. Suppose $G=\Sigma_{\nu<\mu} I_{\nu}$, where $\mu \leqslant \kappa$ and each $\operatorname{otp}\left(I_{\nu}\right) \in\left[\kappa, \kappa^{+}\right)$. Suppose that for each $\nu<\mu,\left(A_{\nu, n}\right)_{n}$ is a strong κ-decomposition of I_{ν}. Set $B_{0}=0, B_{n+1}=\bigcup\left\{A_{\nu, n} \mid \nu<\mu\right\}$. Then $\left(B_{n}\right)_{n}$ is a strong κ-decomposition of G.

Proof. $A_{0}=A_{1}=0 . \operatorname{otp} A_{n+1} \leqslant \kappa^{n} \cdot \mu \leqslant \kappa^{n+1}$. The A_{n} 's are disjoint.
Let $a \in[\omega]^{\omega}$. Then $(\cup B[a]) \cap I_{\nu}=\bigcup\left\{A_{\nu, n} \mid n \in a\right\}$, which is of order type equal to that of I_{ν}, as $\left(A_{\nu, n}\right)_{n}$ is a strong decomposition. Hence

$$
\operatorname{otp}(\cup A[a])=\Sigma \operatorname{otp}\left(I_{\nu}\right)=\operatorname{otp} G .
$$

Lemma 2.8. Let $\xi \in\left[1, \kappa^{+}\right)$. There is a function that assigns to each $\eta \in[1, \xi)$ a strong κ-decomposition of κ^{η}.

Proof. Fix $\xi<\kappa^{+}$, and let f be a function, as in $2 \cdot 6$, which assigns to each limit ordinal $\lambda \leqslant \xi$ a closed cofinal subset $f(\lambda)$ of λ with otp $(f(\lambda)) \leqslant \kappa$.

We first define by induction on $\eta \leqslant \xi$ a strong decomposition $A^{\eta}=\left(A_{n}^{\eta}\right)_{n}$ of κ^{η}.
For $\eta \in[1, \omega)$ take $A_{n}^{\eta}=0$ for $n<\eta$ and $A_{\eta+k}^{\eta}=\left\{\lambda+k \mid \lambda\right.$ a limit ordinal less than $\left.\kappa^{\eta}\right\}$ for $k>0$.

Take A^{ω} to be the canonical superdecomposition of κ^{ω}.
For $\eta=\mu+1$, write $\kappa^{\eta}=\Sigma_{\nu<\kappa} I_{\nu}$ where each I_{ν} is of order type κ^{μ}, and strongly decompose each I_{ν} by copying κ^{μ} to I_{ν} and $\left(A_{n}^{\mu}\right)_{n}$ to $\left(A_{\nu, n}\right)_{n}$. Set $A_{0}^{\eta}=0$,

$$
A_{k+1}^{\eta}=\bigcup\left\{A_{v, k} \mid \nu<k\right\}
$$

In particular, $A^{\omega+1}$ will be the canonical strong decomposition of $2 \cdot 4$ (ii).
For η a limit ordinal greater than ω, let $\eta_{\nu}(\nu<\rho \leqslant \kappa)$ be the closed sequence cofinal
in η yielded by f, let $A^{(\nu)}$ be the strong decomposition of the interval $\left[\kappa^{\eta_{\nu}}, \kappa^{\eta_{\nu+1}}\right.$) copied from $A^{\eta_{\nu+1}}$ when that interval is copied from $\kappa^{\eta_{\nu+1}}$, and set

$$
A_{n+1}^{\eta}=\bigcup\left\{A_{n}^{(\nu)} \mid \nu<\rho\right\} \quad \text { and } \quad A_{0}^{\eta}=0
$$

then, as before, each $\operatorname{otp}\left(A_{n+1}^{\eta}\right) \leqslant \kappa^{n+1}$.
Let $a \in[\omega]^{\omega}$. That for $\eta \in[1, \xi]$, otp $\left(\cup A^{\eta}[a]\right)=\kappa^{\eta}$ is trivial for $\eta \leqslant \omega$ and follows from Lemma $2 \cdot 7$ for $\eta \geqslant \omega+1$. |

Lemma 2.9. There is a function assigning to each limit ordinal λ less than κ a decomposition of it into ω pieces each of order type λ.

Proof. Let A^{0} be a decomposition of ω into ω infinite pieces. For any limit λ less than κ, write $\lambda=\omega \cdot \eta$, copy A^{0} to each $[\omega \cdot \nu, \omega .(\nu+1))$ as $A_{(\nu)}$ and take

$$
A_{n}^{\lambda}=\bigcup_{v<\eta} A_{(v), n} . \quad \mid
$$

Note that the above is in a trivial sense a strong κ-decomposition of λ.
Proposition 2.10. Let $\xi<\kappa^{+}$. There is a function assigning to each limit ordinal in $[\kappa, \xi)$ a strong decomposition thereof.

Proof. Lemma $2 \cdot 8$ yields a strong decomposition of each $\kappa^{\eta}(\eta \in[1, \xi))$. Any limit ordinal $\lambda \in\left[\kappa, \kappa^{5}\right)$ is of the form

$$
\kappa^{\eta_{0}} \pi_{0}+\kappa^{\eta_{1}} \pi_{1}+\ldots+\kappa^{\eta_{k}} \pi_{k}
$$

where $\eta_{0}>\eta_{1}>\ldots>\eta_{k}$ and each $\pi_{i}<\kappa$, and so a strong decomposition of it can be built up using Lemma 2.8 and, if $\eta_{k}=0$, Lemma 2.9. I

Remark 2.11. Proposition $2 \cdot 10$ is a theorem of $Z F$. The assertion that there is a function defined on κ^{+}assigning to each $\zeta \in\left[\kappa, \kappa^{+}\right.$) a Milner-Rado decomposition thereof is equivalent in $Z F$ to the statement that there is a function defined on κ^{+}and assigning to each limit ordinal less than κ^{+}a cofinal subset of order type at most κ; implies, in $Z F$, that $\kappa^{+} \leqslant 2^{\kappa}$; and may therefore be unprovable in $Z F$, since its falsehood is (semantically) equiconsistent with $A C$ plus the existence of a strong inaccessible greater than κ : cf. the discussion of Church's alternatives in Jech [7], chapter 11, section 4, problems 23 and 24.
$2 \cdot 10$ immediately yields the original Milner-Rado theorem that every ordinal in $\left[\kappa, \kappa^{+}\right.$) has a Milner-Rado κ-decomposition. Of the foregoing discussion, that corollary is all we need for the next theorem; the rest will be applied in Section 5.

Theorem 2-12. If $\aleph_{1} \leqslant 2^{\aleph_{0}}, \omega_{1}^{\omega+2}$ is unsound.
Proof. There is a perfect set of pairwise almost disjoint infinite subsets of ω, for example the set of paths through the tree

So if $\boldsymbol{\aleph}_{1} \leqslant 2^{\boldsymbol{N}_{0}}$, there is a sequence ($a_{\nu} \mid \nu<\omega_{1}$) of pairwise almost disjoint infinite subsets of ω. For each $\nu<\omega_{1}$, let $\tilde{a}_{\nu}: \omega \leftrightarrow a_{\nu}$ enumerate a_{ν} in increasing order.

For $\nu<\omega_{1}$, put $I^{1+\nu}=\left[\theta .2^{\nu}, \theta .2^{p+1}\right)$, and $I^{0}=\theta$. Then $\operatorname{otp}\left(I^{\nu}\right)=\theta .2^{\nu}$, and $\omega_{1}^{\omega+2}=\Sigma_{\nu<\omega_{1}} I^{\nu}$.

Let $A^{\nu}=\left(A_{k}^{\nu}\right)_{k}$ be a Milner-Rado decomposition of I^{ν}.
Now set $B_{n}^{\nu}=0$ for $n \notin a_{\nu}$; and for $n \in a_{\nu}$, set $B_{n}^{\nu}=A_{k}^{\nu}$, where $n=\tilde{a}_{\nu}(k)$.
Finally, put

$$
B_{n}=\bigcup\left\{B_{n}^{\nu} \mid \nu<\omega_{1}\right\} \quad \text { and } C^{\nu}=\bigcup\left\{B_{n} \mid n \in a_{\nu}\right\} .
$$

$C^{\nu} \supseteq I^{\nu}$, so $\operatorname{otp}\left(C^{\nu}\right) \geqslant \theta .2^{\nu}$. For $\nu \neq \mu$,

$$
C^{\nu} \cap I^{\mu}=\bigcup\left\{B_{n}^{\mu} \mid n \in a_{\nu} \cap a_{\mu}\right\} ;
$$

as $a_{\nu} \cap a_{\mu}$ is finite, otp $\left(C^{\nu} \cap I^{\mu}\right)<\omega_{1}^{\omega}$. Hence for each $\nu \in\left[2, \omega_{1}\right)$,

$$
\theta \cdot 2^{\nu} \leqslant \operatorname{otp}\left(C^{\nu}\right) \leqslant \omega_{1}^{\omega} \cdot \nu+\theta \cdot 2^{\nu}+\omega_{1}^{\omega} \cdot \omega_{1} \leqslant \theta\left(1+2^{\nu}+1\right)<\theta \cdot 2^{\nu+1} \leqslant \operatorname{otp}\left(C^{\nu+1}\right) .
$$

Thus $\left\{\tau_{B}\left(a_{p}\right) \mid \nu<\omega_{1}\right\}$ is uncountable, and $\omega_{1}^{\omega+2}$ is unsound. |
Remark 2.13. If $\kappa \leqslant 2 \kappa_{0}$, then $\kappa^{\omega+2}$ is κ-unsound in the sense that there is a ($\kappa^{\omega+2}$)sequence with spektron of order type at least κ.

3. The soundness of $\omega_{1}^{\omega+\omega}$, provided $\boldsymbol{\aleph}_{1} \not 2^{\boldsymbol{N}_{0}}$

Our goal in this section is the following
Theorem 3.0. Suppose that ω_{1} is regular and that every well-orderable set of reals is countable. Then the least unsound ordinal is at least $\omega_{1}^{\omega+\omega+1}$.

We assume throughout the section that ω_{1} is regular and that $\boldsymbol{N}_{1} \$ 2^{\aleph_{0}}$. As before, we write θ for $\omega_{1}^{\omega+1}$ and, supposing that there is an unsound ordinal, ζ for the least such. From work in previous sections, we know that ζ is at least $\theta . \omega_{1}$, and that the theorem will be established if we can prove that for each $k \in[1, \omega), \theta . \omega_{1}^{k}$ is sound.

We begin by making various reductions which will illustrate the use made of our hypothesis that $\boldsymbol{N}_{1} \$ 2^{\aleph_{0}}$. We shall then in an apparent digression prove a proposition about ω-colourings of ω_{1}^{k} : this proposition will enable us to establish the soundness of $\theta . \omega_{1}^{k}$ by direct calculation of spektra.

Lemma 3.1. Let ξ be an unsound ordinal. Then there is a (ξ)-sequence \boldsymbol{B} with uncountable spektron and $B_{n} \cap B_{m}$ empty for $n<m<\omega$.

Proof. Let A be a (ξ)-sequence with uncountable spektron. For $v<\xi$, let

$$
a_{\nu}=\left\{n \mid \nu \in A_{n}\right\} .
$$

Then $\left\{a_{\nu} \mid \nu<\xi\right\}$ is a well-orderable set of reals and hence countable: enumerate it as $\left\{b_{i} \mid i<\omega\right\}$ and put $B_{i}=\left\{\nu \mid a_{\nu}=b_{i}\right\}$. Then for $i \neq j, B_{i} \cap B_{j}$ is empty. For fixed n and i, and arbitrary $\mu, \nu \in B_{i}$,

$$
\nu \in A_{n} \leftrightarrow n \in a_{\nu}=b_{i}=a_{\mu} \leftrightarrow \mu \in A_{n},
$$

so that $B_{i} \subseteq A_{n}$ or $B_{i} \cap A_{n}=0$. Thus each A_{n} is a union of some B_{i} 's, so $\sigma \pi(B)$ contains $\sigma \pi(A)$ and is hence uncountable.
Remark 3-2. In previous sections we have not assumed that the sequences considered are of pairwise disjoint sets. Lemma $3 \cdot 1$ shows that there is no loss of generality in doing so. Though the proof given here assumes that $\boldsymbol{N}_{1} \$ 2^{\boldsymbol{N}_{0}}$, the lemma is also true if $\boldsymbol{N}_{1} \leqslant 2^{\delta_{0}}$, provided ω_{1} is regular, since then we know that $\zeta=\omega_{1}^{\omega+2}$ and our construction in the last section is of such a disjoint sequence. That sequence also possesses the properties described in the next lemma.

Definition 3.3. A solid set of ordinals is one of order type ω_{1}^{m} for some $m \in[1, \omega)$. If the exact value of m is to be specified the set will be called m-solid.

Lemma 3.4. If ζ is the least unsound ordinal, there is a (ζ)-sequence, of solid and pairwise disjoint sets, with uncountable spektron.

Proof. Let B be as in Lemma 3•1. Using 2.10, we may assign to each B_{n} a MilnerRado decomposition $\left(B_{n, m}\right)_{m}$ thereof with otp $\left(B_{n, m}\right) \leqslant \omega_{1}^{m}$. Enumerating the double sequence $\left(B_{n, m}\right)_{n, m}$ as a single sequence $\left(D_{i}\right)_{i}$ we obtain a (ζ)-sequence D of pairwise disjoint sets, each of order type less than ω_{1}^{ω}. We may now apply the discussion of $1 \cdot 14$ to find for each i an ordinal $\xi_{i}<\zeta$ such that $D_{i} \backslash \xi_{i}$ is either empty or cofinal in ζ and of order type ω_{1}^{k} for some $k=k_{i} \in[1, \omega)$. Then $\xi={ }_{\mathrm{d} \ell} \cup_{i} \xi_{i}$ is also less than ζ and therefore sound, so $\sigma \pi\left(\left(D_{i} \cap \xi\right)_{i}\right)$ is countable, and therefore by arguments in the Proof of $1 \cdot 9, \operatorname{otp}(\zeta \backslash \xi)=\zeta$ and $\sigma \pi\left(\left(D_{i} \backslash \xi\right)_{i}\right)$ is uncountable. By copying $\left(D_{i} \backslash \xi\right)_{i}$ from $\zeta \backslash \xi$ to ζ, we obtain a (ζ)-sequence as desired.

An important ingredient in making further reductions is Toulmin's notion of a shuffle.

Definition 3.5. An ordinal η is called a shuffle of ordinals ρ and σ if η is the union of two disjoint sets of order type ρ and σ respectively.

Proposition 3.6 (Toulmin[13], p. 184). (i) No indecomposable ordinal is a shuffle of two smaller ordinals.
(ii) Only finitely many ordinals are shuffles of a prescribed pair of ordinals.

The significance of Toulmin's theorem for our enquiry is the following
Proposition 3.7. A shuffe of two sound ordinals is sound.
Proof. Let η be the disjoint union of two sets R, of order type ρ, and S, of order type σ, and let A be an (η)-sequence. Define an (R)-sequence, B, and an (S)-sequence, C, by $B_{n}=R \cap A_{n}, C_{n}=S \cap A_{n}$. By the soundness of ρ and σ, the spektra of both B and C are countable. But every ordinal in $\sigma \pi(A)$ is a shuffle of an ordinal in $\sigma \pi(B)$ and an ordinal in $\sigma \pi(C)$: by 3.6 and $0 \cdot 1 \sigma \pi(A)$ is countable.

That yields a second (and better) proof of 1.9 .
The contrapositive of Proposition 3.7 yields the following extremely useful
Lemma 3.8. Suppose that the (ζ)-sequence A has uncountable spektron and that ζ, the least unsound ordinal, is the disjoint union of two sets, H and T, with $\operatorname{otp}(H)<\zeta$. Then $\sigma \pi\left(\left(A_{n} \cap T\right)_{n}\right)$ is uncountable. |

We turn to a discussion of subsets and partitions of ω_{1}^{k} for $k \in[1, \omega)$.
Definition 3.9. Let X be an m-solid set. For any $k \in[1, m], X$ can be written uniquely as $\Sigma_{\nu<\kappa} I_{\nu}^{k}$, where $\kappa=\omega_{1}^{m-k}$ and each I_{ν}^{k} is k-solid. The sets I_{ν}^{k} will be called the k-blocks of X. For $\eta \in X$ and $k \in[1, m]$, the unique k-block of X containing η will be denoted by $X(k, \eta)$. For $k=m$, of course, the k-block of η is X.

Lemma 3•10. Let $1 \leqslant k \leqslant l \leqslant m$, and let X be m-solid.
(i) For Y an l-block of X, and Z a k-block of X, either $Z \subseteq Y$, when Z will be a k-block of Y, or $Z \cap Y=0$.
(ii) For a given k-block Z of X, there is exactly one l-block Y with $Z \subseteq Y$.
(iii) The k-blocks of an l-block of X are precisely the k-blocks of X included in the given l-block.

Proof. Special case: Let X be a convex m-solid set of ordinals, and enumerate it monotonically as $\left\{\xi_{\nu} \mid \nu<\omega_{1}^{m}\right\}$. Define equivalence relations $\approx_{k}(k \in[1, m])$ on X by

$$
\nu \approx_{k} \mu \quad \text { iff } \quad\left(\nu \in\left[\mu, \mu+\omega_{1}^{k}\right) \quad \text { or } \quad \mu \in\left[\nu, \nu+\omega_{1}^{k}\right)\right)
$$

Then the k-blocks of X are precisely the \approx_{k}-equivalence classes, the first elements of the \approx_{k}-classes being the ξ_{ν} for ν a multiple of ω_{1}^{k}. The lemma now follows from elementary facts about nested equivalence relations.

The General case, for X not convex, follows from the special case by copying. |
Definition $3 \cdot 11$. Let T be a set of ordinals and X an m-solid set. We define the relation ' T is pervasive in X ' or ' T pervades X ' by induction on m. For $m=1, T$ is pervasive in X if for some $\xi \in X, T \cap X=X \backslash \xi$. For $m=n+1$, write $X=\Sigma\left\{Y_{\nu} \mid \nu<\omega_{1}\right\}$, where each Y_{ν} is an n-solid interval, so that the Y_{ν} 's are the n-blocks of X. Then T is pervasive in X if there is a $\xi<\omega_{1}$ such that for $\nu<\xi, Y_{\nu} \cap T=0$ and for $\xi \leqslant \nu<\omega_{1}$, T pervades Y_{ν}.

Lemma 3•12. Let T pervade the m-solid set X. Then

(i) if Y is a k-block of X for some $k \in[1, m], T$ is either disjoint from or pervasive in Y;
(ii) $X \backslash T$ is of order type less than ω_{1}^{m};
(iii) $T \cap X$ is m-solid;
(iv) if $\nu \in X \cap T, X(1, \nu) \backslash \nu \subseteq T$;
(v) if X is an interval and $\nu \in X \cap T,\left[\nu, \nu+\omega_{1}\right) \subseteq T$;
(vi) for each ν in $X \cap T, T$ pervades $X \backslash \nu$.

Proof. (i) For fixed k by induction on $m \geqslant k$. For $m=k$, the result is trivial; for $m>k$, let Y be a k-block of X, and let Z be the ($m-1$)-block of X with $Y \subseteq Z$. By definition, either $Z \cap T=0$ or T is pervasive in Z; but then, since by $3 \cdot 9, Y$ is a k-block of Z, the induction implies that T is either disjoint from or pervasive in Y.
(ii) By induction on m : true for $m=1$, as $X \backslash T$ is then countable. For $m=n+1$, let $Y_{\nu}\left(\nu<\omega_{1}\right)$ be the n-blocks of X. For some $\xi<\omega_{1}, T$ is pervasive in each Y_{ν}, and

$$
X \backslash T=\Sigma\left\{Y_{\nu} \mid \nu<\xi\right\}+\Sigma\left\{Y_{\nu}|T| \xi \leqslant \nu<\omega_{1}\right\}
$$

By induction each $\operatorname{otp}\left(Y_{\nu} \backslash T\right)$ is less than ω_{1}^{n}, so by $2 \cdot 5$, otp $\left(\Sigma\left\{Y_{\nu} \backslash T \mid \xi \leqslant \nu<\omega_{1}\right\}\right) \leqslant \omega_{1}^{n}$. Hence $\operatorname{otp}(X \backslash T) \leqslant \omega_{1}^{n} .(\xi+1)<\omega_{1}^{m}$, as required.
(iii) Immediate from (ii).
(iv) Put $Y=X(1, \nu)$. The $\nu \in Y \cap T$ so by (i) T is pervasive in Y, a 1 -solid set; for some $\xi \in Y, T \cap Y=Y \backslash \xi$, so $\xi \leqslant \nu$ and $Y \backslash \nu \subseteq Y \backslash \xi \subseteq T$.
(v) By (iv), since when X is an m-solid interval and $\nu \in X, X(1, \nu) \backslash \nu=\left[\nu, \nu+\omega_{1}\right)$.
(vi) For $m=1$, (vi) follows from (iv). Now suppose $m=n+1$, and that we have proved (vi) for $m=n$. Let $Z_{\mu}\left(\mu<\omega_{1}\right)$ be the n-blocks of X, so $X=\Sigma\left\{Z_{\mu} \mid \mu<\omega_{1}\right\}$, and let $\nu \in Z_{\rho}$. As T pervades X, there is a $\xi<\omega_{1}$ such that for all $\mu<\xi, Z_{\mu} \cap T=0$ (so $\xi \leqslant \rho$), and for all $\mu \in\left[\xi, \omega_{1}\right], T$ is pervasive in Z_{μ}.

The n-blocks of $X \mid \nu$ are $Z_{\rho} \backslash \nu$, which T pervades by (vi) for the case $m=n$, and the $Z_{\mu}(\mu>\rho)$, which T pervades as $\xi \leqslant \rho$. Hence T pervades $X \backslash \nu$. |

Lemma 3.13. If X is m-solid, $l \in[1, m], \nu \in X$, then $X(l, \nu) \backslash \nu$ comprises the next ω_{1}^{l} elements of X after and including ν.

Proof. By the characterization in the proof of $3 \cdot 10$ of blocks in terms of the equivalence relations \approx_{k}.

Lemma 3.14. Let $T \subseteq X, v \in T, l \in[1, m]$, and let T pervade X. Then
(i) $T(l, \nu) \backslash \nu=(X(l, \nu) \cap T) \backslash \nu$.
(ii) $T(l, \nu)=T \cap X(l, v)$.
(iii) $T(l, v)$ pervades $X(l, \nu)$.
(iv) $T(l, \nu) \backslash \nu$ pervades $X(l, \nu) \backslash \nu$.
(v) For $l=1, T(1, \nu) \backslash \nu=X(1, \nu) \backslash \nu$.

Proof. (i) T is pervasive in $X(l, \nu)$, so $T \cap X(l, \nu)$ is l-solid, as is $T(l, \nu)$. The result now follows from 3.13 and the fact that $T \subseteq X$.
(ii) In view of (i) we need only prove that $T(l, v) \cap v=T \cap X(l, v) \cap \nu$. But for $\eta \in T \cap \nu$, these statements are equivalent: $\eta \in T(l, \nu) ; \nu \in T(l, \eta) ; \nu \in(T(l, \eta) \backslash \eta)$ (as $\eta<\nu) ; \nu \in(X(l, \eta) \cap T)$ (by (i)); $\eta \in X(l, \nu)$.
(iii) From (ii) and $3 \cdot 12$ (i).
(iv) From (ii) and $3 \cdot 12$ (vi).
(v) From (i) and $3 \cdot 12$ (iv). I

Definition 3.15. Suppose that X is an m-solid set, and that ϕ_{0} is a function whose domain includes X and whose values lie in a countable set R_{0}. We define for $k \in[1, m]$ countable sets $R_{X, k}$ and functions $\phi_{X, k}: X \rightarrow R_{X, k}$ by induction on k as follows:

Set $\phi_{X, 1}(\nu)={ }_{d f}\left\{r_{0} \in R_{0} \mid \phi_{0}^{-1}\left\{r_{0}\right\}\right.$ is unbounded in $\left.X(1, \nu)\right\}$.
$\left\{\phi_{X, 1}(\nu) \mid \nu \in X\right\}$ is a well-orderable set of subsets of the countable set R_{0} : it is therefore countable. Call it $R_{X, 1}$. Note that $\phi_{X, 1}$ is constant on each 1-block of X.

Set $\phi_{X, 2}(\nu)={ }_{\mathrm{df}}\left\{r_{1} \in R_{X, 1} \mid \phi_{X} \bar{X}_{1}^{1}\left\{r_{1}\right\}\right.$ is unbounded in $\left.X(2, \nu)\right\}$.
The range of $\phi_{X, 2}$ is again a countable set; call it $R_{X, 2}$. Note that $\phi_{X, 2}$ is constant on each 2-block of X.

Repeat for all $k \leqslant m$. Thus set $\phi_{X, k+1}(\nu)={ }_{\text {df }}\left\{r_{k} \in R_{X, k} \mid \phi_{X}^{-1}, k\left\{r_{k}\right\}\right.$ is unbounded in $X(k+1, \nu)\}$.

Lemma 3.16. Let $v \in T, k \geqslant 1$, and $r \in R_{X, k}$, and put $P=\phi_{\bar{x}, k}^{-1}\{r\}$. Then P is unbounded in $X(k+1, \nu)$ iff P is unbounded in $T(k+1, \nu)$.

Proof. 'if': because $T(k+1, v) \subseteq X(k+1, \nu)$.
'only if': note that $\phi_{X, k}$ is constant on each k-block in $X(k+1, \nu)$, and that T, and hence $T(k+1, \nu)$, meets all except countably many of those.

Lemma 3.17. Let T be a pervasive subset of the m-solid set X, and let ϕ_{0} be a function defined on X with values in a countable set R_{0}. Then for all $\nu \in T$ and all $k \leqslant m$,

$$
\phi_{X, k}(\nu)=\phi_{T, k}(\nu) .
$$

Proof. $k=1$: Let $\nu \in T$. By $3 \cdot 14(v), X(1, \nu) \backslash \nu=T(1, \nu) \backslash \nu$, so

$$
\begin{array}{lllll}
r_{0} \in \phi_{X, 1}(\nu) & \text { iff } & \phi_{0}^{-1} \text { is unbounded in } & X(1, \nu) \\
& \text { iff } & \phi_{0}^{-1} \text { is unbounded in } T(1, v) \\
& \text { iff } & r_{0} \in \phi_{T, 1}(\nu) .
\end{array}
$$

Thus $\phi_{X, 1}(\nu)=\phi_{T, 1}(\nu)$.
The case $k+1$ follows by applying $3 \cdot 16$ to the inductive hypothesis that for all $\nu \in T, \phi_{X, k}(\nu)=\phi_{T, k}(\nu)$.

Where no ambiguity will result, we write ϕ_{k} instead of $\phi_{X, k}$.

Proposition 3.18. Let $k \in[1, \omega)$, X a k-solid set, and ϕ_{0} a map from X to a countable set R_{0}. Then, effectively from X and ϕ_{0}, a subset T of X can be found that is pervasive in X and such that for $\nu \in T$,

$$
\phi_{0}(\nu) \in \phi_{1}(\nu) \in \ldots \in \phi_{k}(\nu) .
$$

Proof. By induction on k. For $k=1$, let ξ be the least element of X such that for all $\nu \in X \backslash \xi, \phi_{0}(\nu) \in \phi_{1}(\nu)$: such a ξ exists since ω_{1} is regular and R_{0} is countable. Set $T=X \backslash \xi$ in this case.

Suppose $k=m+1$, and write $X=\Sigma\left\{Y_{\rho} \mid \rho<\omega_{1}\right\}$, where each Y_{ρ} is m-solid. By the effectivity of this construction we may find simultaneously for all $\rho<\omega_{1}$ sets $T_{\rho} \subseteq Y_{\rho}$ which are pervasive in Y_{ρ} and such that for all $\rho<\omega_{1}$ and $\nu \in T_{\rho}$,

$$
\phi_{0}(\nu) \in \phi_{1}(\nu) \in \ldots \in \phi_{m}(\nu)
$$

ϕ_{m} will be constant on each T_{ρ}, with value $\psi(\rho)$ say. The set of values $\left\{\psi(\rho) \mid \rho<\omega_{1}\right\}$ will be countable, and hence we can pick $\sigma<\omega_{1}$ minimal such that for each $\rho \in\left[\sigma, \omega_{1}\right)$, $\cup\left\{\rho^{\prime}<\omega_{1} \mid \psi\left(\rho^{\prime}\right)=\psi(\rho)\right\}=\omega_{1}$. Then $\left\{\psi(\rho) \mid \sigma \leqslant \rho<\omega_{1}\right\}$ is actually $\phi_{k}(\nu)$ for any $\nu \in X$, so if we set $T=\bigcup\left\{T_{\rho} \mid \sigma \leqslant \rho<\omega_{1}\right\}$, T will pervade X and we shall have

$$
\phi_{0}(\nu) \in \phi_{1}(\nu) \in \ldots \in \phi_{m}(\nu) \in \phi_{k}(\nu)
$$

for all $\nu \in T$, as required. I
We are now ready to prove Theorem $3 \cdot 0$. Fix $k \geqslant 1$ such that for $l<k, \theta . \omega_{1}^{l}$ is sound. We shall show that $\theta . \omega_{1}^{k}$ is sound.

By Lemma 3.4 we may suppose that $\zeta=\theta . \omega_{1}^{k}$ and that A is a $\left(\theta . \omega_{1}^{k}\right)$-sequence, with uncountable spektron, of pairwise disjoint sets each solid and cofinal in ζ, and aim for a contradiction.

Write $\zeta=\Sigma\left\{I_{\nu} \mid \nu<\omega_{1}^{k}\right\}$ where each I_{ν} is of order type θ. For each ν let $\xi_{\nu} \in I_{\nu}$ be minimal such that for each $n, A_{n} \cap I_{\nu} \mid \xi_{\nu}$ is either empty or solid and cofinal in I_{ν}. Then $\bigcup\left\{I_{\nu} \cap \xi_{\nu} \mid \nu<\omega_{1}^{k}\right\}$ is of order type less than ζ, and hence, by Lemma $3.8 \sigma \pi\left(\left(A_{n} \cap S\right)_{n}\right)$ is uncountable, where $S=\bigcup\left\{I_{\nu} \backslash \xi_{\nu} \mid \nu<\omega_{1}^{k}\right\}$. Copy S to $\zeta, I_{\nu} \backslash \xi_{\nu}$ to I_{ν} and each $A_{n} \cap S$ to B_{n}. Our problem is thus reduced to proving the following:
(3.19) Let $B: \omega \rightarrow \operatorname{Power}(\zeta)$ be a decomposition of ζ into pairwise disjoint sets, each solid and cofinal in ζ, and, writing $\zeta=\Sigma\left\{I_{\nu} \mid \nu<\omega_{1}^{k}\right\}$, each $B_{n} \cap I_{\nu}$ either empty or solid and cofinal in I_{ν}. Then $\sigma \pi(B)$ is countable.

For such a sequence B, define functions $f_{\nu}: \omega \rightarrow \omega$ for $\nu<\omega_{1}^{k}$ thus:

$$
\begin{array}{rllll}
f_{\nu}(n)=0 & \text { if } & B_{n} \cap I_{\nu} & \text { is empty } \\
& =p & \text { if } & B_{n} \cap I_{\nu} & \text { is } p \text {-solid }
\end{array}
$$

Put $R_{0}=\left\{f_{\nu} \mid \nu<\omega_{1}^{k}\right\}$. R_{0}, being a well-orderable set of 'reals', is countable. Define $\phi_{0}(\nu)=f_{\nu}$ for $\nu<\omega_{1}^{k}$, and define ϕ_{l} for $1 \leqslant l \leqslant k$ as above. By Proposition 3.18 we may find T pervasive in ω_{1}^{k} such that for $\nu \in T, \phi_{0}(\nu) \in \phi_{1}(\nu) \in \ldots \in \phi_{k}(\nu)$.

Set $X=\bigcup\left\{I_{\nu} \mid \nu \notin T\right\}$ and $Y=\bigcup\left\{I_{\nu} \mid \nu \in T\right\}$. Since otp $\left(\omega_{1}^{k} \backslash T\right)<\omega_{1}^{k}, \operatorname{otp}(X)<\zeta$, and so we need only show that $\sigma \pi\left(\left(B_{n} \cap Y\right)_{n}\right)$ is countable.

Copy Y to ζ, T to ω_{1}^{k}, and $B_{n} \cap Y$ to C_{n}. Then C has all the properties ascribed to B in the hypothesis of (3•19); moreover if we set $g_{\nu}(n)=0$ if $C_{n} \cap I_{\nu}$ is empty and $g_{\nu}(n)=p$ if $C_{n} \cap I_{\nu}$ is p-solid, $Q_{0}=\left\{g_{\nu} \mid \nu<\omega_{1}^{k}\right\}$, a countable set, $\psi_{0}(\nu)=g_{\nu}$ for $\nu<\omega_{1}^{k}$ and define
countable sets Q_{l} and functions ψ_{l} with image Q_{l}, for $1 \leqslant l \leqslant k$, by the process set out in $3 \cdot 15$, then by Lemma 3.17, we shall have for all ν,

$$
\psi_{0}(\nu) \in \psi_{1}(\nu) \in \psi_{2}(\nu) \in \ldots \in \psi_{k}(\nu) .
$$

(3.22) For $a \subseteq \omega$, define $h_{0}(\nu, a)=\sup \left\{g_{\nu}(n) \mid n \in a\right\}$, and for $1 \leqslant l \leqslant k$, define $h_{l}(\nu, a)=\sup \left\{h_{0}(\rho, a) \mid \nu \leqslant \rho<\nu+\omega_{1}^{l}\right\}$.

Furthermore, write $\tau(a)$ for $\tau_{C}(a)=\operatorname{otp} \cup C[a]$, and $\tau_{\nu}(a)$ for $\operatorname{otp}\left(I_{\nu} \cap \cup C[a]\right)$. Note that h_{l} is constant on each l-block, by (3.21).

Each $h_{l}(\nu, a) \leqslant \omega$. We shall show that $\tau(a)$ may be computed from the functions h_{l} and will be one of the countably many possibilities $0, \omega_{1}^{k+1}, \omega_{1}^{k+2}, \omega_{1}^{k+3}, \ldots, \omega_{1}^{\omega+1}$, $\omega_{1}^{\omega+2}, \ldots, \omega_{1}^{\omega+1+k}$, which contradiction will complete the proof of Theorem 3.0.

Lemma 3.23. Let $m \in[1, \omega)$ and let $X=\Sigma\left\{X_{\nu} \mid \nu<\omega_{1}^{m}\right\}$, where each X_{ν} is of order type $\leqslant \theta$. Suppose further that $\operatorname{otp}\left\{\nu \mid \operatorname{otp}\left(X_{\nu}\right)=\theta\right\}=\omega_{1}^{m}$. Then $\operatorname{otp} X=\theta . \omega_{1}^{m} . \quad 】$
Lemma 3.24. Suppose that $X=\Sigma\left\{X_{\nu} \mid \nu<\omega_{1}\right\}$, where each X_{ν} is of order type $<\omega_{1}^{\omega}$, butfor all $\nu<\omega_{1}$ and all $p<\omega$, there is a ρ in $\left[\nu, \omega_{1}\right)$ with $\operatorname{otp}\left(X_{\rho}\right) \geqslant \omega_{1}^{p}$.Then $\operatorname{otp}(X)=\theta$.

Proof. Evidently $\operatorname{otp} X \leqslant \omega_{1}^{\omega} . \omega_{1}=\theta$. Lemma $1 \cdot 14$ implies that otp $X \geqslant \theta$. |
If for some $\nu<\omega_{1}^{k}, h_{0}(\nu, a)=\omega, \tau_{\nu}(a)=\theta$ by $3 \cdot 24$; by $3 \cdot 21\left\{\rho \mid g_{\rho}=g_{\nu}\right\}$ is k-solid, and so $\tau(a)=\theta \cdot \omega_{1}^{k}$.

If for some l in $[1, k]$, there is a $\nu<\omega_{1}^{k}$ with $h_{l}(\nu, a)=\omega$, but $h_{l-1}(\nu, a)<\omega$ for all $\nu<\omega_{1}^{k}$, then $\tau(a)=\theta . \omega_{1}^{k-l}$: in particular, if $l=k, \tau(a)=\theta$.

To see that, fix l with $h_{l}(\nu, a)=\omega$ for some ν, but with each $h_{l-1}(\mu)<\omega$. For $E \subseteq \omega_{1}^{k}$, write J_{E} for $\cup\left\{I_{\nu} \mid \nu \in E\right\}$.

Now for E any ($l-1$)-block (or, if $l=1, E$ any $\{\xi\} \subseteq \omega_{1}^{k}$), otp $\left((\cup C[a]) \cap J_{E}\right)<\omega_{1}^{\omega}$, since h_{l-1} is everywhere finite; so for each l-block F, otp $\left(J_{F} \cap(\cup C[a])\right) \leqslant \theta$. For an l-block F on which $h_{l}=\omega,(\cup C[a]) \cap J_{F}$ has order type θ, by $3 \cdot 24$. (3.21) tells us that the set of such l-blocks is of order type ω_{1}^{k-l}. By $3 \cdot 23, \tau(a)=\theta \cdot \omega_{1}^{k-l}$.

Suppose that $h_{k}(0, a)=p \in[1, \omega)$. Then for some $\nu<\omega_{1}^{k}$ and $n \in a, g_{\nu}(n)=p$, so $\operatorname{otp} C_{n}=\omega_{1}^{p+k}$ (by 3•21), and for all other $q \in a, \operatorname{otp} C_{q} \leqslant \omega_{1}^{p+k}$; so by solidity, $\tau(a)=\omega_{1}^{p+k}$.

Finally if $h_{k}(0, a)=0$, then $\tau(a)=0 . \quad \mid$
Remark $3 \cdot 25$. The cases $\tau(a)=\omega_{1}^{r}$ for $0 \leqslant r \leqslant k$ do not occur because of the pruning carried out before the final argument.

4. Determinacy and unsoundness

The question of the existence of unsound ordinals was raised by Woodin in connection with a then unsolved problem in the study of the axiom of determinacy. Subsequently this problem was solved by Kechris as Theorem 4.2 below, and led, by a further reflection argument due to Woodin, to the following

Theorem 4•0. The axiom of determinacy implies that there is an unsound ordinal less than ω_{2}.

By kind permission of the authors, the proof of 4.0 is now presented. For definitions of unexplained terms and for background material Guaspari[5], Moschovakis[10], and the three Cabal volumes [2], [3], and [4] are suggested.

Lemma 4-1 (Kechris, using ideas of Martin and Steel). Assume ($\boldsymbol{\Sigma}_{2}^{1} \cup \boldsymbol{\Pi}_{2}^{1}$)-determinacy.

Then there is a Π_{3}^{1} norm $\psi: B \rightarrow \delta_{3}^{1}$ on a complete Π_{3}^{1} set B and an ordinal $\xi_{0}<\delta_{3}^{1}$ such that for any $\boldsymbol{\Sigma}_{3}^{1}$ set $S \subseteq B$ there is a $\boldsymbol{\Sigma}_{1}^{1}$ set $S^{*} \subseteq B$ with

$$
\left\{\psi(x) \mid x \in S^{*}\right\} \backslash \xi_{0}=\{\psi(x) \mid x \in S\} \backslash \xi_{0}
$$

Proof. Let A be a Σ_{2}^{1} set such that putting

$$
A^{\prime}=\left\{\alpha \in-\omega \mid \exists n(\alpha)_{n} \in A\right\}, \quad A^{\prime \prime}=\left\{(x, \alpha) \mid x(\alpha) \in A^{\prime}\right\}
$$

(where here x is viewed as a strategy for David, the second player, in the game where Goliath, the first player, plays α, David plays β, and David wins iff $\beta \in A^{\prime}$), and $B=\left\{x \mid \forall \alpha(x, \alpha) \in A^{\prime \prime}\right\}, B$ is a complete Π_{3}^{1} set.

Let $\left|\mid: A \rightarrow \omega_{1}\right.$ be a Σ_{2}^{1} norm on A. Define $\rho: A^{\prime \prime} \rightarrow \omega_{1}$ by $\left.\rho(x, \alpha)=\min _{n \in \omega}\right|(x(\alpha))_{n} \mid:$ then ρ is a Σ_{2}^{1} norm on $A^{\prime \prime}$.

Finally let ψ be the Π_{3}^{1} norm on B obtained from ρ as in the usual proof, using Δ_{2}^{1} determinacy, of $P W O\left(\Pi_{3}^{1}\right)$: so for $y \in B$,
and

$$
x \in B \quad \text { and } \quad x \leqslant{ }_{\psi} y \quad \text { iff } \quad \exists \tau \forall \alpha(x, \alpha) \leqslant \rho\left(y,[\alpha]^{*} \tau\right)
$$

Now let $S \subseteq B$ be Σ_{3}^{1} : suppose $S(z) \leftrightarrow \exists \alpha P(z, \alpha)$, where P is Π_{2}^{1}. By Wadge's Lemma ([2], page 152), for which in this instance $\Sigma_{2}^{1} \cup \Pi_{2}^{1}$ determinacy suffices, either there is an x^{*} such that $\forall z, \alpha\left(P(z, \alpha) \leftrightarrow \operatorname{not} A\left(x^{*}(z, \alpha)\right)\right.$ or there is a y^{*} such that

$$
\forall \beta\left(P\left(y^{*}(\beta)\right) \leftrightarrow A(\beta)\right):
$$

but the second alternative is impossible since A, being Σ_{2}^{1} complete, cannot be Π_{2}^{1}.
Fix such an x^{*} and define x so that $(x(z, \alpha, y))_{0}=x^{*}(z, \alpha)$ and

$$
(x(z, \alpha, y))_{n+1}=(z(y))_{n}
$$

Then if $(z, \alpha) \notin P, x^{*}(z, \alpha) \in A$; while if $(z, \alpha) \in P, z \in S \subseteq B$, so $\exists n(z(y))_{n} \in A$. So for all z, α, y there is an n with $(x(z, \alpha, y))_{n} \in A$; and so $x \in B$.

Now for each z, α define $x_{z, \alpha}(y)=x(z, \alpha, y)$, and put $S^{*}=\left\{x_{z, \alpha} \mid z, \alpha \in \mathbb{R}\right\}$. Evidently S^{*} is Σ_{1}^{1} and is a subset of B.

If $(z, \alpha) \in P, x^{*}(z, \alpha) \notin A$, so $\left(x_{z, \alpha}(y)\right)_{0}$ is irrelevant to the computation of $\psi\left(x_{z, \alpha}\right)$, but as $\left(x_{z, \alpha}(y)\right)_{n+1}=(z(y))_{n}$ for all n, we easily obtain $\psi\left(x_{z, \alpha}\right)=\psi(z)$.

If $(z, \alpha) \notin P$, then $x^{*}(z, \alpha) \in A$: but then $\psi\left(x_{z, \alpha}\right) \leqslant \psi(t)$ for any t such that

$$
\forall n \forall y(t(y))_{n}=x^{*}(z, \alpha),
$$

since for any y,

$$
\min _{n}\left|(t(y))_{n}\right|=\left|x^{*}(z, \alpha)\right| \geqslant \min \left|(x(z, \alpha, y))_{n}\right|
$$

So if we put $X=\left\{t \mid \exists \delta \in A \forall y \forall n(t(y))_{n}=\delta\right\}$, notice that $X \subseteq B, X \in \Sigma_{2}^{1}$ and so

$$
\cup\{\psi(t) \mid t \in X\}<\xi_{0} \quad \text { for some } \quad \xi_{0}<\delta_{3}^{1}
$$

(since otherwise B could be expressed in Σ_{3}^{1} form as $\{z \mid \exists x \in X z \leqslant \psi x\}$) and remark that since the definition of X is independent of S, so is ξ_{0}, we shall complete the proof that B and ψ are as required.

Theorem 4-2 (Kechris). Assume the axiom of determinacy. Then for any map ϕ of a set W of reals onto δ_{3}^{1}, there is a compact subset J of W with $\{\phi(x) \mid x \in J\}$ uncountable.

Proof. Let $\phi: W \rightarrow \delta_{3}^{1}$ and let $\psi: B \rightarrow \delta_{3}^{1}$ be as in $4 \cdot 1$. The method of proof of the Coding Lemma (Moschovakis [10], page 426) yields an $S \in \boldsymbol{\Sigma}_{3}^{1}$ such that

$$
x \in B \rightarrow\left[S_{x} \neq 0 \quad \text { and } \quad \forall w \in S_{x}(w \in W \quad \text { and } \quad \psi(x)=\phi(w))\right] .
$$

Put $D=\left\{\langle x, w\rangle \mid x \in B\right.$ and $\left.w \in S_{x}\right\} . D \notin \boldsymbol{\Sigma}_{3}^{1}$, since $\forall x(x \in B$ iff $\exists w\langle x, w\rangle \in D)$ and $B \notin \boldsymbol{\Sigma}_{3}^{1}$, so by Wadge's Lemma, there is a continuous function F such that for all $a, a \in B$ iff $F(a) \in D$.

For $\xi<\delta_{3}^{1}$ set $B_{\xi}=\{x \in B \mid \psi(x)<\xi\}$ and $D_{\xi}=\left\{\langle x, w\rangle \mid x \in B_{\xi}\right.$ and $\left.w \in S_{x}\right\}$. As ψ is a Π_{3}^{1} norm, each $B_{\xi} \in \Delta_{3}^{1}$ and each $D_{\xi} \in \Sigma_{3}^{1}$. Now note two facts:

$$
\begin{align*}
& \forall \xi<\delta_{3}^{1} \exists \eta<\delta_{3}^{1}\left\{a \mid F(a) \in D_{\xi}\right\} \subseteq B_{\eta} \\
& \forall \xi<\delta_{3}^{1} \exists \eta<\delta_{3}^{1}\left\{F(a) \mid a \in B_{\xi}\right\} \subseteq D_{\eta} .
\end{align*}
$$

(4.3) holds because $\left\{a \mid F(a) \in D_{\xi}\right\}$ is a Σ_{3}^{1} subset of B and hence bounded in the norm ψ as $B \notin \Sigma_{3}^{1} ;(4 \cdot 4)$ holds because $\left\{F(a) \mid a \in B_{\xi}\right\}$ is a Σ_{3}^{1} subset of D, and were it not contained in some D_{η} the following would be a Σ_{3}^{1} definition of B :

$$
x \in B \quad \text { iff } \quad \exists a \in B_{\xi}\left(x \leqslant_{\psi}(F(a))_{0}\right) .
$$

Let ξ_{0} be the ordinal $<\delta_{3}^{1}$ obtained in $4 \cdot 1$. From (4.3) and (4.4) the set

$$
\left\{\xi<\delta_{3}^{1} \mid F^{-1}\left[D_{\xi}\right]=B_{\xi} \quad \text { and } \quad \xi>\xi_{0}\right\}
$$

is closed unbounded in δ_{3}^{1} : let $\eta_{\nu}\left(\nu<\omega_{1}\right)$ enumerate the first ω_{1} elements of that set, and put $\eta=\sup \left\{\eta_{\nu} \mid \nu<\omega_{\mathbf{1}}\right\}$.

By $4 \cdot 1$, let C be a $\boldsymbol{\Sigma}_{1}^{1}$ subset of B_{η} with $\sup \{\psi(x) \mid x \in C\}=\eta$. Now consider the game where Goliath plays $x \in{ }^{\omega} \omega$, David plays $w \in{ }^{\omega} 2$ (this restriction is the source of the promised compactness) and David wins iff ($x \in C \rightarrow\left(w \in W O\right.$ and $\left.\psi(x)<\eta_{|w|}\right)$), where $W O$ is the set of codes of well-orderings. Since $W O$ is not Σ_{1}^{1}, David cannot win, so let σ be a winning strategy for Goliath, and put $K=\sigma\left[{ }^{\omega} 2\right]$. Then K is compact and $\{\psi(x) \mid x \in K\}$ is cofinal in η.

Put $J=\{w \mid \exists x\langle x, w\rangle \in F[K]\}$. Then J is compact: $K \subseteq C \subseteq B_{\eta}=F^{-1}\left[D_{\eta}\right]$, so $F[K] \subseteq D_{\eta}$, so by choice of S and definition of $D_{\eta}, J \subseteq\{w \mid \phi(w)<\eta\}$. But $\{\phi(w) \mid w \in J\}$ must be unbounded in η, since otherwise there would be an $\eta_{v}<\eta$ with

$$
K \subseteq B_{\eta_{\nu}}=F^{-1}\left[D_{\eta_{\nu}}\right]
$$

so ϕ takes uncountably many values on the compact set J.
Corollary 4.5 (Woodin). Under $A D, \zeta<\boldsymbol{\delta}_{3}^{1}$.
Proof. Write $\kappa=\boldsymbol{\aleph}_{\omega}$, and let X be a complete Σ_{3}^{1} set and $T \subseteq{ }^{<\omega}(\omega \times \kappa)$ a tree on κ, closed under shortening, such that for all reals α,

$$
\alpha \in X \quad \text { iff } \quad \exists f \in^{\omega} \kappa \forall n(\alpha \upharpoonright n, f \upharpoonright n) \in T
$$

Thus $\alpha \notin X$ iff $T(\alpha)$ is well-founded, where $T(\alpha)=\left\{s \in{ }^{<\omega} \kappa \mid(\alpha \upharpoonright l h(s), s) \in T\right\}$.
Let W be the complement of X, and define $\phi(\alpha)$ for $\alpha \in W$ to be the order type of $T(\alpha)$ under the Kleene-Brouwer ordering $<_{K_{B}}$. For each $\eta<\delta_{3}^{1},\{\alpha \mid \phi(\alpha)<\eta\}$ is in Δ_{3}^{1}, by Sierpinski's equations (Moschovakis [10], page 94, theorem 2F•1), and so the image of ϕ is cofinal in $\boldsymbol{\delta}_{3}^{1}$. The composition of ϕ with a suitable collapsing function is thus onto δ_{3}^{1}, and so by $4 \cdot 2$ there is a perfect set $S \subseteq{ }^{<\omega} \omega$ such that $\{\phi(\alpha) \mid \alpha \in[S]\}$ is uncountable. (Here $[S]={ }_{\mathrm{dr}}\{\alpha|\forall n \alpha| n \in S\}$.) Now put

$$
U=\left\{(s, t) \mid s \in{ }^{<\omega} \omega, t \in{ }^{<\omega} \kappa, \operatorname{lh}(s)=\operatorname{lh}(t),(s, t) \in T \quad \text { and } \quad s \in S\right\} .
$$

Under $<_{K B}, U$ is well-ordered, since $[S] \cap p[T]=0$: so let $\pi: U \cong \xi$ be the isomorphism with an ordinal, $\xi . \xi<\boldsymbol{\aleph}_{\omega+1}=\boldsymbol{\delta}_{3}^{1}$ since $\operatorname{card}(U) \leqslant \boldsymbol{\aleph}_{\omega}$.

For $s \in S$, put $A_{s}=\{\pi((s, t)) \mid l h(s)=l h(t)$ and $(s, t) \in U\}$. For $\alpha \in[S]$,

$$
\phi(\alpha)=\operatorname{otp}\left(\left\{t \mid(\alpha\lceil\operatorname{lh}(t), t) \in T\},<_{K_{B}}\right)=\operatorname{otp}\left(\bigcup\left\{A_{\alpha \upharpoonright n} \mid n \in \omega\right\}\right)\right.
$$

since the map $t \mapsto\left(\alpha\lceil l h(t), t)\right.$ is $<_{E B}$-preserving. Hence $\sigma \pi\left(\left\{A_{s} \mid s \in S\right\}\right)$ contains $\phi[[S]]$ and is therefore uncountable; thus ξ is unsound. I

The following reflection argument, due to Woodin, improves the bound on ζ from δ_{3}^{1} to ω_{2}, assuming $A D$, and thus completes the proof of Theorem $4 \cdot 0$.

Proposition 4•6. $(A D+D C)\left(\right.$ Woodin) $\zeta<\omega_{2}$.
Proof. By the last proposition we know that there is an unsound ordinal, η say. Let $S=\left(S_{n}\right)_{n}$ be an (η)-sequence with uncountable spektron. Pick an increasing sequence $\left\langle\lambda_{\nu} \mid \nu<\omega_{1}\right\rangle$ of ordinals such that for each $\nu<\omega_{1}$, there is a set $a \subseteq \omega$ with $\operatorname{otp}(\cup S[a])=\lambda_{\nu}$.

Consider the following integer game. Goliath plays x, David plays y, and David wins iff x does not code a countable ordinal or if x codes γ then y codes a sequence $\left\langle a_{\nu} \mid \nu<\delta\right\rangle$ of subsets of ω, where $\delta>\gamma$ and $\operatorname{otp}\left(\cup S\left[a_{\nu}\right]\right)=\lambda_{\nu}$ for each $\nu<\delta$.

Standard arguments reveal that, granting the determinacy of the game, David must have a winning strategy, τ say.

Consider the model $L[\tau, S]$. Suppose g is a code of $v<\omega_{1}$ that is generic over $L[\tau, S]$. Then by the nature of τ, in the generic extension $L[\tau, S][g]$ there is a set $a \subseteq \omega$ such that otp $(U S[a])=\lambda_{v}$.

Let κ be a cardinal in $L[\tau, S]$ with $\kappa>\eta$. Choose an elementary submodel M of $L_{\kappa}[\tau, S]$ with $\tau \in M, \omega_{1} \subseteq M, S \in M$, and M of cardinality less than ω_{2}. Let $\pi: M \cong N$ be the map collapsing M to a transitive set N. Put $A_{n}=\pi\left(S_{n}\right), \mu_{\nu}=\pi\left(\lambda_{\nu}\right)$, and let ξ be the height of N. Note that $A_{n} \subseteq \xi$, that $\left\langle\mu_{\nu} \mid \nu<\omega_{1}\right\rangle$ is an increasing sequence, and that $\xi<\omega_{2}$.

We assert that $A=\left(A_{n}\right)_{n}$ witnesses the unsoundness of ξ. To see that, note first that by $A D, \omega_{1}$ is strongly inaccessible in $L[\tau, S]$. Hence N and $L[\tau, S]$ have the same bounded subsets of ω_{1}. Suppose g codes an ordinal ν less than ω_{1} and that g is generic over N. Then g is generic over $L[\tau, S]$ so that in fact $N[g]$ is an elementary submodel of $L_{\kappa}[\tau, S][g]$. Hence in $N[g]$ there is a set $a \subseteq \omega$ with otp $(\cup A[a])=\mu_{\nu}$.

Finally, since ω_{1} is strongly inaccessible in N, for every $v<\omega_{1}$ there is a code of ν generic over N.

Thus A has uncountable spektron, and $\zeta \leqslant \xi<\omega_{2}$. |

5. Unsound ideals

5.0. Suppose that η is indecomposable and that the (η)-sequence A partitions η into non-empty disjoint sets A_{n} each of order type less than η. Define

$$
I_{A}=\left\{x \subseteq \omega \mid \tau_{\boldsymbol{A}}(x)<\eta\right\} .
$$

Then by the indecomposability of η, I_{A} is an ideal on ω containing all finite sets.
$5 \cdot 1$. A partition A as above is evidently interdefinable with a surjection $\alpha: \eta \rightarrow \omega$ where the pre-image of each $\{n\}$, i.e. A_{n}, is a set of order type less than η. If $\psi: \omega \rightarrow \omega$ is a surjection, then the composition $\psi \circ \alpha: \eta \rightarrow \omega$ will be a surjection, giving rise to an (η)-sequence B, where $B_{k}=\bigcup\left\{A_{n} \mid \psi(n)=k\right\}$. We write $B=\psi_{*} A$, and call B the projection of A by ψ.
$5 \cdot 2$. If I is an ideal on ω containing all finite sets and $\psi: \omega \rightarrow \omega$ is a surjection with
$\psi^{-1}\{n\} \in I$ for each n, then $\psi_{*} I={ }_{\mathrm{d} P}\left\{a \subseteq \omega \mid \psi^{-1}[a] \in I\right\}$ is also an ideal on ω containing all finite sets.

Lemma 5•3. Let η be indecomposable, A an (η)-sequence of non-empty disjoint sets, each of order type less than η, and $\psi: \omega \rightarrow \omega$ a surjection with each $\psi^{-1}\{n\} \in I_{A}$. Then

$$
I_{\psi * \Delta}=\psi_{*} I_{A} .
$$

$$
\begin{array}{ll}
\text { Proof. } \quad x \in I_{\psi * A} & \text { iff } \quad \operatorname{otp} \bigcup\{\cup\{A(n) \mid \psi(n)=k\} \mid k \in x\}<\eta \\
& \text { iff } \operatorname{otp} \cup\{A(n) \mid \psi(n) \in x\}<\eta \\
& \text { iff } \psi^{-1}[x] \in I_{A} \\
& \text { iff } x \in \dot{\psi}_{*} I_{A} . \quad \mid
\end{array}
$$

5.4. If A and η are as above, and $\sigma \pi(A)$ is uncountable, so that η is unsound, then $\left\{x \subseteq \omega \mid \sigma \pi\left(\left(A_{n}\right)_{n \in x}\right)\right.$ is countable $\}$ is an ideal on ω containing all finite sets: call it J_{A}. Note that if η is the least unsound ordinal, $I_{A} \subseteq J_{A}$. If $\psi: \omega \rightarrow \omega$ is a surjection, then $\psi_{*} J_{A} \subseteq J_{\psi * A} ;$ whether the reverse inclusion holds depends, as we shall see, on circumstances.
5.5. In [8] the author defined the notion of a feeble filter on ω; we may call an ideal feeble if its dual filter is, and the definition then runs: an ideal I on ω containing all finite subsets thereof is feeble if there is a surjection $\psi: \omega \rightarrow \omega$ with each pre-image $\psi^{-1}\{n\}$ finite (call such ψ surfinjections) and such that $\psi_{*} I$ is the ideal $F i n$ of all finite subsets of ω. The author proved that if $\omega \rightarrow(\omega)^{\omega}$, every ideal is feeble; Talagrand and independently Jalali-Naini ([6], chapter I, $5 \cdot 2 \cdot 4$ and $5 \cdot 2 \cdot 6$) showed that an ideal is feeble if and only if, viewed as a subset of Cantor space ${ }^{\omega} 2$ it has the property of Baire, so in models constructed by Solovay, using an inaccessible, and Shelah, without, every ideal is feeble.
5.6. Suppose therefore that I_{A} is feeble and that $\psi: \omega \rightarrow \omega$ is a surfinjection with $\psi_{*} I_{A}=$ Fin. Put $B=\psi_{*} A$: then as $I_{B}=I_{\psi_{*} A}=\psi_{*} I_{A}=F i n, B$ has countable spektron, since for any infinite $x, \tau_{B}(x)=\eta$ (as $x \notin I_{B}$). Note that in this case $\omega \in J_{B}$, which is therefore improper and not equal to $\psi_{*} J_{A}$. We have thus proved the following

Proposition 5.7. Suppose that all sets of reals have the property of Baire or that $\omega \rightarrow(\omega)^{\omega}$. Let η be any indecomposable ordinal and A a decomposition of η into sets of order type less than η. Then there is a partition of ω into finite sets s_{k} such that, setting $B_{k}=\cup A\left[s_{k}\right]$, the sequence $\left(B_{k}\right)_{k}$ has countable spektron.

The above shows that when $A C$ fails in certain familiar ways, though there still may be unsound ordinals (which there will be, for example, in Shelah's[11] model of 'all sets of reals have the property of Baire' in which $\left.\left(\omega_{1}\right)_{L}=\omega_{1}\right)$, every sequence with uncountable spektron projects by a finite-to-one function to one with countable spektron.

A related illustration of the instability of unsoundness is the following
Proposition 5.8. Suppose that $\boldsymbol{\aleph}_{1} \$ 2^{\mathbf{N}_{0}}$, ω_{1} is regular, $k \in \omega$, and that A is a decomposition of $\omega_{1}^{\omega+k}$ with each A_{n} of order type less than $\omega_{1}^{\omega+k}$. Then

$$
\exists x \in[\omega]^{\omega} \forall z \in[x]^{\omega} \operatorname{otp} \bigcup A[z]=\omega_{1}^{\omega+k} .
$$

Proof. For $k=0$, pick n_{i} increasing with otp $\left(A_{n_{i}}\right)>\omega_{1}^{i}$, and set $x=\left\{n_{i} \mid i \in \omega\right\}$.

For $k \geqslant 1$, let $\left(J_{n}\right)_{n}$ be the superdecomposition of $\omega_{1}^{\omega+1}$ constructed in $2 \cdot 4$ (ii): so $\operatorname{otp}\left(J_{n}\right)=\omega_{1}^{n}$ for $n \geqslant 1$ and whenever $K_{n} \subseteq J_{n}$, otp $\left(K_{n}\right)=\operatorname{otp}\left(J_{n}\right)$ and $a \in[\omega]^{\omega}$,

$$
\operatorname{otp}(\cup K[a])=\omega_{1}^{\omega+1}
$$

Now for $k=1$, suppose $\omega_{1}^{\omega+1}=\dot{U}_{n} A_{n}$ as above: by the solidity of the J_{n} 's we may define a function $f: \omega \rightarrow \omega$ by setting $f(n)=$ the least l such that $\operatorname{otp}\left(J_{n} \cap A_{l}\right)=\operatorname{otp}\left(J_{n}\right)$. Then if the image of f is finite, there will be $p \in \omega$ and $a \in[\omega]^{\omega}$ such that for all $n \in a$, $f(n)=p:$ but then $\operatorname{otp}\left(A_{p}\right) \geqslant \operatorname{otp}\left(A_{p} \cap \cup J[a]\right)=\operatorname{otp}\left(\cup\left\{A_{p} \cap J_{n} \mid n \in a\right\}\right) \geqslant \omega_{1}^{\omega+1}$, contradicting our hypothesis on the $\operatorname{otp}\left(A_{n}\right)$'s. So the image of f is infinite: call it x.

Now for $z \in[x]^{\omega}$, put $b=f^{-1}[z]$. Then $\cup A[z]=\bigcup\left\{A_{f(n)} \mid n \in b\right\} \supseteq \bigcup\left\{A_{f(n)} \cap J_{n} \mid n \in b\right\}$: but each $A_{f(n)} \cap J_{n}$ has order type that of J_{n}, so by the property of $\left(J_{n}\right)_{n}$,

$$
\operatorname{otp} \cup A[z]=\omega_{1}^{\omega+1}
$$

For $k>1$, write $\omega_{1}^{\omega+k}=\Sigma_{\nu<\lambda} I_{\nu}$ where $\lambda=\omega_{1}^{k-1}$ and each I_{ν} is of order type $\omega_{1}^{\omega+1}$. Decompose I_{ν} as $\bigcup_{n<\omega} J_{n}^{\nu}$ by copying $\left(J_{n}\right)_{n}$. Define $f_{\nu}(n)=$ the least l with

$$
\operatorname{otp}\left(A_{l} \cap J_{n}^{\nu}\right)=\operatorname{otp}\left(J_{n}^{\nu}\right)
$$

and using the hypothesis that $\boldsymbol{\aleph}_{1} \$ 2 \boldsymbol{\aleph}_{0}$ and the solidity of λ find $f: \omega \rightarrow \omega$ such that $N={ }_{\mathrm{dr}}\left\{\nu \mid f_{\nu}=f\right\}$ has order type λ.

As before, f cannot have finite image: if it did, then for some $p \in \omega$ and $a \in[\omega]^{\omega}$, $\forall n \in a(f(n)=p)$. But then the above reasoning can be repeated to show that for all $\nu \in N, \operatorname{otp}\left(A_{p} \cap I_{\nu}\right)=\omega_{1}^{\omega+1}$ and so $\operatorname{otp}\left(A_{p}\right)=\omega_{1}^{\omega+k}$, contrary to hypothesis.

So put $x=$ image of f : thus $x \in[\omega]^{\omega}$. For $z \in[x]^{\omega}$, put $b=f^{-1}[z]$ and note that for each $v \in N,(\cup A[z]) \cap I^{v}$ contains $\cup\left\{A_{f(n)} \cap J_{n}^{v} \mid n \in b\right\}$ and so is of order type $\omega_{1}^{\omega+1}$; and hence $\operatorname{otp}(\cup A[z])=\omega_{1}^{\omega+k}$, as required. |

The last two propositions suggest that when $A C$ fails in specified ways, each ordinal is 'nearly sound'. The next theorem, the last of this section, shows that by assuming the continuum hypothesis we may improve previous work to arrange for $\omega_{1}^{\omega+2}$ to be resoundingly unsound.

Theorem 5.9. Assume that $2^{\aleph_{0}}=\boldsymbol{\aleph}_{1}$. Then there is an $\left(\omega_{1}^{\omega+2}\right)$-sequence with

$$
\operatorname{otp}\left(A_{n}\right) \leqslant \omega_{1}^{n}
$$

for each n such that for every $\psi: \omega \rightarrow \omega$ with each $\operatorname{otp}\left(\cup A\left[\psi^{-1}\{n\}\right]\right)<\omega_{1}^{\omega+2}, \psi_{*} A$ also has uncountable spektron: moreover $I_{A}=J_{A}$ and is a prime ideal.

Proof. Let U be a non-principal ultrafilter generated by a sequence $\left\langle b_{v} \mid \nu<\omega_{1}\right\rangle$ where for $\nu<\rho<\omega_{1}, b_{\rho} \backslash b_{\nu}$ is finite and $b_{\nu} \backslash b_{\rho}$ is infinite. U will always be a p-point, and might in addition be a Ramsey ultrafilter.

For a and $b \in[\omega]^{\omega}$, we shall say that a hits b if $a \cap b$ is infinite, and we shall say that $a \subseteq b(\bmod F i n)$ if $a \backslash b$ is finite.

Set $c_{\nu}=b_{\nu} \backslash b_{\nu+1}$. Then no $c_{\nu} \in U$, and for $\nu \neq \rho, c_{\nu} \cap c_{\rho}$ is finite.
If $x \in U$, then for some $\mu<\omega_{1}, b_{\mu} \subseteq x(\bmod$ Fin $)$, so for all $\nu \in\left[\mu, \omega_{1}\right), x \supseteq b_{\nu} \supseteq c_{\nu}$ $\left(\bmod\right.$ Fin): i.e., x hits all but countably many c_{ν} 's.

If $x \notin U$, then for some $\mu, b_{\mu} \subseteq \omega \backslash x(\bmod \operatorname{Fin})$, so for all $v \in\left[\mu, \omega_{1}\right), x \cap c_{\nu}$ is finite, so x hits only countably many c_{ν} 's.

Thus $U=\left\{x \mid x\right.$ hits uncountably many c_{ν} 's $\}$.

Now write $\omega_{1}^{\omega+2}$ as $\Sigma\left\{I_{\nu} \mid \nu<\omega_{1}\right\}$, where $I_{\nu}=\left[\theta .2^{\nu}, \theta .2^{\nu+1}\right)$, so I_{ν} has order type $\theta .2^{\nu}$. Modify a strong decomposition of I_{ν} to obtain a sequence $G_{\nu}=\left(G_{\nu, n}\right)_{n}$ with

$$
G_{\nu, 0}=G_{\nu, 1}=0, \quad \operatorname{otp}\left(G_{\nu, n}\right) \leqslant \omega_{1}^{n-1} \quad \text { for } \quad n \geqslant 2, \quad G_{\nu, n}=0 \quad \text { for } n \notin c_{\nu}
$$

and for each $x \in\left[c_{\nu}\right]^{\omega}, \operatorname{otp}\left(\cup G_{\nu}[x]\right)=\operatorname{otp}\left(I_{\nu}\right)$.
Set $A_{n}=\bigcup\left\{G_{\nu, n} \mid v<\omega_{1}\right\}$.
Evidently $\operatorname{otp}\left(A_{n}\right) \leqslant \omega_{1}^{n}$. Let $x \in[\omega]^{\omega}$, and write $X=\bigcup A[x]$. Let $\nu<\omega_{1}$: then $X \cap I_{\nu}=\bigcup\left\{G_{\nu, n} \mid n \in x \cap c_{\nu}\right\}$, so if x hits c_{ν}, otp $\left(X \cap I_{\nu}\right)=\operatorname{otp}\left(I_{\nu}\right)$, while if $x \cap c_{\nu}$ is finite, $\operatorname{otp}\left(X \cap I_{\nu}\right) \leqslant \omega_{1}^{k-1}<\omega_{1}^{\omega}$, where $k=\max \left(x \cap c_{\nu}\right)$.

Thus if x hits uncountably many c_{ν} 's, otp $(X)=\zeta$, whereas if $\rho={ }_{d f} \sup \left\{\nu \mid x\right.$ hits $\left.c_{\nu}\right\}$ is less than ω_{1},

$$
\theta .2 \rho \leqslant \operatorname{otp} X \leqslant \theta .\left(2^{\rho}+1\right)<\theta .2^{\rho+1}
$$

Hence $U=\left\{x \mid \tau_{A}(x)=\zeta\right\}=\operatorname{Power}(\omega) \backslash I_{A}$, and

$$
U=\left\{x \mid \tau_{\mathcal{A}}\left[[x]^{\omega}\right] \text { is uncountable }\right\}=\operatorname{Power}(\omega) \backslash J_{\boldsymbol{A}}
$$

so that $I_{A}=J_{A}$.
Suppose now that $\psi: \omega \rightarrow \omega$ is a surjection with each $\operatorname{otp}\left(\cup A\left[\psi^{-1}\{n\}\right]\right)<\zeta$, so that each $\psi^{-1}\{n\}$ is in I_{A}. Write $B=\psi_{*} A$. Then $I_{B}=\psi_{*} I_{A}$, which is a non-principal prime ideal. We shall show that B has uncountable spektron, which will imply that J_{B} is proper: as $I_{B} \subseteq J_{B}$ and I_{B} is prime, it will follow that $I_{B}=J_{B}$, so that in this case $\psi_{*} J_{A}=J_{\psi_{*} A}$.

Pick $\nu_{n}(n \in \omega)$ with $b_{\nu_{n}} \cap \psi^{-1}\{n\}$ finite, and set $\mu=\sup _{n \in \omega} \nu_{n} ; \mu<\omega_{1}$, and $\psi\left\lceil b_{\mu}\right.$ is finite-to-one.

We shall show that for all $v \geqslant \mu$ there is an $a \in \psi_{*} I_{A}\left(=I_{B}\right)$ such that $\psi^{-1}[a]$ hits c_{ν} : from this it follows that

$$
\theta .2^{\nu} \leqslant \tau_{A}\left(\psi^{-1}[a]\right)=\tau_{B}(a)<\zeta
$$

and therefore as v was arbitrary in $\left[\mu, \omega_{1}\right)$ and $\operatorname{cf}(\zeta)=\omega_{1}, \sigma \pi(B)$ is uncountable, as required.

So let $v \in\left[\mu, \omega_{1}\right)$, and put $a_{0}=\psi\left[c_{\nu}\right] . a_{0}$ will be an infinite subset of ω as $c_{\nu} \subseteq b_{\mu}$ $(\bmod F i n)$ and $\psi \Gamma b_{\mu}$ is finite-to-one. Divide a_{0} into two infinite pieces a_{1} and a_{2} : $\psi^{-1}\left[a_{1}\right]$ and $\psi^{-1}\left[a_{2}\right]$ are disjoint and therefore not both in U. Choose $a \in\left\{a_{1}, a_{2}\right\}$ with $\psi^{-1}[a] \notin U . \psi^{-1}[a]$ hits c_{ν} by construction, and $a \in \psi_{*} I_{A} . \quad$ I

6. Open problems

Several problems concerning unsound ordinals remain unsolved, which we list in this final section.

The one that comes immediately to mind is
Problem 6.0. Is it consistent with (say) $Z F+D C+\aleph_{1} \$ 2^{\aleph_{0}}$ that every ordinal is sound?

A natural candidate for a model of 'all ordinals are sound' is Solovay's model for 'all sets of reals are Lebesgue measurable'. Since the reflection argument at the end of Section 4 relies heavily on $A D$, it is natural to ask

Problem 6.1. Is it provable in (say) $Z F+D C$ that if there is an unsound ordinal then there is one less than ω_{2} ?

If it is provable outright that there is an unsound ordinal less than ω_{2}, how large is
the least one? The work in Section 3 on raising the sound barrier may be susceptible of improvement: an exploration of the obstacles to further progress suggests the next two questions.

Problem 6.2. If $\boldsymbol{\aleph}_{1} \$ 2^{\boldsymbol{N}_{0}}$, is $\omega_{\mathbf{1}}^{\omega+\omega+1}$ sound?
For any (ζ)-sequence A the map $\tau_{A}: \operatorname{Power}(\omega) \rightarrow \zeta+1$ which assigns to each $a \subseteq \omega$ the order type of $\cup A[a]$ induces a prewellordering \leqslant_{A} of $\operatorname{Power}(\omega)$. The discussion of Section 3 establishes the following

Proposition 6.3. If $\boldsymbol{\aleph}_{1} \neq 2^{\aleph_{0}}$ and $\eta<\omega_{1}^{\omega+\omega+1}$, then for any (η)-sequence A, η can be partitioned as $H \dot{U} T$ so that $\operatorname{otp}(H)<\zeta$ and, writing A^{\prime} for $\left(A_{n} \cap T\right)_{n}, \leqslant_{A^{\prime}}$ is Borel. |

This suggests a way to answer 6.2 affirmatively. If that succeeds, it is likely to establish the soundness of every ordinal less than $\omega_{1}^{\omega_{1}}$, at which new difficulties appear:

Problem 6.4. If $\boldsymbol{\aleph}_{1} \$ 2^{\aleph_{0}}$, is $\omega_{1}^{\omega_{1}}$ sound?
If Problem 6.4 has an affirmative answer, then one begins to speculate how far one can go before either an unsound ordinal is reached or the axiom of determinacy is refuted.

On a more mundane level, one can generalize the result of Section 2 to show that if $\boldsymbol{\aleph}_{2} \leqslant 2 \boldsymbol{N}_{0}$, there is an $\left(\omega_{3}\right)$-sequence with spektron of cardinality $\boldsymbol{\aleph}_{2}$, so that there exists what may be termed an ω_{2}-unsound ordinal.

Problem 6.5 (Woodin). How strong is the theory $Z F+D C+$ all sets of reals are Lebesgue measurable + there is an ω_{2}-unsound ordinal?

We have generally assumed that ω_{1} is regular. For completeness we ask a general and a particular question:

Problem 6.6. If ω_{1} is singular, is it unsound?
Problem 6.7. Is ω_{1} unsound in Levy's model in which cf $\left(\omega_{1}\right)=\omega$?
Two questions arising from the discussion of Section 4 should be listed:
Problem 6.8 (Solovay). Consider the map ϕ that assigns to each real of the form $\alpha^{\#}$ the ordinal that is the cardinal successor in $L[\alpha]$ of the true ω_{1}. Is there a perfect set of sharps on which the image of ϕ is uncountable?

Problem 6.9 (Kechris). Does 4.2 remain true when δ_{3}^{1} is replaced by $\boldsymbol{\aleph}_{\omega}$ or (better still) \boldsymbol{N}_{2} ?

Finally, a problem relevant to Section 5:
Problem 6.10. Does $\omega \rightarrow(\omega)^{\omega}$ hold in Shelah's model [11] for 'all sets of reals have the property of Baire'?

REFERENCES

[1] H. Bachmann. Transfinite Zahlen. Ergeb. Math. Grenzgeb. Neue Folge, Heft 1 (SpringerVerlag, 1955).
[2] Cabal Seminar 76-77. Lecture Notes in Math. vol. 689, ed. A. S. Kechris and Y. N. Moschovakis (Springer-Verlag, 1978).
[3] Cabal Seminar 77-79. Lecture Notes in Math. vol. 839, ed. A. S. Kechris, D. A. Martin and Y. N. Moschovakis (Springer-Verlag, 1981).
[4] Cabal Seminar 79-81. Lecture Notes in Math. vol. 1019, ed. A. S. Kechris, D. A. Martin and Y. N. Moschovakis (Springer-Verlag, 1983).
[5] D. Guaspari. Trees, Norms and Scales, Surveys in Set Theory, ed. A. R. D. Mathias. London Math. Soc. Lecture Note Ser. 87 (Cambridge University Press, 1983).
[6] S.-A. Jalali-Naini. The monotone subsets of Cantor Space, filters and descriptive set theory. D.Phil. thesis, Oxford, 1976.
[7] T. J. Jech. The Axiom of Choice. Studies in Logic, vol. 75 (North Holland, 1973).
[8] A. R. D. Mathias. A remark on rare filters. Colloq. Math. Soc. Janos Bolyai, 10. Infinite and Finite Sets, to Paul Erdös on his 60th birthday, ed. A. Hajnal, R. Rado and V. T. Sós (North Holland, 1975), 1095-1097.
[9] E. C. Milner and R. Rado. The pigeon-hole principle for ordinal numbers. Proc. London Math. Soc. (3), 15 (1965), 750-768.
[10] Y. N. Moschovakis. Descriptive Set Theory. Studies in Logic, vol. 100 (North Holland Publishing Company, 1980).
[11] S. Shelat, unpublished.
[12] W. Sierpiński. Cardinal and Ordinal Numbers. Monograf. Mat. Tom 34 (Warsaw, 1958).
[13] G. H. Toulmin. Shuffling ordinals and transfinite dimension. Proc. London Math. Soc. (3), 4 (1954), 177-195.

