VOL. XXXVIII

1977

FASC. 1

A SOLUTION OF A PROBLEM OF B. ROTMAN

 \mathbf{BY}

A. R. D. MATHIAS (PETERHOUSE, CAMBRIDGE)

The answer to P 937 (1), correcting an earlier paper, is negative. Theorem. Let M be an infinite set of power a, and $f_i : M \to M$ an injection for each i < a. The following statements are equivalent:

(i) there is a subset $X \subseteq M$ of power a such that any two members of the sequence

$$X, f_0(X), f_1(X), \ldots, f_i(X), \ldots \quad (i < \alpha)$$

are almost disjoint;

(ii) there is a subset $Z \subseteq M$ of power a such that, for all i and j < a, $F_{ij} \cap Z$ and $F_i \cap Z$ have power less than a, where

$$F_i = \{x \in M : f_i(x) = x\}$$
 and $F_{ij} = \{x \in M : f_i(x) = f_j(x)\}$.

Proof. For (ii) \Rightarrow (i), repeat the proof of Rotman's theorem (op. cit.). For (i) \Rightarrow (ii), take Z = X.

So, for a counterexample to P 937, suppose that f_1, f_2 , and f_3 are such that, for all x in M, $f_3(x) = f_1(x)$ or $f_3(x) = f_2(x)$. Then, for any Z of power a, either $Z \cap F_{13}$ or $Z \cap F_{23}$ is of power a. So (ii), and hence (i) will be false.

A necessary and, as there are a functions, sufficient condition for (ii) when a is regular is that the a-ideal generated by the F_i , the F_{ij} and the small subsets of M should be proper.

Reçu par la Rédaction le 4. 5. 1976

⁽¹⁾ B. Rotman, Correction to the paper "A theorem on almost disjoint sets", Colloquium Mathematicum 32 (1975), p. 307-308.