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The goal of these notes is to characterise recursively presented groups from
a combinatorial group-theoretic perspective. We will do so following Rotman
[1, Chapter 13]. As a first step, we will need to construct (semi)groups with
unsolvable word problem.

1 From Turing machines to semigroups

Consider a Turing machine T , with alphabet A = {sj}j , states Q = {qj}j ,
blank symbol s0, halting state q0 and starting state q1. The Turing machine T
has instructions of the form

qisjskq` or qisjLq` or qisjRq`.

We encode T in a semigroup U (T ), with generators Q ∪A ∪ {q} ∪ {h}, where
q and h are abstract symbols not contained in any of the other sets. The
semigroup U (T ) has the following relations:

• qisj = q`sk if T contains an instruction qisjskq`,

• qisjsk = sjq`sk if T contains an instruction qisjRq`,

• qisjh = sjq`s0h if T contains an instruction qisjRq`,

• skqisj = q`sksj if T contains an instruction qisjLq`,

• hqisj = hq`s0sj if T contains an instruction qisjLq`,

• q0sk = q0,

• skq0h = q0h,

• hq0h = q.

An element hw1qixw2h should be interpreted as representing the configuration
of T in the state qi, with the word w1xw2 on the tape, with the head on x, and
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with h representing an infinite blank word. The relations of U (T ) encode the
transitions of T .

Hence, the language accepted by T is characterised in terms of the algebra
of the semigroup U(T ):

Proposition 1. Let T be a Turing machine and w ∈ A∗. Then T accepts w if
and only if

hq1wh
U(T )
= q.

2 (Semi)groups with unsolvable word problem

The formalism of §1 allows one to construct semigroups with certain algorithmic
properties, starting from well-chosen Turing machines.

Theorem 2 (Markov–Post ’47). There is a finitely presented semigroup with
unsolvable word problem.

Proof. Pick a Turing machine T whose set E of accepted words is not recursive
— note that E is recursively enumerable since it is recognised by T . If one
could solve the word problem for U (T ), then by Proposition 1, one could decide
whether or not a given word is in E, since w ∈ E if and only if hq1wh = q in
U(T ). Therefore, E would be recursive, which is a contradiction.

Remark 3. The finitely presented semigroup U constructed in the proof of The-
orem 2 has the following properties:

• It is generated by Q∪A ∪ {q} ∪ {h},

• Its relators are of the form αqjβ = γqkδ for some words α, β, γ, δ ∈
(A ∪ {h})∗,

• There is no decision process to determine, for given words v, w ∈ A∪ {h}
and state qi ∈ Q, whether or not vqiw = q in Γ.

We can now readily construct a group, rather than a semigroup, with un-
solvable word problem.

Theorem 4 (Novikov–Boone ’55). There exists a finitely presented group with
unsolvable word problem.

Proof. We start with the semigroup U constructed in the proof of Theorem 2.
It has generators Q ∪ A ∪ {q} ∪ {h}, and relators {αiqjiβi = γiqkiδi}i∈I (see

Remark 3). From this, we construct a group Gnb, with generators Q∪A∪{q}∪
{h} ∪ {ri}i∈I ∪ {x} ∪ {t} ∪ {k}, and with the following relators:

• s−1
j xsj = x2 and h−1xh = x2,

• s−1
j risj = xrix,
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• r−1
i (ᾱiqjiβi) ri = γ̄iqkiδi,

• [t, ri] = [t, x] = [k, ri] = [k, x] =
[
k, q−1tq

]
= 1.

Claim. Given words v, w ∈ (A ∪ {h})∗, and a state qi ∈ Q, consider σ = v̄qiw
and σ∗ = vqiw. Then [

k, σ−1tσ
] Gnb

= 1⇐⇒ σ∗
U
= q.

We omit the proof of the claim — one can prove it most easily by considering
Van Kampen diagrams, see Rotman [1, pp. 372-379].

Admitting the claim, it follows that an algorithm solving the word problem
for Gnb would also be able to decide whether or not a word of the form vqiw is
equal to q in σ∗, contradicting Remark 3.

Remark 5. The construction of group Gnb in the proof of Theorem 4 is really a
sequence of HNN-extensions and free products:

• Start from the infinite cyclic group G0 = 〈x〉.

• Construct successive HNN-extensions with stable letters A∪{h} to obtain
G1.

• Take a free product with the free group on Q ∪ {q}, then take successive
HNN-extensions with stable letters {ri}i∈I , to obtain G2.

• Take an HNN-extension with stable letter t to obtain G3.

• Take an HNN-extension with stable letter k to obtain Gnb.

3 The Higman Embedding Theorem

Standing assumption. In a group presentation 〈S | R〉, the generating set S will
always be assumed to be finite and every relator r ∈ R will be assumed to be
a positive word over S — this can be achieved for example by replacing S with
S ∪ S−1.

Definition 6. A group Γ is recursively presented if one of the following two
equivalent conditions holds:

(i) Γ admits a presentation Γ = 〈S | R〉, where R is a recursively enumerable
subset of S∗.

(ii) Γ admits a finite (symmetric) generating set S for which the set{
w ∈ S∗

∣∣∣ w Γ
= 1
}

is recursively enumerable.

The main theorem of these notes is the following:
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Theorem 7 (Higman ’61). For a finitely generated group Γ, the following are
equivalent:

(i) Γ is recursively presented.

(ii) Γ embeds in a finitely presented group.

Proof of Theorem 7. For the implication (ii) ⇒ (i), it suffices to note that the
property of being recursively presented descends to subgroups (this is clear
from characterisation (ii) in Definition 6), and that finitely presented groups
are recursively presented.

We now prove (i)⇒ (ii). Let 〈S | R〉 be a presentation of Γ for which the set
R ⊆ S∗ is recursively enumerable. Let T be a Turing machine on the alphabet
A = S enumerating R, and let U(T ) be the associated semigroup, as described
in §1. From the semigroup U(T ), construct a finitely presented group Gnb(T ),
with generators Q∪A∪{q}∪{h}∪{ri}i∈I ∪{x}∪{t}∪{k} following the same
process as in the proof of the Novikov–Boone Theorem (Theorem 4). The claim
in the proof of Theorem 4, together with Proposition 1, tell us that, given a
word w ∈ A∗, if we set σ = h−1q1wh and σ∗ = hq1wh, then

w ∈ R⇐⇒ σ∗
U(T )
= q ⇐⇒

[
k, σ−1tσ

] Gnb(T )
= 1.

We modify slightly the successive presentations defined in Remark 5 to simplify
the equation

[
k, σ−1tσ

]
= 1:

• G2 is defined as in Remark 5.

• G3 is the HNN-extension of G2 with stable letter t0, with relations[
t0,
(
q−1
1 h

)
ri
(
q−1
1 h

)−1
]

=
[
t0,
(
q−1
1 h

)
x
(
q−1
1 h

)−1
]

= 1.

Note that this is just another presentation of the group G3 of Remark 5,

with t0 =
(
q−1
1 h

)
t
(
q−1
1 h

)−1
.

• Gnb(T ) is the HNN-extension of G3 with stable letter k0, with relations[
k0, hrih

−1
]

=
[
k0, hxh

−1
]

=
[
k0,
(
hq−1h−1q1

)
t0
(
hq−1h−1q1

)−1
]

= 1.

This is again another presentation of Gnb(T ), with k0 = hkh−1.

Now we have, given w ∈ A∗,

w ∈ R⇐⇒
[
k0, w

−1t0w
] Gnb(T )

= 1. (∗)

Take a disjoint copy A′ =
{
s′j
}
j∈J of the alphabet A = {sj}j∈J , and construct

the following groups:

• G4 is the free product Gnb(T ) ∗ Γ, where the generators of Γ are labelled
using letters of A′.
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• G5 is the HNN-extension of G4 with stable letters {τj}j∈J , with relations

[τj , sk] = [τj , s
′
k] = 1 and τ−1

j k0τj = k0s
′
j
−1
.

• G6 is the HNN-extension of G5 with stable letter d, with relations

[d, k0] = 1 and d−1sjτjd = sj .

• G7 is the HNN-extension of G6 with stable letter σ, with relations

[σ, k0] = [σ, sj ] = 1 and σ−1t0σ = t0d.

Remark 8. The fact that the above constructions are all HNN-extensions re-
quires some justification (one needs to check that there are pairs of isomorphic
subgroups inducing each extension). In fact, most of the HNN-extensions aris-
ing in the construction (but not the last one) have free edge groups. We do not
go into more details here — we refer the reader to [1, pp. 382-388] instead.

It then follows that there are embeddings

Γ ↪→ Gnb (T ) ∗ Γ = G4 ↪→ G5 ↪→ G6 ↪→ G7.

It remains to prove the

Claim. The group G7 is finitely presented.

Proof of the claim. Looking back at the construction of G1, . . . , G7, we observe
that the group Gnb(T ) is finitely presented (this boils down to the Turing ma-
chine T being given by a finite amount of data only, as for the Novikov–Boone
Theorem). The group G4 is obtained from Gnb(T ) by adding finitely many gen-
erators and the possibly infinite set of relators R′ =

{
s′j1 · · · s

′
j`

∣∣ sj1 · · · sj` ∈ R}.
The groups G5, G6, G7 are obtained from G4 by adding finitely many generators
and relations.

Therefore, the resulting presentation of G7 has finitely many generators, and
its set of relations is R′ ∪ Λ for a finite set Λ. Hence, it suffices to show that
each relation in R′ is a consequence of relations in Λ.

Pick a relation w ∈ R. Consider the word w′ ∈ R′ obtained by replacing
each letter sj in w with s′j . Our goal is to deduce that w′ = 1 from the relations
in the finite set Λ. Since w ∈ R, (∗) gives[

k0, w
−1t0w

] G7= 1.

Conjugating by σ and using the relations of G7 yields[
k0, w

−1 (t0d)w
]

= 1.

The above two equalities say that wk0w
−1 commutes with t0 and with t0d, so

it commutes with d.
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Recall moreover that the relations of G6 give d−1sjτjd = sj , which implies
(since the τj commute with the sj) that

dwd−1 = wwτ ,

where wτ is the word obtained from w by replacing each letter sj with τj . It
follows that

w−1dw = wτd.

But we have just seen that
[
wk0w

−1, d
]

= 1, so w−1dw = k−1
0

(
w−1dw

)
k0, and

therefore wτd = k−1
0 (wτd) k0. But k0 and d commute by the relations of G6, so

we obtain
[k0, wτ ] = 1. (†)

Finally, the relations of G5 give k−1
0 τjk0 = τjs

′
j , so that (since the s′j and τj

commute)
k−1

0 wτk0 = wτw
′.

Now (†) implies that w′ = 1 as wanted.

Remark 9. The proof of the above claim is summarised in the Van Kampen
diagram of Figure 1.

We have shown that Γ ↪→ G7, and G7 is finitely presented, which completes
the proof.
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Figure 1: Van Kampen diagram showing that, given a word w ∈ R, the relation
w′ = 1 of G7 follows from a finite set of relations.

7


	From Turing machines to semigroups
	(Semi)groups with unsolvable word problem
	The Higman Embedding Theorem

