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The goal of these notes is to explain the statement and give a proof of the
following:

Theorem 0.1 (Stallings ’68 [3]). Let G be a finitely generated group of coho-
mological dimension at most 1. Then G is free.

The proof will rely on the following results from the previous talks:

Theorem 0.2 (Stallings ’68 [3]). Let G be a finitely generated group.

1. G has more than one end if and only if it splits over a finite subgroup.

2. G has two ends if and only if it is virtually Z.

We will use the cohomological definition of ends:

Definition 0.3. Let G be an infinite, finitely generated group. Then the num-
ber of ends of G is dimF2

H1 (G;F2G) + 1.

The main reference is Stallings’ original paper [3], as well as notes taken
from lectures on group cohomology by Gareth Wilkes and Brita Nucinkis.

1 Group cohomology via projective resolutions.

We start by recalling the definition of group cohomology. We will first need
some algebraic language.

Throughout, Λ will be a ring with unit.

Definition 1.1. A module P over Λ is said to be projective if one of the following
equivalent conditions holds:

1. For every surjective map f : M1 →M2 (of Λ-modules) and for every map
g2 : P → M2, there is a map g1 : P → M1 making the following diagram
commute:

P

M1 M2

f

g1
g2
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2. Every short exact sequence 0→M → N → P → 0 splits.

3. The module P is a retract of a free module F , i.e. there are maps j : P ↪→
F and s : F � P such that s ◦ j = idP .

Definition 1.2. A projective resolution of a module M over Λ is an exact
sequence of Λ-modules

· · · → Pn+1
dn+1−−−→ Pn

dn−→ Pn−1 → · · · → P1
d1−→ P0

d0−→M → 0,

where each Pi is projective.

Now fix a group G, and consider the group ring ΛG.
Fix a ΛG-module M . Take a projective resolution of Λ (seen as a ΛG-module

with trivial G-action) over ΛG, and apply HomΛG (−,M) to obtain a cochain
complex

· · · ← HomΛG (Pn+1,M)
dn+1

←−−− HomΛG (Pn,M)
dn

←− HomΛG (Pn,M)←
· · · ← HomΛG (P0,M) .

Definition 1.3. The cohomology over the ring Λ of the groupG with coefficients
in the ΛG-module M is the cohomology of the above cochain complex:

Hn
Λ(G;M) = Ker dn+1/ Im dn.

This does not depend on the choice of a projective resolution.

Proposition 1.4. If M is a ΛG-module, then it can also be seen as a ZG-
module, and there are isomorphisms

H∗Λ(G;M) ∼= H∗Z(G;M)⊗ Λ.

Proof. This is essentially because tensoring a projective ZG-module by Λ yields
a projective ΛG-module.

2 Topological interpretation of group cohomol-
ogy

There is a natural way to construct a projective resolution from the classifying
space of a group. Let X be a K(G, 1) space which is also a CW-complex, and

let X̃ be the universal cover of X. For each n ≥ 0, denote by Celln

(
X̃
)

the set

of n-cells of X̃, and set

Pn =
⊕

c∈Celln(X̃)

Λc.

The action G y Celln

(
X̃
)

induces an action G y Pn, which turns Pn into

a ΛG-module. Moreover, the boundary maps ∂n : Celln

(
X̃
)
→ Celln−1

(
X̃
)
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induce ΛG-linear maps dn : Pn → Pn−1. This yields a projective resolution of
Λ over ΛG (here, P0 → Λ is the augmentation map defined by c 7→ 1 for each
basis element c of P0). Computing the cohomology of G using this projective
resolution, one recovers the singular cohomology of X (at least when Λ = Z and
M has trivial G-action):

Proposition 2.1. If A is an abelian group (seen as a ZG-module with trivial
G-action), then there are isomorphisms

H∗Z(G;A) ∼= H∗sing (K(G, 1);A) .

3 Cohomological dimension

The key notion of these notes is the following:

Definition 3.1. Let G be a group and let Λ be a ring. The cohomological
dimension of G over Λ is defined by

cdΛ(G) = sup {n ≥ 0 | Hn
Λ (G;M) 6= 0 for some ΛG-module M}

∈ N≥0 ∪ {∞}.

The cohomological dimension of a group G is related to the length of the
projective resolutions of Λ over ΛG. More precisely:

Definition 3.2. The projective dimension of a Λ-module M — denoted by
projdimΛ(M) — is the smallest integer n such that there is a length-n projective
resolution

0→ Pn → · · · → P0 →M → 0.

Proposition 3.3. Given a group G and a ring Λ, there is an equality

cdΛ(G) = projdimΛG(Λ).

Proof. (≤) If Λ has a length-n projective resolution over ΛG, then it is clear
that Hk

Λ (G;M) = 0 for every ΛG-module M and for every k > n.

(≥) Assume that cdΛ(G) ≤ n; we want to construct a length-n projective res-
olution of Λ over ΛG. Start with a projective resolution

· · · → Pn+1
dn+1−−−→ Pn

dn−→ Pn−1 → · · · → P1
d1−→ P0

d0−→ Λ→ 0

over ΛG. Let M = Ker dn = Im dn+1 ≤ Pn, and consider the cochain
α ∈ HomΛG (Pn+1,M) given by the map dn+1 with target restricted to
M . Note that dn+2α = 0 since dn+1 ◦ dn+2 = 0, so α is a cocycle. But
Hn+1

Λ (G;M) = 0 by assumption, so α is a coboundary, i.e. there exists
β ∈ HomΛG (Pn,M) such that α = dn+1β = β ◦ dn+1. If j : M ↪→ Pn is
the inclusion, then we have

β ◦ j ◦ α = β ◦ dn+1 = α,
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so β ◦ j = idM since α : Pn+1 →M is surjective by definition of M . Now
define γ : Pn → Pn by x 7→ x− β(x). Check that γ ◦ γ = γ, which implies
that Im γ is a retract of Pn, and therefore a projective module. Moreover,
the map

dn : Im γ → Ker dn−1

is an isomorphism of ΛG-modules, so Ker dn−1 is also projective. This
gives a length-n projective resolution

0→ Ker dn−1 → Pn−1 → · · · → P0 → Λ→ 0.

Remark 3.4. The proof of Proposition 3.3 implies that, if cdΛ(G) ≤ 1, then

the kernel of the augmentation map ΛG
ε−→ G is projective.

If in addition G is finitely generated, then the module P1 in the above proof
can be chosen to be finitely generated over ΛG, and Ker ε is a finitely generated
projective ΛG-module.

Proposition 3.5. 1. cdΛ(G) ≤ cdZ(G).

2. If H ≤ G, then cdΛ(H) ≤ cdΛ(G).

Proof. 1. This follows from Proposition 1.4.

2. A projective ΛG-module is also a projective ΛH-module.

Example 3.6. 1. Let F be a (nontrivial) free group. Then there is a K(F, 1)
space which is a graph. This yields a length-1 projective resolution of Λ
over ΛF as explained in §2, so

cdΛ(F ) ≤ 1.

Since H1
Λ (F ; Λ) ∼= Λ⊕ rkF , this is an equality.

2. Let G = Z/k =
〈
t | tk = 1

〉
for some integer k ≥ 2. Then there is a

projective resolution of Z by ZG-modules given by:

· · · → ZG ·(t−1)−−−−→ ZG ·k−→ ZG ·(t−1)−−−−→ ZG→ Z→ 0.

Therefore, one can check that H2i
Z (G;Z) = Z/n for all i, and therefore

cdZ(G) =∞.

It follows in particular that any group G with cdZ(G) <∞ is torsion-free.

However, cdQ(G) = 0 if G is finite!

3. Let M be an aspherical connected n-manifold. Then a cellular decom-
position of M yields a length-n projective resolution of Λ over Λπ1M ,
so cdΛ(π1M) ≤ n. If in addition M is orientable, then Poincaré duality
implies that

Hn
Λ (π1M ; Λ) ∼= Λ⊗Hsing

0 (M ;Z) ∼= Λ,

so cdΛ (π1M) = n.
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4 Geometric dimension

The above examples suggest that the following invariant might bring useful
information on the cohomological dimension:

Definition 4.1. The geometric dimension gd(G) of a group G is the minimal
dimension of a K(G, 1) space (or ∞ if there is no finite-dimensional K(G, 1)).

Example 4.2. 1. If F is a nontrivial free group, then gd(F ) = 1.

Conversely, a group of geometric dimension 1 admits a classifying space
which is a graph, and must therefore be free.

2. A group has geometric dimension at most 2 if and only if it admits an
aspherical presentation.

Since a n-dimensional K(G, 1) space gives a length-n projective resolution
of Z over ZG as explained above, we have the following:

Proposition 4.3. For any group G and any ring Λ, there are inequalities

cdΛ(G) ≤ cdZ(G) ≤ gd(G).

In fact, the inequality cdZ ≤ gd turns out to be an equality in many cases:

Theorem 4.4 (Eilenberg–Ganea ’57 [2]). For any group G, there is an equality
cdZ(G) = gd(G), except possibly in one of the following cases:

1. cdZ(G) = 1 and gd(G) ∈ {2, 3},

2. cdZ(G) = 2 and gd(G) = 3.

Stallings’ contribution (i.e. Theorem 0.1) was to prove that any group of
cohomological dimension 1 has geometric dimension 1. In other words, Case 1
cannot occur (at least for finitely generated groups — this was then generalised
by Swan to all groups):

Corollary 4.5 (Eilenberg–Ganea [2], Stallings [3], Swan [4]). For any group
G, there is an equality cdZ(G) = gd(G), except possibly if cdZ(G) = 2 and
gd(G) = 3.

It is still not known whether or not there exists a group G with cdZ(G) = 2
and gd(G) = 3.

5 Proof of the Stallings–Swan Theorem

We follow Stallings’ proof [3, §6] and start with a very general algebraic lemma.
Throughout, Λ is a ring with unit. Given a Λ-module M , we will write

M∗ = HomΛ (M,Λ). Hence, there is a natural map M →M∗∗.

Lemma 5.1. Let P and Q be finitely generated projective Λ-modules.
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1. The canonical homomorphism P → P ∗∗ is an isomorphism.

2. If ϕ : P → Q is a homomorphism such that ϕ∗ : Q∗ → P ∗ is an isomor-
phism, then ϕ is an isomorphism.

Proof. 1. The assumption that P is finitely generated projective means that
there exists a finitely generated free Λ-module F , and maps j : P ↪→ F and
s : F � P such that s ◦ j = idP . Now consider the following commutative
diagram:

P P ∗∗

F F ∗∗

P P ∗∗

∼=
j

s

idP

j∗∗

s∗∗
idP∗∗

One can see that the composition P ∗∗
j∗∗−−→ F ∗∗

∼=←− F
s−→ P is the inverse

of P → P ∗∗.

2. The inverse of ϕ can be seen to be the composition

Q
∼=−→ Q∗∗

(ϕ∗)−1

−−−−→ P ∗∗
∼=←− P.

We now fix a group G. The connection between cdZ(G) and the number of
ends of G is uncovered by the following:

Lemma 5.2. Let G be a nontrivial finitely generated group with cdZ(G) ≤ 1.
Then G has more than one end.

Proof. We start with the following observations:

• G is infinite (otherwise cdZG =∞ — see Example 3.6.2).

• H0
F2

(G;F2G) = 0. Indeed, let X be a K(G, 1). Then H0
F2

(G;F2G) can

be interpreted as the group of 0-cocycles on the universal cover X̃. A 0-
cochain is a map α : X̃(0) → F2G that is G-equivariant. If α is a cocycle,
then it takes the same value on adjacent vertices; but X̃ is connected, so α
must be constant. Now, G-equivariance implies that the value of α must
be 0.

• H1
F2

(G;F2G) = 0 if and only if G has at most one end by Definition 0.3
(see also Remark 5.3 below).

Moreover, we have cdF2
(G) ≤ cdZ(G) ≤ 1, so Remark 3.4 yields an exact

sequence

0→ P
∂−→ F2G

ε−→ F2 → 0, (1)
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where ε is the augmentation map and P is a finitely generated projective F2G-
module. Hence, we can compute H∗F2

(G;F2G) as the cohomology of the cochain

complex 0← P ∗
∂∗

←− (F2G)
∗
. In other words, there is an exact sequence

0→ H0
F2

(G;F2G)→ (F2G)
∗ ∂∗

−→ P ∗ → H1
F2

(G;F2G)→ 0.

But H0
F2

(G;F2G) = 0. If H1
F2

(G;F2G) = 0, then ∂∗ would be an isomorphism,
and so would ∂ by Lemma 5.1.2. But this would contradict the exact sequence
(1), so H1

F2
(G;F2G) 6= 0 and G has more than one end.

Remark 5.3. The cohomological definition of ends (Definition 0.3) is ambigu-
ous as to what ring the cohomology should be computed over. However, note
that there is an isomorphism of F2-vector spaces

H1
Z (G;F2G) ∼= H1

F2
(G;F2G) ,

and it doesn’t matter whether the cohomology is computed over Z or F2.

We can now prove the main theorem:

Theorem 5.4. Let G be a finitely generated group with cdZ(G) ≤ 1. Then G
is free.

Proof. We argue by induction on the minimum number of generators of G —
which we denote by rkG. If rkG = 0, then G is trivial.

Otherwise, Lemma 5.2 implies that G has two or infinitely many ends. If G
has two ends, then since it is torsion-free (as cd(G) <∞) it must be isomorphic
to Z (by Theorem 0.2.2), which is free of rank 1.

Now assume that rkG > 1 and G has infinitely many ends. By Theorem
0.2.1, G splits over a finite subgroup H. Again, G is torsion-free, so H must be
trivial, and G does in fact split as a nontrivial free product

G = G1 ∗G2.

We have cdZG1, cdZG2 ≤ cdZG ≤ 1, and by Grushko’s Theorem, rkG1, rkG2 <
rkG. Hence, by induction, G1 and G2 are both free, and so is G.

6 Two generalisations

Stallings’ Theorem was given two major generalisations.
Swan removed the finite generation assumption (he also obtained a similar

result over an arbitrary ring assuming that G is torsion-free):

Theorem 6.1 (Swan ’69 [4]). Any group G with cdZ(G) ≤ 1 is free.

Dunwoody gave a complete characterisation of groups of cohomological di-
mension 1 over an arbitrary ring:
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Definition 6.2. A group G is said to have no Λ-torsion if the order of every
finite subgroup of G is a unit in Λ.

Theorem 6.3 (Dunwoody ’79 [1]). Let G be a group and let Λ be a ring. The
following are equivalent:

1. cdΛ(G) ≤ 1.

2. G splits as a graph of groups where every vertex group is finite and has no
Λ-torsion.
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