The Stallings-Swan Theorem

Reading group on Ends of Groups

Alexis Marchand

October 24, 2023

The goal of these notes is to explain the statement and give a proof of the following:

Theorem 0.1 (Stallings '68 [3]). Let G be a finitely generated group of cohomological dimension at most 1. Then G is free.

The proof will rely on the following results from the previous talks:

Theorem 0.2 (Stallings '68 [3]). Let G be a finitely generated group.

- 1. G has more than one end if and only if it splits over a finite subgroup.
- 2. G has two ends if and only if it is virtually \mathbb{Z} .

We will use the cohomological definition of ends:

Definition 0.3. Let G be an infinite, finitely generated group. Then the number of ends of G is $\dim_{\mathbb{F}_2} H^1(G; \mathbb{F}_2 G) + 1$.

The main reference is Stallings' original paper [3], as well as notes taken from lectures on group cohomology by Gareth Wilkes and Brita Nucinkis.

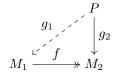
1 Group cohomology via projective resolutions.

We start by recalling the definition of group cohomology. We will first need some algebraic language.

Throughout, Λ will be a ring with unit.

Definition 1.1. A module P over Λ is said to be *projective* if one of the following equivalent conditions holds:

1. For every surjective map $f: M_1 \to M_2$ (of Λ -modules) and for every map $g_2: P \to M_2$, there is a map $g_1: P \to M_1$ making the following diagram commute:



- 2. Every short exact sequence $0 \to M \to N \to P \to 0$ splits.
- 3. The module P is a retract of a free module F, i.e. there are maps $j:P\hookrightarrow F$ and $s:F\twoheadrightarrow P$ such that $s\circ j=\mathrm{id}_P.$

Definition 1.2. A projective resolution of a module M over Λ is an exact sequence of Λ -modules

$$\cdots \to P_{n+1} \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \to \cdots \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0,$$

where each P_i is projective.

Now fix a group G, and consider the group ring ΛG .

Fix a ΛG -module M. Take a projective resolution of Λ (seen as a ΛG -module with trivial G-action) over ΛG , and apply $\operatorname{Hom}_{\Lambda G}(-,M)$ to obtain a cochain complex

$$\cdots \leftarrow \operatorname{Hom}_{\Lambda G}\left(P_{n+1}, M\right) \xleftarrow{d^{n+1}} \operatorname{Hom}_{\Lambda G}\left(P_{n}, M\right) \xleftarrow{d^{n}} \operatorname{Hom}_{\Lambda G}\left(P_{n}, M\right) \leftarrow \cdots \leftarrow \operatorname{Hom}_{\Lambda G}\left(P_{0}, M\right).$$

Definition 1.3. The *cohomology* over the ring Λ of the group G with coefficients in the ΛG -module M is the cohomology of the above cochain complex:

$$H^n_{\Lambda}(G;M) = \operatorname{Ker} d^{n+1} / \operatorname{Im} d^n.$$

This does not depend on the choice of a projective resolution.

Proposition 1.4. If M is a ΛG -module, then it can also be seen as a $\mathbb{Z}G$ -module, and there are isomorphisms

$$H^*_{\Lambda}(G;M) \cong H^*_{\mathbb{Z}}(G;M) \otimes \Lambda.$$

Proof. This is essentially because tensoring a projective $\mathbb{Z}G$ -module by Λ yields a projective ΛG -module.

2 Topological interpretation of group cohomology

There is a natural way to construct a projective resolution from the classifying space of a group. Let X be a K(G,1) space which is also a CW-complex, and let \tilde{X} be the universal cover of X. For each $n \geq 0$, denote by $\operatorname{Cell}_n\left(\tilde{X}\right)$ the set of n-cells of \tilde{X} , and set

$$P_n = \bigoplus_{c \in \operatorname{Cell}_n(\tilde{X})} \Lambda c.$$

The action $G \curvearrowright \operatorname{Cell}_n\left(\tilde{X}\right)$ induces an action $G \curvearrowright P_n$, which turns P_n into a ΛG -module. Moreover, the boundary maps $\partial_n : \operatorname{Cell}_n\left(\tilde{X}\right) \to \operatorname{Cell}_{n-1}\left(\tilde{X}\right)$

induce ΛG -linear maps $d_n: P_n \to P_{n-1}$. This yields a projective resolution of Λ over ΛG (here, $P_0 \to \Lambda$ is the augmentation map defined by $c \mapsto 1$ for each basis element c of P_0). Computing the cohomology of G using this projective resolution, one recovers the singular cohomology of X (at least when $\Lambda = \mathbb{Z}$ and M has trivial G-action):

Proposition 2.1. If A is an abelian group (seen as a $\mathbb{Z}G$ -module with trivial G-action), then there are isomorphisms

$$H_{\mathbb{Z}}^*(G;A) \cong H_{\operatorname{sing}}^*(K(G,1);A)$$
.

3 Cohomological dimension

The key notion of these notes is the following:

Definition 3.1. Let G be a group and let Λ be a ring. The *cohomological dimension* of G over Λ is defined by

$$\operatorname{cd}_{\Lambda}(G) = \sup \{ n \geq 0 \mid H_{\Lambda}^{n}(G; M) \neq 0 \text{ for some } \Lambda G\text{-module } M \}$$
$$\in \mathbb{N}_{>0} \cup \{ \infty \}.$$

The cohomological dimension of a group G is related to the length of the projective resolutions of Λ over ΛG . More precisely:

Definition 3.2. The *projective dimension* of a Λ -module M — denoted by $\operatorname{projdim}_{\Lambda}(M)$ — is the smallest integer n such that there is a length-n projective resolution

$$0 \to P_n \to \cdots \to P_0 \to M \to 0.$$

Proposition 3.3. Given a group G and a ring Λ , there is an equality

$$\operatorname{cd}_{\Lambda}(G) = \operatorname{projdim}_{\Lambda G}(\Lambda).$$

Proof. (\leq) If Λ has a length-n projective resolution over ΛG , then it is clear that $H^k_{\Lambda}(G;M)=0$ for every ΛG -module M and for every k>n.

(\geq) Assume that $\operatorname{cd}_{\Lambda}(G) \leq n$; we want to construct a length-n projective resolution of Λ over ΛG . Start with a projective resolution

$$\cdots \to P_{n+1} \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \to \cdots \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} \Lambda \to 0$$

over ΛG . Let $M=\operatorname{Ker} d_n=\operatorname{Im} d_{n+1}\leq P_n$, and consider the cochain $\alpha\in\operatorname{Hom}_{\Lambda G}(P_{n+1},M)$ given by the map d_{n+1} with target restricted to M. Note that $d^{n+2}\alpha=0$ since $d_{n+1}\circ d_{n+2}=0$, so α is a cocycle. But $H^{n+1}_{\Lambda}(G;M)=0$ by assumption, so α is a coboundary, i.e. there exists $\beta\in\operatorname{Hom}_{\Lambda G}(P_n,M)$ such that $\alpha=d^{n+1}\beta=\beta\circ d_{n+1}$. If $j:M\hookrightarrow P_n$ is the inclusion, then we have

$$\beta \circ j \circ \alpha = \beta \circ d_{n+1} = \alpha$$
,

so $\beta \circ j = \operatorname{id}_M$ since $\alpha : P_{n+1} \to M$ is surjective by definition of M. Now define $\gamma : P_n \to P_n$ by $x \mapsto x - \beta(x)$. Check that $\gamma \circ \gamma = \gamma$, which implies that $\operatorname{Im} \gamma$ is a retract of P_n , and therefore a projective module. Moreover, the map

$$d_n: \operatorname{Im} \gamma \to \operatorname{Ker} d_{n-1}$$

is an isomorphism of ΛG -modules, so $\operatorname{Ker} d_{n-1}$ is also projective. This gives a length-n projective resolution

$$0 \to \operatorname{Ker} d_{n-1} \to P_{n-1} \to \cdots \to P_0 \to \Lambda \to 0.$$

Remark 3.4. The proof of Proposition 3.3 implies that, if $\operatorname{cd}_{\Lambda}(G) \leq 1$, then the kernel of the augmentation map $\Lambda G \xrightarrow{\varepsilon} G$ is projective.

If in addition G is finitely generated, then the module P_1 in the above proof can be chosen to be finitely generated over ΛG , and $\operatorname{Ker} \varepsilon$ is a finitely generated projective ΛG -module.

Proposition 3.5. 1. $\operatorname{cd}_{\Lambda}(G) \leq \operatorname{cd}_{\mathbb{Z}}(G)$.

2. If $H \leq G$, then $\operatorname{cd}_{\Lambda}(H) \leq \operatorname{cd}_{\Lambda}(G)$.

Proof. 1. This follows from Proposition 1.4.

2. A projective ΛG -module is also a projective ΛH -module.

Example 3.6. 1. Let F be a (nontrivial) free group. Then there is a K(F,1) space which is a graph. This yields a length-1 projective resolution of Λ over ΛF as explained in §2, so

$$\operatorname{cd}_{\Lambda}(F) \leq 1.$$

Since $H^1_{\Lambda}(F;\Lambda) \cong \Lambda^{\oplus \operatorname{rk} F}$, this is an equality.

2. Let $G = \mathbb{Z}/k = \langle t \mid t^k = 1 \rangle$ for some integer $k \geq 2$. Then there is a projective resolution of \mathbb{Z} by $\mathbb{Z}G$ -modules given by:

$$\cdots \to \mathbb{Z}G \xrightarrow{\cdot (t-1)} \mathbb{Z}G \xrightarrow{\cdot k} \mathbb{Z}G \xrightarrow{\cdot (t-1)} \mathbb{Z}G \to \mathbb{Z} \to 0.$$

Therefore, one can check that $H^{2i}_{\mathbb{Z}}(G;\mathbb{Z}) = \mathbb{Z}/n$ for all i, and therefore

$$\operatorname{cd}_{\mathbb{Z}}(G) = \infty.$$

It follows in particular that any group G with $\operatorname{cd}_{\mathbb{Z}}(G) < \infty$ is torsion-free. However, $\operatorname{cd}_{\mathbb{Q}}(G) = 0$ if G is finite!

3. Let M be an aspherical connected n-manifold. Then a cellular decomposition of M yields a length-n projective resolution of Λ over $\Lambda \pi_1 M$, so $\operatorname{cd}_{\Lambda}(\pi_1 M) \leq n$. If in addition M is orientable, then Poincaré duality implies that

$$H^n_{\Lambda}(\pi_1 M; \Lambda) \cong \Lambda \otimes H^{\operatorname{sing}}_0(M; \mathbb{Z}) \cong \Lambda,$$

so $\operatorname{cd}_{\Lambda}(\pi_1 M) = n$.

4 Geometric dimension

The above examples suggest that the following invariant might bring useful information on the cohomological dimension:

Definition 4.1. The *geometric dimension* gd(G) of a group G is the minimal dimension of a K(G,1) space (or ∞ if there is no finite-dimensional K(G,1)).

Example 4.2. 1. If F is a nontrivial free group, then gd(F) = 1.

Conversely, a group of geometric dimension 1 admits a classifying space which is a graph, and must therefore be free.

2. A group has geometric dimension at most 2 if and only if it admits an aspherical presentation.

Since a n-dimensional K(G,1) space gives a length-n projective resolution of \mathbb{Z} over $\mathbb{Z}G$ as explained above, we have the following:

Proposition 4.3. For any group G and any ring Λ , there are inequalities

$$\operatorname{cd}_{\Lambda}(G) \leq \operatorname{cd}_{\mathbb{Z}}(G) \leq \operatorname{gd}(G).$$

In fact, the inequality $cd_{\mathbb{Z}} \leq gd$ turns out to be an equality in many cases:

Theorem 4.4 (Eilenberg–Ganea '57 [2]). For any group G, there is an equality $\operatorname{cd}_{\mathbb{Z}}(G) = \operatorname{gd}(G)$, except possibly in one of the following cases:

- 1. $\operatorname{cd}_{\mathbb{Z}}(G) = 1$ and $\operatorname{gd}(G) \in \{2, 3\},\$
- 2. $cd_{\mathbb{Z}}(G) = 2$ and gd(G) = 3.

Stallings' contribution (i.e. Theorem 0.1) was to prove that any group of cohomological dimension 1 has geometric dimension 1. In other words, Case 1 cannot occur (at least for finitely generated groups — this was then generalised by Swan to all groups):

Corollary 4.5 (Eilenberg–Ganea [2], Stallings [3], Swan [4]). For any group G, there is an equality $\operatorname{cd}_{\mathbb{Z}}(G) = \operatorname{gd}(G)$, except possibly if $\operatorname{cd}_{\mathbb{Z}}(G) = 2$ and $\operatorname{gd}(G) = 3$.

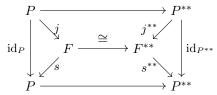
It is still not known whether or not there exists a group G with $\operatorname{cd}_{\mathbb{Z}}(G) = 2$ and $\operatorname{gd}(G) = 3$.

5 Proof of the Stallings–Swan Theorem

We follow Stallings' proof [3, §6] and start with a very general algebraic lemma. Throughout, Λ is a ring with unit. Given a Λ -module M, we will write $M^* = \operatorname{Hom}_{\Lambda}(M, \Lambda)$. Hence, there is a natural map $M \to M^{**}$.

Lemma 5.1. Let P and Q be finitely generated projective Λ -modules.

- 1. The canonical homomorphism $P \to P^{**}$ is an isomorphism.
- 2. If $\varphi: P \to Q$ is a homomorphism such that $\varphi^*: Q^* \to P^*$ is an isomorphism, then φ is an isomorphism.
- *Proof.* 1. The assumption that P is finitely generated projective means that there exists a finitely generated free Λ -module F, and maps $j:P\hookrightarrow F$ and $s:F\twoheadrightarrow P$ such that $s\circ j=\mathrm{id}_P$. Now consider the following commutative diagram:



One can see that the composition $P^{**} \xrightarrow{j^{**}} F^{**} \xleftarrow{\cong} F \xrightarrow{s} P$ is the inverse of $P \to P^{**}$.

2. The inverse of φ can be seen to be the composition

$$Q \xrightarrow{\cong} Q^{**} \xrightarrow{(\varphi^*)^{-1}} P^{**} \xleftarrow{\cong} P.$$

We now fix a group G. The connection between $\operatorname{cd}_{\mathbb{Z}}(G)$ and the number of ends of G is uncovered by the following:

Lemma 5.2. Let G be a nontrivial finitely generated group with $\operatorname{cd}_{\mathbb{Z}}(G) \leq 1$. Then G has more than one end.

Proof. We start with the following observations:

- G is infinite (otherwise $\operatorname{cd}_{\mathbb{Z}} G = \infty$ see Example 3.6.2).
- $H^0_{\mathbb{F}_2}(G; \mathbb{F}_2 G) = 0$. Indeed, let X be a K(G,1). Then $H^0_{\mathbb{F}_2}(G; \mathbb{F}_2 G)$ can be interpreted as the group of 0-cocycles on the universal cover \tilde{X} . A 0-cochain is a map $\alpha: \tilde{X}^{(0)} \to \mathbb{F}_2 G$ that is G-equivariant. If α is a cocycle, then it takes the same value on adjacent vertices; but \tilde{X} is connected, so α must be constant. Now, G-equivariance implies that the value of α must be 0.
- $H^1_{\mathbb{F}_2}(G; \mathbb{F}_2 G) = 0$ if and only if G has at most one end by Definition 0.3 (see also Remark 5.3 below).

Moreover, we have $\operatorname{cd}_{\mathbb{F}_2}(G) \leq \operatorname{cd}_{\mathbb{Z}}(G) \leq 1$, so Remark 3.4 yields an exact sequence

$$0 \to P \xrightarrow{\partial} \mathbb{F}_2 G \xrightarrow{\varepsilon} \mathbb{F}_2 \to 0, \tag{1}$$

where ε is the augmentation map and P is a finitely generated projective \mathbb{F}_2G module. Hence, we can compute $H^*_{\mathbb{F}_2}(G;\mathbb{F}_2G)$ as the cohomology of the cochain
complex $0 \leftarrow P^* \stackrel{\partial^*}{\leftarrow} (\mathbb{F}_2G)^*$. In other words, there is an exact sequence

$$0 \to H^0_{\mathbb{F}_2}\left(G; \mathbb{F}_2 G\right) \to \left(\mathbb{F}_2 G\right)^* \xrightarrow{\partial^*} P^* \to H^1_{\mathbb{F}_2}\left(G; \mathbb{F}_2 G\right) \to 0.$$

But $H_{\mathbb{F}_2}^0\left(G;\mathbb{F}_2G\right)=0$. If $H_{\mathbb{F}_2}^1\left(G;\mathbb{F}_2G\right)=0$, then ∂^* would be an isomorphism, and so would ∂ by Lemma 5.1.2. But this would contradict the exact sequence (1), so $H_{\mathbb{F}_2}^1\left(G;\mathbb{F}_2G\right)\neq 0$ and G has more than one end.

Remark 5.3. The cohomological definition of ends (Definition 0.3) is ambiguous as to what ring the cohomology should be computed over. However, note that there is an isomorphism of \mathbb{F}_2 -vector spaces

$$H^1_{\mathbb{Z}}(G; \mathbb{F}_2 G) \cong H^1_{\mathbb{F}_2}(G; \mathbb{F}_2 G)$$
,

and it doesn't matter whether the cohomology is computed over \mathbb{Z} or \mathbb{F}_2 .

We can now prove the main theorem:

Theorem 5.4. Let G be a finitely generated group with $\operatorname{cd}_{\mathbb{Z}}(G) \leq 1$. Then G is free.

Proof. We argue by induction on the minimum number of generators of G — which we denote by $\operatorname{rk} G$. If $\operatorname{rk} G = 0$, then G is trivial.

Otherwise, Lemma 5.2 implies that G has two or infinitely many ends. If G has two ends, then since it is torsion-free (as $\operatorname{cd}(G) < \infty$) it must be isomorphic to \mathbb{Z} (by Theorem 0.2.2), which is free of rank 1.

Now assume that $\operatorname{rk} G > 1$ and G has infinitely many ends. By Theorem 0.2.1, G splits over a finite subgroup H. Again, G is torsion-free, so H must be trivial, and G does in fact split as a nontrivial free product

$$G = G_1 * G_2.$$

We have $\operatorname{cd}_{\mathbb{Z}} G_1, \operatorname{cd}_{\mathbb{Z}} G_2 \leq \operatorname{cd}_{\mathbb{Z}} G \leq 1$, and by Grushko's Theorem, $\operatorname{rk} G_1, \operatorname{rk} G_2 < \operatorname{rk} G$. Hence, by induction, G_1 and G_2 are both free, and so is G.

6 Two generalisations

Stallings' Theorem was given two major generalisations.

Swan removed the finite generation assumption (he also obtained a similar result over an arbitrary ring assuming that G is torsion-free):

Theorem 6.1 (Swan '69 [4]). Any group G with $\operatorname{cd}_{\mathbb{Z}}(G) \leq 1$ is free.

Dunwoody gave a complete characterisation of groups of cohomological dimension 1 over an arbitrary ring: **Definition 6.2.** A group G is said to have *no* Λ -torsion if the order of every finite subgroup of G is a unit in Λ .

Theorem 6.3 (Dunwoody '79 [1]). Let G be a group and let Λ be a ring. The following are equivalent:

- 1. $\operatorname{cd}_{\Lambda}(G) \leq 1$.
- 2. G splits as a graph of groups where every vertex group is finite and has no Λ -torsion.

References

- M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. (3) 38 (1979), no. 2, 193–215. MR531159
- [2] Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518. MR85510
- [3] John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR228573
- [4] Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. MR240177