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The goal of these notes is to explain the statement and give a proof of the
following:

Theorem 0.1 (Stallings ’68 [3]). Let G be a finitely generated group of coho-
mological dimension at most 1. Then G is free.

The proof will rely on the following results from the previous talks:
Theorem 0.2 (Stallings '68 [3]). Let G be a finitely generated group.

1. G has more than one end if and only if it splits over a finite subgroup.

2. G has two ends if and only if it is virtually Z.

We will use the cohomological definition of ends:

Definition 0.3. Let G be an infinite, finitely generated group. Then the num-
ber of ends of G is dimp, H! (G;F2G) + 1.

The main reference is Stallings’ original paper [3], as well as notes taken
from lectures on group cohomology by Gareth Wilkes and Brita Nucinkis.

1 Group cohomology via projective resolutions.

We start by recalling the definition of group cohomology. We will first need
some algebraic language.
Throughout, A will be a ring with unit.

Definition 1.1. A module P over A is said to be projective if one of the following
equivalent conditions holds:

1. For every surjective map f : M7 — Ms (of A-modules) and for every map
g2 : P — Mo, there is a map ¢g; : P — M; making the following diagram
commute:
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2. Every short exact sequence 0 - M — N — P — 0 splits.

3. The module P is a retract of a free module F, i.e. there are maps j : P —
F and s: F — P such that soj =idp.

Definition 1.2. A projective resolution of a module M over A is an exact
sequence of A-modules

dy, dyn d d
i Ppp 5P, P PSS Py M0,

where each P; is projective.

Now fix a group G, and consider the group ring AG.

Fix a AG-module M. Take a projective resolution of A (seen as a AG-module
with trivial G-action) over AG, and apply Hompag (—, M) to obtain a cochain
complex

o Homag (Pasr, M) <& Homg (P, M) <% Hompe (Po, M)
-+« < Hompzg (Po, M) .

Definition 1.3. The cohomology over the ring A of the group G with coeflicients
in the AG-module M is the cohomology of the above cochain complex:

HY(G; M) = Kerd" ™ /Imd".
This does not depend on the choice of a projective resolution.

Proposition 1.4. If M is a AG-module, then it can also be seen as a ZG-
module, and there are isomorphisms

Hy(G; M) = H;(G; M) ® A.

Proof. This is essentially because tensoring a projective ZG-module by A yields
a projective AG-module. O

2 Topological interpretation of group cohomol-
ogy

There is a natural way to construct a projective resolution from the classifying
space of a group. Let X be a K(G,1) space which is also a CW-complex, and

let X be the universal cover of X. For each n > 0, denote by Cell, (X ) the set

P, = @ Ac.

cECell, (X)

of n-cells of X, and set

The action G ~ Cell, (X ) induces an action G ~ P,, which turns P, into
a AG-module. Moreover, the boundary maps 9, : Cell, (5() — Cell,,_1 (X)



induce AG-linear maps d,, : P, — P,_1. This yields a projective resolution of
A over AG (here, Py — A is the augmentation map defined by ¢ — 1 for each
basis element ¢ of Py). Computing the cohomology of G using this projective
resolution, one recovers the singular cohomology of X (at least when A = Z and
M has trivial G-action):

Proposition 2.1. If A is an abelian group (seen as a ZG-module with trivial
G-action), then there are isomorphisms

Hz (G5 A) = Hg,g (K(G,1);A).

3 Cohomological dimension

The key notion of these notes is the following:

Definition 3.1. Let G be a group and let A be a ring. The cohomological
dimension of G over A is defined by

cda(G) =sup{n > 0| Hy (G; M) # 0 for some AG-module M}
S Nzo U {OO}

The cohomological dimension of a group G is related to the length of the
projective resolutions of A over AG. More precisely:

Definition 3.2. The projective dimension of a A-module M — denoted by
projdim, (M) — is the smallest integer n such that there is a length-n projective
resolution

0—-P,—---=>FP—>M-—=0.

Proposition 3.3. Given a group G and a ring A, there is an equality
cda(G) = projdim, o (A).

Proof. (<) If A has a length-n projective resolution over AG, then it is clear
that HY (G; M) = 0 for every AG-module M and for every k > n.

(>) Assume that cds(G) < n; we want to construct a length-n projective res-

olution of A over AG. Start with a projective resolution
dn41 dy dy do
o= Py —— P, P, 11— P —P—A—=0

over AG. Let M = Kerd,, = Imd,,y; < P,, and consider the cochain
a € Hompg (P41, M) given by the map d, 1 with target restricted to
M. Note that d"*2a = 0 since d, ;1 0 d, 12 = 0, 0 « is a cocycle. But
HX'H(G;M) = 0 by assumption, so « is a coboundary, i.e. there exists
B € Hompg (P, M) such that a = d"*13 = Bod,.1. If j : M — P, is
the inclusion, then we have

IBOjOO(ZBOd»,H_l:Oé,



so o j =idys since a: P11 — M is surjective by definition of M. Now
define v : P, — P, by  — x — B(x). Check that v o~ = ~, which implies
that Im+y is a retract of P,,, and therefore a projective module. Moreover,
the map

dp :Im~y — Kerd,_1

is an isomorphism of AG-modules, so Kerd,,_; is also projective. This
gives a length-n projective resolution

0— Kerd,,—.1 > P,_1—-—>PFP—>A—0. O

Remark 3.4. The proof of Proposition 3.3 implies that, if cdy(G) < 1, then
the kernel of the augmentation map AG < G is projective.

If in addition G is finitely generated, then the module P; in the above proof
can be chosen to be finitely generated over AG, and Ker ¢ is a finitely generated
projective AG-module.

Proposition 3.5. 1. cda(G) < cdz(G).
2. If H <G, then cdp(H) < cdp(G).
Proof. 1. This follows from Proposition 1.4.
2. A projective AG-module is also a projective A H-module. O

Example 3.6. 1. Let F be a (nontrivial) free group. Then there is a K (F, 1)
space which is a graph. This yields a length-1 projective resolution of A
over AI" as explained in §2, so

cdp(F) < 1.

Since H} (F;A) =2 A®™8F this is an equality.

2. Let G = Z/k = (t|t* =1) for some integer k > 2. Then there is a
projective resolution of Z by ZG-modules given by:
ooz 26 Bre 26 sz 0.

Therefore, one can check that H2'(G;Z) = Z/n for all i, and therefore
cdz(G) = oc.

It follows in particular that any group G with c¢dz(G) < oo is torsion-free.

However, cdg(G) =0 if G is finite!

3. Let M be an aspherical connected n-manifold. Then a cellular decom-
position of M yields a length-n projective resolution of A over Am M,
so cdp(m M) < n. If in addition M is orientable, then Poincaré duality
implies that _

HY (mM;A) 2 A® Hy" (M;Z) = A,

so cdp (m M) = n.



4 Geometric dimension

The above examples suggest that the following invariant might bring useful
information on the cohomological dimension:

Definition 4.1. The geometric dimension gd(G) of a group G is the minimal
dimension of a K (G, 1) space (or oo if there is no finite-dimensional K (G, 1)).

Example 4.2. 1. If F is a nontrivial free group, then gd(F') = 1.

Conversely, a group of geometric dimension 1 admits a classifying space
which is a graph, and must therefore be free.

2. A group has geometric dimension at most 2 if and only if it admits an
aspherical presentation.

Since a n-dimensional K (G, 1) space gives a length-n projective resolution
of Z over ZG as explained above, we have the following:

Proposition 4.3. For any group G and any ring A, there are inequalities
cda(G) < cdz(G) < gd(G).
In fact, the inequality cdz < gd turns out to be an equality in many cases:

Theorem 4.4 (Eilenberg-Ganea '57 [2]). For any group G, there is an equality
cdz(G) = gd(QG), except possibly in one of the following cases:

1. ¢dz(G) =1 and gd(G) € {2,3},
2. ¢dz(G) =2 and gd(G) = 3.

Stallings’ contribution (i.e. Theorem 0.1) was to prove that any group of
cohomological dimension 1 has geometric dimension 1. In other words, Case 1
cannot occur (at least for finitely generated groups — this was then generalised
by Swan to all groups):

Corollary 4.5 (Eilenberg-Ganea [2], Stallings [3], Swan [1]). For any group
G, there is an equality cdz(G) = gd(G), except possibly if cdz(G) = 2 and
gd(G) = 3.

It is still not known whether or not there exists a group G with cdz(G) = 2
and gd(G) = 3.

5 Proof of the Stallings—Swan Theorem

We follow Stallings’ proof [3, §6] and start with a very general algebraic lemma.
Throughout, A is a ring with unit. Given a A-module M, we will write
M* = Homp (M, A). Hence, there is a natural map M — M**.

Lemma 5.1. Let P and Q be finitely generated projective A-modules.



1. The canonical homomorphism P — P** is an isomorphism.

2. If p: P — @Q is a homomorphism such that p* : Q* — P* is an isomor-
phism, then ¢ is an isomorphism.

Proof. 1. The assumption that P is finitely generated projective means that
there exists a finitely generated free A-module F', and maps j : P <— F and
s : F — P such that soj =idp. Now consider the following commutative

diagram:
P p**
N L Y
idp F— F* idps«
% N
P p**

*

One can see that the composition P** I e & F 5 Pis the inverse
of P — P**.

2. The inverse of ¢ can be seen to be the composition

o *)—1 o

We now fix a group G. The connection between cdz(G) and the number of
ends of G is uncovered by the following;:

Lemma 5.2. Let G be a nontrivial finitely generated group with cdz(G) < 1.
Then G has more than one end.

Proof. We start with the following observations:
e G is infinite (otherwise cdz G = 0o — see Example 3.6.2).

o HY (G;F2G) = 0. Indeed, let X be a K(G,1). Then HY (G;F2G) can
be interpreted as the group of 0-cocycles on the universal cover X. AoO-
cochain is a map a : X(© — Fy@G that is G-equivariant. If « is a cocycle,
then it takes the same value on adjacent vertices; but X is connected, so «

must be constant. Now, G-equivariance implies that the value of o must
be 0.

e Hy (G;F2G) = 0 if and only if G has at most one end by Definition 0.3
(see also Remark 5.3 below).

Moreover, we have cdp,(G) < c¢dz(G) < 1, so Remark 3.4 yields an exact
sequence

0= P LTG5 F,—0, (1)



where ¢ is the augmentation map and P is a finitely generated projective FoG-
module. Hence, we can compute Hy, (G;F2G) as the cohomology of the cochain

complex 0  P* < (F2G)". In other words, there is an exact sequence

0 — HY (G;F2G) — (F2G)" L5 P* = HE (G;FoG) — 0.

But HI(F)2 (G;FG) =0. If H]%2 (G;F2G) = 0, then 0* would be an isomorphism,
and so would 0 by Lemma 5.1.2. But this would contradict the exact sequence
(1), so Hg, (G;F2G) # 0 and G has more than one end. O

Remark 5.3. The cohomological definition of ends (Definition 0.3) is ambigu-
ous as to what ring the cohomology should be computed over. However, note
that there is an isomorphism of Fso-vector spaces

Hy (G;F2G) = Hy, (G;F2G),
and it doesn’t matter whether the cohomology is computed over Z or Fs.

We can now prove the main theorem:

Theorem 5.4. Let G be a finitely generated group with cdz(G) < 1. Then G
1s free.

Proof. We argue by induction on the minimum number of generators of G —
which we denote by rk G. If tk G = 0, then G is trivial.

Otherwise, Lemma 5.2 implies that G has two or infinitely many ends. If G
has two ends, then since it is torsion-free (as cd(G) < co) it must be isomorphic
to Z (by Theorem 0.2.2), which is free of rank 1.

Now assume that kG > 1 and G has infinitely many ends. By Theorem
0.2.1, G splits over a finite subgroup H. Again, G is torsion-free, so H must be
trivial, and G does in fact split as a nontrivial free product

G:Gl*GQ.

We have cdz G1,cdy Go < c¢dy G < 1, and by Grushko’s Theorem, rk G1,rk G5 <
rk G. Hence, by induction, G; and G5 are both free, and so is G. O

6 Two generalisations

Stallings’ Theorem was given two major generalisations.
Swan removed the finite generation assumption (he also obtained a similar
result over an arbitrary ring assuming that G is torsion-free):

Theorem 6.1 (Swan ’69 [1]). Any group G with cdz(G) <1 is free.

Dunwoody gave a complete characterisation of groups of cohomological di-
mension 1 over an arbitrary ring:



Definition 6.2. A group G is said to have no A-torsion if the order of every
finite subgroup of G is a unit in A.

Theorem 6.3 (Dunwoody ’79 [1]). Let G be a group and let A be a ring. The
following are equivalent:

1. CdA(G) S 1.

2. G splits as a graph of groups where every vertex group is finite and has no
A-torsion.
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